Adaptive infrastructures for agent integration

David V. Pynadath, Milind Tambe, Gal A. Kaminka

Information Sciences Institute and Computer Science Deyeant
University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292
{pynadat h, t anbe, gal k}@ si . edu

Abstract. With the proliferation of software agents and smart harévwiavices
there is a growing realization that large-scale problenmsbzmaddressed by in-
tegration of such stand-alone systems. This has led to aeasing interest in
integration infrastructures that enable a heterogenearisty of agents and hu-
mans to work together. In our work, this infrastructure ldenh the form of an
integration architecture callefeamcore We have deployed Teamcore to facili-
tate/enable collaboration between different agents anthhs that differ in their
capabilities, preferences, the level of autonomy they altsngrto grant the inte-
gration architecture, their information requirements padformance. This paper
first provides a brief overview of the Teamcore architectumd its current ap-
plications. The paper then discusses some of the reseaatlerdes we have
focused on. In particular, the Teamcore architecture isdbas general purpose
teamwork coordination capabilities. However, it is impaittfor this architecture
to adapt to meet the needs and requirements of specific dudild. We describe
the different techniques of architectural adaptation,@edent initial experimen-
tal results.

1 Introduction

With the ever increasing number of information-gathering agents, usetgggents
in virtual environments, smart hardware devices and robotic agents,itheigrowing
need for agent integration infrastructures. Such infrastructures vadlo different
agents and humans to work effectively with each other[2, 1, 4]. To this bedetin-
frastructures must address several important issues, such as locatiagtalgents (or
humans) for a task, facilitating their collaboration and monitorirgjrtperformance.
This paper focuses on the challenge of facilitating agent collaboratioe ioahtext of
heterogeneous agents, which have different capabilities, developers,edackpces.
For instance, humans may differ in their requirements for obtaining auatrdn infor-
mation and the cost they are willing to pay to obtain such informatithimans may
also differ in the types of coordination decisions they will allow @mt) automated.
Software agents have still differing requirements for informatichawtomated coordi-
nation. Such heterogeneity leads to the difficulty of encoding large nigatbspecial
purpose coordination plans, specialized not only for each new domaialsiougilored
for each individual agent requirements. Furthermore, given that theseaagurits may
vary over time, these plans would need to be modified frequently.

Our approach to addressing the above challenge is to devise an ageratiotegr-
chitecture, with built-in general-purpose teamwork coordination caiabilHowever,
we enable the architecture to adapt such capabilities (via machine learnirigpefo
needs and performance of specific individuals. General teamwork knowledigks av
the need to write large numbers of coordination plans for each new donthagemt.

Yet, further adaptation enables the integration architecture to cater todundi coor-
dination needs and performance. Starting with the teamwork knowledgéi¢aldior
adaptation here, since learning all of the coordination knowledge fraacécfor each
case would be very expensive.

The agent integration architecture we are building is called Teamcore. Here, th
agents or humans to be coordinated are each assigned Teamcore proxies, where the
proxies work as a team. Each proxy contains Steam[9], a general teamwork hettdel t
automates the proxies’ coordination with other proxies in its teamtiggawith this
teamwork model, Teamcore adapts to the agents in the team, sometimes tidse wh
they represent, sometimes those represented by others, where the adaptaiothe
different dimensions of interactions between the agents and their préiees, we
have identified several key interaction dimensions: (1) dékeptive autonomglimen-
sion refers to a proxy’s adapting its level of decision-making autgnemthat it learns
to defer some/many decisions to the human or agent it represents; (2)dp&ve
information deliverydimension refers to a proxy’s adapting to an agent’s costs and re-
liabilities of its different communication channels, and the differenti@althe agent
associates with the coordination information. (3) Huaptive monitoringlimension
refers to the proxies’ adapting to agents’ differing requirements forimation about
the global state of the on-going collaboration (beyond the the lomatdination in-
formation discussed in dimension 2); (4) Tagaptive executiodimension relates to
proxies’ adapting their execution in response to agents’ varying cajiedbiind per-
formance. A key novelty in our approach is that adaptation is done in thextarf a
team, not necessarily just an individual proxy. For instance, the praxdgscause the
team to communicate more to improve monitoring.

