
Chapter 1

CONFLICTS IN AGENT TEAMS

Hyuckchul Jung and Milind Tambe
Information Sciences Institute, University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292�
jungh,tambe � @isi.edu

Abstract Multi-agent teamwork is a critical capability in a large number of applications.
Yet, despite the considerable progress in teamwork research, the challenge of
intra-team conflict resolution has remained largely unaddressed. This chapter
presents a system called CONSA, to resolve conflicts using argumentation-based
negotiations. The key insight in CONSA(COllaborative Negotiation System
based on Argumentation) is to fully exploit the benefits of argumentation in a
team setting. Thus, CONSA casts conflict resolution as a team problem, so that
the recent advances in teamwork can be fully brought to bear during conflict
resolution to improve argumentation flexibility. Furthermore, since teamwork
conflicts often involve past teamwork, recently developed teamwork models can
be exploited to provide agents with reusable argumentation knowledge. Addi-
tionally, CONSA also includes argumentation strategies geared towards benefit-
ing the team rather than the individual, and techniques to reduce argumentation
overhead. We present detailed algorithms used in CONSA and shows a detailed
trace from CONSA’s implementations.

1. INTRODUCTION

Teamwork is a critical capability in a large number of multi-agent appli-
cations, such as virtual environments for education and training[12], robotic
teams[7] and teams on the Internet. In these applications, agents must act to-
gether despite the uncertainties of their complex dynamic environment. Con-
siderable progress has indeed been made in teamwork research. For instance,
recent advances in teamwork models[6, 12], which explicitly outline agents’
commitments and responsibilities in teamwork, have significantly improved
flexibility in teamwork coordination and communication. However, this re-
search has so far not addressed the challenge of resolving conflicts within a
team.

1

2

Yet, as agent applications advance to meet the requirements of scale and
autonomy, inter-agent conflicts become increasingly inevitable. For instance,
while autonomously reacting to dynamic events, agents may unintentionally
interfere in others’ actions, or faulty sensors may provide them with conflicting
information or lead them to conflicting inferences. While such conflict reso-
lution is difficult in general, it is even more problematic in teams if intra-team
conflicts are not anticipated.

This chapter focuses on a system we have developed to resolve conflicts
in agent teams, called CONSA: COllaborative Negotiation System based on
Argumentation. In argumentation, agents negotiate by providing arguments
(which may be justifications or elaborations) in support of their proposals to
one another. CONSA builds on past work in argumentation[2, 8, 10, 11], but
advances the state of the art by fully exploiting the benefits of argumentation
in a team setting. Thus, one key idea in CONSA is to cast conflict resolution as
an explicit common team goal. As a result, the recent advances in teamwork
models are brought to bear during conflict resolution, improving negotiation
flexibility. For instance, if a team member privately discovers an event that
renders the current team conflict irrelevant, it will be committed to informing
its team members — it will not just withdraw privately from negotiations. Ad-
ditionally, with an explicit common team goal, novel argumentation strategies
emerge, e.g., agents may attempt to improve the quality of teammates’ argu-
ments. Furthermore, since team conflicts are often rooted in past teamwork,
CONSA enables agents to argue effectively about teamwork, by exploiting the
teamwork models in a novel way, i.e., not only as a guide to agent behavior
during conflict resolution, but as a source for reusable argumentation knowl-
edge. Finally, CONSA is integrated within existing agent teams in complex
environments, and has focused on practical issues, such as minimizing the
resources consumed in negotiations.

This chapter is organized as follows: Section 2. provides background and
motivation. Section 3. provides details on STEAM which CONSA is based on.
Section 4. describes the representation and evaluation of arguments in CONSA.
Section 5. explains CONSA’s novel argumentation approach in detail. Section
6. shows how CONSA’s implementation works in a specific example. An
earlier and shorter version of this chapter has appeared in [13]. This chapter
presents significant additional details, missing in that work.

