
Adaptive infrastructures for agent integration

David V. Pynadath, Milind Tambe, Gal A. Kaminka

Information Sciences Institute and Computer Science Department
University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292fpynadath,tambe,galkg@isi.edu
Abstract. With the proliferation of software agents and smart hardware devices
there is a growing realization that large-scale problems can be addressed by in-
tegration of such stand-alone systems. This has led to an increasing interest in
integration infrastructures that enable a heterogeneous variety of agents and hu-
mans to work together. In our work, this infrastructure has taken the form of an
integration architecture calledTeamcore. We have deployed Teamcore to facili-
tate/enable collaboration between different agents and humans that differ in their
capabilities, preferences, the level of autonomy they are willing to grant the inte-
gration architecture, their information requirements andperformance. This paper
first provides a brief overview of the Teamcore architectureand its current ap-
plications. The paper then discusses some of the research challenges we have
focused on. In particular, the Teamcore architecture is based on general purpose
teamwork coordination capabilities. However, it is important for this architecture
to adapt to meet the needs and requirements of specific individuals. We describe
the different techniques of architectural adaptation, andpresent initial experimen-
tal results.

1 Introduction

With the ever increasing number of information-gathering agents, user agents, agents
in virtual environments, smart hardware devices and robotic agents, there is a growing
need for agent integration infrastructures. Such infrastructures wouldallow different
agents and humans to work effectively with each other[2,1, 4]. To this end, these in-
frastructures must address several important issues, such as locating relevant agents (or
humans) for a task, facilitating their collaboration and monitoring their performance.
This paper focuses on the challenge of facilitating agent collaboration in the context of
heterogeneous agents, which have different capabilities, developers, and preferences.
For instance, humans may differ in their requirements for obtaining coordination infor-
mation and the cost they are willing to pay to obtain such information.Humans may
also differ in the types of coordination decisions they will allow (orwant) automated.
Software agents have still differing requirements for information and automated coordi-
nation. Such heterogeneity leads to the difficulty of encoding large numbers of special
purpose coordination plans, specialized not only for each new domain, butalso tailored
for each individual agent requirements. Furthermore, given that these requirements may
vary over time, these plans would need to be modified frequently.

Our approach to addressing the above challenge is to devise an agent integration ar-
chitecture, with built-in general-purpose teamwork coordination capabilities. However,
we enable the architecture to adapt such capabilities (via machine learning) for the
needs and performance of specific individuals. General teamwork knowledge avoids
the need to write large numbers of coordination plans for each new domain and agent.
Yet, further adaptation enables the integration architecture to cater to individual coor-
dination needs and performance. Starting with the teamwork knowledge is critical for
adaptation here, since learning all of the coordination knowledge from scratch for each
case would be very expensive.

The agent integration architecture we are building is called Teamcore. Here, the
agents or humans to be coordinated are each assigned Teamcore proxies, where the
proxies work as a team. Each proxy contains Steam[9], a general teamwork model that
automates the proxies’ coordination with other proxies in its team. Starting with this
teamwork model, Teamcore adapts to the agents in the team, sometimes those which
they represent, sometimes those represented by others, where the adaptations span the
different dimensions of interactions between the agents and their proxies.Here, we
have identified several key interaction dimensions: (1) Theadaptive autonomydimen-
sion refers to a proxy’s adapting its level of decision-making autonomy, so that it learns
to defer some/many decisions to the human or agent it represents; (2) theadaptive
information deliverydimension refers to a proxy’s adapting to an agent’s costs and re-
liabilities of its different communication channels, and the different values the agent
associates with the coordination information. (3) Theadaptive monitoringdimension
refers to the proxies’ adapting to agents’ differing requirements for information about
the global state of the on-going collaboration (beyond the the localcoordination in-
formation discussed in dimension 2); (4) Theadaptive executiondimension relates to
proxies’ adapting their execution in response to agents’ varying capabilities and per-
formance. A key novelty in our approach is that adaptation is done in the context of a
team, not necessarily just an individual proxy. For instance, the proxiesmay cause the
team to communicate more to improve monitoring.

