
Adjustable Autonomy
in Real-world Multi-Agent Environments

Paul Scerri, David Pynadath, Milind Tambe
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

fscerri, tambe, pynadathg@isi.edu

ABSTRACT
Throughadjustable autonomy(AA), an agent can dynamically vary
the degree to which it acts autonomously, allowing it to exploit hu-
man abilities to improve its performance, but without becoming
overly dependent and intrusive in its human interaction. AA re-
search is critical for successful deployment of multi-agent systems
in support of important human activities. While most previous AA
work has focused on individual agent-human interactions, this pa-
per focuses onteamsof agents operating in real-world human orga-
nizations. The need for agent teamwork and coordination in such
environments introduces novel AA challenges. First, agents must
be more judicious in asking for human intervention, because, al-
though human input can prevent erroneous actions that have high
team costs, one agent’s inaction while waiting for a human response
can lead to potential miscoordination with the other agents in the
team. Second, despite appropriate local decisions by individual
agents, the overall team of agents can potentially make global de-
cisions that are unacceptable to the human team. Third, the diver-
sity in real-world human organizations requires that agents grad-
ually learn individualized models of the human members, while
still making reasonable decisions even before sufficient data are
available. We address these challenges using a multi-agent AA
framework based on an adaptive model of users (and teams) that
reasons about the uncertainty, costs, and constraints of decisions
at all levels of the team hierarchy, from the individual users to the
overall human organization. We have implemented this framework
through Markov decision processes, which are well suited to reason
about the costs and uncertainty of individual and team actions. Our
approach to AA has proven essential to the success of our deployed
multi-agent Electric Elves system that assists our research group in
rescheduling meetings, choosing presenters, tracking people’s lo-
cations, and ordering meals.

1. INTRODUCTION
In many recent exciting, ambitious applications of agent tech-

nologies, individual agents or teams of agents act in support of the
critical activities of individual humans or even entire human or-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

ganizations. Application areas range from intelligent homes [8],
to “routine” organizational coordination [11], to electronic com-
merce [1], to long-term space missions [2]. These new applications
have fostered an increasing interest inadjustable autonomy(AA),
i.e., in agents thatdynamically adjust their own level of autonomy
based on the situation[4]. Essentially, an agent can give up its
autonomy by transferring decision-making control to a human for
improved task performance. The key issue is to transfer control in-
telligently, harnessing human skills, knowledge, preferences, etc.
as appropriate, without overly burdening the humans.

When agents are embedded in large human organizations, not
only do agents interact with humans, they also coordinate with each
other and act jointly in teams. However, existing AA techniques
focus on the interactions between only an individual agent and a
single human user. Thus, the requirements of teamwork and coor-
dination give rise to novel AA challenges not addressed by previous
research. We focus in particular on three key novel challenges: the
AA coordination challenge, the AA team decision challenge, and
theAA safe learning challenge.

TheAA coordination challengearises during the transfer of de-
cision-making control. Determining when an agent should trans-
fer control to a human (or vice versa) is a central, well-known
AA problem. The novel challenge for team settings is for agents
to avoid miscoordination with teammates during such a transfer,
while simultaneously minimizing the risk of costly errors. Tech-
niques from previous AA research fail to address this challenge.
For instance, one technique uses uncertainty as the lone rationale
for transferring decision-making control, relinquishing control to
humans whenever uncertainty is high [5]. In a team setting, the
agent cannot transfer control so freely, because as the agent waits
for a human response, its teammates expect it to still fulfill its re-
sponsibilities to the overall joint task. As an example, consider an
agent that manages an individual user’s calendar and can request
the rescheduling of a team meeting if it thinks its user will be un-
able to attend on time. Rescheduling is costly, because it disrupts
the calendars of the other team members, so the agent can ask the
user for confirmation to avoid making an unnecessary reschedul-
ing request. However, while it waits for a response, the other users
will begin arriving at the meeting room, and if the user does not
arrive, they will waste their time waiting as the agent sits idly by,
doing nothing. On the other hand, if, despite the uncertainty, the
agent acts autonomously and informs the others that its users can-
not attend, then its decision may still turn out to be a grave mistake.
Thus, theAA coordination challengerequires that an agent weigh
possible team miscoordination while waiting for a human response
against possible erroneous actions as a result of uninformed deci-
sions.

The AA team decision challengearises due to the multiple lev-
els of decision-making in teams, where subteams make decisions
based on individual agent input, teams make decisions based on
subteam input, etc. Unfortunately, despite responsible decisions
by individual team members, the agent team’s collective decision
may be highly undesirable to the human team. The agents thus
face the problem of making a teamwide decision, even though the
human users interact with only individual agents. Therefore, the
AA framework must address decisions made at all levels of a team
hierarchy.

The increased need for autonomous action in teams may force
agents to act despite insufficient experience, potentially causing
team failures when they are incorrect. While noisy data are a com-
mon learning issue, the AA coordination challenge prevents us from
completely relying on the escape hatch from previous research —
namely, asking human users when unsure [9]. For instance, in our
initial implementation of agents to monitor meetings (described in
Section 3), one user’s agent learned rules that led it to autonomously
cancel an important meeting. TheAA safe learning challengeis to
allow agents to learn more accurate models of their users, while
still protecting users from temporary anomalies during the course
of that learning.

We have conducted our research on AA in the context of a real-
world multi-agent system, calledElectric Elves(E-Elves) [11], that
we have used for several months at USC/ISI. E-Elves assists a
group of 9 researchers and one project assistant in their daily ac-
tivities, providing a unique, exciting opportunity to test ideas in a
real environment.

