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ABSTRACT
Multi-agent teamwork is critical in a large number of agent
applications, including training, education, virtual enterprises
and collective robotics. Tools that can help humans analyze,
evaluate, and understand team behaviors are becoming
increasingly important as well. We have taken a step towards
building such a tool by creating an automated analyst agent
called ISAAC for post-hoc, off-line agent-team analysis.
ISAAC’s novelty stems from a key design constraint that
arises in team analysis: multiple types of models of team
behavior are necessary to analyze different granularities of
team events, including agent actions, interactions, and global
performance. These heterogeneous team models are
automatically acquired via machine learning over teams’
external behavior traces, where the specific learning
techniques are tailored to the particular model learned.
Additionally, ISAAC employs multiple presentation
techniques that can aid human understanding of the analyses.
This paper presents ISAAC’s general conceptual framework,
motivating its design, as well as its concrete application in
the domain of RoboCup soccer. In the RoboCup domain,
ISAAC was used prior to and during the RoboCup’99
tournament, and was awarded the RoboCup scientific
challenge award.

1. INTRODUCTION
Teamwork has been a growing area of agent research and
development in recent years, seen in a large number of multi-
agent applications, including autonomous multi-robotic space
missions [5], virtual environments for training [16] and education
[8], and software agents on the Internet [15]. With the growing
importance of teamwork, there is now a critical need for tools to
help humans analyze, evaluate, and understand team behaviors.
Indeed, in multi-agent domains with tens or even hundreds of
agents in teams, agent interactions are often highly complex and
dynamic, making it difficult for human developers to analyze
agent-team behaviors. The problem is further exacerbated in
environments where agents are developed by different
developers, where even the intended interactions are
unpredictable.

Unfortunately, the problem of analyzing team behavior to aid
human developers in understanding and improving team
performance has been largely unaddressed. Previous work in
agent teamwork has largely focused on guiding autonomous
agents in their teamwork [6, 17], but not on its analysis for
humans. Agent explanation systems, such as Debrief [7], allow
individual agents to explain their actions based on internal state,
but do not have the means for a team analysis. Recent work on
multi-agent visualization systems, such as [9], has been
motivated by multi-agent understandability concerns (similar to
ours), but it still leaves analysis of agent actions and interactions
to humans.

This paper focuses on agents that assist humans to analyze,
understand and improve multi-agent team behaviors by
(i) locating key aspects of team behaviors that are critical
in team success or failures; (ii) diagnosing such team behaviors,
particularly, problematic behaviors; (iii) suggesting alternative
courses of action; and (iv) presenting the relevant information to
the user comprehensibly. To accomplish these goals, we have
developed an agent called ISAAC. A fundamental design
constraint here is that unlike systems that focus on explaining
individual agent behaviors [7, 12], team analysts such as ISAAC
cannot focus on any single agent or any single perspective or any
single granularity (in terms of time-scales). Instead, when
analyzing teams, multiple perspectives at multiple levels of
granularity are important. Thus, while it is sometimes beneficial
to analyze the critical actions of single individuals, at other times
it is the collaborative agent interaction that is key in team success
or failure and requires analysis, and yet at other times an analysis
of the global behavior trends of the entire team is important.

To enable analysis from such multiple perspectives, ISAAC
relies on multiple models of team behavior, each covering a
different level of granularity of team behavior. More specifically,
ISAAC relies on three heterogeneous models that analyze events
at three separate levels of granularity: an individual agent action,
agent interactions, and overall team behavior. These models are
automatically acquired using different methods (inductive
learning and pattern matching) -- indeed, with multiple models,
the method of acquisition can be tailored to the model being
acquired.

Yet, team analysts such as ISAAC must not only be experts in
team analysis, they must also be experts in conveying this
information to humans. The constraint of multiple models has
strong implications for the type of presentation as well. Analysis
of an agent action can show the action and highlight features of
that action that played a prominent role in its success or failure,



but a similar presentation would be incongruous for a global
analysis, since no single action would suffice. Global analysis
requires a more comprehensive explanation that ties together
seemingly unconnected aspects and trends of team behavior.
ISAAC uses a natural language summary to explain the team’s
overall performance, using its multimedia viewer to show
examples where appropriate. The content for the summary is
chosen based on ISAAC’s analysis of key factors determining the
outcome of the engagement.

Additionally, ISAAC presents alternative courses of action to
improve a team using a technique called ‘perturbation analysis’.
A key feature of perturbation analysis is that it finds actions
within the agents’ skill set, such that recommendations are
plausible. In particular, this analysis mines data from actions that
the team has already performed.