2. DOMAINS AND MOTIVATIONS

The motivation for current research on negotiation is based on our pre-
vious work in complex, multi-agent domains such as real-world battlefield
simulations[12]. We have built different teams of synthetic pilot agents that
participate in combat simulations in these environments. These pilot agent

Conflicts in Agent Teams 3

teams include companies of attack helicopter pilots and divisions of trans-
port and escort helicopter pilots. The second domain is Robocup[7] where
we have twice successfully participated in the RoboCup tournaments. These
agent teams have been developed based on a teamwork model called STEAM
[12]. STEAM is based on the joint intentions[3] and SharedPlans[5] theories
of teamwork, but with practical extensions for monitoring and replanning as
well as decision-theoretic communication selectivity. STEAM has provided
significant teamwork flexibility in all of these applications. Yet, STEAM does
not address the problem of conflicts in agents’ beliefs and relevant negotiations
to resolve such conflicts, limiting teamwork flexibility in key instances. We
describe here just a few key examples that outline some of the basic issues for
collaborative negotiations:

The firing position case: Individual pilots in a helicopter team typically
attack the enemy from firing positions. These positions are planned
by a commander agent, who ensures that they do not conflict, i.e., the
positions are planned to be at least one kilometer apart from each other.
However, despite careful planning, individual pilots may autonomously
react to unexpected enemy vehicles, and end up in conflicting positions
(e.g., much less than 1 km apart). Figure 1.1 is a snapshot of Mod-
SAF(Modular Semi-Automated Forces)[1] simulator for pilot agents and
illustrates this conflict case. Contour lines show the terrain of the vir-
tual environment in the ModSAF simulator. To attack nearby enemy
units(100A12, 100A11, etc.), two helicopter pilot agents, cheetah424
and cheetah425, pop up from a masking position. Unfortunately, they
are too close to each other. They need to negotiate to resolve their
position conflict.

The proceed case: In planning the positions described above, the com-
mander pilot plans one position(e.g. position to hide behind a small hill)
per team member, and communicates it to the relevant team member
via radio. In one run, a message was lost due to radio interference,
i.e., the commander thought the position was communicated, but a team
member M1 never received it. Thus, when the commander asked the
team to proceed because it believed all of the positions were successfully
communicated, there was a conflict with M1.

The enemy position case: Two scout helicopter agents may have con-
flicting beliefs about the closest enemy unit seen. For instance, one scout
may report completion of scouting and the closest enemy unit seen as
part of this report, while the second scout may see an even closer enemy
unit than the one reported.

4

The ball position case: In our player team in RoboCup soccer simulation,
defenders inform each other if the ball is close by and hence a threat.
However, the players’ belief of the ball’s threat may differ, leading them
to have conflicting beliefs about whether the ball is a threat.

In addressing such conflict resolution problems, our goal is to avoid any
specialized solutions, and focus instead on a general approach that would be
applicable to a wide variety of conflicts.

Figure 1.1 Snapshot of firing position case.

3. TEAMWORK MODEL

Before we discuss CONSA, it is useful to briefly overview teamwork mod-
els, particularly the STEAM[12] model, since it is the basis of our team imple-
mentations. STEAM consists of two components, both currently realized in
the Soar[9] architecture. The first is an enhanced agent architecture with ex-
plicit representation of team’s joint intentions, mutual beliefs and team goals.
Figure 1.2 shows an operator hierarchy (i.e., a reactive plan hierarchy) for a
synthetic helicopter pilot developed using STEAM. Team operators (reactive
team plans), which explicitly express a team’s joint activities, are shown in [],
such as [Engage]. At any time, one path through this hierarchy is active. This
active hierarchy of operators is the team’s joint intentions (team operators) and
individual intentions (individual operators).

The second component of STEAM is the domain independent teamwork
knowledge to enable individual agents’ flexible teamwork. Of particular im-
portance here are two of the classes of domain-independent actions. The

Conflicts in Agent Teams 5

High
level

Low
level

Contour NOE

Mask

Select−
Mask

Unmask

Dip

Engage

Employ
weapons

Fly−flight−plan

EXECUTE−MISSION

............Travelling

Fly−control
route

[]

[]

][[
[]

][

Initialize
hover

Maintain
position

Goto−new
mask−location

Prepare−to
return−to−base

............

]

Return−to
control−point

............

Figure 1.2 Portion of pilot operator hierarchy.

first is coherence-preserving actions, derived from the joint intention theory
[3]. These require agents to jointly activate and terminate team operators,
by establishing mutual beliefs in their initiation and termination; individual
operators are executed without such mutual beliefs. The second class of
domain-independent actions is maintenance and repair actions, for re-planning
and team reorganization. These actions require an explicit specification of the
dependency relationship of the joint intention on individual team members’
activities, based on the notion of a role. A role constrains a team member Mi
to some suboperator op ��� of the team operator [OP]. Three primitive role-
relationships (and their combinations) can currently be specified in STEAM.
An AND-combination implies that the achievement of team operator requires
achievement of each one of the roles. An OR-combination requires success in
at least one role for the team operator to be achieved. The role-dependency
relationship states that an op ��� depends on op ��� .