To address theAA coordination challenge, E-Elves agents ex-
plicitly reason about team coordination via a novel three-step ap-
proach. First, before transferring decision-making control, an agent
explicitly weighs the cost of waiting for user input and any con-
comitant potential team miscoordination against the cost of erro-
neous autonomous action. Second, agents do not rigidly commit
to transfer-of-control decisions (as is commonly done in previous
work), but instead reevaluate decisions as required for continued
team coordination (e.g., if an agent transfers control to a user, but
the user fails to act, the agent can act to avoid team miscoordina-
tion). Third, when an agent takes control of a decision to avoid mis-
coordination it may be faced with significant costs and uncertainty.
Rather than force a risky decision, an agent can elect to change
coordination arrangements, postponing or reordering activities, to
“buy time” to lower decision cost/uncertainty. Since a sequence
of coordination changes may be needed, and since each coordina-
tion change is costly, agents look ahead at possible sequences of
coordination changes, selecting one that maximizes team benefits.

Two approaches are possible in tackling theAA team decision
challenge. One approach is to explicitly consider the team-level
decision within the decision-making done by each individual agent.
This approach can ensure the desired (sub)team decisions, but it
greatly complicates the individual agents’ AA reasoning. We take
a different approach in E-Elves by simplifying the individual agent
reasoning, but also introducing AA at the team level, allowing the
agent team to consult a user team if the collective decision involves
significant uncertainty, cost, etc. A key novelty at the team level
is that the AA reasoning focuses on collective team features (e.g.,
majority of team members) rather than specific individual features.

We address thesafe learning challengein two ways: (i) We pro-
vide the agents with a significant amount of domain knowledge,
providing a solid base on which to build; (ii) We augment the learn-
ing algorithm with asafety netthat ensures that, even in the pres-
ence of noisy data, agents cannot learn harmful behaviors (which
we explicitly identify beforehand).

Our approach to AA in E-Elves uses Markov decision processes
(MDPs) [10]. MDPs allow explicit representation of individual and
team decision costs and explicit representation and reasoning about
uncertainty of the world state and user intentions. MDPs can also
look ahead to allow agents to find optimal sequences of coordina-
tion changes.

2. ELECTRIC ELVES
Software agents now proliferate in human organizations, help-

ing with information gathering, activity scheduling, email manage-
ment, etc. The Electric Elves effort at USC/ISI is taking the next
step: dynamic teaming of heterogeneous agents, including human
proxies, to support the functioning of entire organizations1.

As a step towards this goal, USC/ISI have had an agent team of
15 agents, including 10 proxies (for 10 people), running 24/7 for
the past four months. We sketch the overall design of the system
in Figure 1a. Each proxy is called Friday (from Robinson Crusoe’s
servant Friday) and acts on behalf of its user in the agent team. If
a user is delayed to a meeting, Friday can reschedule the meeting,
informing other Fridays, who in turn inform their human users. If
there is a research presentation slot open, Friday may respond to the
invitation to present on behalf of its user. Friday can also order its
user’s meals (see Figure 1b) and track the user’s location, posting
it on a Web page. Friday communicates with users using wireless
devices, such as personal digital assistants (PALM VIIs) and WAP-
enabled mobile phones, and via user workstations. Figure 1c shows
a PALM VII connected to a Global Positioning Service (GPS) de-
vice, for tracking users’ locations and enabling wireless communi-
cation with Friday.

Each Friday’s team behavior is based on a teamwork model,
called STEAM [14]. The Fridays model each meeting as a team’s
joint intention that, by the rules of STEAM, they keep each other
informed about (e.g., a meeting is delayed, cancelled, etc.). Fur-
thermore, Fridays use STEAM role relationships to model the rela-
tionships among team members. For instance, the presenter role is
critical since the other attendees depend on someone giving a pre-
sentation. Thus, if the presenter cannot attend, the team recognizes
a critical role failure that requires remedial attention.

The basic design of the Friday proxies is discussed in detail else-
where [15] (where they are referred to as TEAMCORE proxies),
but there have been several significant advances since that initial
report. Previously, dynamic role allocation was on a first-come-
first-served basis [14]. Now, the team auctions off the role, allow-
ing it to consider complex combinations of factors and assign the
best-suited agent. Figure 2a shows the auction tool that allows hu-
man users to view auctions in progress and intervene if they so
desire. For example, for the role of presenter at a particular meet-
ing, Friday bids on behalf of its user, indicating whether its user
is capable or willing to present on the given presentation topic. In
the auction in progress in Figure 2a, Jay Modi’s Friday has bid that
Jay is capable of giving the presentation, but is unwilling to do so.
Friday looks up its user’s (binary) capability to perform the role
and submits a capability bid. While the capability bidding is fully
autonomous, the willingness bidding is not (see Section 4.3). In
the auction shown, Paul Scerri’s agent has the highest bid and was
declared the winner.

AA is of critical importance in Friday agents. Clearly, the more
autonomous Friday is, the more time it saves its user. However,

1The Electric Elves project is a large collaborative effort at
USC/ISI involving several research groups[11]; this paper focuses
on the research that our group has conducted in adjustable auton-
omy in the context of this project

(a) Overall proxy-based architecture (b) Friday ordering dinner from CPK (c) Palm VII and GPS

Figure 1: Some of the devices and tools used in Electric Elves.