Overall, ISAAC performs post-hoc, off-line analysis of teams
using agent-behavior traces in the domain. This analysis is
performed using data mining and inductive learning techniques.
Analyzing the teams off-line alleviates time constraints for these
analysis techniques, allowing a more thorough analysis. Also,
using data from the agents’ external behavior traces, ISAAC is
able to analyze a team without necessarily understanding its
internals, allowing analysis of teams developed by different
developers in a given domain.

ISAAC is currently applied in the domain of RoboCup soccer
simulation [8]. RoboCup is a dynamic, multi-agent environment
developed to explore multi-agent research issues, with agent
teams participating in annual competitions. Agent-team analysis
is posed as a fundamental challenge in RoboCup since team
developers wish to understand the strengths and weaknesses of
teams and understand how to improve such teams. (There are at
least 50 such development groups around the world.) Indeed,
ISAAC has been applied to all of the teams from several
RoboCup tournaments in a fully automated fashion. This analysis
has revealed many interesting results including surprising
weaknesses of the leading teams in both the RoboCup ’97 and
RoboCup ’98 tournaments and provided natural language
summaries at RoboCup ’99. ISAAC was also awarded the
‘Scientific Challenge Award’ at the RoboCup ’99 international
tournament. ISAAC is available on the web at http://coach.isi.edu
and has been used remotely by teams preparing for these
competitions.

While ISAAC is currently applied in RoboCup, ISAAC’s
techniques are intended to apply in other team domains such as
agent-teams in foraging and exploration [2] and battlefield
simulations [16]. For example, exploring actions, interactions,
and global trends such as target hit rate, friendly fire damage,
and formation balance, ISAAC could produce a similar analysis

in the battlefield simulation domain, and use similar presentation
techniques as well.

2. OVERVIEW OF ISAAC
We use a two-tiered approach to the team analysis problem. The
first step is acquiring models that will compactly describe team
behavior, providing a basis for analyzing the behavior of the
team. As mentioned earlier, this involves using multiple models
at different levels of granularity to capture various aspects of
team performance. The second step is to make efficient use of
these models in analyzing the team and presenting this analysis
to the user. Later sections delve into more specifics of these
models. An overview of the entire process is shown in Figure 1.

Input to all models comes in the form of data traces of agent
behaviors. In the current implementation of ISAAC, these traces
have been uploaded from users around the world through the
Internet.

As shown in figure 1, acquiring the models involves a mix of
data mining and inductive learning but is specific to the
granularity of analysis being modeled. Analysis of an individual
agent action (individual agent key event model) uses the C5.0
decision tree inductive learning algorithm, an extension to C4.5,
to create rules of success or failure [10]. For analysis of agent
interactions (multiple agent key interaction model), pre-defined
patterns are matched to find prevalent patterns of success. To
develop rules of team successes or failures (global team model),
game level statistics are mined from all available previous games
and again inductive learning is used to determine reasons for
success and failure.

Utilizing the models involves catering the presentation to the
granularity of analysis to maximize human understandability.
ISAAC uses different presentation techniques in each situation.
For the individual agent key event model, the rules and the cases
they govern are displayed to the user. By themselves, the features
that compose a rule provide implicit advice for improving the
team. To further elucidate, a multimedia viewer is used to show
cases matching the rule, allowing the user to better understand
the situation and to validate the rules (See figure 2). A
perturbation analysis is then performed to recommend changes
to the team by changing the rule condition by condition and
mining cases of success and failure for this perturbed rule. The
cases of this analysis are also displayed in the multimedia
viewer, enabling the user to verify or refute the analysis.

For the multiple agent key interaction model, patterns of agent
actions are analyzed similar to the individual agent actions. A
perturbation analysis is also performed here, to find patterns that
are similar to successful patterns but were unsuccessful. Both
successful patterns and these ‘near misses’ are displayed to the



user as implicit advice. This model makes no recommendations,
but does allow the user to scrutinize these cases.

The global team model requires a different method of
presentation. For the analysis of overall team performance, the
current engagement is matched against previous rules, and if
there are any matches, ISAAC concludes that the reasons given
by the rule were the determining factors in the result of the
engagement. A natural language summary of the engagement is
generated using this rule for content selection and sentence
planning. ISAAC makes use of the multimedia display here as
well, linking text in the summary to corresponding selected
highlights.