We begin this paper by presenting the Teamcore architecture, and its application in
two complex domains. These applications motivate the need for Teamcore’s adaptation,
which is discussed next.

2 Teamcore Framework

Figure 1 shows the overall Teamcore agent integration framework. The numbered ar-
rows show the stages of interactions in this system. In stage 1, human developers inter-
act with TOPI (team-oriented programming interface) to specify a team-oriented pro-
gram, consisting of an organization hierarchy and hierarchical team plans. As an exam-
ple, Figure 2 shows an abbreviated team-oriented program for the evacuation domain.
Figure 2-a shows the organization hierarchy and Figure 2-b shows theplan hierarchy.
Here, high-level team plans, such asEvacuate, typically decompose into other team
plans and, ultimately, into leaf-level plans, that are executed by individuals. There are
teams assigned to execute the plans, e.g.,Task Forceteam is assigned to jointly exe-

cuteEvacuate, while Escortsubteam is assigned to theEscort-operationsplan. These
teams or individual roles are as yet not matched with actual agents.

Fig. 1. The overall Karma-TEAMCORE framework.

TOPI in turn communicates the team-oriented program to Karma (stage 2). Karma
is anagent resources manager— it queries (stage 3) different middle agents and ANS
services for the “domain agents” (which may include diverse software agentsor hu-
mans) with expertise relevant to the team-oriented program specified in stage 1. Located
domain agents are matched to specific roles in the team plans (by Karma or developer
or both). In stage 4, the Teamcore proxies jointly execute the team-oriented program.
Here, each domain agent is assigned a Teamcore proxy. The proxies work as a team
in executing the team plans, autonomously coordinating among themselvesby broad-
casting information via multiple broadcast nets (stage 4). Teamcores alsocommunicate
with the domain agents (stage 5). Karma monitors and records information about agent
performance (stage 6). All communications occur in KQML.

A key feature of our framework is the proxies’ in-built Steam domain-independent
teamwork model. Steam provides a Teamcore with three sets of domain-independent
teamwork reasoning rules: (i)Coherence preservingrules require team members to
communicate with others for coherent initiation and termination of team plans; (ii)
Monitor and repairrules ensure that team members substitute for other critical team
members who may have failed in their roles; (iii)Selectivity-in-communicationrules
use decision theory to weigh communication costs and benefits to avoid excessive com-
munication. Armed with these rules, the proxies automatically execute much of the re-
quired coordination, without it being explicitly included in the teamoriented program.
For instance, if adomain agentin Task ForceexecutingEvacuatein Fig 1 were to fail,
Teamcore proxies will automatically ensure that another team member (domain agent)

TASK FORCE

FLIGHT
TEAM

TRANSPORTESCORT

(a)

SAFETY INFO
OBTAINER

ROUTE
PLANNER

ESCORT

FOLLOW

TRANSPORT

DIVISION 1

...

.....

ESCORT

LEAD

EVACUATE

(b)

.....

[TASK FORCE]

EXECUTE
MISSION

[TASK FORCE]

PROCESS
ORDERS
[TASK FORCE]

[TASK FORCE]

MANEUVERS
ZONE
LANDING

......

TRANSPORT

[TRANSPORT].......

OPERATIONS
ESCORT
OPS
[ESCORT]

....

...... FLY-FLIGHT
PLAN

[TASK FORCE]

FLY-CONTROL
ROUTE....
[TASK FORCE]

Fig. 2. A team-oriented program.

with similar capabilities will substitute in the relevant role — suchcoordination is not
explicitly programmed in the team-oriented program.