4. ARGUMENT REPRESENTATION & EVALUATION

This section describes CONSA’s underlying representation and algorithms
to evaluate arguments, which are embedded in a larger CONSA process, dis-
cussed in the next section. CONSA’s representation of arguments is based on
Toulmin’s[14] argumentation pattern (henceforth TAP), chosen for its gener-
ality. In a TAP, an argument consists of the following elements: (i) claim: a
conclusion whose merit an agent seeks to establish. (ii) data: the facts that are
a foundation for the claim. (iii) warrants: the authority (e.g., a rule) for taking
the step from the data to the claim. (iv) qualifications: degree of force which
conferred on the claim based on the data and warrant.

In CONSA, claims are agents’ individual or mutual beliefs. During argu-
mentation, these claims form the proposals, with the supporting TAP as the
argument for the proposal. For example, in RoboCup soccer, a claim (pro-
posal) may be that “the ball is a threat,” supported by data that “the ball is
30 meters from own goal,” and a warrant that “if the soccer ball is within
35 meters of own goal, then it is very likely a threat.” In CONSA, the data

6

may itself be another claim (belief), with its own supporting TAP, so that a
recursive tree of TAP structure may emerge in support of a claim. Finally, in
CONSA, the qualifications on claims determine the strengths of arguments.
Currently, claims have qualitative strengths: high, medium and low. Thus, a
strong warrant and data will lead to a “high” strength for the claim.

When an agent sends a proposal to its team, team members must determine
if their own beliefs conflict with the proposal. Figure 1.3 presents CONSA’s
algorithm to make this determination. The input is a proposed TAP tree � ,
which forms the proposal (claim), with supporting arguments. The output is a
set � of tuples (

�
reject(claim �) or accept(claim �) � , justification). Here, a reject

tuple implies an agent’s conflict with the claim ����� , while an accept tuple
implies an improved justification in support of the claim. The justifications
consist of TAPs. If � is empty, then no conflicts or improvements are found.

In the algorithm, step 1 checks the input TAP tree � for conflicts with the
agent’s own claims. If a conflict is found, step 2 compares the strengths of
the conflicting claims, rejecting the other agent’s claim if own claim is found
stronger. Step 3 now compares the input claims from � for coincidence or
agreement. For simplicity, this algorithm assumes a single coincidence. If
coincidence is found, then the supports of coincident claims are compared, to
determine the stronger support. If one is found, it is added to � . When no co-
incidence or conflict is found in � itself, CONSA will not immediately accept
� . Since leaf nodes in � may hold undesirable implications, CONSA derives
implications from � (step 4). While in general checking undesirable implica-
tions is difficult, CONSA currently executes one iteration of such derivations,
checking for conflict or coincidence and adding the result to � .

To determine the strengths of claim in the compare-strengths procedure in
Figure 1.3, CONSA relies on the supporting TAP structure. Given that the
TAP structure can itself be recursive, claim strengths are evaluated recursively.
For leaf-level claims, evidential rules are used. Here, CONSA exploits the
benefits of argumentation in a team setting, by relying on the following rules of
evidence: assertions from a team member regarding its own role and capability
are judged to provide high-strength claims.

5. CONSA APPROACH

Figure 1.4 presents the overall CONSA negotiation process. Step 1 is a
proposal generated by a team member. Steps 2, 3 and 4 are the opening, ar-
gumentation and termination stages of CONSA’s negotiation. In the opening
stage, agents agree to jointly resolve the current conflict. In the argumenta-
tion stage, they cycle through proposals and counter-proposals, terminating
arguments in the termination phase.

Conflicts in Agent Teams 7

Evaluate-proposal(Input: TAP-tree � ; Output: �)

1. In parallel, for all claims ��� in TAP-tree � do:�
Check ��� for conflict with own claims;
If ��� conflicts with own claim �	� ,

add tuple (��� , �
�) to conflict-set CS; �
2. For all tuples (��� , �
�) � CS, starting from tuple with lowest �
�
��� do:�

Compare-strengths(��� , �
�);
If �
� is stronger, add (reject(���), �
�) to � ; �

3. In parallel, for all claims ��� in TAP-tree � do:�
Check ��� for coincidence with own beliefs;
If coincidence with own claim ��� ,�

Compare-strengths(support(�
�), support(���));
If support(���) is stronger,

add (accept(��� ,support(���)) to � ; ���
4. If � is empty, check derivations of leaf claims in � ;

5. Output � ; if � is empty, no conflicts or coincidence found.

Figure 1.3 CONSA’s algorithm for evaluating proposal.