 
Figure 2: Multimedia viewer highlighting key features

ISAAC has been used in the RoboCup simulated soccer
environment consisting of two opposing teams of eleven agents
each. The agents do not have a centralized control, and act in a
complex, dynamic, noisy environment managed by the soccer
server, which acts as host and referee for the game. Figure 2
shows ISAAC’s multimedia viewer, which displays the soccer
field and plays from the games, and can highlight key features
specific to ISAAC’s analysis. For instance in figure 2, the area
around the right soccer goal is highlighted.

 3. Individual Agent Key Event Model
This section examines the first of ISAAC’s three models,
focusing on key actions taken by individual agents, and is
specific to each team. In this and the following two sections, we
first provide a conceptual overview of the model being analyzed
and then discuss its instantiation in RoboCup.

3.1 Conceptual Overview of the Individual
Agent Key Event Model

The individual agent model focuses on the analysis of critical
events in a team’s behavior history relevant to the team’s
success. There may be many critical events along the path to the
team’s eventual success or failure that are widely separated in
time, only loosely coupled to each other, but nevertheless critical
to the team’s success. For instance, in a battlefield simulation,
there may be many distinct attacks on enemy units, which are
critical to team success, embedded in a larger history of
maneuvering.

We consider critical events to be the team’s intermediate
successes or failures. When something occurs that directly
influences the team’s eventual success or failure, this is
considered to be an intermediate success or failure point. At
present, we assume the identification of these intermediate points
is part of the domain specific knowledge available to the
individual agent analysis model.

Having isolated cases of intermediate success or failure, we can
now form rules of successful and unsuccessful behavior, which
comprise the individual agent model. These rules are formed
using inductive learning techniques over the cases of success and
failure based on a set of potentially relevant features in these
cases. These features, along with the decision on what are the
cases of intermediate success, are the only background
information or bias given to the individual agent analysis
technique. The features chosen must have the breadth to cover all
information necessary for the analysis, but should also be
independent of each other if at all possible. In the future, a semi-
automated attribute selection may be used [4].

Currently, C5.0 is used to form the rules of success and failure.
Each rule describes a class of success or failure cases, based on
its feature description. These rules and the cases they represent
can be displayed to the user as implicit advice on how individual
agents operate in critical situations.

More explicit exploration of this advice is performed using an
automated perturbation analysis. After ISAAC has produced
rules determining which circumstances govern success and
failure classifications, ISAAC uses a perturbation analysis to
determine which changes would produce the most benefit. Each
learned rule consists of a number of conditions. We define a
perturbation to be the rule that results from reversing one
condition. Thus a rule with N conditions will have N
perturbations. The successes and failures governed by the
perturbations of a rule are mined from the data and examined to
determine which conditions have the most effect in changing the
outcome of the original rule, turning a failure into a success.
Since these cases are mined from the original data traces, the
recommended changes must already be within the agent’s skill
set. Perturbation analysis is explained in greater detail in Section
3.3.

3.2 Application of Individual Agent Key Event
Model to RoboCup

In applying the approach to RoboCup, the domain specific
information has to be identified that would be used by ISAAC as
bias in its analysis. In particular, in the RoboCup domain,
success means outscoring the opponent. Shots on goal are
therefore key points of intermediate success or failure as these
are situations that can directly affect the outcome of the game.
Thus, the focus of ISAAC’s individual agent analysis in RoboCup
is shots on a team’s goal as well as shots by the team on an
opponent’s goal.

Having defined shots on goal as key events, we need to
determine which domain dependant features might be useful in
classifying the success or failure of a shot on goal. After an initial
set of experiments with a relatively large feature set, ISAAC
currently relies on a set of 8 features to characterize successes
and failures.



Having determined which features to use in the analysis and the
key events (the cases) to examine, the task is transformed to
mining the raw data and for use by the C5.0 decision tree
learning algorithm. From the resulting decision tree, C5.0 forms
rules representing paths in the tree from the root of the tree to a
leaf as a classification of success (goal-score) or failure (goal not
scored). Each rule describes a class of similar successes or
failures.

Figure 3 shows an example success rule, describing a rule where
shots taken on the Windmill Wanderer team will fail to score
(Successful Defense). This rule states that when the closest
defender is sufficiently far away (>13.6 m) and sufficiently close
to the shooter’s path to the center of the goal (<8.98°), and the
shooter is towards the edges of the field (>40.77°), Windmill
Wanderer will successfully defend against this shot. When
viewed using ISAAC, the user can see that the defender is far
enough away to have sufficient time to adjust and intercept the
ball in most of these cases. Thus the user is able to validate
ISAAC’s analysis. This rule provides implicit advice to this team
to keep a defender sufficiently distant from the ball, or to try to
keep the ball out of the center of the field.