Friday has the potential to make costly mistakes when acting au-
tonomously (e.g., volunteering an unwilling user for a presenta-
tion). Thus, each Friday must make intelligent decisions about
when to consult its user and when to act autonomously. Further-
more, Friday faces significant, unavoidable uncertainty (e.g., if a
user is not at the meeting location at meeting time, does s/he plan
to attend?).

In addition to uncertainty and cost, the E-Elves raises the three
novel AA challenges mentioned in Section 1. First, consider the
AA coordination challenge. Suppose that, when faced with uncer-
tainty, a Friday agent consults its user (e.g., to check whether the
user plans to attend a meeting), but the user, caught in traffic, fails
to respond. While waiting for a response, Friday may miscoordi-
nate with its teammates (other Friday agents), since it fails to in-
form them whether the user will attend the meeting. This, in turn
means that other meeting attendees (humans) waste their time wait-
ing. Conversely, if, to maintain coordination, Friday tells the other
Fridays that its user will not attend the meeting, but the user does
indeed plan to attend, the human team suffers a potentially serious
cost from receiving this incorrect information. Friday must instead
make a decision that makes the best tradeoff possible between the
possible costs of inaction and the possible costs of incorrect action.

TheAA team decision challengeis to ensure effective team-level
decision-making. While Friday’s AA may ensure effective indi-
vidual decisions, consequent agent team decisions may still be un-
desirable to the human team. As a simple example, suppose all
Fridays act responsibly, and, as a result, the team has received a
reasonable bid for an unallocated role, but outstanding bids still re-
main (possibly due to slow user response). The team faces a diffi-
cult choice: should it immediately assign the role, or should it wait
in case it eventually receives a better bid? Delaying the decision
gives the assignee less time to prepare for the presentation, but as-
signing someone immediately may mean a suboptimal assignment
if a more suited user would have bid in the future.

Finally, thesafe learning challengerequires protecting against
temporary learning aberrations. The next section provides a list of
failures that clearly demonstrates that faulty learning is indeed a
significant issue in E-Elves.

3. DECISION-TREE APPROACH
Our first attempt at AA in E-Elves was inspired by CAP [9], an

agent system for helping a user schedule meetings. Like CAP, Fri-
day learned user preferences using C4.5 decision-tree learning [13].
In training mode, Friday recorded values of a dozen carefully se-
lected attributes and the user’s preferred action (identified by query
via a dialog box, as in Figure 2b) whenever it had to make a deci-
sion. Friday used the data to learn a decision tree (e.g.,if the user

has a meeting with his or her advisor, but is not at ISI at the meeting
time, thendelay the meeting 15 minutes). Also in training mode,
Friday asked if the user wanted such decisions taken autonomously
in the future. Friday again used C4.5 to learn a second decision tree
from these responses. The key idea was to resolve the transfer-of-
control decision by learning from user input.

Initial tests with the above setup were promising [15], but a key
problem soon became apparent. When Friday encountered a de-
cision it should not take autonomously, it would wait indefinitely
for the user to make the decision, even though this inaction led it
to miscoordinate with its teammates. To address this problem, if a
user did not respond within a fixed time limit, Friday took an au-
tonomous action. Although results improved, when we deployed
the resulting system 24/7, it led to some dramatic failures, includ-
ing:

1. Tambe’s (a user) Friday incorrectly, autonomously cancelled a meet-
ing with the division director. C4.5 over-generalized from training
examples.

2. Pynadath’s (another user) Friday incorrectly cancelled the group’s
weekly research meeting. A time-out forced the choice of an (incor-
rect) autonomous action when Pynadath did not respond.

3. A Friday delayed a meeting almost 50 times, each time by 5 min-
utes. The agent was correctly applying a learned rule but ignoring
the nuisance to the rest of the meeting participants.

4. Tambe’s proxy automatically volunteered him for a presentation,
though he was actually unwilling. Again, C4.5 had over-generalized
from a few examples and when a timeout occurred had taken an un-
desirable autonomous action.

From the growing list of failures, it became clear that the ap-
proach faced some fundamental problems. The first problem was
the AA coordination challenge, which requires the agent balance
potential team miscoordination against the cost of erroneous ac-
tions. Learning from user input, when combined with timeouts,
failed to address the challenge, since the agent sometimes had to
take autonomous actions although it was ill-prepared to do so (ex-
amples 2 and 4). Second, the approach did not consider the team
cost of erroneous autonomous actions (examples 1 and 2). Effective
agent AA needs explicit reasoning and careful tradeoffs when deal-
ing with the different individual and team costs and uncertainties.
Third, decision-tree learning lacked the lookahead ability to plan
actions that may work better over the longer term. For instance, in
example 3, each five-minute delay is appropriatein isolation, but
the rules did not consider the ramifications of one action on suc-
cessive actions. Planning could have resulted in a one-hour delay
instead of many five-minute delays. Planning and consideration of
cost could also lead to an agent taking the low-cost action of a short
meeting delay while it consults the user regarding the higher-cost
cancel action (example 1). Interestingly, this original effort did not

(a) Electric Elves auction tool (b) Dialog for delaying meetings (c) A small portion of simplified version of the
delay MDP, with no response from the user

Figure 2: Auction tool, dialog box, and delay MDP used in E-Elves.

address theteam decision challenge, given that it did not overcome
theAA coordination challenge.

Potentially, the problems with the C4.5 approach could have
been overcome with more data, a better set of attributes, and rea-
soning about uncertainty using C4.5 confidence factors. Unfortu-
nately, this very rich domain makes it difficult to gather sufficient
training data, so much of the required domain knowledge should
be encoded a priori. The point is not that learning is inapplicable
in AA (as we discuss in Section 4.4), rather that, in a team context,
the AA problem has significant complexities that preclude simple
solutions.