2.1 Application 1: Evacuation Rehearsal

We have applied the Teamcore framework to the problem of rehearsing the evacuation
of civilians from a threatened location. Here, an integrated system must enable a human
commander (the user) to interactively provide locations of the stranded civilians, safe
areas for evacuation and other key points. A set of simulated helicopters should fly a
coordinated mission to evacuate the civilians. The integrated system must itself plan
routes to avoid known obstacles, dynamically obtain information aboutenemy threats,
and change routes when needed. The software developer was able to create a team-
oriented program for this problem, using the following agents:
Quickset: (from P. Cohen et al., Oregon Graduate Institute) Multimodal command input agents
[C++, Windows NT]
Route planner: (from Sycara et al., Carnegie-Mellon University) Path planner for aircraft [C++,
Windows NT]
Ariadne: (from Minton et al., USC Information Sciences Institute) Database engine for dynamic
threats [Lisp, Unix]
Helicopter pilots: (from Tambe, USC Information Sciences Institute) Pilot agents for simulated
helicopters [Soar, Unix]

As seen above, these agents have different developers, they are written in different
languages for different operating systems, they may be distributed geographically and
haveno pre-existing teamwork capabilities. There are actually 11 agents overall, in-
cluding the Ariadne, route-planner, Quickset, and eight different helicopters (some for
transport, some for escort).

We successfully used the Teamcore framework to build and execute a team-oriented
program for evacuation mission rehearsal from these agents. An abbreviatedportion
of the program is seen in Fig 2. This program has about 40 team plans. Thereare
11 Teamcore proxies for the 11 agents, which execute this program by automatically
communicating with each other (exchanging about 100 messages), while also correctly
communicating with the domain agents.

2.2 Application 2: Assisting Human Collaboration

We are also using Teamcore to build an application to assist human teams in routine
coordination activities in industrial or research organizations, using our own research
team as a testbed. In this application, each human user has a Teamcore proxy that co-
ordinates with other proxies on behalf of its user. These proxies communicate with the
users using their workstation screens or their hand-held wireless personal digital assis-
tants (PDAs). The distributed Teamcore architecture is well-suited in this domain, since
each human maintains control on its own Teamcore and its information, ratherthan
centralizing it.

Our current focus is facilitating coordination of meetings within our team or with
visitors, at our institute or outside. For instance if currently an individual gets delayed
(e.g., because she is finishing up results), other meeting attendees end up wasting time
waiting or attempting to reach those missing. To help avoid such miscoordination, a
Teamcore proxy keeps track of its user’s scheduled meetings (by monitoringhis/her
calendar). These meetings are essentially the team plans to be executed jointlyby the
different Teamcores. Using Steam rules, the Teamcore proxies ensure coherent beliefs
about the current state of the meeting. In particular, the proxies track the user’s where-
abouts (e.g., by using idle time on the user’s workstations), and automatically inform
other meeting attendees about meeting delays or about absentees. The proxies alsoau-
tomatically communicate with user’s PDAs. Additionally, if an absent teammember
was playing an important role at the meeting, such as leading a discussion,Teamcore
proxies attempt to get another person with similar capabilities to take over.

3 Adapting to team member heterogeneity

While the promising results of the applications discussed above indicate the benefits of
founding the integration architecture on a proven model of teamwork, they also indicate
ways in which the architecture must adapt to agent heterogeneity. The following sub-
sections present four different methods of adaptation, each using a suitable technique.
The overall theme in these adaptations is that in interacting with a heterogeneous team
member (who may be human), the Teamcore proxies either adapt together as a team, or
a single proxy adapts in the context of the team.

3.1 Adapting the level of autonomy

A key challenge in integrating heterogeneous agents is that they may have differing
requirements with respect to the autonomy of the integration architecture to make deci-
sions on their behalf. For instance, in the human collaboration application discussed in
Section 2.2, a Teamcore proxy may commit its human user to substitute for a missing
discussion leader, knowing that its user is proficient in the discussion topics. However,
the human may or may not want the proxy to autonomously make this commitment.
The decision may vary from person to person, and may depend on many diverse fac-
tors. Conversely, though, restricting the proxy to always confirm its decision with the
user is also undesirable, since it would then often overwhelm the user with confirmation
requests for trivial decisions.