Distance of Closest Defender > 13.6 m
Angle of Closest Defender wrt Goal <= 8.981711
Angle from Center of Field > 40.77474
Å class Successful Defense

Figure 3: Sample Rule from shots on
Windmill Wanderer team of RoboCup’98

The application of a decision tree induction algorithm to this
analysis problem must address some special concerns. The goal-
shot data has many more failure cases (failed goal shots) than
success cases (goals scored). However, analyzing such data using
a traditional decision tree induction algorithm such as C4.5 gives
equal weight to the cost of misclassifying successes and failures.
This usually yields more misclassified success cases than
misclassified failure cases. For example, in our analysis of shots
by the Andhill team from the RoboCup’97 tournament, our
original analysis misclassified 3 of 306 failure cases (less than
1%), but misclassified 18 of 68 success cases (26%). Since a
much larger portion of the success cases is incorrectly classified,
this produces overly specific rules that govern success cases. To
compensate for this lopsided data set, the ability of C5.0 to
weight the cost of misclassification is used. Specifically, the cost
of misclassifying a success case is set to be greater than the cost
of misclassifying a failure case [18]. ISAAC uses a 3 to 1 ratio by
default, but this is adjustable.

More generally, differential weighting of misclassification cost
provides a mechanism for tailoring the level of aggressiveness or
defensiveness of ISAAC’s analysis. Consider shots on goal
against a team. If a very high cost is assigned to misclassifying a
successful shot on goal, the rules produced will likely cover all
successful shots, and quite a few misclassified failure cases. In
this case, the rule conditions are implicitly advising to make the
team very defensive. On the other hand, if a low cost is assigned,
the rules may not cover all of the successful cases. Therefore,
ISAAC would only give “advice” relevant to stopping the
majority of shots on goal. This may not be appropriate if we
consider any goal to be a serious failure. Therefore, we allow the
user to adjust the weight on success case misclassifications.

3.3 Perturbation Analysis
Perturbations of a failure rule enable users to see what minimal
modifications could be made to agent behaviors to convert the
failures into success. Mining instances of perturbed failure rules,
the developer determines steps that could be taken to move the
agent from failure to successful behavior.

For example, one of ISAAC’s rules states that when taking shots
on goal, the Andhill97 team often fails to score when (i) ball
velocity is less than 2.37 meters per time step and (ii) the shot is
aimed at greater than 6.7 meters from the center of goal (which is
barely inside the goal). ISAAC reveals that shots governed by
this rule fail to score 66 times without a successful attempt.

Now consider the perturbations of this rule. In cases where the
rule is perturbed such that ball velocity is greater than 2.37 m/t
and the shot aim is still greater than 6.7m, Andhill scores twice
and fails to score 7 times. In another perturbation, where ball
velocity is again less than 2.37 m/t but now shot aim is equal to
or less than 6.7m (i.e. shots more towards the center of the goal),
Andhill is now scoring 51 times and failing to score 96 times
(See figure 4). These perturbations suggest that improving
Andhill97’s shot aiming capabilities can significantly improve
performance, while trying to improve agents’ shot velocity may
not result in a drastic performance increase.

Figure 4: Perturbation analysis showing the Andhill ’97
team scoring using a perturbed shooting behavior

Perturbations of success rules are also useful. There are two
reasons for this. First, it allows ranking of conditions
contributing to success. In particular, some changes to the rule
will take a team further from success than another. For example,
a team may succeed in scoring 95% of the time when all
conditions are met. The percentage of success may drop to 50% if
the first condition is changed and down to 5% if the second
condition is changed. In this case, the developer may decide that
even if the first condition is not met, shooting is still the correct
course of action while doing so if the second condition is not met
is a bad decision. Secondly, allowing the user to see how the
team succeeds or fails, more insight can be drawn as to why these
conditions are important. Human oversight is important at this
juncture to determine if the reasons ISAAC comes up with are
truly the reasons the team is succeeding or failing.



4. Multiple Agent Key Interaction Model

4.1 Conceptual Overview of the Agent
Interaction Model

To analyze agent interactions, ISAAC relies on matching
predefined (possibly user-defined) patterns. These patterns
consist of sequences of abstracted actions of different agents that
result in intermediate successes (or failures). The patterns are
matched against the data traces to find actual instantiated
interactions. ISAAC then classifies the patterns into those that
lead to intermediate success or failures. This approach shares
similarities with meta-pattern based data-analysis [13], where a
user provides ‘interesting templates’ to discover patterns in the
data.

