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Abstract

The operation of a human organization requires dozens of ev-
eryday tasks to ensure coherence in organizational activities,
to monitor the status of such activities, to gather information
relevant to the organization, to keep everyone in the organiza-
tion informed, etc. Teams of software agents can aid humans
in accomplishing these tasks, facilitating the organization’s
coherent functioning and rapid response to crises, while re-
ducing the burden on humans. Based on this vision, this paper
reports onElectric Elves, a system that has been operational,
24/7, at our research institute since June 1, 2000.
Tied to individual user workstations, fax machines, voice,
mobile devices such as cell phones and palm pilots, Electric
Elves has assisted us in routine tasks, such as rescheduling
meetings, selecting presenters for research meetings, track-
ing people’s locations, organizing lunch meetings, etc. We
discuss the underlying AI technologies that led to the success
of Electric Elves, including technologies devoted to agent-
human interactions, agent coordination, accessing multiple
heterogeneous information sources, dynamic assignment of
organizational tasks, and deriving information about organi-
zation members. We also report the results of deploying Elec-
tric Elves in our own research organization.

Introduction
The operation of a human organization involves dozens of
critical everyday tasks to ensure coherence in organizational
activities, to monitor the status of such activities, to obtain
information relevant to the organization, to keep everyone
in the organization informed, etc. These activities are often
well-suited for software agents, which can devote significant
resources to perform these tasks, thus reducing the burden
on humans. Indeed, teams of such software agents, which
include proxy agents that act on behalf of humans, would
enable organizations to act coherently, to attain their mis-
sion goals robustly, to react to crises swiftly, and to adapt
to events dynamically. Such agent teams could assist all or-
ganizations, including the military, civilian disaster response
organizations, corporations, and universities and research in-
stitutions.

Within an organization, we envision agents assisting
in all of its day-to-day functioning. For a research in-
stitution, agents may facilitate activities such as meeting
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(re)scheduling, selecting presenters for research meetings,
composing papers, developing software and deploying peo-
ple and equipment for out-of-town demonstrations. For
a disaster response organization, agents may facilitate the
teaming of people and equipment to rapidly respond to crises
(e.g., earthquakes), to monitor the progress of any such for
rapid response, etc. To accomplish such goals, each per-
son in an organization will have an agent proxy. For in-
stance, if an organizational crisis requires an urgent deploy-
ment of a team of people and equipment, then agent proxies
could dynamically volunteer for team membership on behalf
of the people or resources they represent, while also ensur-
ing that the selected team collectively possesses sufficient
resources and capabilities. The proxies must also manage
efficient transportation of such resources, the monitoring of
the progress of individual participants and of the mission as
a whole, and the execution of corrective actions when goals
appear to be endangered.

Based on the above vision, we have developed a system
called Electric Elvesthat applies agent technology in ser-
vice of the day-to-day activities of the Intelligent Systems
Division of USC/ISI. Electric Elves is a system of about
15 agents, including nine proxies for nine people, plus two
different matchmakers, one flight tracker and one scheduler
running continuously for past several months. This paper
discusses the tasks performed by the system, the research
challenges it faced and its use of AI technology in overcom-
ing those challenges.

One key contribution of this paper is understanding the
challenges faced in deploying agents to support organiza-
tions. In particular, the complexity inherent in human orga-
nizations complicates all of the tasks agents must perform.
First, since agents must interact with humans, issues ofad-
justable autonomybecome critical. In particular, agents act-
ing as proxies for people must automatically adjust their
own autonomy, e.g., avoiding critical errors, possibly by let-
ting people make important decisions while autonomously
making the ore routine decisions. Second, to accomplish
their goals, agents must be provided reliable access to infor-
mation. Third, people have a wide variety of capabilities,
interests, preferences and engage in many different tasks.
To enable teaming among such people for crisis response
or other organizational tasks, agents acting as their proxies
must represent and reason with such capabilities and inter-



ests. We thus require powerful matchmaking capabilities to
match both interests and capabilities. Fourth, coordination
of all of these different agents, including proxies, is itself a
significant research challenge. Finally, the entire agent sys-
tem must scale-up: (i) it must scale-up to in the sense of
running continually 24 hours a day 7 days a week (24/7)
for months at a time; (ii) it must scale-up in the number of
agents to support large-scale human organizations.

The Electric Elves
In the Electric Elves project we have developed technology
and tools for deploying agents into human organizations to
help with organizational tasks. We describe the application
of the Electric Elves to two classes of tasks. First, we de-
scribe the problem of coordinating activities within an indi-
vidual research project. These tasks must be tightly coordi-
nated and a significant amount of information is known in
advance about the participants and their goals and capabili-
ties. Second, in order to demonstrate the capabilities of the
system in a more open environment, we applied the system
to the problem of meeting planning with participants outside
the organization where some of the necessary information
about participants is not known in advance.

Coordinating Project Activities
We have currently deployed our agents to help coordinate
the everyday activities of a research project. The task of the
agents is to keep the project running smoothly, rescheduling
meetings when someone is delayed, ordering food for meet-
ings or if someone has to work late, and identifying speakers
for research meetings. Each person in the project is assigned
their own personal proxy agent, which represents that person
to the agent system.

Figure 1: PDA (Palm VII) with GPS device

A proxy agent keeps track of a project member’s cur-
rent location using several different information sources, in-
cluding their calendar, Global Position System (GPS) device
when outside of the building (Fig. 1), infrared communica-
tions within the building, and computer activity. When a
proxy agent notices that someone is not attending a sched-
uled meeting or that they are located too far away to make it
to a scheduled meeting in time, then their agent sends them
a request using a wireless device (i.e., a cell phone or Palm
Pilot) asking if they want to cancel the meeting, delay the
meeting, or have the meeting proceed without them. If a user
responds, their decision is then communicated to the other

participants of the scheduled meeting. If they are unable to
respond, the agent must make a decision autonomously.