4. ADDRESSING CHALLENGES IN AA
MDPs were a natural choice for addressing the issues identified

in the previous section: reasoning about the costs of actions, han-
dling uncertainty, planning for future outcomes, and encoding do-
main knowledge. To overcome computational complexity costs, we
rely on partitioning the MDPs. Thus, a Friday has a separate MDP
for each decision that it makes to reschedule meetings or volun-
teer a user for presentation or order meals. Overall, there are four
types of MDPs. Section 4.1 discusses the basic representation of
the MDPs, using thedelay MDPas an example (two other MDPs,
thebid-for-role MDPand theorder-meal MDP, are similar). Sec-
tion 4.2 illustrates how these MDPs address theAA coordination
challenge. Section 4.3 discusses theassign-role MDP, which fo-
cuses on theAA team decision challenge. Finally, Section 4.4 dis-
cusses how our framework addresses thesafe learning challenge.

4.1 MDP Representation
The delay MDP, typical of MDPs in Friday, represents a class

of MDPs covering all types of meetings for which the agent may
take rescheduling actions. For each meeting, an agent can au-
tonomously perform any of the 10 actions shown in the dialog of
Figure 2b (e.g., it could ask for a meeting delay of 15 minutes, an-
nounce the user will not attend, etc.). It can also wait, i.e., sit idly
without doing anything, or can reduce its autonomy and ask its user
for input (the user can choose from any of the 10 responses from
Figure 2b).

The delay MDP reasoning is based on a world state representa-
tion, the most salient features of which are the user’s location and
the time. Figure 2c shows a portion of the state space, showing
only the location and time features, as well as some of the state
transitions (a transition labeled “delayn” corresponds to the action
“delay byn minutes”). Each state also has a feature representing
the number of previous times the meeting has been delayed and a

feature capturing what the agent has told the other Fridays about the
user’s attendance (either nothing, that the user is currently attend-
ing, that the user will be late, or that the user will not be attending).
There are a total of 768 possible states per each individual meeting.

The delay MDP’s reward function has a maximum in the state
where the user is at the meeting location when the meeting starts.
A component of the reward, denotedruser, focuses on the user at-
tending the meeting at the meeting time, giving the agent incentive
to delay meetings when its user’s late arrival is possible. However,
in isolation,ruser could drive the agent to choose arbitrarily large
delays, virtually ensuring the user is at the meeting when it starts,
but forcing other attendees to rearrange their schedules – a very
costly activity. The team cost is considered by incorporating a neg-
ative reward, denotedrrepair, with magnitude proportional to the
number of delays so far and the number of attendees, into the delay
reward function. A pre-learning constraint (see Section 4.4) allows
no more than 4 delays to a meeting, regardless of what transition
probabilities are learned.

However, explicitly delaying a meeting may benefit the team,
since without a delay, the other attendees may waste time waiting
for the agent’s user to arrive. Therefore, the delay MDP’s reward
function includes a component,rtime, that is negative in states after
the start of the meeting if the user is absent, but positive otherwise.
The magnitude of this reward, likerrepair, is proportional to the
number of attendees. The reward function also includes a compo-
nentrrole, which, likeruser, is positive in states where the user is
in attendance and zero otherwise. However, the magnitude ofrrole
also increases with the importance of the user’s role (e.g., speaker
vs. passive participant) to the success of the meeting, thus repre-
senting the value of the user’s attendance to theteam. Finally, the
reward function includes a component,rmeeting , which is positive
once the meeting starts and zero everywhere else to deter meeting
cancellation. The overall reward function for a states is a weighted
sum of the components:
r(s) = �userruser(s) + �repairrrepair(s) + �timertime(s)+

�rolerrole(s) + �meetingrmeeting(s)

Although taking into account team costs, Friday’s decisions are
on behalf of its user only; the team may not concur. Thus, even
if Friday reasons about individual and team costs when requesting
a delay, the team, after due deliberation, may not accept such a
request, as discussed in Section 4.3.

The delay MDP’s state transitions are associated with the prob-
ability that a given user movement (e.g., from office to meeting
location) will occur in a given time interval. Figure 2c shows mul-
tiple transitions due to a ’wait’ action, with the relative thickness of

the arrows reflecting their relative probability. The MDP designer
encodes the initial probabilities, which our learning algorithm (de-
scribed in Section 4.4) then customizes. In practice, transitions to
states where the user arrives on time are highly likely.

The “ask” action, through which the agent gives up autonomy
and queries the user, has two possible outcomes. First, the user may
not respond at all, in which case, the agent is performing the equiv-
alent of a “wait” action. Second, the user may respond, with one
of the 10 responses from Figure 2b. A communication model [15]
provides the probability of receiving a user’s response in a given
time step. The cost of the “ask” action is derived from the cost
of interrupting the user. The probabilities and costs vary with the
mode of interaction (e.g., a dialog box on the user’s workstation is
cheaper than sending a page to the user’s cellular phone). We com-
pute the expected value of user input by summing over the value of
each possible response, weighted by its likelihood (computed us-
ing the delay MDP as a model of the user’s decision-making). The
value of each user response is computed using the reward function
mentioned above, but assuming the user response is accurate. For
instance, if the user provides input suggesting a 5-minute delay,
then the agent knows that it will incur the cost of the 5-minute de-
lay but will then receive the maximum reward when the user arrives
at the (rescheduled) meeting on time.