Opening and closing stages: In CONSA’s opening stage, the conflict
detection step (2-a) requires it to address two different types of conflicts.
In particular, based on the description of the teamwork model (Section 3.),
conflicts can be of two types: (1) Team members may have conflicting beliefs
about jointly initiating or terminating a team operator, e.g., one agent believes
the team operator must be terminated, while the other believes it cannot be
terminated; or (2) Agents executing individual operators may unintentionally
conflict with each other’s role performance. Thus, in the examples from
Section 2., the “firing position case” is a type 2 conflict, but the rest are type
1 conflicts. To detect a type 1 conflict, an agent must evaluate proposals sent
by their teammates to jointly initiate or terminate team activities, detected via
the Evaluate-proposal algorithm in Figure 1.3. In contrast, to detect type 2
conflicts, CONSA uses role constraints, that explicitly specify the maintenance
goals for the successful performance of the role. For instance, in the firing
position case, the lateral-range (distance) between Mj (the agent performing
this role) and any other teammate must be at least one kilometer.

Having detected a conflict in Step 2-a, we temporarily skip over step 2-b
to focus on step 2-c. Here, a team member Mj, who has detected a conflict,
initiates establishment of a team operator to resolve the current conflict. If the
conflict is of type 1, Mj initiates the establishment of resolve-joint-conflict as a
team operator, involving the entire team from the original joint activity. If the
conflict is of type 2, Mj initiates the establishment of resolve-role-conflict as a
team operator, but the involved team here is only Mj and the agent that caused

8

1. A team member Mi generates a proposal � .

2. Opening stage:

(a) A team member Mj detects a conflict with � .

(b) If Mj believes joint action not beneficial to resolving conflict, terminate, return;

(c) Else Mj communicates with team members to establish team operator to resolve
current conflict.

3. Argumentation stage

(a) Any member Mk in the current team operator may generate proposal to resolve
conflict;

(b) Other team members evaluate-proposal (see Figure 1.3).

(c) If no conflict/coincidence found, accept the proposal and go to step 4;

(d) Else if proposal found to conflict/coincide; continue argument if cost-benefit-wise
useful, else accept the proposal and goto step 4;

4. Closing stage

(a) If suggested proposal accepted, then terminate conflict-resolution team operator;

(b) Else if the conflict resolution found unachievable or irrelevant, terminate conflict-
resolution team operator;

Figure 1.4 Three stages of argumentation in CONSA.

a conflict for Mj’s role. For instance, in the firing position case, resolve-role-
conflict is established as a team operator between Mj and Mk(the agent that
caused the role conflict).

By casting conflict-resolution itself as a team operator, all of STEAM’s flex-
ible teamwork capabilities are brought to bear, to guide agents’ behavior during
conflict resolution. For instance, agents jointly establish the conflict-resolution
team operators, using protocols that ensure synchronization and agreement
among team members. In particular, teammates may disagree about the exis-
tence of the conflict, or they may be unable to negotiate if they are performing
another higher priority task. However, by using a team operator for conflict
resolution, an agent Mj begins negotiations only after ensuring its teammates
agree to and are able to engage in negotiations. Furthermore, STEAM’s rea-
soning about commitments leads team members to behave responsibly towards
each other. If a dynamic event causes a team member to privately discover that
their conflict is resolved or unresolvable or irrelevant, it will be committed to
make this mutually believed in the team. A team member cannot just on its
own drop out from participation in the conflict resolution. The utility of such
flexibility can be seen in the firing position case. If a team member sees enemy

Conflicts in Agent Teams 9

vehicles approaching, it will terminate the current on-going negotiations, but
do so responsibly while informing teammates of the situation.

Argumentation stage: The argumentation stage involves an agent (sender)
making a proposal to the agent-team (receiver) with an attached justification
(argument). The receivers evaluate the proposal taking the justification into
account, and either accept or refute it. If refuting the proposal, a receiver
may send back a counter-proposal to the team, who may continue this cycle
of proposals and counter-proposals. Refutation may be done via rebutting or
undercutting[10]. Briefly, rebutting refutes the teammate’s claim (proposal)
directly, with some justifications. In contrast, undercutting attacks the justifi-
cation provided with the proposal, rather than the proposal itself.