The perturbation analysis in this model finds near misses in the
case history, i.e., patterns similar to the successful patterns
(within a given threshold) that end in failure. ISAAC identifies
these near misses by perturbing the successful patterns, e.g., it
may find interactions resulting in failure that result from a slight
change in one of the actions specified in the pattern. Near misses
help the user to scrutinize the difference between successful and
unsuccessful patterns.

For example, in an air combat simulation, suppose that ISAAC
finds a common pattern where friendly aircraft respond to the
enemy's pincer maneuver with a flanking maneuver and a missile
shot, causing an enemy aircraft to be shot down. The perturbation
analysis will review traces to find instances where an identical
pattern, with a slight variation in the missile shot (or one of the
maneuvers), does not result in an enemy aircraft getting shot
down. The user is then able to view and compare the successful
and unsuccessful (yet similar) patterns to determine possible
differences and causes for failure.

4.2 Application of Agent Interaction Model
The first step necessary to apply the agent interaction model to
the RoboCup domain is the determination of the patterns to
examine and a notion of success or failure of these patterns. We
again use a soccer goal as a notion of success, so any pattern
leading to a goal is successful. The interaction patterns are made
up of the players’ actions (kicks) causing the ball to be shot in to
the goal.

To further illustrate this type of analysis, we present examples
from the Windmill Wanderer and ISIS teams from RoboCup ’98.
The ISIS team scored 20 of their 35 goals when the player
kicking the ball before the shot was on the opponent team
(described by a shooterÅopponentÅshooter pattern). This
suggests a very opportunistic scoring behavior for ISIS, and
viewing the cases shows that ISIS tends to push the ball deep into
the opponent territory, and sometimes they are able to get the
ball back for a quick shot. In contrast, the Windmill Wanderer
team scored 17 goals from the shooter dribbling in before the
shot (shooterÅshooterÅshooter) and another 9 goals from a
teammate controlling the ball before passing to the shooter
(teammateÅteammateÅshooter), out of a total 37 goals. Thus,
this team scores more often when they control the ball all the way
in to the goal, a stark contrast from the ISIS team.

For the Windmill Wanderer team from above, 27 near misses
were found similar to the 17 goals from the dribbling pattern,

suggesting this pattern was well defended or the team was
making some mistakes. Windmill Wanderer placed third in the
tournament, and the 27 near misses may have been the culprit in
its third place finish. The developer can review and compare
these cases in the multimedia viewer, and make the
determination as to what changes would be most beneficial.

5. Automated Game Summary: Team Model
5.1 Conceptual Overview of Team Model
The purpose of the global team model is to analyze why teams
succeed or fail over the course of the entire engagement (as
opposed to teams’ intermediate success/failure at a single time
point). The assumption of this model is that there can be many
different factors that impact a team's overall success or failure. In
a complex environment, a team may have to perform many
actions well in order to be successful. These actions may involve
entirely different sub-teams, and very different kinds of events,
perhaps widely separated in time, may be implicated in success
or failure. Nevertheless, there may be patterns of these factors
that, although not strongly related in the behavioral trace, do in
fact correlate with whether a team succeeds in a domain. The
global team analysis attempts to find these patterns to explain
success/failure.

In designing this model, we had two options possible. One was to
tailor the analysis to specific teams. In particular, by analyzing
data traces of past behaviors of a specific team, it would be
possible to explain why this specific team tends to succeed or
fail. This approach would be similar to the one followed in
Section 3, which explained why agents’ critical actions tend to
succeed or fail in a team-specific manner. A second option was to
analyze teams in terms of why teams succeed or fail in the
domain in general, in a non-team-specific manner (which does
not require data traces from the particular team being analyzed,
but from other teams in this domain). Despite the advantages of
option 1 (team-specific explanations), this option was rejected
due to the lack of large amounts of team-specific engagement
data, and option 2 was used. In particular, unlike the individual
agent model as in Section 3, which can obtain lots of key event
data points even from a single engagement, a single engagement
is just one data-point for the global team model. For instance,
even a single RoboCup game provides large numbers of shots on
goal to begin learning the individual agent model; yet, this single
game is not enough to begin learning a global team model.

Exercising option 2 above implies acquiring the team model by
examining the behavior traces of many different teams in a
domain. Here again we rely on the domain expert to provide the
set of overall features that lead to success or failure over an
entire engagement. Again the C5.0 induction algorithm is used
on these features, classifying the engagement as a success or
failure for each team, and learning rules that capture the
dominant features that lead to success (or failure).

