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ABSTRACT
Conflict resolution is a critical problem in distributed and collabo-
rative multi-agent systems. Negotiation via argumentation (NVA),
where agents provide explicit arguments or justifications for their
proposals for resolving conflicts, is an effective approach to resolve
conflicts. Indeed, we are applying argumentation in some real-
world multi-agent applications. However, a key problem in such
applications is that a well-understood computational model of ar-
gumentation is currently missing, making it difficult to investigate
convergence and scalability of argumentation techniques, and to
understand and characterize different collaborative NVA strategies
in a principled manner. To alleviate these difficulties, we present
distributed constraint satisfaction problem (DCSP) as a computa-
tional model for investigating NVA. We model argumentation as
constraint propagation in DCSP. This model enables us to study
convergence properties of argumentation, and formulate and ex-
perimentally compare 16 different NVA strategies with different
levels of agent cooperativeness towards others. One surprising re-
sult from our experiments is that maximizing cooperativeness is not
necessarily the best strategy even in a completely cooperative en-
vironment. The paper illustrates the usefulness of these results in
applying NVA to multi-agent systems, as well as to DCSP systems
in general.

1. INTRODUCTION
Distributed, collaborative agents[4, 12] are promising to play an

important role in large-scale multi-agent applications including vir-
tual environments for training, distributed robots for exploration,
and distributed sensors. Such collaborative agents may enter into
conflicts over their shared resources, joint plans, or task assign-
ments, etc. requiring effective collaborative conflict resolution. In-
deed, resolving such conflicts is a critical issue for collaborative
agents, particularly for large-scale applications.

Negotiation via argumentation (NVA) is a promising approach to
collaborative conflict resolution[6]. In this approach, while agents
negotiate as usual by sending each other proposals and counter-
proposals, these proposals are accompanied by supporting argu-
ments (explicit justifications). Such argumentation appears par-
ticularly appropriate in collaborative settings, since agents need
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not hide information from each other. Furthermore, revealing this
information is hypothesizedto speed up the rate and likelihood
of converging to a solution[5]. Indeed, we are currently apply-
ing argumentation in real-world multi-agent settings, which require
scale-up to large numbers of agents.

Unfortunately, while previous implemented argumentation sys-
tems have performed well in small-size applications, no system-
atic investigation on large-scale argumentation systems has been
done. Thus, several major questions regarding the computational
performance of argumentation remain open. One key open ques-
tion is understanding if (and when) argumentation actually speeds
up conflict resolution convergence, particularly in the face of scale-
up. Indeed, the presence of explicit justifications in argumentation
could fail to improve convergence and may degrade performance
due to processing overheads. Another key open question is for-
mulating different collaborative NVA strategies and understanding
their impact on convergence. This question is particularly impor-
tant in collaborative contexts, since well-formulated strategies from
non-collaborative settings, such as threats, appeals to self interest
or attempts to undercut one’s opponent[6], are inapplicable.

Answering the above questions requires that we define an ab-
stract, well-understoodcomputational model of argumentation, suit-
able for large-scale experimental investigations. Certainly, answer-
ing such questions by building ad-hoc, complex agent argumenta-
tion systems is costly and very labor intensive. Furthermore, such
complex systems often make it difficult to identify the critical fac-
tors that contributed to their success or failure. Another alternative
is to exploit existing formalizations of argumentation in logic, such
as modal logic[6] and dialectical logic[11]. However, these for-
malizations focus on modeling agents’ complex mental states, and
are sometimes suggested as tools for design specification, making
them unsuitable as efficient computational models for large-scale
experimental investigation. Indeed, to the best of our knowledge,
these formalizations have not been used in investigating large-scale
argumentation systems.

To alleviate the above difficulties, this paper proposes distributed
constraint satisfaction problem (DCSP)[1, 15] as a novel computa-
tional model of NVA. Argumentation is modeled in DCSP as fol-
lows: when an agent communicates to others its assignments of
its local variables, it also includes the local constraints that led to
the assignments, as a justification. These communicated local con-
straints are exploited in service of constraint propagation by other
agents to attempt to speed up a conflict resolution process. We fo-
cus specifically on one of the best published DCSP algorithms, that
of Yokoo and Hirayama [15], and model argumentation as an ex-
tension to this algorithm by communicating local constraints. Ar-
gumentation essentially enables this DCSP algorithm to interleave
constraint propagation in its normal execution.



Next, using this extended DCSP as our computational model,
we formulate different NVA strategies, varying the level of coop-
erativeness towards others. While cooperativeness towards others
would appear to be fundamentally important in a cooperative envi-
ronment, the DCSP model enables a formalization of this notion.
We specifically formulate different negotiation strategies as varying
the value ordering heuristics[3]. The basic idea is to make some
variable values more or less preferable than the others, so as to
model the varying of cooperativeness towards others.