Given the state space, actions, transition probabilities, and re-
ward function of the MDP, a standard value iteration technique is
used to compute an optimal policy,policy�(s):

policy
�(s) = argmax

a
�jM

a
sjU(j)

whereU(s), the utility of being in state s, is :

U(s) = r(s) + max
a

�jM
a
sjU(j)

andMa
sjU(j) is the transition probability between states and j

given that actiona is taken [12].
One possible policy, generated for a subclass of possible meet-

ings, specifies “ask” and then “wait” in stateS1of Figure 2c, i.e., the
agent gives up some autonomy. If the world reaches stateS3, the
policy again specifies “wait”, so the agent continues acting without
autonomy. However, if the agent then reaches stateS5, the policy
chooses “delay 15”, which the agent then executes autonomously.
However, the exact policy generated by the MDP will depend on
the exact probabilities and costs used (as we discuss in Section 5).

4.2 The AA coordination challenge
The delay MDP enables Friday to address theAA coordination

challengeusing the three-step approach introduced in Section 1.
The previous section describes how the agent achieve the first step
of balancing individual and team rewards, costs, etc. This section
describes how such MDPs support the other two steps of our AA
coordination approach as well.

The second step of our approach requires that agents avoid rigid-
ly committing to transfer-of-control decisions. For example, if the
agent decides to give up autonomy for a decision, it should not wait
indefinitely for a user response, as a slow response could jeopardize
the team activity. Instead, the agent must continuously reassess the
developing situation, possibly changing its previous autonomy de-
cisions (as specified in stateS5by the policy discussed in the previ-
ous section). The MDP representation supports this by generating
an autonomypolicy rather than an autonomydecision. The policy
specifies optimal actions for each state, so the agent can respond to
any state changes by following the policy’s specified action for the
new state. In this respect, the agent’s AA is an ongoing process, as
the agent acts according to a policy throughout the entire sequence

of states it finds itself in.
The third step of our approach arises because an agent may need

to act autonomously to avoid miscoordination, yet it may face sig-
nificant uncertainty and risk when doing so. In such cases, an agent
can carefully plan a change in coordination (e.g., delaying actions
in the meeting scenario) by looking ahead at the future costs of team
miscoordination and those of erroneous actions. The delay MDP is
especially suitable for producing such a plan because it generates
policies after looking ahead at the potential outcomes. For instance,
the delay MDP supports reasoning that a short delay “buys time”
for a user to respond to a query from an agent, potentially reducing
the uncertainty surrounding a costly decision, albeit at a small cost.
Thus, an agent might choose a 15-minute delay to give time for an
absent user to arrive, or respond, before cancelling a meeting.

Furthermore, the lookahead in MDPs enables effective long-term
solutions to be found. As already mentioned the cost of reschedul-
ing, rrepair, increases as more such repair actions occur. This pro-
vides a compact scheme for supporting some history dependency in
the cost of future states. Thus, even if the user is very likely to ar-
rive at the meeting in the next 5 minutes, the uncertainty associated
with that particular state transition may be sufficient, when coupled
with the cost of subsequent delays if the user does not arrive, for
the delay MDP policy to specify an initial 15-minute delay (rather
than risk three 5-minute delays). Thus, the agent reasons about the
likelihood and cost of possible subsequent delays.

4.3 The AA Team Decision Challenge
Once individual team members provide their input to the team

(e.g., suggestions to delay meetings or bids for roles), the team
makes a collective decision based on that input. As discussed in
Section 1, theAA team decision challengerefers to ensuring the ef-
fectiveness of such team decisions. In particular, despite individual
Friday’s responsible actions, the team may reach a highly unde-
sirable decision. One approach suggested in previous work is to
improve the decision-making at the individual level so as to avoid
such team-level problems [6]. Unfortunately, this makes the in-
dividual reasoning more complex, because an agent would need to
model and predict the actions of its teammates. We instead propose
the novel approach to introduce AA at all levels of decision-making
in a team hierarchy, i.e., at individual, subteam, and team level, en-
abling the agent team to tap into the human team’s expertise and
knowledge in difficult decisions. Once again, while consulting hu-
man team, the agent team must not overburden the users.

In a team context, the AA problem is for the team to decide
whether to rely on its own reasoning or to relinquish the control
to the human team. Clearly, in some cases, STEAM’s teamwork
rules, which form the basis of the team reasoning, have some (low)
likelihood of error, perhaps due to inadequate input. Thus, con-
sulting with a human team may be appropriate in some situations.
For instance, a STEAM decision based on given role relationships
may be accurate, but there may be errors in the original modeling
of the role relationships themselves. Furthermore, each such team
decision error has different cost.

Thus, analogous to the AA at the individual level, the team-
based AA needs to reason about uncertainty, cost, and potential
developments in the world. Hence, we again chose MDPs for the
AA reasoning mechanism. Like the individual MDPs described in
Section 4.2, the team MDPs compare the expected value of con-
sulting the human team against the expected value of making an
autonomous decision.