A different approach is taken for using the rules learned via
C5.0. When analyzing a specific engagement, we mine the
features from the engagement and determine which learned rule
the current game most closely matches. This rule then becomes
the reasoning for why each team succeeded or failed. ISAAC uses
the rule as the basis for its natural language summary generation
to ease human understanding of the engagement as a whole.



The learned rules are critical in ISAAC’s natural language
summaries. Indeed, we initially attempted to provide a natural
language summary without using such learned rules. In this case,
we were only able to present all of the game statistics glossed
with natural language phrases, with no ordering or reasoning
behind them. This initial approach failed because all of the
summaries were long, uniform, and they failed to emphasize the
relevant aspects of the game.

Instead, with the current method, ISAAC generates a natural
language summary of each encounter employing specific rules as
the basis for content selection and sentence planning in
accordance with Reiter’s architecture of natural language
generation [11]. Reiter’s proposal of an emerging consensus
architecture is widely accepted in the NL community. Reiter
proposed that natural language generation systems use modules
for content determination, sentence planning, and surface
generation. ISAAC’s NL generation can be easily explained in
terms of these modules.

Starting with the raw data of the game, ISAAC mines the
features it needs, and matches it to a pre-existing rule. This rule
is thus used in content determination for the natural language
generation, since the rule contains that which ISAAC believes
pertinent to the result of the game. Furthermore, the conditions of
each rule also have some ordering constraints, since the rules
come from a decision tree learning algorithm, and we use this to
form our sentence planning. We consider branches closer to the
root of the tree to have more weight than lower branches, and as
such should be stated first. Each fact is associated with a single
sentence, and ordered accordingly. From these, ISAAC creates a
text template of the summary for performing the surface
generation. This template is augmented with specific data from
the game, and links to examples of the features found earlier to
be shown in the multimedia viewer.

5.2 Application of Team Model to RoboCup
To learn rules of why teams succeeded or failed in previous
engagements, ISAAC reviews statistics of previous games. The
domain expert must provide the domain knowledge of what
statistics to collect, such as possession time and number of times
called offside. ISAAC uses this information (10 features in all) to
create a base of rules for use in analysis of future games.

ISAAC learns and uses seven classes of rules covering the
concepts of big win (a victory by 5 goals or more), moderate win
(a victory of 2-4 goals difference), close win (1 goal victory), tie,
close loss (by 1 goal), moderate loss (2-4 goals), and big loss (5
or more goal loss). The motivation for such subdivision is that
factors leading to a big win (e.g., causing a team to outscore the
opponent by 10 goals) would appear to be different from ones
leading to a close win (e.g., causing a one goal victory) and
should be learned about separately. While this fine subdivision
thus has some advantages, it also has a disadvantage, particularly
when the outcome of the game is at the border of two of the
concepts above. For instance a 2-0 game (moderate win) could
very well have been a 1-0 game (close win). Thus, we anticipate
that the learned rules may not be very precise, and indeed as
discussed below, we allow for a “close match” in rule usage.

To use these rules, ISAAC first matches the statistics of a new
(yet to be analyzed) game with the learned rules. If there is a

successful match, ISAAC checks the score of the game against
that predicted by the matching rule before writing the summary.
If the match is exact or close (e.g. the actual game statistic
matched a close win rule, although the game had an outcome of
2-0), the template is used as is. If there are multiple matches, the
closest matching rule is used. However, if no match is close to
the actual score, ISAAC still uses the rule, but changes the
template to reflect surprise that the score did not more closely
match the rule.

The matched rule discussed above provides the content selection,
so ISAAC now has a template to shape the game summary. The
template orders components of the rule according to their depth
in the original decision tree, in accordance with our sentence
planning technique. ISAAC then fills in the template, mining the
features of this particular game to create a summary based on the
rule. An example rule is shown in Figure 5.

Ball in Opponent Half > 69%
Average Distance of Opponent Defender <= 15 m
Bypass Opponent Last Defender > 0
Possession time > 52%
Distance from Sideline of Opponent Kicks > 19 m
Å class Win Big

Figure 5: Example team rule for big wins

To see how this rule is used in creating a natural language
summary, we examine one summary generated using this rule as
a template. In this case, ISAAC is arguing the reasons for which
11Monkeys was able to defeat the HAARLEM team:

HAARLEM Offense Collapses in Stunning Defeat at the
hands of 11Monkeys! 1

11monkeys displayed their offensive and defensive prowess,
shutting out their opponents 7-0. 11monkeys pressed the
attack very hard against the HAARLEM defense, keeping the
ball in their half of the field for 84% of the game and
allowing ample scoring opportunities. HAARLEM pulled
their defenders back to stop the onslaught, but to no avail. To
that effect, 11monkeys was able to get past HAARLEM's last
defender, creating 2 situations where only the goalie was left
to defend the net. 11monkeys also handled the ball better,
keeping control of the ball for 86% of the game. HAARLEM
had a tendency to keep the ball towards the center of the field
as well, which may have helped lead them to ruin given the
ferocity of the 11monkeys attack.