For weekly project meetings, the agents coordinate the
selection of the presenter and arrange food for the meetings.
Once a week an auction is held where all of the meeting
participants are asked about their capability and willingness
to present at the next meeting. Then the system compiles the
bids, selects a presenter, and notifies all of the attendees who
will be presenting at the next project meeting. The agents
also arrange food for lunch meetings. They order from a
set of nearby restaurants, select meals that were highly rated
by others, and fax the orders directly to the restaurant with
instructions for delivery.

In cases when a visitor is coming to visit a project, the
agents monitor the flight that the person is arriving on. If
a visitor is arriving the same day of the meeting, the agent
tracks their flight status and send a notification once the vis-
itor arrives. If they are late, then the agents will delay the
scheduled meetings. If they are arriving the day before a
visit, then the agents will send a welcome fax to the hotel
where the visitor is staying with a list of highly-rated restau-
rants nearby.

Some of the technical challenges in building this appli-
cation are in determining how much autonomy the agents
should assume on behalf of the user, dynamically building
agent teams, determining how to assign the organizational
tasks (e.g., presentations), and providing access to online
data such as calendars, flight information, and restaurants.

Organizing External Meetings
To demonstrate how the technology supports less structured
environments, we also applied the Electric Elves to the task
of planning and coordinating ad hoc meetings at confer-
ences and workshops involving individuals across different
organizations. The system identifies people that have simi-
lar research interests, coordinates scheduling a meeting with
those people, locates a suitable restaurant for a meeting that
takes into account dietary constraints, and makes a reserva-
tion using an online reservation service.

In order to identify individuals that have related interests,
the agents use an online bibliography service that provides
a list of all of the papers written by an individual. When a
person is going to a meeting, their agent can check an online
source to locate individuals that are going to the same meet-
ing and then build a model of the research interests of the
different participants based on their publications. Given this
information, the agent presents to the user a list of people
that they might want to meet with along with their matching
areas of interest.

Once the set of participants have been selected, the user
proposes a time for the meeting and the agent sends out an
invitation to each of the potential attendees. If they are part
of the Electric Elves network, the invitation is sent to their
own agent. Otherwise the invitation is sent via fax or email
with instructions on how to confirm (or decline) the meeting.

Once the agent has finalized the set of participants for a
meeting, it selects an appropriate place to have the meeting.
It does this by checking for any known dietary restrictions
and uses that information to identify suitable cuisine types.



Next, the agent goes out to an online restaurant reservation
site to find the set of restaurants closest to the given location
and matches up these restaurants with a restaurant review
site to select the high-quality restaurants. The user selects
from a small set of close, highly-recommended restaurants
and the agent then makes a reservation for the meeting using
the online reservation system.

This application highlights two additional technical chal-
lenges: gathering information about people from other orga-
nizations and ensuring the robustness of the interaction with
online sources that change frequently.

Underlying Technologies
In this section we describe how we addressed some of the
technical challenges, namely the issues of interacting with
human users within an organization, providing reliable ac-
cess to organization-related data, dynamic assignment of
organizational tasks, deriving knowledge about the partici-
pants in an organization, and coordination of agent teams.

Agent Interactions with Human Users
Agents in the Electric Elves domain must often take ac-
tions on behalf of the human users. Specifically, a user’s
agent proxy (named “Friday” after Robinson Crusoe’s ser-
vant and companion) can take autonomous actions to coor-
dinate collaborative activities (e.g., meetings). Friday’s de-
cision making on behalf of a person naturally leads to the
issue ofadjustable autonomy. An agent has the option of
acting with full autonomy (e.g., delaying a meeting, volun-
teering the user to give a presentation, ordering a meal for
the user). On the other hand, it may act with reduced or no
autonomy, instead transferring decision-making control to a
person (e.g., asking its user what to do). Clearly, the more
decisions that Friday makes autonomously, the more time
and effort it saves its user. Yet, given the high uncertainty
in Friday’s knowledge of its user’s state and preferences, it
could potentially make very costly mistakes while acting au-
tonomously. For example, it may order an expensive dinner
when the user is not hungry, or volunteer a busy user to give
a presentation. Thus, each Friday must make intelligent de-
cisions about when to consult its user and when to act au-
tonomously.

Our initial attempt at adjustable autonomy was inspired
by CAP (Mitchellet al. 1994), an agent system for advising
a user on scheduling meetings. As with CAP, each Friday
tried to learn its user preferences using decision trees under
C4.5 (Quinlan 1993). Unfortunately, one problem became
apparent when applying this technique in Electric Elves: a
user would not grant autonomy to Friday in making certain
decisions (e.g., do not volunteer the user to give a presenta-
tion without asking), but s/he would sometimes be unavail-
able to provide any input at decision time. Thus, a Friday
would end up waiting indefinitely for user input and misco-
ordinate with its teammates. To address this problem, we
modified the system so that if a user did not respond within
a fixed time limit, Friday acted autonomously according to
its learned decision tree. Unfortunately, when we deployed
the system in our research group, it led to some dramatic

failures. For instance, one user’s proxy automatically vol-
unteered him to give a presentation, even though he was
unwilling to do so. C4.5 had over generalized from a few
examples to create an incorrect rule. Although Friday tried
asking the user at first, because of the timeout, it had to even-
tually follow the incorrect rule and take the undesirable au-
tonomous action.