In this argumentation stage, the teamwork setting provides two key novel
ideas. First, it enables and requires a third strategy in addition to rebutting
and undercutting, which we call “improve support.” In particular, an agent
receiving a proposal from its team member may accept the proposal, but may
have a better justification for the proposal than the one offered by the sender.
For instance, in the “enemy position” case from Section 2., the second scout
detected a closer enemy unit. The second scout agrees with the top-level
claim that the scouting is completed, but it offers a higher quality solution
about the closer enemy unit, which allows the helicopter team’s performance
to improve. It is to enable this “improve-support” strategy that the Evaluate-
proposal algorithm (Figure 1.3) checks for claim coincidence.

Second, teamwork models provide reusable argumentation knowledge. In
particular, team conflicts are sometimes rooted in past teamwork, as for instance
in the proceed case. To argue effectively about teamwork, agents must be
knowledgeable about teamwork. Here, STEAM provides general, reusable
warrants for constructing TAPs. For instance, the warrants shown below,
extracted from STEAM’s role relationships, are employed in CONSA. Here,
warrant � 1 states that if a team operator � is an AND-combination, and all
of its roles are not achieved, then the team operator is not achieved. � 2 is a
variation for an OR-combination and � 3 is that for an AND-combination.

� 1: Team-Operator(�) � AND-combination(�) ��� All-roles-fulfilled(�) ��� achieved(�)
� 2: Team-Operator(�) � OR-combination(�) �	� All-roles-unachievable(�) �
�
unachievable(�)
� 3: Team-Operator(�) � AND-combination(�) � All-roles-fulfilled(�) � achieved(�)

Real-time, efficient argumentation: There are three techniques used in
CONSA to reduce resources utilized in argumentation and enhance its real-
time performance (shown in steps 2-c and 3-d of Figure 1.4). One technique
is decision-theoretic reasoning of the cost-benefit analysis of argumentation,
i.e., to avoid continuing to argue if the costs outweigh the likely benefits.
Specifically, prior to initiating each proposal, an agent weighs the choices of

10

Cost(Time)

2Cc

Cost = d/v (CRC)

Cost = d/(2v) + Cc (ECA)

2vCc
ArgumentationUnilateral action

Distance(d)

Cost(Time)
Cost = d/v (CRC)

Cost = (5d)/(8v) + 2Cc (ECA)

Argumentation
(16vCc)/3

Unilateral action

(16Cc)/3

Distance(d)

(a) p=1, � 1=0.5 (b) p=1/2, � 1=0.5, � 2=0.25, and � =3

Figure 1.5 Threshold between unilateral action and argumentation

(i) continuing argumentation with teammates to optimally settle the conflict,
or (ii) taking possible unilateral action to resolve the conflict. Agents continue
the argumentation process only if the expected utility of argumentation is
greater. For instance, in the firing position case, helicopters may not be 1
kilometer apart as desired. Given this conflict, an agent has the choice of
initiating argumentation to determine the distance “ � ” each helicopter must
move to minimize travel time (example discussed below in detail), or else to
just moving a greater distance “

� � ” by itself to resolve the conflict.
Suppose the cost of the unilateral action choice (e.g., moving “

� � ”) is �����
- the conflict resolution cost(this cost is the joint cost to the collaborating
agents). In contrast, if an agent were to rely on argumentation, several out-
comes are possible. First, if a teammate accepts the agent’s proposal in the
first cycle, the cost will be (1- � 1)* ����� + ��� (� 1: expected savings ratio
for the collaborating agents together with argumentation after one cycle, ��� :
communication cost). Second, if the proposal is not accepted at the first cy-
cle and there are many cycles of sending proposals and counter proposals,
it will cost (1- � 2)* ����� + � * ��� (� 2: expected savings ratio after multi-
ple cycles, � : the expected number of cycles to settle the current conflict).
With the probability(�) of teammate’s accepting a proposal in one cycle, the
expected cost of argumentation(
���) is � *((1- � 1)* ����� + ���) + ��
������ *((1-
� 2)* ����� + � * ���). Thus, an agent enters argumentation if 	
����������� .
Going back to the firing position case, the cost is time to resolve the conflict.
With the unilateral action choice (ii), one pilot agent moves all the distance to
resolve the constraint. In this case, the cost(�����) is ����� (� : distance to be
moved, � : helicopter’s velocity). Now, to evaluate the argumentation option
(i), if the agent assumes that there is no restriction for both agents’ movements
and expects that the other agent can accept its proposal at the first cycle with
the probability(�) of 1, then it suggests 50:50 movements to minimize the
time. This makes � 1 equals 0.5. Figure 1.5 (a) shows that, with these � and