We begin this paper by presenting the Teamcore architecture, and its applicati
two complex domains. These applications motivate the need for Teamcaapimtdn,
which is discussed next.

2 Teamcore Framework

Figure 1 shows the overall Teamcore agent integration framework. Gimbered ar-
rows show the stages of interactions in this system. In stage 1, huewatogers inter-
act with TOPI (team-oriented programming interface) to specify a team-edenrb-
gram, consisting of an organization hierarchy and hierarchical team plans. Aaman e
ple, Figure 2 shows an abbreviated team-oriented program for the evacdatiain.
Figure 2-a shows the organization hierarchy and Figure 2-b showsahehierarchy.
Here, high-level team plans, such Bgacuate typically decompose into other team
plans and, ultimately, into leaf-level plans, that are executed by ingisd There are
teams assigned to execute the plans, &apk Forceteam is assigned to jointly exe-

cuteEvacuate while Escortsubteam is assigned to tBscort-operationsplan. These
teams or individual roles are as yet not matched with actual agents.

— Domain
Registration
. Agent
A
ANS 5
A A 4

TEAMCORE TEAMCORE
‘wrapper Wwrapp er

4
TEAMCORE
broadcast net
“) 4
TOPIs y TEAMCORE TEAMCORE
Software Middle ‘wrapper wrapper

Developers agents

Registration

Fig. 1. The overall Karma-TEAMCORE framework.

5

TOPI in turn communicates the team-oriented program to Karma (staga@heK
is anagent resources manager it queries (stage 3) different middle agents and ANS
services for the “domain agents” (which may include diverse software agets-
mans) with expertise relevant to the team-oriented program specifiexdym 5t Located
domain agents are matched to specific roles in the team plans (by Karma ompaevelo
or both). In stage 4, the Teamcore proxies jointly execute the teamted program.
Here, each domain agent is assigned a Teamcore proxy. The proxies work as a team
in executing the team plans, autonomously coordinating among thembghteead-
casting information via multiple broadcast nets (stage 4). Teamcores@tsnunicate
with the domain agents (stage 5). Karma monitors and records infamretiout agent
performance (stage 6). All communications occur in KQML.

A key feature of our framework is the proxies’ in-built Steam domiathependent
teamwork model. Steam provides a Teamcore with three sets of domain-iniéepen
teamwork reasoning rules: (oherence preservingules require team members to
communicate with others for coherent initiation and termination of teamspl(ii)
Monitor and repairrules ensure that team members substitute for other critical team
members who may have failed in their roles; (Blectivity-in-communicatiorules
use decision theory to weigh communication costs and benefits to avoicizeossm-
munication. Armed with these rules, the proxies automatically executh witthe re-
quired coordination, without it being explicitly included in the tearrented program.

For instance, if @lomain agenin Task Forceexecutingevacuatein Fig 1 were to fail,
Teamcore proxies will automatically ensure that another team member (domaih agen

;SKO&CK EVACUATE [TASK FORCE]
\L EXECUTE @ T ¢

PROCESS
SAFETY INFO FLIGHT ROUTE ORDERS MISSION
OBTAINER TEAM PLANNER [TASK FORCE]

[TASK FORCE]/ N
/\ % FLY-FLIGHT LANDING
...... ZONE

PLAN

ESCORT TRANSPORT [TASK FORCE] MANEUVERS
/\ [TASK FORCE]
FLY-CONTROL /\
ESCORT TRANSPORT

ROUTE....

ESCORT ESCORT TRANSPORT [TASK FORCE] oPs OPERATIONS
LEAD FoLLow DIVISION1 b[ESC.?ET] [TRANSPORT]
a (b)

Fig. 2. A team-oriented program.

with similar capabilities will substitute in the relevant role — swdwordination is not
explicitly programmed in the team-oriented program.