It was clear, based on this experience, that the team con-
text in Electric Elves would cause difficulties for existing
adjustable-autonomy techniques (Doraiset al. 1998; Fergu-
son, Allen, & Miller 1996; Mitchellet al. 1994) that fo-
cused on solely individual human-agent interactions. There-
fore, we developed a novel, decision-theoretic planning ap-
proach that used Markov Decision Processes (MDPs) (Put-
erman 1994) to support explicit reasoning about team co-
ordination. The MDPs used in our framework (Scerri, Py-
nadath, & Tambe 2001) provide Friday with a novel three-
step approach to adjustable autonomy: (i) Before transfer-
ring decision-making control, an agent explicitly weighs the
cost of waiting for user input and any potential team misco-
ordination against the likelihood and cost of erroneous au-
tonomous action; (ii) When transferring control, an agent
does not rigidly commit to this decision (as is often the case
in previous work), but it instead flexibly reevaluates when
its user does not respond, sometimes reversing its decision
and taking back autonomy to ensure team coordination; (iii)
Rather than force a risky decision in situations requiring au-
tonomous action, an agent changes its coordination arrange-
ments by postponing or reordering activities to potentially
buy time to lower decision cost/uncertainty. Since these
coordination decisions and actions incur varying costs and
benefits over time, agents look ahead over the different se-
quences of possible changes in coordination and plan a pol-
icy of action that maximizes team welfare.

The agent follows the first step of our approach through
team-related components within its MDP model of the costs
and benefits of its available actions. Thus, the MDP’s
decision-theoretic selection of optimal policies trades off in-
dividual preferences against the team’s needs. The policies
generated from the MDP support the second step of our ap-
proach by providing the necessary flexibility and responsive-
ness in autonomy decisions. The agent can immediately re-
spond to any change of state by following the policy’s spec-
ified action for the new state. In this respect, the agent’s
decision making is an ongoing process rather than a sin-
gle decision, as the agent acts according to its MDP pol-
icy throughout the entire sequence of states it finds itself in.
We achieve the third step of our approach by having each
agent consider the different costs, both present and future, of
team miscoordination vs. erroneous actions. In the meeting
scenario, changes in coordination are essentially delaying
actions. Such changes in coordination could, among other
things, buy time to reduce the uncertainty or cost. MDPs are
especially suitable for producing such a plan because they
generate policies while looking ahead at all of the possible
outcomes.

We have designed and implemented MDPs that model
Friday’s decisions on meeting rescheduling, volunteering its
user to give a presentation, and selectingwhichuser should



give a presentation. For instance, consider one possible pol-
icy, generated from an MDP for the rescheduling of meet-
ings. If the user has not arrived at the meeting five minutes
prior to its scheduled start, this policy specifies “ask the user
what to do” and then “wait”. If the user does not arrive by
the time of the meeting, the policy again specifies “wait”,
so the agent continues acting without autonomy. However,
if the userstill has not arrived five minutes after the meet-
ing is scheduled to start, then the policy chooses “delay by
15 minutes”, which the agent then executes autonomously.
In the future, we plan to apply our MDP-based framework
to other decisions (currently performed without any auton-
omy) within Electric Elves, such as ordering meals, accept-
ing meeting invitations, and selecting restaurants. In addi-
tion, the current MDP framework supports some learning of
likelihoods (e.g., the probability that the user will arrive to
the meeting on time), but we are planning to extend the role
of learning to allow further personalization.

Flexible Assignment of Tasks
The human agents and software agents in our organization
perform a wide variety of tasks that are often interrelated.
Agents often need to delegate a subtask to another agent ca-
pable of performing it (e.g., reserve a meeting room), invoke
another agent to gather and report back necessary informa-
tion (e.g., find the location of a person), or rely on another
agent to execute some task in the real world (e.g., attend a
lunch meeting). Simple agent matchmaking is sufficient in
many multi-agent systems where agents perform one (or at
most a few) kind of task, and their capabilities are designed
by the system developers to fit the interactions anticipated
among the agents. In contrast, our agents are complex and
heterogeneous, and the agents that issue a request cannot be
expected to be aware about what other agents are available
and how they are invoked.

We have developed an agent matchmaker called PHOS-
PHORUS, which draws from previous research on match-
ing problem solving goals and methods within the EXPECT
architecture (w. R. Swartout & Gil 1995; Gil & Gonzalez
1996). The main features of this approach are: 1) a declara-
tive language to express task descriptions that includes rich
parameter type expressions to qualify task types; 2) task de-
scriptions are fully translated into description logic to de-
termine subsumption relations among tasks; 3) task descrip-
tions are expressed in terms of domain ontologies, which
provide a basis for relating and reasoning about different
tasks and enables reformulation of tasks into subtasks. A
more detailed description of PHOSPHORUS can be found
in (Gil & Ramachandran 2001).

Agent capabilities and requests are represented as verb
clauses with typed arguments (as in a case grammar), where
each argument has a name (usually a preposition) and a pa-
rameter. The type of a parameter may be a specific instance,
an abstract concept (marked withspec-of), an instance type
(marked withinst-of), and extensional or intensional sets of
those three types. Here are some examples of capabilities of
some researchers and project assistants:

“agents that can discuss Phosphorus”

((capability (discuss (obj Phosphorus-project)))

(agents (gil surya chalupsky russ)))

“agents that can setup an LCD projector in a meeting room”

((capability (setup (obj (?v is (inst-of lcd-projector)))
(in (?r is (inst-of meeting-room)))))

(agents (itice)))

Requests are formulated in the same language, and can
ask about general types of instances (e.g., what agents can
setup any kind of equipment for giving research presenta-
tions in a meeting room).