Thus, it is important that a proxy have the right level of autonomy. Yet, to avoid
hand-tuning such autonomy for each human (or agent), it is critical for a proxy to au-
tomatically adapt its autonomy to a suitable level. We rely on a supervised learning
approach based on user feedback. Here, a key issue that contrasts our work withprevi-
ous work on autonomy adaptation (e.g., [7]) is that the the level of autonomy is not only
dependent on the individual but also on the the other agents being integrated. For in-
stance, in the discussion leader example above, the number of other attendees and their
state might be factors in the autonomy decision. Thus, in our approach we emphasize
the use of knowledge about other team members (in addition to the preferences of the
integrated agent) in using supervised learning techniques. Each proxy learns what deci-
sions it can take autonomously, and what decision need be confirmed with theagent—in
the context of particular scenarios involving other agents.

Specifically, the Teamcore proxies for humans can make coordination and repair de-
cisions autonomously to aid in team activities like meetings (e.g., the human-collaboration
domain). Eleven attributes are used in learning, some of which have been inspired by
existing meeting scheduling systems, such as “MeetingMaker”, which includemeeting
location, time, resources reserved etc. However, other attributes describe the state of the
other agents participating in the meeting—e.g., the number of persons attending and
the most important member attending (in terms of the organizational hierarchy). These
attributes are extracted from the user’s schedule files, organizational charts, etc. In the
training phase, a proxy suggests a coordination decision and a query as towhether the
user would wish it to make such a decision autonomously. C4.5[6] is used to learn a
decision tree from the interactions with the user.

3.2 Adaptive execution

A proxy’s decision, whether autonomous or after consultation with itsdomain agent,
is focused on executing a team activity. Here, the proxies may dynamically adapttheir
team plans at execution time, based on the performance of member agents. In particular,
performance of complex domain agents is likely to vary during the lifetime of the proxy
organization. It is thus important that the Teamcore proxies be able to make runtime de-
cisions about plan execution based on the performance of the domain agents.Indeed,
the Teamcores can (as a team) dynamically decide whether or not to execute any plans
the team programmer marks as optional. Karma gives each Teamcore an initial speci-
fication of its domain agent’s capabilities, including parameters such as response time
(e.g., average, min/max response times are recorded from past runs). However, if the
actual runtime performance of a domain agent greatly differs from expectations (e.g.,
so that the cost in agent response time greatly exceeds the benefits from itsresults),
the Teamcore proxies together modify the optional plans and avoid using this particular
domain agent.

More specifically, the Teamcores begin executing an initial plan sequence that they
determine to be optimal given costs and benefits of including the optional plans in the
sequence. However, they can dynamically choose to omit optional plans if a particular
domain agent’s response time should deviate from the expected time cost. For instance,
if they had initially decided to include the route planning plan, but the route planner
is taking longer than expected, the Teamcores can compare their current plan sequence

against alternate candidates, taking into account the increased cost of the current re-
sponse time. If the time cost outweighs the value of route planning, the Teamcores can
change sequences and skip the route-planning step, knowing that they are saving in the
overall value of their execution.

In theory, to fully support such decision-theoretic evaluation, thedeveloper must
specify the value of executing each team plan in terms of its time cost and possible
outcomes. We would then represent these as a probability distributionand utility func-
tion over possible states, withPr(q1jq0; p) representing the probability of reaching stateq1 after executing planp in stateq0, and withU(q; p) representing the utility derived
from executing planp in stateq. However, to ensure that the decision-theoretic evalu-
ation remains practical, several approximations are used. First, the stateshere are not
complete representations of the team state, but rather of only those featuresthat are
relevant to the optional plans. For instance, when evaluating route planning, the Team-
cores consider only the length of the route and whether that route crossesa no-fly zone
prior to route-planning. Second, the decision-theoretic evaluation is only done in terms
of the more abstract plans in our team-plan hierarchy, so developers need notprovide
detailed execution information about all plans and Teamcores need not engage in very
detailed decision-theoretic evaluations. Third, for most plans, the derived utility is sim-
ply taken as a negative time cost. However, in the evacuation scenario, theteam plans
corresponding to helicopter flight have a value that increases when the helicopters reach
their destination and that decreases with any time spent within a no-fly zone.