2.1 Application 1: Evacuation Rehearsal

We have applied the Teamcore framework to the problem of rehearsingebeation
of civilians from a threatened location. Here, an integrated system museemhbiman
commander (the user) to interactively provide locations of the stranddids, safe
areas for evacuation and other key points. A set of simulated helicoptarkighoa
coordinated mission to evacuate the civilians. The integrated systesnitseif plan
routes to avoid known obstacles, dynamically obtain information aboeiny threats,
and change routes when needed. The software developer was able to create a team-
oriented program for this problem, using the following agents:

Quickset: (from P. Cohen et al., Oregon Graduate Institute) Multimaganmand input agents
[C++, Windows NT]

Route planner: (from Sycara et al., Carnegie-Mellon University) Path planfor aircraft [C++,
Windows NT]

Ariadne: (from Minton et al., USC Information Sciences Institutet&lzase engine for dynamic
threats [Lisp, Unix]

Helicopter pilots: (from Tambe, USC Information Sciences Institute) Pilotragdor simulated
helicopters [Soar, Unix]

As seen above, these agents have different developers, they are writtéaremt!
languages for different operating systems, they may be distributedaygogally and
haveno pre-existing teamwork capabilitieshere are actually 11 agents overall, in-
cluding the Ariadne, route-planner, Quickset, and eight different hakesggsome for
transport, some for escort).

We successfully used the Teamcore framework to build and execute a tesatedri
program for evacuation mission rehearsal from these agents. An abbregviatamh
of the program is seen in Fig 2. This program has about 40 team plans. dteere
11 Teamcore proxies for the 11 agents, which execute this program by atidalhy
communicating with each other (exchanging about 100 messages), while aksctlyo
communicating with the domain agents.

2.2 Application 2: Assisting Human Collaboration

We are also using Teamcore to build an application to assist human teamginero
coordination activities in industrial or research organizations, usimgwn research
team as a testbed. In this application, each human user has a Teamcore proxy that co-
ordinates with other proxies on behalf of its user. These proxies comatarwith the
users using their workstation screens or their hand-held wireless pedigital assis-
tants (PDAs). The distributed Teamcore architecture is well-suitddsrbmain, since
each human maintains control on its own Teamcore and its information, tatrer
centralizing it.

Our current focus is facilitating coordination of meetings within aarh or with
visitors, at our institute or outside. For instance if currentlyradiviidual gets delayed
(e.g., because she is finishing up results), other meeting attendees eadtiqgwime
waiting or attempting to reach those missing. To help avoid such midicadion, a
Teamcore proxy keeps track of its user's scheduled meetings (by monitasifiggr
calendar). These meetings are essentially the team plans to be executedjpoihidy
different Teamcores. Using Steam rules, the Teamcore proxies ensure colediefat b
about the current state of the meeting. In particular, the proxies traaksir’'s where-
abouts (e.g., by using idle time on the user’s workstations), atatraatically inform
other meeting attendees about meeting delays or about absentees. The proxias also
tomatically communicate with user's PDAs. Additionally, if an absent t@a@mber
was playing an important role at the meeting, such as leading a discuSsamgcore
proxies attempt to get another person with similar capabilities to take over

3 Adapting to team member heterogeneity

While the promising results of the applications discussed abovesitecthe benefits of
founding the integration architecture on a proven model of teamwluel¢,dlso indicate

ways in which the architecture must adapt to agent heterogeneity. The ifallewb-
sections present four different methods of adaptation, each using a suéabhique.

The overall theme in these adaptations is that in interacting with a heteeogs team
member (who may be human), the Teamcore proxies either adapt together as a team, o
a single proxy adapts in the context of the team.

3.1 Adapting the level of autonomy

A key challenge in integrating heterogeneous agents is that they may liferend
requirements with respect to the autonomy of the integration archiésictunake deci-
sions on their behalf. For instance, in the human collaboration applicdiscussed in
Section 2.2, a Teamcore proxy may commit its human user to substitudenficssing
discussion leader, knowing that its user is proficient in the discussfuics. However,
the human may or may not want the proxy to autonomously make this domemt.
The decision may vary from person to person, and may depend on many daerse f
tors. Conversely, though, restricting the proxy to always confisndécision with the
user is also undesirable, since it would then often overwhelm the ugecavifirmation
requests for trivial decisions.