Description logic and subsumption reasoning are used
to relate different task descriptions. Both requests and
agent capabilities are fully translated into Loom (MacGre-
gor 1991). Loom’s classifier is now able to reason about
these definitions and places them in a lattice, where more
general definitions subsume more specific ones. Notice that
this subsumption reasoning uses the definitions of the do-
main terms and ontologies. As a result, the capability to
“setup equipment” will subsume one to “setup LCD pro-
jector”, because according to the domain ontologies equip-
ment subsumes LCD projector. The capabilities are auto-
matically organized according to their definitions, and they
can be compared based on their place in the lattice.

PHOSPHORUS performstask reformulationswhen there
are no agents with capabilities that subsume a request. In
that case, it may be possible to fulfill the request by decom-
posing it into subtasks. This allows a more flexible matching
than is possible if one required an exact match for capabil-
ities and requests. PHOSPHORUS supports set reformula-
tions, which break down a task on a set into its individual
elements, and covering reformulations, which decompose a
task based on the disjoint partitions or subclasses of its argu-
ments. For example, in order to setup a meeting to discuss
the Electric Elves project at ISI the meeting organizer would
issue a request to the matcher. This request cannot be full-
filled by a single agent since no single researcher is involved
in all the aspects of the Electric Elves project. PHOSPHO-
RUS returns a decomposition of this request based on the
subprojects:

(COVERING -name ARIADNE-PROJECT
-matches KNOBLOCK MINTON LERMAN

-name PHOSPHORUS-PROJECT
-matches GIL SURYA CHALUPSKY RUSS

-name TEAMCORE-PROJECT
-matches

(COVERING
-name ADJUSTABLE-AUTONOMY-PROJECT

-matches TAMBE SCERRI PYNADATH
-name TEAMWORK-PROJECT

-matches TAMBE PYNADATH MODI)
-name ROSETTA-PROJECT

-matches GIL CHALUPSKY)

The flexibility of our approach is illustrated in this exam-
ple in that the requesting agent did not need to be aware of
the details of the Electric Elves project, and gets from the
reply subsets of agents that are able to fulfill complementary
parts of the request.



The SHADE matchmaker (Kuokka & Harada 1995) also
matched agent capabilities using logic descriptions, but the
basic matching operation was done by unification and did
not exploit domain ontologies to relate different terms. In
RETSINA (Sycaraet al. 1999), agent matchmaking is also
done using description logic but only to match the param-
eters of the capability descriptions, while PHOSPHORUS
translates the entire expression for a more thorough match.
On the other hand, RETSINA has been used with very large
communities of agents, and incorporates information re-
trieval techniques.

Many additional challenges lay ahead regarding capabil-
ity representations for people within the organization. For
example, in principle anyone has the capability to call a taxi
for a visitor (and will do so if necessary), but project as-
sistants are the preferred option. Depending on upcoming
deadlines, a researcher may be capable but not willing to
participate in a visitor’s schedule. Future extensions to the
language will also be needed to express additional proper-
ties of agents, such as reliability, efficiency, and invocation
guidelines.

Reliable Access to Information
Timely access to up-to-date information is crucial to the suc-
cessful planning and execution of tasks in the Electric Elves
organization. Agents making decisions on behalf of human
users need to extract information from multiple heteroge-
neous information sources, which include internal organiza-
tional databases (personal schedules, staff lists), and external
Web sites such as airline schedules, restaurant information,
traffic and weather updates, etc. For example, in order to
pick a restaurant for a scheduled lunch meeting, the agents
access the Restaurant Row Web site to get the locations of
restaurants that meet the specified criteria, e.g., dietary re-
strictions. Wrappers extract data from information sources
and make it available to other applications, such as the Elec-
tric Elves agents. Moreover, wrappers enable the sources,
including Web sites, to be queried as if they were databases.
A critical part of the wrapper is a set of extraction rules,
often based on “landmarks” or sequences of tokens, that en-
able the wrapper to quickly locate the beginning and end of
data to be extracted from a page returned by the Web source
in response to some query.

Within the Electric Elves project, we use the Ariadne sys-
tem (Knoblocket al. ; 1998) to learn wrappers from ex-
ample pages in which relevant data has been labeled by the
user. Previous research has primarily focused on apply-
ing machine learning techniques to rapidly generate wrap-
pers (Muslea, Minton, & Knoblock 2001; Hsu & Dung
1998; Kushmerick 2000). Few attempts were made to pro-
vide the capability to validate data, detect failures (Kushmer-
ick 1999) and repair wrappers when the underlying sources
change in a way that breaks the wrapper. The ability to au-
tomatically monitor external information sources and repair
wrappers when errors are detected is a critical component of
a robust dynamic organization.

We address the problem of wrapper verification by apply-
ing machine learning techniques to learn a set of patterns
that describe the information being extracted for each data

field. Since the information for a single field can vary con-
siderably, the system learns a statistical distribution of pat-
terns. Wrappers can be verified by comparing newly ex-
tracted data to the learned patterns. When a significant dif-
ference is found, an operator can be notified or we can auto-
matically launch the wrapper repair process.