The team-level decision to delay a meeting is of sufficiently low
uncertainty and low cost that it is always taken autonomously. In
contrast, the team-level decision to close an auction and assign a

presenter for a talk has high uncertainty and cost, so the agent team
will sometimes need to consult with the human team. The team
can take one of two actions, closing the auction and assigning the
role or waiting. The “wait” action also allows a human to make
an assignment, so it is synonymous with asking the human team.
The states of the team-level MDP have abstract team features rather
than individual features (e.g.,few, half, many, or mostbids have
been submitted for a role). In order to reason about the course of
action that will maximize reward, the agent team needs to know
the probability distribution for higher quality bids arriving in the
subsequent time steps. This distribution is encoded a priori and
then adjusted autonomously from observations. In each auction
states, the team receives reward:

r(s) = �bidrbid(s) + �acceptraccept(s) + �timertime(s)

that has a maximum when the team assigns a clearly superior, high-
quality bidder to the role at the optimal time. The rewardrbid, pro-
portional to the quality of the winning bid, encourages the team to
leave the auction open until a high-quality bid comes in. The re-
wardraccept is positive if there is a clearly best bid and negative if
there is no clearly best bid, discouraging the agent team from mak-
ing assignments when there is uncertainty surrounding which bid is
best. The rewardrtime is based on how appropriate the timing of
the assignment is — too early and the team may miss out on receiv-
ing better bids, too late and the assigned user will not have sufficient
time to prepare. Thertime reward captures any time pressure asso-
ciated with the role, encouraging the team to make an assignment
earlier (e.g., to give the assigned presenter more time to prepare).

4.4 The AA Safe Learning Challenge
An accurate model of the user is critical to good AA reasoning.

We create an initial “generic” user model, encoding our domain
knowledge in an initial MDP that allows the agents to function well
straight “out of the box”. Improvements, via learning, to the MDP
model lead to improved AA reasoning, primarily by personalizing
the reasoning to particular users. Fridays learn via a simple rein-
forcement learning algorithm that periodically examines the exten-
sive logs created during system execution and then updates param-
eters in the MDP user model accordingly. However, in a deployed
system, anything learned has an immediate effect on the users — a
phenomenon we have seen to be sometimes harmful in practice, as
described in Section 3. Hence, we require a safety mechanism that
protects the user from unacceptable policies learned due to noise,
inadequate sensing, or limited training examples. We take a two-
pronged approach to theAA safe learning challenge: (i) building
substantial knowledge into the agents’ generic user models (as de-
scribed in Sections 4.1–4.3); and (ii) providing a safety net to pre-
vent harmful policies being learned.

We have implemented the learning safety net with a combined
pre- and post-learning strategy that places strict bounds on what the
agent can learn. The two strategies support a variety of behavioral
constraints to be specified naturally and computationally efficiently.
When the system designer or individual user specifies a constraint
through the pre-learning strategy, the resulting MDP explicitly dis-
allows actions from states in which the constraint dictates those ac-
tions should never be taken. Thus, no matter what transition proba-
bilities the agent learns, it cannot select those actions. For example,
in E-Elves, a pre-learning constraint ensures that the auction MDP
does not assign someone to a role when no bids have been received,
regardless of the remaining time, by specifically excluding the “as-
sign” action from those states in which no bids have been received.

The post-learning strategy ensures that the MDP has desirable
properties after the learning algorithm runs. Rather than exhaus-

tively check every state of every policy generated by the possible
MDPs (corresponding to different types of meetings, roles, etc.),
our learning algorithm uses heuristics to isolate a small number
of states where the (non)existence of the property should be most
clearly seen. The algorithm can check these states to determine
whether a property holds for a given MDP. For instance, the delay
MDP should not learn that all actions are too costly and thus gen-
erate a policy of complete inaction. In other words, there should be
at least some states in which the agent will take some action other
than “wait” or “ask”. The heuristicthe user is not at the meeting
room 15 minutes after the meeting startedisolates a small num-
ber of states where we can expect the delay MDP policy to specify
some action (usually delaying the meeting). If we see such an ac-
tion in the policy, we can immediately stop our search because we
know the desired property does indeed hold for the learned MDP. If
the post-learning check finds that a required property does not hold,
the learning algorithm resets the model parameters back toward the
pre-learning values until it finds an acceptable set of values (i.e.,
ones that have the required properties). This heuristic-based ap-
proach is our first step toward tackling the open research issue of
providing post-learning guarantees within E-Elves.

5. EVALUATION
We have used the E-Elves system within our research group at

USC/ISI for the last six months, with continuous operation 24 hours
a day, 7 days a week, since June 1, 2000 (occasionally interrupted
for bug fixes and enhancements). There are nine agent proxies (be-
longing to nine usersdinglei, ito, jungh, kulkarni, modi, pynadath,
scerri, nair, and tambe), one agent proxy for a project assistant,
one capability matcher (with proxy), and an interest matcher (with
proxy). Section 2 discusses the key functionality provided by this
system. Figure 4 plots the number of daily messages exchanged
by the proxies over three months (6/1/2000-8/31/2000). The size
of the daily counts reflects the large amount of coordination nec-
essary to manage various activities, while the high variability illus-
trates the dynamic nature of the domain.

Figure 4: Number of daily coordination messages exchanged
by proxies over three-month period.

The general effectiveness of E-Elves is shown by several obser-
vations. Since the E-Elves deployment, the group members have
exchanged very few email messages to announce meeting delays.
Instead, Fridays autonomously inform users of delays, thus reduc-
ing the overhead of waiting for delayed members. Second, the over-
head of sending emails to recruit and announce a presenter for re-
search meetings is now assumed by agent run auctions. Third, a
web page, where Friday agents post their user’s location, is com-

(a) Monitored vs. delayed meetings per user (b) Meetings delayed autonomously (darker bar) vs. by hand.