Thus, it is important that a proxy have the right level of autono¥egt, to avoid
hand-tuning such autonomy for each human (or agent), it is critical fooxypo au-
tomatically adapt its autonomy to a suitable level. We rely on a sumghlesarning
approach based on user feedback. Here, a key issue that contrasts our wqmiewith
ous work on autonomy adaptation (e.g., [7]) is that the the level ofaumy is not only
dependent on the individual but also on the the other agents beingatedgFor in-
stance, in the discussion leader example above, the number of other attertiesran
state might be factors in the autonomy decision. Thus, in our approa@mphasize
the use of knowledge about other team members (in addition to the predsrehthe
integrated agent) in using supervised learning techniques. Each proxy Vesaihdeci-
sions it can take autonomously, and what decision need be confirmed watheht-in
the context of particular scenarios involving other agents

Specifically, the Teamcore proxies for humans can make coordination and repair d
cisions autonomously to aid in team activities like meetings (e.g. th®h-collaboration
domain). Eleven attributes are used in learning, some of which have hggined by
existing meeting scheduling systems, such as “MeetingMaker”, which inohgg¢ing
location, time, resources reserved etc. However, other attributes desergiaténof the
other agents participating in the meeting—e.g., the number of persemsliai and
the most important member attending (in terms of the organizationalrbley). These
attributes are extracted from the user’s schedule files, organizationa,attartin the
training phase, a proxy suggests a coordination decision and a querwhsttter the
user would wish it to make such a decision autonomously. C4.5[6§ésl to learn a
decision tree from the interactions with the user.

3.2 Adaptive execution

A proxy’s decision, whether autonomous or after consultation witddt®ain agent,

is focused on executing a team activity. Here, the proxies may dynamically thedpt

team plans at execution time, based on the performance of member agentscligrarti
performance of complex domain agents is likely to vary during thetifetdf the proxy
organization. It is thus important that the Teamcore proxies be ablake nuntime de-
cisions about plan execution based on the performance of the domain dgdae,

the Teamcores can (as a team) dynamically decide whether or not to execute any plans
the team programmer marks as optional. Karma gives each Teamcore an initial speci-
fication of its domain agent’s capabilities, including parameters such asnssfime

(e.g., average, min/max response times are recorded from past runsyetoifvthe

actual runtime performance of a domain agent greatly differs from expetigiog.,

so that the cost in agent response time greatly exceeds the benefits fr@suits),

the Teamcore proxies together modify the optional plans and avoid thésparticular
domain agent.

More specifically, the Teamcores begin executing an initial plan sequencédiat t
determine to be optimal given costs and benefits of including the @tans in the
sequence. However, they can dynamically choose to omit optional plansifiauar
domain agent’s response time should deviate from the expected tim&apmstance,
if they had initially decided to include the route planning plan, Ihgt toute planner
is taking longer than expected, the Teamcores can compare their current plarcgequen

against alternate candidates, taking into account the increased cost of the mHren
sponse time. If the time cost outweighs the value of route plantiregleamcores can
change sequences and skip the route-planning step, knowing that thayiageis the
overall value of their execution.

In theory, to fully support such decision-theoretic evaluation,dbeeloper must
specify the value of executing each team plan in terms of its time cost aniblposs
outcomes. We would then represent these as a probability distritanibntility func-
tion over possible states, withr(q¢1 |qo, p) representing the probability of reaching state
q after executing plap in statego, and withU (¢, p) representing the utility derived
from executing plam in stateq. However, to ensure that the decision-theoretic evalu-
ation remains practical, several approximations are used. First, the lstateare not
complete representations of the team state, but rather of only those fethtarrese
relevant to the optional plans. For instance, when evaluating routeiptarthe Team-
cores consider only the length of the route and whether that route cepasefly zone
prior to route-planning. Second, the decision-theoretic evaluaionly done in terms
of the more abstract plans in our team-plan hierarchy, so developers negvide
detailed execution information about all plans and Teamcores need not engageg in v
detailed decision-theoretic evaluations. Third, for most plans, ¢higetl utility is sim-
ply taken as a negative time cost. However, in the evacuation scenarteatheplans
corresponding to helicopter flight have a value that increases when thegtelis reach
their destination and that decreases with any time spent within a no-fly zone.