The learned patterns represent the structure, or format,
of data as a sequence of words and wildcards. Wildcards
represent syntactic categories to which words belong — al-
phabetic, numeric, capitalized,etc. — and allow for multi-
level generalization. For example, a set of street addresses
all start with a pattern “Number Capitalized”: a numeric
token followed by a capitalized word. The algorithm we
developed (Lerman & Minton 2000) finds all statistically
significant starting and ending patterns in a set of posi-
tive examples of the data field. A pattern is said to be
significant if it occurs more frequently than would be ex-
pected by chance if the tokens were generated randomly
and independently of one another. Our approach is similar
to work on grammar induction (Carrasco & Oncina 1994;
Goan, Benson, & Etzioni 1996), but our pattern language is
better suited to capturing the regularities in small data fields
(as opposed to languages). For the verification task, we learn
the patterns from data extracted by the wrapper that is known
to be correct (training examples). In the verification phase,
the wrapper generates a test set of examples from pages re-
trieved using the same or similar set of queries. If the pat-
terns describe statistically the same (at a given significance
level) proportion of the test examples as the training exam-
ples, the wrapper is judged to be correct; otherwise, it is
judged to have failed.

The most common causes of wrapper failure are changes
in Web site format, even minor reorganizations of a page,
that break the wrapper’s data extraction rules. However,
since the content of the fields tends to remain the same, it is
often possible to automatically repair the wrapper by learn-
ing new extraction rules. For this purpose, we exploit the
patterns learned for verifying data to locate correct examples
of data on new pages. For example, while the wrapper for
Restaurant Row was working correctly, we managed to ac-
quire several examples of restaurant addresses, and the veri-
fication algorithm learned that some fraction of the examples
start with the pattern “Number Capitalized” and end with
the pattern “Avenue”. If the Restaurant Row changes its for-
mat to look more like the Zagat Web site, the wrapper will no
longer extract correct addresses. The verification algorithm
will detect the failure because extracted data will not be de-
scribed by the learned patterns. However, since restaurant
addresses will still start with the pattern “Number Capital-
ized ” and end with the pattern “Avenue”, we should be able
to identify addresses on the changed pages. Once the re-
quired information has been located, these examples, along
with the new pages, are provided to the wrapper generation
system to learn data extraction rules for the changed site. In
order to identify the correct examples of data on the changed
pages we leverage both the prior knowledge about the con-
tent of data, as captured by the learned patterns, anda priori
expectations about data. We can reasonably expect the same
data field to appear in roughly the same position and in a



similar context on each page; moreover, we expect at least
some of the data to remain unchanged. Of course, the lat-
ter assumption is violated by information that changes on a
regular basis, such as traffic and flight arrival information,
though we may still rely on patterns to identify correct ex-
amples.

Our approach can be extended to automatically create
wrappers for new information sources using data extracted
from a known source. Thus, once we learn what restaurant
addresses look like, we can use this information to extract
addresses from any other yellow pages-type source, and use
the extracted data to create a wrapper for the new source.
Such cross-site wrapper creation, as well automatic extrac-
tion of data from more complex sources, such as lists and
tables, is a focus of our current research.

Deriving Organizational Knowledge from
Unstructured Sources
As mentioned above, an agent-assisted organization cru-
cially depends on access to accurate and up-to-date informa-
tion about the humans it supports as well as the environment
they operate in. While some of this information can be pro-
vided directly from existing databases and online sources,
other information such as people’s expertise, capabilities, in-
terests, etc. will often not be available explicitly and might
need to be modeled by hand. In a dynamic environment such
as Electric Elves, however, manual modeling is only feasi-
ble for information that is relatively static. For example, if at
some conference we want to select potential candidates for
a lunch meeting with Yolanda Gil based on mutual research
interests, it is not feasible to manually model relevant knowl-
edge about each person on the conference roster before such
a selection can be made.

To support team-building tasks such as inviting people for
a lunch meeting, finding people potentially interested in a
presentation or research meeting, finding candidates to meet
with a visitor, etc., we developed a matchmaking service
called the Interest Matcher. It can match people based on
their research interests but also take other information into
account such as involvement in research projects, present
and past affiliation, universities attended, etc. To minimize
the need for manual modeling in a dynamic environment, we
integrated statistical match techniques from the area of infor-
mation retrieval (IR) with logic-based matching performed
by a knowledge representation (KR) system. The IR tech-
niques work well with unstructured text sources available
online on the Web, which is the form information is typi-
cally available in organizations, while the KR system facili-
tates declarative modeling of the decision process, modeling
of missing information, explanation and also customization.

The matchmaker is built on top of the PowerLoom KR
system which is the successor to Loom (MacGregor 1991).
PowerLoom uses a variant of KIF (Genesereth 1991) as its
input language, and its inference, explanation and partial-
match capabilities are important to support the matchmak-
ing task. The matchmaker’s knowledge base contains an
ontology of research topic areas and associated relations,
rules formalizing the matchmaking process, as well as var-
ious manually modeled, relatively static information about

staff members, research projects, etc. To perform a particu-
lar matchmaking task, a requesting agent sends a message
containing an appropriate PowerLoom query to the Inter-
est Matcher. For example, to find candidates for lunch with
Yolanda Gil, the following query could be used:

(retrieve all ?x (should-meet ?x Gil))

Theshould-meet relation and one of its supporting relations
are defined as follows in PowerLoom:

(defrelation should-meet ((?p1 Person) (?p2 Person))
:( (or (interests-overlap ?p1 ?p2)

(institution-in-common ?p1 ?p2)
(school-in-common ?p1 ?p2)))

(defrelation interests-overlap ((?p1 Person) (?p2 Person))
:( (exists (?interest1 ?interest2)

(and (research-interest ?p1 ?interest1)
(research-interest ?p2 ?interest2)
(or (subset-of ?interest1 ?interest2)

(subset-of ?interest2 ?interest1)))))

should-meet is defined by combining three more basic re-
lations which provide reasons why two people might want
to meet. For more specific purposes, any of the more basic
relations such asinterests-overlap could be queried directly
by a client, which is one of the advantages gained from us-
ing a general purpose KR system as the matching engine.
Note, that forinterests-overlap we only require a subsump-
tion relationship, e.g., interest in planning would subsume
(or overlap with) interest in hierarchical planning.