The underlined sentences above correspond directly to the rule,
with some augmentation by actual statistics from the game. By
using the rule for content selection and sentence planning,
ISAAC is able to present the user the reasons for the outcome of
the engagement, and avoid presenting irrelevant data consisting
of irrelevant features.

6. EVALUATION AND RESULTS
To evaluate ISAAC, we evaluate each of its models in isolation
and then the effectiveness of the integrated ISAAC system. We
begin by evaluating the individual agent model.

                                               
1 The title and first sentence of our summary does not come from the model,

but is based solely on the score of the game. We used examples from
(human soccer) World Cup headlines and let ISAAC randomly choose
among these in categories of tie, close win, moderate win, and big win.



A key measure of ISAAC’s individual agent model is the
effectiveness of the analysis, specifically the capability to
discover novel patterns. Section 3.3 highlighted a rule learned
about the Andhill97 team concerning their aiming behavior. This
rule was one instance of ISAAC’s surprising revelation to the
human observers; in this case, the surprise was that Andhill97,
the 2nd place winner of ’97, had so many goal-shot failures, and
that poor aim was at least a factor. Not only was this surprising
to other observers, this was also surprising to the developer of
the team, Tomohito Andou. After hearing of this result, and
witnessing it through ISAAC’s multimedia interface, he told us
that he “was surprised that Andhill’s goal shooting behavior was
so poor…” and “… this result would help improve Andhill team
in the future.” [Andou, personal communication]

Another interesting result from the individual agent analysis
model comes from the number of rules governing shooting
behavior and defensive prowess. Figure 6 shows that in each
year, the number of rules for defense decreased for the top 4
teams, perhaps indicating more refined defensive structures as
the teams progress. Also, the number of rules necessary to
capture the behavior of a team’s offense is consistently more than
that necessary for defense, possibly due to the fact that no single
offensive rule could be effective against all opponent defenses.
The key here is that such global analysis of team behaviors is
now within reach with team analyst tools such as ISAAC.
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Figure 6: Number of rules by year

Another point of evaluation is understanding how well the model
captures the shooting behaviors. To this end, ISAAC models
were applied to predict game scores at RoboCup ’99, a rather
difficult problem even for humans. ISAAC used rules describing
a team’s defense and matched them with the raw averaged data
of the shots taken by the other team to produce an estimate of
how many goals would be scored against that team in the
upcoming game. Performing this analysis for both teams
produced a predictive score for the outcome of the game2. This
prediction obviously ignores many critical factors, including the
fact that some early games were unrepresentative and that teams
were changed by hand during the competition. Yet in practice,
ISAAC’s predictive accuracy was 70% with respect to wins and
losses, indicating it had managed to capture the teams’ defenses
quite well in its model.

To evaluate the game summary model, a small survey was
distributed to twenty of the participants at the RoboCup ’99
tournament, who were witnessing game summaries just after

                                               
2 No prediction was done for the preliminary rounds as ISAAC gathered data

on the teams. Prediction was performed only on the double-elimination
tournament.

watching the games. Figure 7 shows the breakdown of the
survey, showing that 75% of the participants thought the
summaries were very good.

Another measure of game summaries is a comparison of number
of features used in the current summaries versus those generated
earlier that did not use ISAAC’s approach. On average, ISAAC
uses only about 4 features from its set of 10 statistics in the
summaries, resulting in a 60% reduction from a natural language
generator not based on ISAAC’s machine learning based
analysis. Thus, ISAAC’s approach was highly selective in terms
of content. Indeed as mentioned earlier, summaries generated
without ISAAC were much longer, lacked variety, and failed to
emphasize the key aspects of the game.
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Figure 7: Automated Game Summary Survey

Yet another measure of ISAAC’s use of the team model for
natural language generation is available by viewing the error
rates from the machine learning algorithm used. These error rates
tell us how accurately ISAAC’s learned rules reflected the game.
On the original set of games for which ISAAC’s rules were
learned, 87% of the games were classified correctly (70% exact
match, 17% close match), resulting in an error rate of 13%. Our
test set of (unseen) RoboCup ’99 games produced 72% classified
correctly (39% exact match, 33% close match), for an error rate
of 28%. If an error does occur, ISAAC still produces a summary,
but it reflects its surprise at the outcome, thus explaining the
error. The high error rate on our training data could indicate that
a better feature set is possible or that the data may be noisy.