The probability distribution over outcomes allows the developer tocapture the value
of plans that have no inherent utility, but only gather and modify theteam’s information.
For instance, the mission begins either in stateqsafe with an overall route that does not
cross any no-fly zones or in statequnsafe with a route that does. The developer also
specifies an initial distributionPr(q) for the likelihood of these states. When executing
the route-planning plan in statequnsafe , the route planner creates a route around no-fly
zones, so we enter stateqsafe with a very high probability. The developer then provides
the relative value of executing theflightplan in the two states through the utility function
valuesU(qsafe ;
ight) andU(qunsafe ;
ight).

The Teamcores use this probability and utility information to select the sequence
of plansp0, p1,. . . ,pn that maximizes their expected utility. In the evacuation scenario,
there are only four such sequences, because only two team plans (out of the total of 40)
are optional. They reevaluate their choice only when conditions (i.e., agent response
times) have changed significantly. Thus, whenever a domain-level agent associated with
either of these plans takes longer than usual to respond, its Teamcore proxycan find the
optimal time (with respect to the specified utility function) for terminating the current
information-gathering step and using a different plan sequence for the rest of the team
program.

3.3 Adaptive monitoring

In addition to executing team activities, Teamcore proxies must also monitor these activ-
ities, to detect task execution failures and to allow humans to track the team’sprogress.
To this end, a Teamcore proxy relies on plan recognition to infer the stateof its team
members from the coordination messages normally transmitted during execution. Such

messages do not convey full information about agent state, but can providehints as to
the senders’ state. This plan-recognition-based method is non-intrusive, avoiding the
overhead of the proxies having to continually communicate their state toother proxies.

Teamcore proxies therefore monitor the communications among themselves.Ap-
plying their knowledge of their own communication protocols, the proxies identify ex-
changes of messages such as those establishing or terminating a team plan. Whena
plan is terminated/selected, the monitoring Teamcore proxies can infer that execution
has reached at least the stage corresponding to the plan. However, in general, every
plan may not lead to communication, and hence the plan-recognition process facesam-
biguity. For instance, in the evacuation scenario, the Teamcore proxies communicate
initially to jointly select theObtain-orders plan. To a monitoring proxy, until a second
message is observed, any of the following steps is a possibility. Unfortunately, such
ambiguity interferes with monitoring.

To reduce ambiguity in recognized plans, the monitoring system utilizestwo adapta-
tion techniques. The first simple technique is to use learning to predict when messages
will be exchanged. Such predictions can significantly reduce the number of hypothe-
sized states, since the system knows that the monitored team will not get into certain
states without a message being received. At first, an inexperienced system cannot make
such predictions. However, as it observes messages being sent, it can construct a model
of when such communications will be sent, and use this model to disambiguate the
recognized plans. Here, Teamcore currently uses rote-learning successfully; but, other
techniques will be investigated in the future.

The second adaptation technique is to have the Teamcore team actively adapt its own
behavior to make monitoring less ambiguous. Based on the feedback of themonitoring
system, the team of proxies changes its model of communication costs and benefits, so
as to ensure that that the proxies communicate at specific points during execution at
which ambiguity interferes with the monitoring tasks. For example, when monitoring
the evacuation-rehearsal scenario, the human operators often complained that they are
unable to distinguish two important states–the state in which the team was flying to-
wards (or from) the landing zone, and the state where the team is carrying out its land-
ing zone operations. When the monitoring system provided this feedback, the proxy
team communicated when jointly-selecting the landing-zone maneuvers plan, and the
ambiguity in recognized plans was greatly reduced.