Figure 3: Results of delay MDP’s decision-making.

monly used to avoid the overhead of trying to track users down
manually. Fourth, mobile devices keep us informed remotely of
changes in our schedules, while also enabling us to remotely delay
meetings, volunteer for presentations, order meals, etc. We have
begun relying on Friday so heavily to order lunch that one local
“Subway” restaurant owner even suggested marketing to agents:“
: : : more and more computers are getting to order food: : : so we
might have to think about marketing to them!!”.

We now present details underpinning the general observations.
Figure 3a illustrates the number of meetings monitored for each
user. Over the course of three months (June 1 to August 31) over
400 meetings where monitored. Some users had less than 20 meet-
ings, while others had over 150. Most users had about 20% of their
meetings delayed. Figure 3b shows that usually 50% or more of
delayed meetings were autonomously delayed. In particular, in this
graph, repeated delays of a single meeting are counted only once,
and yet, the graphs show that the agents are acting autonomously
in a large number of instances. Equally importantly, humans are
also often intervening, indicating the critical importance of AA in
Friday agents.

Over the course of the past three months, our research group pre-
sentations were decided using auctions. Table 1 shows a summary
of the auction results. Column 1 shows the dates of the research
presentations. While the auctions are held weekly, several weekly
meetings over this summer were cancelled due to conference travel
and vacations. Column 2 shows the total number of bids received
before a decision. A key feature is that auction decisions were made
without all 9 users entering bids; in fact, in one case, only 4 bids
were received. Column 3 shows the winning bid. A winner typ-
ically bid < 1; 1 >, i.e., indicating that the user it represents is
both capable and willing to do the presentation — a high quality
bid. When there was only one such bid, the MDP could confidently
choose the winner, otherwise it would wait for user input. Interest-
ingly, the winner on July 27 made a bid of< 0; 1 >, i.e., not capa-
ble but willing. The team was able to settle on a winner despite the
bid not being the highest possible, illustrating its flexibility. Finally,
columns 4 and 5 shows the auction outcome. An ‘H’ in column 5
indicates the auction was decided by a human, an ‘A’ indicates it
was decided autonomously. In four of the six times, winner was
automatically selected. The two manual assignments were due to
exceptional circumstances in the group (e.g., a first-time visitor).

We performed a number of experiments to verify certain desir-
able properties of the MDPs. As expected, as thecostof asking
increased, the number of states in which the agent would relinquish
autonomy decreased (Figure 5a). Further, as thelikelihood of the
user replying to an agent increased, so did the number of states
where the agent would ask (Figure 5b). The experiments showed
that the agent was able to trade off intelligently between the wasted

Date No. of bids Best bid Winner Method
Jul 6 7 1,1 Scerri H
Jul 20 9 1,1 Scerri A
Jul 27 7 0,1 Kulkarni A
Aug 3 8 1,1 Nair A
Aug 31 4 1,1 Tambe A
Sept 19 6 -,- Visitor H

Table 1: Results for auctioning research presentation slot.

time if the user didn’t respond, the value of the information the user
could provide, the cost of asking the user, and the likelihood of the
user replying.

Figure 5: Number of ask actions in policy vs. (a) the cost of
asking and (b) the probability of response.

Most importantly, over the entire span of the E-Elves’ operation,
the agents haveneverrepeated any of the catastrophic mistakes that
Section 3 enumerated in its discussion of our preliminary decision-
tree implementation. For instance, the agents do not commit error
4 from Section 3 because of the domain knowledge encoded in the
bid-for-role MDP that specifies a very high cost for erroneously
volunteering the user for a presentation. Thus, the generated policy
never autonomously volunteers the user. Likewise, the agents never
committed errors 1 or 2. In the delay MDP, the lookahead inherent
in the policy generation allowed the agents to identify the future
rewards possible through “delay” (even though some delays had a
higher direct cost than that of “cancel”). The policy described in
Section 4.1 illustrates how the agents would first ask the user and
then try delaying the meeting, before taking any final cancellation
actions. The MDP’s lookahead capability also prevents the agents
from committing error 3, since they can see that making one large
delay is preferable, in the long run, to potentially executing several
small delays. Although the current agents do occasionally make
mistakes, these errors are typically on the order of asking the user
for input a few minutes earlier than may be necessary, etc. Thus, the
agents’ decisions have been reasonable, though not always optimal.
Unfortunately, the inherent subjectivity in user feedback makes a
determination of optimality difficult.

6. RELATED WORK

Most of the work done on AA has focused on the interactions
between an individual agent and an individual human, while our
research has focused on AA in the team context. For example, we
mentioned CAP [9] in Section 3, illustrating that its techniques may
face significant difficulties in a team context.

Mixed-initiative systems share responsibility between a human
and agent. For example, in TRAINS-95 [3], an agent and a user
share a fairly complex planning task, gaining leverage through the
abilities of the respective parties. The user addresses aspects in-
volving hard-to-define objective functions, while the agents are as-
signed problems involving repetitive consideration of detail. In
such systems, there is generally only a single user, who is always
available, and only a single agent; hence, the AA team decision and
AA coordination challenges are avoided.

An aspect of Friday’s autonomy reasoning is an assessment of
the costs and benefits to the individual user in any transfer-of-con-
trol decision. The PRIORITIES system uses decision theory to rea-
son about the costs, benefits and uncertainty associated with alert-
ing a user to the arrival of new email [7]. One of the focuses of the
PRIORITIES research is to use Bayesian networks to build a prob-
abilistic model of the user’s intentions, so as to better assess the
costs involved in interrupting them. PRIORITIES does not, how-
ever, consider the team level issues that are considered in E-Elves.
In addition, PRIORITIES uses hand-specified costs and values in
computing the value of human input, while our approach automat-
ically generates these costs and values from its more abstract MDP
planning model.