Evaluating ISAAC as an integrated system is more difficult.
However, some observations can still be made. ISAAC was
awarded the ‘Scientific Challenge Award’ by the RoboCup
committee. ISAAC was used extensively at the RoboCup ’99
tournament in Stockholm, and received a great deal of praise and
other feedback. Developers used ISAAC to analyze opponent
teams after the early round matches to get a feel for the skill of
upcoming opponents. Spectators and developers alike were able
to view ISAAC’s game summaries just minutes after a game, and
there was also a great deal of speculation concerning ISAAC’s
predictions on future games.

7. RELATED WORK
The research presented in this paper concerns areas of multi-
agent team analysis and comprehensible presentation techniques.
We compare research in each of these areas.

André et al have developed an automatic commentator system for
RoboCup games, called ROCCO, to generate TV-style live
reports for matches of the simulator league [1]. ROCCO attempts
to recognize events occurring in the domain in real time, and
generates corresponding speech output. While both ROCCO and



ISAAC use multimedia presentations, ROCCO attempts to
analyze events quickly to produce live reports. However, the
ROCCO analysis does not use multiple models of behavior for
multi-perspective analysis as in ISAAC, and its analysis is not
designed to help users and developers understand teams’
abilities. ROCCO also has no capability to perform perturbation
analysis.

Bhandari et al’s Advanced Scout uses data mining techniques on
NBA basketball games to help coaches find interesting patterns
in their players and opponents’ behaviors [3]. Advanced scout
also enables coaches to review the relevant footage of the games.
Advanced Scout is able to capture statistical anomalies of which
coaches can take advantage. However, Advanced Scout does not
have some of ISAAC’s extensions including the use of multiple
models to analyze different aspects of teams, perturbations to
make recommendations, and game summaries for an analysis of
overall team performance.

Ndumu et al’s system for visualization and debugging multi-
agent systems comprises a suite of tools, with each tool providing
a different perspective of the application being visualized [9].
However, the tools do not perform any in-depth analysis on the
multi-agent system, and the system has no capability for
perturbing this analysis. ISAAC also uses a visualization
component, but only as an aid to understanding its analysis.

Johnson’s Debrief system enables agents to explain and justify
their actions [7]. This work focuses on agents’ understanding the
rationales for the decisions they make and being able to recall the
situation. Debrief also has a capability for agent experimentation
to determine what alternatives might have been chosen had the
situation been slightly different. ISAAC performs something
similar in its perturbation analysis; however, ISAAC focuses on
an entire team, not just an individual, necessarily.

Stone and Veloso have also used a decision tree to control some
aspects of agents throughout an entire game, also using RoboCup
as their domain [14]. However, this work pertains to execution of
agents rather than analysis of agent teams, and since it is internal
to the agent, their work has no means of presentation.

8. CONCLUSION
Multi-agent teamwork is a critical capability in a large number of
applications including training, education, entertainment, design,
and robotics. The complex interactions of agents in a team with
their teammates as well as with other agents make it extremely
difficult for human developers to understand and analyze agent-
team behavior. It is thus increasingly critical to build automated
assistants to aid human developers in analyzing agent team
behaviors. However, the problem of automated team analysts is
largely unaddressed in previous work.

We have taken a step towards these automated analysts by
building an agent called ISAAC for post-hoc, off-line agent-team
analysis. ISAAC uses two key novel ideas in its analysis. First,
ISAAC uses multiple models of team behavior to analyze
different granularities of agent actions, using inductive learning
techniques, enabling the analysis of differing aspects of team
behaviors. Second, ISAAC supports perturbations of models,
enabling users to engage in “what-if” reasoning about the agents
and providing suggestions to agents that are already be within the
agent skill set. Additionally, ISAAC focuses on presentation to

the user, combining multiple presentation techniques to aid
humans in understanding the analysis, where presentation
techniques are tailored to the model at hand.

While ISAAC is intended for application in a variety of agent
team domains, ISAAC has currently been applied in the context
of the RoboCup soccer simulation. It is available on the web for
remote use. ISAAC has found surprising results from top teams
of previous tournaments and was used extensively at the
RoboCup ’99 tournament. ISAAC was awarded the ‘Scientific
Challenge Award’ at RoboCup ’99 where its analysis and natural
language game summaries drew a crowd throughout the
tournament.
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