3.4 Adjustable information requirements

When executing or monitoring team activities, proxies must also informthe domain
agents they represent. However, agents can differ in the amount of information they
need in order to successfully carry out their team responsibilities. In theevacuation
scenario, the Teamcore proxies sent messages to their domain agents as mandated by
the team plans’ requirements for tasks and monitoring conditions, without consider-
ing communication costs incurred by these messages. More complex agents (including
humans) would rather sacrifice some of these messages rather than incur high commu-
nication costs. For instance, in our human collaboration scenario, if the system delays
a meeting, it can notify the attendees of this delay by sending messages to their PDAs.
However, wireless message services usually charge a fee, so some users may prefer not

knowing about small delays. The Teamcore proxies should weigh the valueof the mes-
sage (to the user,as well as to the overall team plan) against the cost of sending the
message to the user.

In addition, heterogeneous agents may have multiple channels of communication,
each with different characteristics. In the evacuation scenario, the agents communicated
through a single KQML interface. However, with the human agents in ourcollaboration
scenario, the Teamcore proxy can pop up a dialog on the user’s screen, send an email
message to a PDA (if the user has one), or send email to a third party who could tell
the user in person. The dialog box has very little cost, but it is an unreliable means of
informing the user, who may not be at the terminal when the message arrives. On the
other hand, having a third party tell the user in person may be completelyreliable, but
there is a high cost.

We can model a communication channel’s reliability with a probability distribution
over the amount of time it takes for the message to reach the user through that channel.
For simplicity, our initial implementation represents this time with an exponential ran-
dom variable, so that the probability of the message’s arriving withintimet is 1�e��t,
for some reliability parameter�. We model the cost of the channel and the values of the
various messages as fixed values.

Whenever the Teamcore proxy decides to send a message to the user, it first pops up
a dialog box on the screen with the message. If the user does not explicitly acknowledge
the dialog, the proxy considers using alternate channels. It evaluates the expected benefit
of using such an alternate channel by computing the increase in the likelihood of the
message reaching the user, based on the comparative reliabilities of any channels used
so far and those under consideration. If the product of this increased likelihood and the
value of this message exceeds the channel’s cost, the proxy sends the message through
the new channel.

We have implemented a simple reinforcement learning algorithm to evaluate the
communication channel parameters for individual users. For each channel used fora
given message, the dialog box on the screen (which is always used during theproxy’s
learning phase) allows the user to provide feedback about whether the proxy’s use of
the channel was appropriate and whether the channel transmitted the message tothe
user in time. Feedback on the former (latter) increments or decrements the channel’s
cost (reliability) parameter as appropriate.

4 Evaluation

For evaluation, we begin with the evaluation of individual adaptation capabilities, fol-
lowed by the evaluation of Teamcore’s basis on a principled teamwork model.We be-
gin with an evaluation of the adjustable autonomy component of the Teamcore proxies
(Section 3.1). Here, we used actual meeting data recorded in users’ meeting-scheduling
programs, totaling 58 meetings. Five different data sets were constructed out of these,
each by randomly picking 36 meetings for training data, and 22 for test data (random
sub-sampling holdout). Figure 3 shows the accuracy of the adjustable autonomy pre-
diction plotted against the number of examples used to train the agent (out of the 36
training examples), for the five different data sets. For each data set, we observe that the

autonomy learning accuracy increases, usually up to 91%. However, even using more
than 36 examples did not improve the accuracy further. Thus, while these results are
promising further improvements in the attribute set may be needed to improve accu-
racy.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

pr
ed

ict
ion

 a
cc

ur
ac

y

number of training examples

"dataset1"
"dataset2"
"dataset3"
"dataset4"
"dataset5"

Fig. 3. Adaptation of Teamcore autonomy.