To answer the query above, the matchmaker generates the
set of people in its knowledge base satisfying theshould-
meet relation and returns it as a result (usually, the candidate
set is further constrained and does not include everybody in
the KB). In an ideal world, the matchmaking KB would be
complete. In the real world, this will usually not be the case,
particularly when the organization interacts with outsiders
such as conference attendees. To deal with this incomplete-
ness, we allow a requesting agent to introduce new individ-
uals into the KB and automatically infer limited structured
knowledge - their research interests - about them by analyz-
ing relevant unstructured text sources on the Web.

The key idea to this step is that people’s research interests
are implicitly documented in their publication record. To
make these interests explicit, we first associate each research
topic in the PowerLoom topic ontology with a statistical rep-
resentation comprised of a set of abstracts of research papers
representative of the topic. These topic sets are determined
automatically by querying a bibliography search engine such
as Cora or the NEC ResearchIndex with seed phrases repre-
sentative of the topic (access to such Web sources is facili-
tated by Ariadne wrappers). We then query the same search
engine for publication abstracts of a particular researcher
and then classify them by computing statistical similarity
measures between the researcher’s publications and the topic
sets determined before. When the similarity surpasses an
empirically determined threshold, an appropriate interest as-
sertion is added to the matchmaker KB that can then be ex-
ploited in the matchmaking process described above.

We use a standard IR vector space model to represent doc-
ument abstracts and compute similarity by a cosine measure



and by weighting terms based on how well they signify par-
ticular topic classes (Salton & McGill 1983). We also use
our own aggressive stemmer to reduce the number of fea-
tures that need to be considered for similarity computations.

The dynamic derivation of interests from unstructured on-
line sources sets our approach apart from the one described
in (Sycara & Zeng 1996) that solely relies on manually spec-
ified interests. Extending KR with IR can also increase ro-
bustness for the case of an incomplete topic ontology, since
we can statistically match researchers’ publications directly.
Conversely, IR matching can benefit from KR matching for
the case where two researchers do not have similar publica-
tion records but can be related via similarity to a common or
hierarchically related topic. The smooth combination of sta-
tistical and logical reasoning is a non-trivial problem, how-
ever, and still provides room for further research and im-
provement.

Coordination of Component Agents
The various agents and software components described in
this section are autonomous, heterogeneous, and distributed
over a variety of platforms and research groups. Yet, these
diverse agents must work together to accomplish the com-
plex tasks required by Electric Elves. For instance, to plan
a meeting, the interest matcher must first find a list of po-
tential attendees, the Friday of each potential attendee must
decide whether s/he will attend or not, the capability matcher
must identify any dietary restrictions of the confirmed atten-
dees, and the reservation site wrapper must identify possible
restaurants and make the final reservation. In addition to the
low-level communication issues raised by such a task, there
is the more complicated problem of getting these heteroge-
neous agents to work together as a team. In other words,
each of these agents must execute its part in coordination
with the others, so that it executes its tasks at the correct
time and passes on the results to the agents who need them.

However, constructing teams of such agents remains a dif-
ficult challenge. In particular, current approaches to design-
ing agent teams lack the general-purpose teamwork models
that would enable agents to autonomously reason about the
communication and coordination required in teamwork. The
absence of such teamwork models makes team construction
highly labor-intensive. In particular, to enable agents to au-
tonomously reason about coordination, human developers
must provide them with a large number of problem-specific
coordination and communication plans. These problem-
specific plans are not reusable, so we must develop new ones
for each new problem. Furthermore, the resulting teams of-
ten suffer from a lack of robustness and flexibility. In a real-
world domain like Electric Elves, teams face a variety of
uncertainties, such as a member agent’s unanticipated fail-
ure in fulfilling responsibilities (e.g., presenter is delayed in
attending a meeting), members’ divergent beliefs about their
environment, and unexpectedly noisy or faulty communica-
tion. Without a teamwork model, it is difficult to anticipate
and pre-plan for the innumerable coordination failures pos-
sible.

In Electric Elves, the agents coordinate using Team-
core, a domain-independent, decentralized, teamwork-based

integration architecture (Pynadathet al. 1999). Team-
core integrates a general-purpose teamwork model (called
STEAM (Tambe 1997)) and provides core teamwork capa-
bilities to agents by wrapping them with Teamcore prox-
ies (not to be confused with the Friday agents that act as
user proxies). By interfacing with Teamcore proxies, ex-
isting agents becometeam-readyand thus able to rapidly
assemble themselves into a team to solve a given prob-
lem. To this end, the Teamcore proxies form a distributed
team-readiness layer for augmenting existing agents with
the following social capabilities: (i) coherent commitment
and termination of joint goals, (ii) team reorganization in re-
sponse to member failure, (iii) selective communication, (iv)
incorporation of heterogeneous agents, and (v) automatic
generation of tasking and monitoring requests. Although
other agent integration architectures such as OAA (Mar-
tin, Cheyer, & Moran 1999) and RETSINA (Sycaraet al.
1996) provide capability (iv), Teamcore’s use of an explicit,
domain-independent teamwork model allows it to support
these other necessary social capabilities as well.