Conflicts in Agent Teams 11

� 1, an agent should argue if ��� ��� � � ��� . If the helicopter’s velocity is
50m/sec and Cc is 5sec, agents enter into argumentation only if the distance to
move is greater than 500m. Otherwise, it avoids argumentation and moves the
distance by itself. On the other hand, if agents are not sure of the restrictions
of the other agent, agents cannot expect that the other agent will accept its
proposal at the first cycle. When an agent suggests 50:50 movements, there
can be two possibilities. One possibility is that the other agent accepts the
proposal at the first cycle and both agents move each half of the distance to
be moved, which makes � 1 0.5. The other one is that an agent cannot accept
its teammate’s proposal and additional negotiation cycles are required. In the
latter case, if three cycles are usually expected before reaching an agreement
and the agreement is likely to be 75:25 movements because of the restriction
of the other agent, then � 2 is 0.25(one agent moves 75% of the distance and
its time to move comes to be a team’s cost) and � is 3. If an agent assumes that
the probability(�) of the other agent’s accepting its proposal in the first cycle is
0.5, the expected utility of argumentation is ��� � ��� � ��� � ����� � ��� . Therefore,
agents enter into argumentation only if �	����
�
 � � � ��� � �
� (Figure 1.5 (b)).
During the argumentation, Such evaluation continues at each cycle.

The second technique is ordering of arguments. If there are multiple ar-
guments applicable, CONSA will communicate the strongest first, in order to
speed up the argumentation process. Here the strength of the arguments is
compared based on the compare-strengths procedure discussed in Figure 1.3.
For instance, an agent will prefer an argument based on own role performance
over one based on a teammate’s role performance, since own role-performance
provides a stronger argument given role expertise heuristic discussed earlier.
Interestingly, this heuristic contrasts with [8], where in a non-collaborative
setting, the weaker arguments are presented first to wear down an opponent.
Ordering will also choose the highest claim in the proposed argument that can
be attacked.

To reduce communication overhead during argumentation, CONSA also
uses pruning to avoid communication of commonly held warrants. In partic-
ular, if an agent believes that particular warrants are mutually believed, and
uniquely applicable in a given circumstance, it will prune the warrant from the
communicated TAP tree.

6. DETAILED EXAMPLE OF IMPLEMENTATION
CONSA is currently realized in the Soar[9] architecture in 132 rules. Our

implementation has enabled agents to negotiate to resolve conflicts in all the
cases from Section 2.. Table 1.1 shows a part of the Soar outputs from CONSA’s
execution trace in the “firing position case”. Here, cheetah424 and cheetah
425 are names of two pilot agents, and the number(e.g. “2288”) in each line

12

is the decision cycle number in Soar. “S114”, “S124” etc. are the Soar states
which represent a problem solving situation. “O264”, “O267” etc. are the
executed SOAR operators which make changes to the states. For instance,
at decision cycle 2288, cheetah424 executes an operator “O264” to resolve
the firing position conflict: executing the operator enables cheetah424 to start
the argumentation processes with cheetah425. Cheetah424 and cheetah425
belong to a team of five pilot agents. Since the firing position conflict is a type
2 conflict (in Section 5.) between cheetah424 and cheetah425, the other agents
are not involved in this argumentation.