We can also evaluate the benefit of the Teamcores’ runtime plan modification ca-
pabilities (see Section 3.2). Figure 4 shows the results of varying Ariadne’s response
times on the time of the overall mission execution. In the evacuation plan, Ariadne pro-
vides information about missile locations along a particular route. Ifthere are missiles
present, the Teamcores instruct the helicopters to fly at a higher altitude to be out of
range. The team could save itself the time involved with querying Ariadne by simply
having the helicoptersalwaysfly at the higher safe altitude. However, the helicopters fly
slower at the higher altitude, so the query is sometimes worthwhile, depending on the
Ariadne’s response time. In Figure 4, we can see that when Ariadne’s response time ex-
ceeds 15s, the cost of the query outweighs the value of the information. In such cases,
the Teamcores with the decision-theoretic flexibility skip the query to save in over-
all execution cost (here, equivalent to time, according to the designer-specified utility
function).

We have also conducted experiments in adaptive monitoring. Figures 5 presents the
results from experiments run in the evacuation scenario with and without the two moni-
toring adaptation techniques. The X axis notes the observed joint-selections/terminations
as the task is executed. Each such observation corresponds to an exchange of messages
among the proxies in which they jointly select or terminate a team plan. Asexecution
progresses, we move from left to right along the X axis. The Y axis notes the number of
recognized plans based on the current observations, i.e., a higher value meansgreater
ambiguity (worse).

Fig. 4.Adapting to variable agent performance.

Figure 5 shows the results of learning a predictive model of the communications.
We see that without learning, a relatively high level of ambiguity exist which is slowly
reduced as more observations are made, and past states are ruled out. However, the sys-
tem cannot make any predictions about future states of the agents, other thanthat they
are possible. When the learning technique is applied on-line, some learnedexperience
is immediately useful, and ambiguity is reduced somewhat. However, someexchanges
are encountered late during task execution, thus they cannot be used to reduce the ambi-
guity while learning. The third line corresponds to the results when the model has been
fully learned. As can be seen, it shows significantly reduced ambiguity in the recognized
plans.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

os
si

bl
e

R
ec

og
ni

ze
d

P
la

ns

Received Communication Messages

No Learning
On-Line Learning

After Learning

Fig. 5. Adaptive monitoring: communication model.

Figure 6 shows the proxy team’s adaptation of its communication behaviors signif-
icantly reduces the ambiguity in recognized plans, to provide better monitoring. The
line marked “Prior to Behavior Adaptation” shows the results of using a fully-learned
model of communications to disambiguate recognized plans. The user has decided to
disambiguate between thefly-flight-plan and thelanding-zone-maneuversplans, by

causing the agents to explicitly communicate about the joint-selection of the landing-
zone-maneuversplan. This corresponds to an additional exchange of messages among
the agents (observation 24). This additional observation has an effect muchearlier along
task execution, greatly reducing the ambiguity beginning with observation 16.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 P

os
si

bl
e

R
ec

og
ni

ze
d

P
la

ns

Received Communication Messages

Prior to Behavior Adaption
After Behavior Adaption

Fig. 6.Adaptive monitoring: adpating behavior.

We have also conducted preliminary experiments to evaluate the suitability of our
models of the reliability and cost of different communication channels. The results on
cost are shown in Figure 7 (the results on reliability are similar and not shown). Here,
the users received a series of hypothetical messages and then provided the feedback
required for the reinforcement learning. Most of the parameters converged monotoni-
cally to an equilibrium value, while the cost of the user’s screen remained very low. In
these preliminary experiments, the system appeared to make the correctdecisionsabout
which communication channels to use and when to use them.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18 20

co
m

m
un

ic
at

io
n

co
st

example-number

"screen-cost"
"PDA-cost"

"Project-Assistant-cost"

Fig. 7. Learning costs of communication channels.

We may also attempt to evaluate the benefits of Teamcore proxy’s in-built teamwork
capabilities. One key alternative to such an in-built teamwork model is reproducing all

of Teamcore’s capabilities via domain-specific coordination plans. In such adomain-
specific implementation, about 10 separate domain-specific coordination plans would
be required for each of the 40 team plans in Teamcore[9]. That is, 100s of domain-
specific coordination plans could potentially be required to reproduce Teamcore’s ca-
pabilities to coordinate among each other, just for this domain. In contrast, with Team-
core, no coordination plans were written for inter-Teamcore communication. Instead,
such communications occurred automatically from the specifications of team plans.
Thus, it would appear that Teamcores have significantly alleviated the coding effort for
coordination plans.