Each and every agent in the Electric Elves organization
(Fridays, matchers, wrappers, etc.) has an associated Team-
core proxy that records its membership in various teams and
keeps track of active commitments made to these teams.
Given an abstract specification of the organization and possi-
ble commitments, the Teamcore proxiesautomaticallyexe-
cute the necessary coordination tasks. They form joint com-
mitments to team plans such as holding meetings, hosting
and meeting with visitors, arranging lunch, etc. Teamcore
proxies also communicate amongst themselves to ensure co-
herent execution of team plans and robust achievement of
joint goals. Given their teamwork knowledge, the Team-
core proxies automatically substitute for missing roles (e.g.,
if the presenter is absent from the meeting) and inform each
other of critical factors affecting a team plan. Finally, they
communicate with their corresponding agents to monitor the
agents’ ability to fulfill commitments (e.g., asking Friday to
monitor its user’s attendance of a meeting) and to inform
the agents of changes to those commitments (e.g., notifying
Friday of a meeting rescheduling).

Figure 2 shows a small portion of the organization hier-
archy used to model the software agents and human users,
as well as the teams they belong to. It also shows a small
portion of the plan hierarchy used to model possible com-
mitments that these teams can undertake. Both figures are
partial screenshots of a graphical tool that allows a human
user to modify the organization and plans, thus supporting
rapid incorporation of new members, teams, and tasks. Cur-
rently, there are 21 classes of such commitments for per-
forming the Electric Elves’ tasks, and there are 23 teams
and subteams, covering a total of 50 individual agent roles
(with some agents filling multiple roles).

Electric Elves Architecture
Electric Elves is a complex and highly heterogeneous sys-
tem spanning a wide variety of component technologies and
languages, communication protocols as well as operating
system platforms. Figure 3 gives an overview of all the
different components participating in the current version of
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Figure 2: Partial organization (left) and plan (right) hierar-
chies for the Electric Elves domain.

Electric Elves. Teamcore agents are written in Python and
Soar (which is written in C), Ariadne wrappers are written
in C++, the PHOSPHORUS capability matcher is written
in Common-Lisp and the PowerLoom interest matcher is
written in STELLA (Chalupsky & MacGregor 1999) which
translates into Java. The agents are distributed across SunOS
5.7, Windows NT, Windows 2000 and Linux platforms, and
use TCP/IP, HTTP and the Lockheed KQML API to handle
specialized communication needs.

Tying all these different pieces together in a robust and
coherent manner constitutes a significant engineering chal-
lenge. To solve this integration problem, we are using the
CoABS Grid technology (Global InfoTek, Inc. 2000) de-
veloped by Global InfoTek, Inc. and ISX Corporation as
part of DARPA’s CoABS program. The CoABS Grid is
a Java-based communication infrastructure built on top of
Sun’s Jini networking technology (Sun Microsystems, Inc.
1999). It provides message and service-based communica-

tion mechanisms, agent registration, lookup and discovery
services, as well as message logging, security and visual-
ization facilities. Since it is is written in Java, it runs on a
wide variety of OS platforms, and it is also relatively easy
to connect with non-Java technology. The special-purpose
connectors between the Grid and non-Java technology are
indicated by the various Grid proxy components in Figure 3.

We primarily use the CoABS Grid as a uniform trans-
port mechanism. The actual messages sent across the Grid
are in KQML format and could potentially be communi-
cated via alternative means. Not all Electric Elves mes-
sage traffic goes across the Grid. For example, the Team-
core agents communicate via their own protocol (the Lock-
heed KQML API) and only use the Grid to communicate
with non-Teamcore agents such as the capability and interest
matchers. Similarly, the information retrieval engine com-
municates with Ariadne wrappers directly via HTTP instead
of going through the Grid.

In general, our experience with the CoABS Grid has been
very positive. It has proven to be reasonably robust and up to
the task of 24/7 operation (since June 2000 we have logged
over 40,000 Grid messages). Overall, the Grid has provided
us with basic interoperability that would have been difficult
to achieve otherwise. Initially we were looking for an al-
ternative communication solution such as using some im-
plementation of KQML, but there was none available that
satisfied all the different language, OS platform and proto-
col requirements. Below is an example list of synergies that
resulted in part from this basic interoperability provided by
the CoABS Grid:

� Simple access to Ariadne Web wrappers motivated the
connection of IR with KR techniques for the purpose of
the Interest Matcher.



� Access to the PHOSPHORUS capability matchmaker
provides Teamcore agents with sophisticated capability
reasoning that allows more accurate assembly of teams
for particular tasks.

� Similarly, by using Ariadne wrappers for Meeting Maker
scheduling software, flight tracking, restaurant selection,
etc., Teamcore agents can access a much richer infor-
mation sphere and support more complex and interesting
tasks than otherwise possible.

Related Work
Several agent-based systems have been developed that sup-
port specific tasks within an organization, such as meeting
scheduling (Dentet al. 1992) and visitor hosting (Kautzet
al. 1994; Sycara & Zeng 1994). In contrast to these systems,
we believe that our approach integrates a range of technolo-
gies that can support a variety of tasks within the organi-
zation. Agent architectures have been applied to organiza-
tional tasks (Sycaraet al. 1996; Martin, Cheyer, & Moran
1999; Lesseret al. 1999), but none of them include tech-
nology for team work, adjustable autonomy, and dynamic
collection of information from external sources.