The probability distribution over outcomes allows the developeafmiure the value
of plans that have no inherent utility, but only gather and modify¢laen’s information.
For instance, the mission begins either in stgtg. with an overall route that does not
cross any no-fly zones or in staig,s.re With a route that does. The developer also
specifies an initial distributioRr(q) for the likelihood of these states. When executing
the route-planning plan in statg....s., the route planner creates a route around no-fly
zones, so we enter stajg,r. With a very high probability. The developer then provides
the relative value of executing tfigght plan in the two states through the utility function
valuesU (¢safe, flight) andU (qunsafe, flight).

The Teamcores use this probability and utility information to seleetsébquence
of planspy, p1,. .. p, that maximizes their expected utility. In the evacuation scenario,
there are only four such sequences, because only two team plans (out détloé 40)
are optional. They reevaluate their choice only when conditions (i.entagsponse
times) have changed significantly. Thus, whenever a domain-level agentzsd with
either of these plans takes longer than usual to respond, its Teamcoreprofiyd the
optimal time (with respect to the specified utility function) for temating the current
information-gathering step and using a different plan sequence foesh®fthe team
program.

3.3 Adaptive monitoring

In addition to executing team activities, Teamcore proxies must also ondmitse activ-
ities, to detect task execution failures and to allow humans to track the tpeogess.
To this end, a Teamcore proxy relies on plan recognition to infer the state team
members from the coordination messages normally transmitted dumegtion. Such

messages do not convey full information about agent state, but can ptontdes to
the senders’ state. This plan-recognition-based method is nonietrasoiding the
overhead of the proxies having to continually communicate their statthé&y proxies.

Teamcore proxies therefore monitor the communications among thems&pres.
plying their knowledge of their own communication protocols, thexpgs identify ex-
changes of messages such as those establishing or terminating a team plara When
plan is terminated/selected, the monitoring Teamcore proxies can inferxgritsn
has reached at least the stage corresponding to the plan. However, in geressal, e
plan may not lead to communication, and hence the plan-recognition procesarfaces
biguity. For instance, in the evacuation scenario, the Teamcore proxiaswoicate
initially to jointly select theObtain-orders plan. To a monitoring proxy, until a second
message is observed, any of the following steps is a possibilitiortimately, such
ambiguity interferes with monitoring.

To reduce ambiguity in recognized plans, the monitoring system uttlizeadapta-
tion techniques. The first simple technique is to use learning togiretlien messages
will be exchanged. Such predictions can significantly reduce the numbepottre-
sized states, since the system knows that the monitored team will nattgeteirtain
states without a message being received. At first, an inexperienced systernrnakao
such predictions. However, as it observes messages being sent, it canat@stadel
of when such communications will be sent, and use this model to disaateighe
recognized plans. Here, Teamcore currently uses rote-learning successfijlothien
techniques will be investigated in the future.

The second adaptation technique is to have the Teamcore team actively adapt its o
behavior to make monitoring less ambiguous. Based on the feedbackmbtiitoring
system, the team of proxies changes its model of communication costs andshenefi
as to ensure that that the proxies communicate at specific points dugogtsn at
which ambiguity interferes with the monitoring tasks. For exampleernvmonitoring
the evacuation-rehearsal scenario, the human operators often complainéeytexet
unable to distinguish two important states—the state in whicheam twas flying to-
wards (or from) the landing zone, and the state where the team is carmtiitg @and-
ing zone operations. When the monitoring system provided this feedtselproxy
team communicated when jointly-selecting the landing-zone maneuvers pththean
ambiguity in recognized plans was greatly reduced.

3.4 Adjustable information requirements

When executing or monitoring team activities, proxies must also infiilendomain

agents they represent. However, agents can differ in the amount of infomtlagy

need in order to successfully carry out their team responsibilities. Iheuation
scenario, the Teamcore proxies sent messages to their domain agents as mandated by
the team plans’ requirements for tasks and monitoring conditionbputitconsider-

ing communication costs incurred by these messages. More complex agehidiig
humans) would rather sacrifice some of these messages rather than incumrhigh-co
nication costs. For instance, in our human collaboration scenario, if/dters delays

a meeting, it can notify the attendees of this delay by sending messages DA
However, wireless message services usually charge a fee, so some users erayopref

knowing about small delays. The Teamcore proxies should weigh the eftlne mes-
sage (to the useas well as to the overall team plaagainst the cost of sending the
message to the user.