While executing operator “O264” at decision cycle 2288, cheetah424 does
decision theoretic reasoning (in Section 5.). Since it assumes that both agents
have no restriction for their movements, it concludes that it is beneficial to
share the distance to be moved through argumentation. At this step, if the
communication cost is too high, cheetah424 avoids argumentation and decides
to take unilateral action. At decision cycle 2290 of cheetah424 and 2289
of cheetah425, by executing the operator “establish-jpg”, both agents agree
to jointly activate and terminate a team operator “resolve-role-conflict”. This
process is supported by STEAM[12]. Next, cheetah424 computes both agents’
movements based on its beliefs for both of them. Based on the current distance
and the assumption of no restriction, cheetah424 sends a proposal suggesting
50:50 movements with justifications at decision cycle 2362. Figure 1.6 (a)
shows the tree structure of the proposal. Leaf nodes are the justifications.

cheetah424: 414m & cheetah425: 414m

cheetah425 no restriction current distance: 172mcheetah424 no restriction

Resolve conflict by moving
cheetah425 cannot move 414m

cheetah425 restriction : 300m

Proposal is not acceptable:

(a) cheetah424’s proposal (b) cheetah425’s counter-proposal

Figure 1.6 Structure of proposal with justifications

Cheetah425 receives the proposal and starts to check whether the claims
in the justifications are consistent with its own beliefs or not by executing
“inconsist-control” operator at decision cycle 2366. Let’s assume that chee-
tah425 cannot move more than 300 meters because of close enemy units. At
decision cycle 2369, cheetah425 finds a conflict between its belief(movement
restriction of 300 meters) and cheetah424’s belief(middle leaf node in Figure
1.6 (a)). Cheetah425 decides to reject the proposal by comparing strengths of
both beliefs at decision cycle 2369 and 2371. Algorithm in Figure 1.3 explains

Conflicts in Agent Teams 13

Table 1.1 Traces of firing position case.

cheetah424 cheetah425

... ...
Position conflict detected. Position conflict detected.
... ...
2288:O: O264 resolve-role-conflict 2287:O: O403 resolve-role-conflict
Decision theoretic reasoning. ...
2289:==>S: S114 (operator no-change) 2288:==>S: S124 (operator no-change)
2290: O: O267 establish-jpg 2289: O: O406 establish-jpg
... ...
Established JPG. Established JPG.
... ...
2362: O: O273 send-proposal ...
Movements cheetah424:414&cheetah425:414 ...
... Message from cheetah424.
... 2366: O: O413 inconsist-control
... Begin inconsistency checking.
... 2367: ==>S: S129 (operator no-change)
... 2368: O: O415 make-decision
... 2369: O: O416 compare-claims
2368: O: O218 wait Compare the claims in arguments.
... 2370: ==>S: S130 (operator tie)
... 2371: O: O417 evaluate
... Evaluating the claims.
... Reject the proposal.
... ...
... 2372: O: O432 send-counter-proposal
... Cheetah425 restriction: 300 meters.
Message from cheetah 425. ...
2373: O: O282 inconsist-control ...
Begin inconsistency checking. ...
2374: ==>S: S119 (operator no-change) ...
2375: O: O285 make-decision ...
2376: O: O286 compare-claim ...
Compare the claims in arguments. ...
2377: O: O287 evaluate 2380: O: O414 inconsist-wait
Evaluating the claims. ...
Accept the counter-proposal. ...
Belief change: cheetah 425’s free-move 300 ...
Decision theoretic reasoning. ...
2378: O: O289 send-proposal ...
Movements cheetah424:528&cheetah425:300 ...
... Message from cheetah424.
... 2388: O: O416 compare-claims
... Compare the claims in arguments.
... 2389: O: O417 evaluate
... Evaluating the claims.
... Accept the proposal.
... ...

14

this evaluation process. Cheetah425 sends a counter-proposal of disagreement
with justification(leaf node of Figure 1.6 (b)).

At decision cycle 2377, after receiving the counter-proposal, cheetah424
evaluates it and changes its belief of the movement restriction for cheetah425.
Cheetah424 uses decision theoretic reasoning again before sending another
proposal. If cheetah425 can only move small distance(e.g., 100 meters),
there is no benefit from argumentation and cheetah424 takes unilateral action
without argumentation. However, in this trace, cheetah424 decides to start
another cycle of argumentation. At decision cycle 2378, Cheetah424 sends
a counter-counter-proposal of 62:38 movements and cheetah425 accepts the
proposal at decision cycle 2389. Now, both agents make the agreed movements
and terminate the jointly committed team operator “resolve-role-conflict”.