Essentially, the existing body of work on efficient DCSP algo-
rithms and further efficient incorporation of argumentation in DCSP
enables us to investigate the impact of argumentation and different
NVA strategies in the large-scale. Furthermore, we can vary differ-
ent argumentation parameters and investigate their impact on con-
vergence. In particular, we conduct detailed experiments on 16 dif-
ferent NVA strategies, and provide the following results. First, ar-
gumentation can indeed significantly improve agents’ conflict reso-
lution convergence, i.e., agents can more quickly resolve their con-
flicts and the overhead of argumentation is in general outweighed
by its benefits. However, the benefits of argumentation vary non-
monotonically with the proportion of agents that offer tightly con-
straining arguments to support their proposals — indeed, the ben-
efits of argumentation are lowest when either too few or too many
agents offer such arguments. Second, with respect to NVA strate-
gies, given that our system operates in a highly collaborative envi-
ronment, the expectation was that more cooperativeness will lead
to improved performance. However, a surprising result we obtain
is that a maximally cooperative strategy is not the most dominant
strategy. Essentially, while some improvements in cooperativeness
significantly improve performance, further improvements do not
help and may end up degrading performance. This degradation is
not only in terms of overheads but more fundamentally in negotia-
tion cycles required to converge to a solution.

Additional benefits of the DCSP model of argumentation are
seen in our ability to directly apply this model in real-world multi-
agent settings, where it can provide sound performance guarantees
(based on the guarantees of DCSP). Finally, notions of argumen-
tation and cooperative NVA strategies may potentially advance the
state of the art in DCSP research as well.

2. DOMAINS AND MOTIVATIONS
Among the domains that motivate this work, the first is a dis-

tributed sensor domain. This domain consists of multiple station-
ary sensors, each controlled by an independent agent, and targets
moving through their sensing range (Figure 1.a and Figure 1.b illus-
trates the real hardware and simulator screen, respectively). Each
sensor is equipped with a Doppler radar with three sectors. An
agent may activate at most one sector of a sensor at a given time
or switch the sensor off. While all of the sensor agents must act
as a team to cooperatively track the targets, there are some key dif-
ficulties in such tracking. First, in order for a target to be tracked
accurately, at least three agents must concurrently turn on overlap-
ping sectors. (This allows the target’s position to be triangulated).
Second, to minimize power consumption, sensors need to be peri-
odically turned off. Third, sensor readings may be noisy and false
detections may occur. Finally, the situation is dynamic as targets
move through the sensing range.

To address this problem, agents may negotiate via argumenta-
tion to enable them to coordinate their individual choice of sectors.
For example, if an agent A detects an object in its sector 1, it may
negotiate via argumentation with neighboring agents, B and C say,
so that they activate their respective sectors that overlap with A’s
sector 1. In particular, it may be the case that B is low in power or

(a) sensor(left) and target(right) (b) simulator (top-down view)
Figure 1: A distributed sensor domain

C is busy with another target. Thus, if agent A is able to provide
an argument to B and C for its request, such as “I detect a target
in my sector 1”, it may induce them to switch sectors. Alterna-
tively, B may counter-propose that it cannot turn on its sector, with
an argument “low on power”. Here, following [5],negotiation ob-
jectsrefers to issues (e.g. choice of sectors) over which negotiation
takes place. Agents propose and counter-propose values for these
negotiation objects, with explicit justifications.

The second application domain is the helicopter combat simu-
lation domain[12]. Different conflict situations arise in a team of
simulated pilot agents. One example, henceforth called thefiring
position example, involves allocatingfiring positionsfor a team of
pilots. Individual pilots in a helicopter team attack the enemy from
firing positions. Each firing position must enable a pilot to shoot
at enemies while protecting the pilot from enemy fire. In addition,
a pilot’s firing position is constrained by the firing positions of the
others. Two firing positions are in conflict if they are within one
kilometer of each other. Therefore, each agent has to negotiate its
position with others to avoid conflict and provide safety.