In addition, heterogeneous agents may have multiple channels of comnmicat
each with different characteristics. In the evacuation scenario, the agents caatad
through a single KQML interface. However, with the human agents ircollatboration
scenario, the Teamcore proxy can pop up a dialog on the user’s screen, sendlan emai
message to a PDA (if the user has one), or send email to a third party whbtethu
the user in person. The dialog box has very little cost, but it is arliatle means of
informing the user, who may not be at the terminal when the messagesar@wn the
other hand, having a third party tell the user in person may be comptetaple, but
there is a high cost.

We can model a communication channel’s reliability with a probabilityrithistion
over the amount of time it takes for the message to reach the user thimigiannel.
For simplicity, our initial implementation represents this timehaah exponential ran-
dom variable, so that the probability of the message’s arriving withiat is 1 — e,
for some reliability parameter. We model the cost of the channel and the values of the
various messages as fixed values.

Whenever the Teamcore proxy decides to send a message to the user, ipfngppo
a dialog box on the screen with the message. If the user does not explaitiowledge
the dialog, the proxy considers using alternate channels. It evaluatesghcted benefit
of using such an alternate channel by computing the increase in the lid@lifcthe
message reaching the user, based on the comparative reliabilities of any shesauel
so far and those under consideration. If the product of this increassithblod and the
value of this message exceeds the channel’s cost, the proxy sends theentlessagh
the new channel.

We have implemented a simple reinforcement learning algorithm to eeatat
communication channel parameters for individual users. For each channel used for
given message, the dialog box on the screen (which is always used duripgiyés
learning phase) allows the user to provide feedback about whether thespusryof
the channel was appropriate and whether the channel transmitted the message to
user in time. Feedback on the former (latter) increments or decrements the ¢hannel
cost (reliability) parameter as appropriate.

4 Evaluation

For evaluation, we begin with the evaluation of individual adaptatiapabilities, fol-
lowed by the evaluation of Teamcore’s basis on a principled teamwork mdedbe-
gin with an evaluation of the adjustable autonomy component of the Teamooxies
(Section 3.1). Here, we used actual meeting data recorded in users’ meetinglsched
programs, totaling 58 meetings. Five different data sets were coresfraat of these,
each by randomly picking 36 meetings for training data, and 22 for test dategm
sub-sampling holdout). Figure 3 shows the accuracy of the adjestaibtbnomy pre-
diction plotted against the number of examples used to train the agdmf(the 36
training examples), for the five different data sets. For each data sebsgeve that the

autonomy learning accuracy increases, usually up to 91%. However, evegnnusie
than 36 examples did not improve the accuracy further. Thus, while tlessilts are
promising further improvements in the attribute set may be neededpmua accu-
racy.

100
20 ° e

80 -

70 v B
60 4

50 B

prediction accuracy

a0 7 |
30) |

20 | f - 4
g "datasetl"” ———
"dataset2" -

10 f, "dataset3" e b

"dataset4" =

o ["dataset5" -—-=-—

o 5 10 15 20 25 30 35 40
number of training examples

Fig. 3. Adaptation of Teamcore autonomy.

We can also evaluate the benefit of the Teamcores’ runtime plan modification ca-
pabilities (see Section 3.2). Figure 4 shows the results of varyiapAe’s response
times on the time of the overall mission execution. In the evacuatam priadne pro-
vides information about missile locations along a particular routiaelfe are missiles
present, the Teamcores instruct the helicopters to fly at a higher altiuge out of
range. The team could save itself the time involved with querying Aedaly simply
having the helicopterglwaysfly at the higher safe altitude. However, the helicopters fly
slower at the higher altitude, so the query is sometimes worthwhilerdipg on the
Ariadne’s response time. In Figure 4, we can see that when Ariadne’s sEspiore ex-
ceeds 15s, the cost of the query outweighs the value of the informétisach cases,
the Teamcores with the decision-theoretic flexibility skip the quergave in over-
all execution cost (here, equivalent to time, according to the designer-spedifiity
function).