7. RELATED WORK

Previous work in argumentation-based negotiation has often assumed non-
cooperative agents. For instance, [8, 11] uses several argument types borrowed
from human argumentation in non-cooperative situations, e.g., threat, promise
of a future reward, and appeal to self interest. An example from [8] is ne-
gotiation among two robots on Mars. Here, to persuade a robot R2, a robot
R1 threatens it (R2) that R1 will break R2’s camera lens or antenna, if R2
does not comply. Such arguments appear inappropriate in team settings, e.g.,
if R1 and R2 are a team, and if R1 carries out its threat, then it will have a
teammate (R2) without a lens or antenna. Other explicitly non-collaborative
argumentation work appears in the legal domain, e.g., DART[4], which is also
based on Toulmin’s representation schema. In contrast, [10] does not explicitly
assume collaborativeness or non-collaborativeness in agents.

CONSA differs from this work in its explicit exploitation of the team set-
ting in argumentation. As seen earlier, it exploits teamwork models: (i) to
guide flexible agent behavior in negotiation and (ii) as a source of reusable
argumentation knowledge. It also adds argumentation strategies so agents
can collaboratively improve each other’s arguments. Also, CONSA includes
techniques to avoid high overheads of negotiations.

Chu-Carroll and Carberry’s work in argumentation does assume collabora-
tiveness on part of the participating agents[2]. While they use SharedPlans
[5] in negotiations, they appear to treat SharedPlans as a data-structure, rather
than a teamwork model. Thus, unlike CONSA, they do not use SharedPlans
either for prescribing agents’ behaviors in negotiations, or as source of reusable
argumentation knowledge.

Conflicts in Agent Teams 15

8. SUMMARY AND FUTURE WORK
Multi-agent teamwork in diverse applications ranging from planning, de-

sign, education and training, faces the problems of conflicts in agents’ beliefs,
plans and actions. Collaborative negotiation is thus a fundamental component
of teamwork. To address the problem, this chapter describes an implemented
system called CONSA for collaborative negotiation via argumentation. While
CONSA builds on previous work in argumentation, it advances the state of the
art via the following key ideas: (i) CONSA casts conflict resolution as a team
problem, bringing to bear some of the recent advances in flexible teamwork to
improve the flexibility of agent behavior in conflict resolution; (ii) Since team
conflicts are often about past teamwork, CONSA exploits teamwork models to
provide agents with reusable argumentation knowledge; (iii) CONSA focuses
on collaborative argumentation strategies such as improve-support; (iv) As an
implemented system in a dynamic environment, CONSA uses a decision theo-
retic approach, argument ordering and pruning to reduce the cost of negotiation.
We have presented detailed algorithms and initial results from CONSA’s imple-
mentation. Areas of future work include understanding CONSA’s implications
for argumentation in self-interested agents.

9. ACKNOWLEDGEMENTS

This research is funded by DARPA ITO award number F30602-99-2-0507.

References

[1] R. B. Calder, J. E. Smith, A. J. Courtemanche, J. M. F. Mar, and A. Z.
Ceranowicz. Modsaf behavior simulation and control. In Proceedings of
the Conference on Computer Generated Forces and Behavioral Repre-
sentation, 1993.

[2] J. Chu-Carroll and S. Carberry. Generating information sharing subdia-
logues in expert-user consulation. In Proceedings of International Joint
Conference on Artificial Intelligence, 1995.

[3] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35, 1991.

[4] K. Freeman and A. Farley. Towards formalizing dialectical argumen-
tation. In Proceedings of the Conference on Cognitive Science Society,
1993.

[5] B. Grosz. Collaborating systems. AI magazine, 17(2), 1996.

[6] N. Jennings. Controlling cooperative problem solving in industrial multi-
agent systems using joint intentions. Artificial Intelligence, 75, 1995.

16

[7] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup:
The robot world cup initiative. In Proceedings of the first international
conference on autonomous agents, 1997.

[8] S. Kraus, K. Sycara, and A. Evenchik. Reaching agreements through ar-
gumentation: a logical model and implementation. Artificial Intelligence,
104:1–70, 1998.

[9] A. Newell. Unified Theories of Cognition. Harvard Univ. Press, Cam-
bridge, Mass., 1990.

[10] S. Parsons and N. R. Jennings. Negotiation through argumentation — a
preliminary report. In Proceedings of the International Conference on
Multi-agent Systems, 1996.

[11] K. Sycara. Persuasive argumentation in negotiation. Theory and Decision,
28(3), 1990.

[12] M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence
Research (JAIR), 7:83–124, 1997.

[13] M. Tambe and H. Jung. The benefits of arguing in a team. AI Magazine,
20(4), 1999.

[14] S. Toulmin. The uses of argument. Cambridge Univ Press, London, 1958.