Much AA research has been motivated by the requirements of
NASA space missions [2]. One thread of that research developed
an interface layer to the 3T architecture to allow users to take con-
trol of an agent at whatever level of control is most appropriate for
the given situation. The interface layer approach is fundamentally
different from the E-Elves approach as the agent does not explicitly
reason about reducing its autonomy.

7. CONCLUSIONS
Gaining a fundamental understanding of AA is critical if we are

to deploy multi-agent systems in support of critical human activ-
ities in real-world settings like intelligent homes, organizational
coordination, electronic commerce, and long-term space missions.
Indeed, living and working with the E-Elves has convinced us that
AA is a critical part of any human collaboration software. Our ini-
tial experience with using a C4.5-based approach to E-Elves pro-
vided a negative result that constitutes a useful contribution to AA
research. Because of this negative result, we realized that agent
teamwork and coordination in such real-world, multi-agent envi-
ronments as E-Elves introduce novel challenges in AA that pre-
vious work has not addressed. In this paper, we have focused on
three key challenges: (i) theAA coordination challengerequires
an agent to avoid miscoordination with teammates, while simulta-
neously ensuring effective team action; (ii) theAA team decision
challengefocuses on ensuring effective decisions at the multiple
levels of decision-making in teams; and (iii) theAA safe learning
challengearises because temporary learning aberrations can have
disastrous effects on system users. We discussed several key ideas
to address these challenges. In particular, for resolving theAA co-
ordination challenge, agents explicitly reason about the costs of
team miscoordination, they flexibly transfer autonomy rather than
rigidly committing to initial decisions, and they may change the co-
ordination rather than taking risky actions in uncertain states. For
addressing theAA team decision challenge, AA is introduced at
multiple levels of team decision-making hierarchy. For addressing
thesafe learning challenge, we built a considerable amount of do-

main knowledge into the agents as well as provided boundaries on
what the agent could learn at runtime. We have implemented our
ideas in the E-Elves system using MDPs, and our AA implemen-
tation nows plays a central role in the successful 24/7 deployment
of E-Elves in our group. Its success in the diverse tasks of that
domain demonstrates the promise that our framework holds for the
wide range of multi-agent domains for which AA is critical.

Acknowledgements
This research was supported by DARPA award no. F30602-98-2-
0108. The effort is being managed by Air Force Research Labs/Rome
site. We thank our colleagues, especially, Craig Knoblock, Yolanda
Gil, Hans Chalupsky and Tom Russ for collaborating on Electric
Elves project. Paul Scerri was supported by The Network for Real-
Time Education and Research in Sweden (ARTES). Project no. 0055-
22, Principal investigator Nancy Reed.

8. REFERENCES
[1] J. Collins, C. Bilot, M. Gini, and B. Mobasher.

Mixed-initiative decision-support in agent-based automated
contracting. InProc. of Agents’2000, 2000.

[2] G. A. Dorais, R. P. Bonasso, D. Kortenkamp, B. Pell, and
D. Schreckenghost. Adjustable autonomy for
human-centered autonomous systems on mars. InProc. of
the First Int. Conf. of the Mars Society, 1998.

[3] G. Ferguson, J. Allen, and B. Miller. TRAINS-95 : towards a
mixed initiative planning assistant. InProc. of the Third
Conference on Artificial Intelligence Planning Systems,
pages 70–77, May 1996.

[4] Call for Papers. AAAI spring symposium on adjustable
autonomy. www.aaai.org, 1999.

[5] J. P. Gunderson and W. N. Martin. Effects of uncertainty on
variable autonomy in maintenence robots. InProc. of
Agents’99, Workshop on Autonomy Control Software, 1999.

[6] T. Hartrum and S. Deloach. Design issues for
mixed-initiative agent systems. InProc. of the AAAI
workshop on mixed-initiative intelligence, 1999.

[7] E. Horvitz, A. Jacobs, and D. Hovel. Attention-sensitive
alerting. InProc. of UAI’99, 1999.

[8] V. Lesser, M. Atighetchi, B. Benyo, et al. A multi-agent
system for intelligent environment control. InProc. of
Agents’99, 1999.

[9] T. Mitchell, R. Caruana, D. Freitag, J. McDermott, and
D. Zabowski. Experience with a learning personal assistant.
Communications of the ACM, 37(7), 1994.

[10] M. L. Puterman.Markov Decision Processes. John Wiley &
Sons, 1994.

[11] D. V. Pynadath, M. Tambe, H. Chalupsky, Y. Arens, et al.
Electric elves: Immersing an agent organization in a human
organization. InProc. of the AAAI Fall Symposium on
Socially Intelligent Agents, 2000.

[12] S. Russell and Peter Norvig.Artificial Intelligence: A
Modern Approach. Prentice-Hall, Inc., 1995.

[13] J. R. Quinlan.C4.5: Programs for machine learning.
Morgan Kaufmann, San Mateo, CA, 1993.

[14] M. Tambe. Towards flexible teamwork.Journal of Artificial
Intelligence Research, 7:83–124, 1997.

[15] M. Tambe, D. V. Pynadath, N. Chauvat, A. Das, and
G. A. Kaminka. Adaptive agent integration architectures for
heterogeneous team members. InProc. of the ICMAS’2000,
pages 301–308, 2000.