We have also conducted experiments in adaptive monitoring. Figunesérs the
results from experiments run in the evacuation scenario with and withetwo moni-
toring adaptation techniques. The X axis notes the observed joint-selgitéirminations
as the task is executed. Each such observation corresponds to an exchangagémes
among the proxies in which they jointly select or terminate a team pla®exAsution
progresses, we move from left to right along the X axis. The Y axiesitite number of
recognized plans based on the current observations, i.e., a higher valuegresstes
ambiguity (worse).

1300

@ 1250 -

.g 1200

S 1150

S 1100 -

§ 1050 — e

€ 1000 +—m= - J

2 o0

g 900 —

5 0l |~Flexible
800 . - I Inflexible

0 10 20 30 40
Ariadne response time (s)

Fig. 4. Adapting to variable agent performance.

Figure 5 shows the results of learning a predictive model of the camuations.
We see that without learning, a relatively high level of ambiguitytextsich is slowly
reduced as more observations are made, and past states are ruled out. Hbe/eys¥, t
tem cannot make any predictions about future states of the agents, othérahtrey
are possible. When the learning technique is applied on-line, some leaxpedence
is immediately useful, and ambiguity is reduced somewhat. However, srohanges
are encountered late during task execution, thus they cannot be usedde tieelambi-
guity while learning. The third line corresponds to the resultemtine model has been
fully learned. As can be seen, it shows significantly reduced ambiguitgiretognized
plans.

25 I
N No Learning --------
— On-Line Learning-----

20 \ After Learning

Number of Possible Recognized Plans

0 L L L L L L L L
0 5 10 15 20 25 30 35 40 45
Received Communication Messages

Fig. 5. Adaptive monitoring: communication model.

Figure 6 shows the proxy team’s adaptation of its communication betsasignif-
icantly reduces the ambiguity in recognized plans, to provide better aromjt The
line marked “Prior to Behavior Adaptation” shows the results of gisirfully-learned
model of communications to disambiguate recognized plans. The user hasditxid
disambiguate between tlflg-flight-plan and thelanding-zone-maneuverglans, by

causing the agents to explicitly communicate about the joint-selectithredanding-
zone-maneuverglan. This corresponds to an additional exchange of messages among
the agents (observation 24). This additional observation has an effecatlign along

task execution, greatly reducing the ambiguity beginning with olagienv 16.

N
[$)]

"Prior to Behavior Aélaptic‘m———————‘ —————
After Behavior Adaption

N
o

=
(63}

=
o

[$2]

Number of Possible Recognized Plans

o

0 5 10 15 20 25 30 35 40 45
Received Communication Messages

Fig. 6. Adaptive monitoring: adpating behavior.

We have also conducted preliminary experiments to evaluate the sitytatbibur
models of the reliability and cost of different communication channels.réBults on
cost are shown in Figure 7 (the results on reliability are similar artdhown). Here,
the users received a series of hypothetical messages and then provided the feedback
required for the reinforcement learning. Most of the parameters convergeotomi-
cally to an equilibrium value, while the cost of the user’s screen remaingdawer In
these preliminary experiments, the system appeared to make the decsibnsbout
which communication channels to use and when to use them.

1.4

"screen-cost" ——
12t "PDA-cost" -~]
"Project-Assistant-cost" -

1r g

0.8 r

0.6 [

communication cost

0.4 ¢

0.2t

0

0 2 4 6 8 10 12 14 16 18 20
example-number

Fig. 7. Learning costs of communication channels.

We may also attempt to evaluate the benefits of Teamcore proxy’s indafivork
capabilities. One key alternative to such an in-built teamwork model iodejging all

of Teamcore’s capabilities via domain-specific coordination plans. In sutdmain-
specific implementation, about 10 separate domain-specific coordinasing would

be required for each of the 40 team plans in Teamcore[9]. That is, 100s of momai
specific coordination plans could potentially be required to reproduce di@ais ca-
pabilities to coordinate among each other, just for this domain. In astptwith Team-
core, no coordination plans were written for inter-Teamcore communicatistead,
such communications occurred automatically from the specifications of tears. plan
Thus, it would appear that Teamcores have significantly alleviated thegeffort for
coordination plans.