5 Related Work

In terms of related work, Jennings’s GRATE*[3] integration architecture is similar to
Teamcore, in that distributed proxies, each containing a cooperation moduleintegrate
heterogeneous agents. One major difference is that GRATE* proxies do not adapt to in-
dividual agents, a critical capability if architectures are to integrate an increasingly het-
erogeneous, complex agent set. Also, GRATE* cooperation module is arguably weaker
than Teamcore’s Steam, e.g., Steam enables role substitution in repairing teamactivity,
which is not available in GRATE*. The Open Agent Architecture (OAA) [5] provides
centralized facilitators to enable agents to locate each other, and a blackboard archi-
tecture to communicate with each other, but not teamwork capabilities, or adaptation,
as in Teamcore. Also, Teamcore’s distributed approach avoids a centralized processing
bottleneck, and a central point of failure.

One other related system is the RETSINA[8] multi-agent framework. While the goal
of this frameworks is somewhat similar to ours, its development appears complementary
to Teamcore. For instance, RETSINA is based on three types of agents: (i) interface
agents; (ii) task agents; and (iii) information agents. Middle agents allow these various
agents to locate each other. Thus, as Section 2 discusses, Karma can use RETSINA
middle agents for locating relevant agents, while adaptive, infrastructural teamwork in
our Teamcores may enable the different RETSINA agents to work flexibly in teams.

6 Conclusion

With software agents, smart hardware devices and diverse information appliances com-
ing into wide-spread use, integration infrastructures that allow such diverse systems to
work together are becoming increasingly important. The need to identify key design
principles underlying such infrastructures is therefore critical. Thispaper investigates
some of these principles through an integrated, adaptive architecture, Teamcore, which
is evaluated in two different domains. A key lesson learned from our workis that despite
the heterogeneity of agents integrated, sound principles of multi-agentinteractions—in
our case a principled teamwork model— can serve as a principled foundation for rapid
development of robust integrated systems. Another key novel lesson is adaptive capa-
bilities are critical in the integration architecture to adapt to the requirements of het-
erogeneous agents. Adaptation is necessary in different ways, which we demonstrate in
four areas: (i) adaptive autonomy; (ii) adaptive execution; (iii) adaptive monitoring; and

(iv) adaptive information delivery. There are several avenues for future work, including
enhancing the learning mechanisms for quicker and more accurate adaptation.

Acknowledgements

This research was supported by DARPA Award no. F30602-98-2-0108. Wethank Phil
Cohen, Katia Sycara and Steve Minton for contributing agents used in the work de-
scribed here.

References

1. J. Hendler and R. Metzeger. Putting it all together – the control of agent-based systems
program.IEEE Intelligent Systems and their applications, 14, March 1999.

2. M. N. Huhns and M. P. Singh. All agents are not created equal. IEEE Internet Computing,
2:94–96, 1998.

3. N. Jennings. Controlling cooperative problem solving inindustrial multi-agent systems using
joint intentions.Artificial Intelligence, 75, 1995.

4. N. Jennings. Agent-based computing: Promise and perils.In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-99), August 1999.

5. David L. Martin, Adam J. Cheyer, and Douglas B. Moran. The open agent architecture: A
framework for building distributed software systems.Applied Artificial Intelligence, 13(1-
2):92–128, 1999.

6. J. R. Quinlan.C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, CA,
1993.

7. S. Rogers, C. Fiechter, and P. Langley. An adaptive interactive agent for route advice. InThird
International Conference on Autonomous Agents, Seattle,WA, 1999.

8. K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. Zeng.Distributed intelligent agents.
IEEE Expert, 11:36–46, 1996.

9. M. Tambe. Towards flexible teamwork.Journal of Artificial Intelligence Research (JAIR),
7:83–124, 1997.