To our knowledge, Electric Elves represents the first
agent-based system that is used for routine tasks within a
human organization. Several other areas of research have
looked at complementary aspects of the problems that we
aim to address. Research on architectures and systems for
Computer-Supported Cooperative Work include a variety
of information management and communication technolo-
gies that facilitate collaboration within human organizations
(Greenberg 1991; Maloneet al. 1997). In contrast with
our work, they do not have agents associated with people
that have some degree of autonomy and can make deci-
sions on a human’s behalf. Our work is also complemen-
tary and can be extended with ongoing research on ubiqui-
tous computing and intelligent buildings (Dertouzos 1999;
Lesseret al. 1999). These projects are embedding sensor
networks and agency to control and improve our everyday
physical environments. Our work could benefit from this
kind of infrastructure, by making it easier to locate and con-
tact people as well as to integrate agents that control the en-
vironment with our facilities to support organizational tasks.

Current Status
The Electric Elves system has been in use within our re-
search group at ISI since June 1, 2000; and operating con-
tinuously 24 hours a day, 7 days a week(occasionally inter-
rupted for bug fixes and enhancements). Usually, nine agent
proxies are working for nine users, with one proxy each for
a capability matcher and an interest matcher. The proxies
communicate with their users using a variety of devices in-
cluding our workstation display, voice, mobile phones, palm
pilots; they also communicate with restaurants by sending
out faxes.

Figure 4 plots the number of daily messages exchanged by
the proxies for seven months (June 1, 2000 to December 31,
2000). The size of the daily counts demonstrates the large
amount of coordination actions necessary in managing all of

the activities such as meeting rescheduling. The high vari-
ability is due to the variance in the number of daily activities,
e.g., weekends and long breaks such as the Christmas break,
usually have very little activity. Furthermore, with continu-
ally increasing system stability, the amount of housekeeping
activity necessary has reduced automatically.

Overall, the effectiveness of Electric Elves can be seen
from several observations. First, over the past several
months, few emails have been exchanged among our group
members indicating to each other that they may get delayed
to meetings. Instead, Friday agents automatically address
such delays. Thus, the overhead of waiting for delayed
members in meeting rooms has also reduced. Overall, 1128
meetings have been monitored, out of which 285 have been
rescheduled, 230 automatically and 55 by hand. Thus, both
autonomous rescheduling and human intervention were use-
ful in Elves.

Furthermore, whereas in the past, one of our research
group members would need to circulate emails trying to
recruit a presenter for research meetings and making an-
nouncements, this overhead has almost completely vanished
— weekly auctions automatically select the presenters at our
research meetings. These auctions are automatically opened
when the system received notification of any meeting requir-
ing a presentation. A summary of the results is in the table
1 below. Column 1 shows the dates of the research presen-
tations. While the auctions are held weekly, several weekly
meetings over this summer were cancelled due to confer-
ence travel and vacations. Column 2 shows the total number
of bids received before a decision. The key here is that auc-
tion decisions may be made with fewer than 9 bids; in fact,
in one case, only 4 bids were received. The rest of the group
simply did not bid until the winner was announced. Column
3 shows the winning bid. A winner typically bid<1,1>, i.e.,
indicating that the user it represents is both capable and will-
ing to the presentation. Interestingly, the winner of July 27
had a bid of<0,1>, i.e., not capable but willing. Thus, the
proxy team was able to settle on a winner despite the bid not
being the highest possible, illustrating its flexibility. Note
that the capability bids for these auctions are obtained by
querying the PHOSPHORUS matchmaker. Finally, column
4 shows the results. In six of the eight times, winner was au-
tomatically selected. However, on two occasions (July 6 and
Sept 19) exceptional circumstances (e.g., a visitor) required
human intervention, which our proxy team could easily ac-
commodate.

Date # of bids Winner<bid> Autonomous?
July 6 7 Scerri<1,1> No
July 20 9 Scerri<1,1> Yes
July 27 7 Kulkarni<0,1> Yes

August 3 8 Nair<1,1> Yes
August 31 4 Tambe<1,1> Yes
Sept 19 6 Visitor<-,-> No
Oct 31 7 Tambe<1,1> Yes
Nov 21 7 Nair<1,1> Yes

Table 1: Results for auctioning research presentation slot.



Figure 4: Number of daily coordination messages exchanged by proxies over a seven-month period.

Other benefits of Electric Elves includes a web page,
where different Friday agents post their user’s location, en-
ables us to track our group members quickly; again, avoid-
ing the overhead of trying to track them down manually. Fi-
nally, we have begun relying on our agents so heavily to
order lunch that one local “Subway” restaurant owner even
suggested marketing to agents:“. . . more and more comput-
ers are getting to order food. . . so we might have to think
about marketing [to them]!!”.

Discussion
As described in this paper we have successfully deployed the
Electric Elves in our own real-world organization. These
agents interact directly with humans both within the or-
ganization and outside the organization communicating by
email, wireless messaging, and faxes. Our agents go beyond
simply automating tasks that were previously performed by
humans. Because hardware and processing power is cheap,
our agents can perform a level of monitoring that would
be impractical for human assistants, ensuring that activi-
ties within an organization run smoothly and that events are
planned and coordinated to maximize the productivity of the
individuals of an organization.

In the process of building the applications described in
this paper we addressed an number of key technology prob-
lems that arise in any agent-based system applied to hu-
man organizations. In particular we described how to use
Markov Decision Processes to determine the appropriate de-
gree of autonomy for the agents, how to use knowledged-
based matchmaking to assign tasks within an organization,
how to apply machine learning techniques to ensure robust
access to the data sources, how to combine knowledge-based
and statistical matchmaking techniques to derive knowledge
about the participants both within and outside an organiza-
tion, and how to apply multi-agent teamwork coordination
to dynamically assemble teams.

There are a huge number of possible applications of this
work. We plan to continue to both extend the range of ap-

plications and the underlying technologies for building the
agents. One of the advantages of deploying the research in
our own organization is that there is no shortage of ideas for
future tasks for the Electric Elves to perform.
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