5 Related Work

In terms of related work, Jennings's GRATE*[3] integration architeetis similar to
Teamcore, in that distributed proxies, each containing a cooperation motkdeate
heterogeneous agents. One major difference is that GRATE* proxies doapittadn-
dividual agents, a critical capability if architectures are to integrate apasargly het-
erogeneous, complex agent set. Also, GRATE* cooperation module is dyguediker
than Teamcore’s Steam, e.g., Steam enables role substitution in repairingatdaty,
which is not available in GRATE*. The Open Agent Architecture (OAA) psovides
centralized facilitators to enable agents to locate each other, and a blackboard archi-
tecture to communicate with each other, but not teamwork capabilities, oradidapt
as in Teamcore. Also, Teamcore’s distributed approach avoids a centralizedsprgces
bottleneck, and a central point of failure.

One other related system is the RETSINA[8] multi-agent frameworklé&/he goal
of this frameworks is somewhat similar to ours, its developmerg¢aggromplementary
to Teamcore. For instance, RETSINA is based on three types of agentse(faast
agents; (ii) task agents; and (iii) information agents. Middle ageris/diese various
agents to locate each other. Thus, as Section 2 discusses, Karma can use RETSINA
middle agents for locating relevant agents, while adaptive, infrastal¢ceamwork in
our Teamcores may enable the different RETSINA agents to work flexibbaims.

6 Conclusion

With software agents, smart hardware devices and diverse informatibareggs com-
ing into wide-spread use, integration infrastructures that allow sivetnsg systems to
work together are becoming increasingly important. The need to idergifydksign
principles underlying such infrastructures is therefore critical. Phiger investigates
some of these principles through an integrated, adaptive architecturecdieanvhich
is evaluated in two different domains. A key lesson learned from our isdhat despite
the heterogeneity of agents integrated, sound principles of multi-agerdactions—in
our case a principled teamwork model— can serve as a principled foundati@pfd
development of robust integrated systems. Another key novel lessaaptive capa-
bilities are critical in the integration architecture to adapt to the requénts of het-
erogeneous agents. Adaptation is necessary in different ways, which we diteoins
four areas: (i) adaptive autonomy; (ii) adaptive execution; (iii) adaptionitoring; and

(iv) adaptive information delivery. There are several avenues fordwiork, including
enhancing the learning mechanisms for quicker and more accurate adaptation.

Acknowledgements

This research was supported by DARPA Award no. F30602-98-2-010&havkx Phil
Cohen, Katia Sycara and Steve Minton for contributing agents useckiwdik de-
scribed here.

References

1. J. Hendler and R. Metzeger. Putting it all together — thetrob of agent-based systems
program.|EEE Intelligent Systems and their applicatiodd, March 1999.

2. M. N. Huhns and M. P. Singh. All agents are not created ed&#E Internet Computing
2:94-96, 1998.

3. N.Jennings. Controlling cooperative problem solvinotustrial multi-agent systems using
joint intentions.Artificial Intelligence 75, 1995.

4. N.Jennings. Agent-based computing: Promise and péariRroceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-9@ugust 1999.

5. David L. Martin, Adam J. Cheyer, and Douglas B. Moran. Theroagent architecture: A
framework for building distributed software system&pplied Atrtificial Intelligence 13(1-
2):92-128, 1999.

6. J. R. Quinlan.C4.5: Programs for machine learningMorgan Kaufmann, San Mateo, CA,
1993.

7. S.Rogers, C. Fiechter, and P. Langley. An adaptive ictiesaagent for route advice. [Fhird
International Conference on Autonomous AgeSesattle, WA, 1999.

8. K. Sycara, K. Decker, A. Pannu, M. Williamson, and D. ZeBgstributed intelligent agents.
IEEE Experf 11:36—-46, 1996.

9. M. Tambe. Towards flexible teamworklournal of Artificial Intelligence Research (JAIR)
7:83-124, 1997.