Earlier an argumentation system called CONSA (COllaborative
Negotiation System based on Argumentation) was developed for
the above combat simulation domain[13]. As an example of ar-
gumentation in CONSA, consider two pilot agents, A1 and A2,
and two enemy positions E1 and E2, where A1 knows only about
E1, while A2 knows only about E2. Suppose that A1 and A2 are
only 100 meters apart, which are in conflict since they are not one
kilometer apart as required. Here, agents’ firing positions are the
negotiation objects. A1 computes new values for the negotiation
objects (positions for both agents). It then communicates its pro-
posal to A2, suggestingf(A1 move 450 m left, A2 move 450 m
right)g, where the appended justification includesf(enemy E1 po-
sition, current separation 100 m,...)g. When A2 receives and eval-
uates the proposal, it realizes that it cannot move 450 meters right
because of E2. Instead, since the maximum A2 can move is 300
meters, it counter-proposesf(A1 move 600 m left, A2 move 300
m right)g, with the justification being thatf(enemy E1 position,
enemy E2 position,...)g. However, if there were a third agent A3,
A1’s 600 meter move to the left may cause a conflict between A1
and A3, requiring further negotiation.

The above applications illustrate the importance of investigating
the scale up properties of argumentation. For both domains, argu-
mentation appears useful for a small number of agents. However,
in cases involving 100s of distributed sensors in a grid or 100s of
pilot agents in formation, argumentation may not provide signifi-
cant enough benefits to outweigh its overheads (of processing argu-
ments). Thus, to justify the use of argumentation, we need to inves-
tigate if (and when) the argumentation will truly speed up conflict
resolution convergence with scale up. In addition, it is important to
investigate different collaborative NVA strategies and their impact
on convergence. Being cooperative is clearly important in both do-
mains, e.g., if pilot agents refuse to move, the problem may in some



cases be unsolvable. Indeed, in some cases, the pilot agents’ max-
imal cooperativeness towards others, by offering to move the max-
imal distance they are allowed, would appear to be very helpful.
Similarly in distributed sensors, an agent’s turning its own sector
on so that others may conserve power, would appear to be help-
ful. However, as we scale up the number of agents, it is unclear if
maximal cooperativeness will necessarily lead to improved perfor-
mance. Unfortunately, answering these questions by building ad-
hoc implementations is difficult — the process would be difficult
and labor intensive, and in the end, the factors that led to success or
failure of argumentation may remain unclear.

Finally, it is useful to understand that, in this paper, we focus
on distributed NVA to resolve conflicts as opposed to a centralized
approach, where a single agent gathers all information to provide a
solution. Indeed, in many applications, such a centralized approach
could prove problematic. First, this approach introduces a central
point of failure, so that there is no fault tolerance. Second, central-
ization of all information could be a significant security risk, open
to actual physical or cyber-attacks, particularly in hostile adversar-
ial environments. Third, centralization requires all agents to accept
a central authority, which may not always be feasible. Finally, a
centralized agent could be a significant computational and commu-
nication bottleneck. Specifically, in domains such as distributed
sensors, negotiations must continually occur among all agents for
readjustment of the sensors. Centralization would require all sen-
sors to continuously communicate their local information to the
centralized agent which can be a significant bottleneck given scale-
up to thousands of agents. A distributed system provides fault toler-
ance, reduces the security risk, avoids a central authority and avoids
a centralized communication/computational bottleneck.

3. ARGUMENTATION AS DCSP
To advance the current research, we need to provide an abstract

and well-understood computational model for NVA. To this end,
we propose a novel computational model, that of Distributed Con-
straint Satisfaction Problem (DCSP)[1, 15] to investigate NVA. DCSP
allows us to easily model conflicts via constraints. As a well-
investigated problem, it provides efficient algorithms to build on.
Most importantly, it also allows us to very efficiently model the use
of argumentation in negotiation.

3.1 Description of Computational Model
A Constraint Satisfaction Problem (CSP) is commonly defined

by a set ofn variablesx1, ..., xn associated with finite domains
D1, ..., Dn respectively, and a set ofk constraints C1, ..., Ck on
the values of the variables. A solution is the value assignment for
the variables which satisfies all the constraints. A distributed CSP
is a CSP in which variables and constraints are distributed among
multiple agents. We consider DCSPs with multiple variables per
agent[15]. Each variable (xi) belongs to an agent Aj . A constraint
defined only on variables belonging to a single agent is called a
local constraint. In contrast, anexternal constraintinvolves vari-
ables of different agents. Solving a DCSP requires that agents not
only solve their local constraints, but also communicate with other
agents to satisfy external constraints. DCSP is not concerned with
speeding up a centralized CSP via parallelization[15]; rather, it as-
sumes that the problem is originally distributed among the agents.
This assumption suits us well, since our negotiation problem is in-
deed a distributed one.

Given this DCSP framework, we map argumentation onto DCSP
as follows. First, we divide an agent’s set of variables into two
subsets. In particular, agents’ negotiation objects are modeled as
externally constrained variables, henceforth referred to asnegoti-
ation variables. There are external constraints among negotiation

Agent A3

LC2

LC3 LC4

Agent A4

C13 C24

C34

C12

Agent A1

LC1

X1 X2

X3 X4

V1 V2 V3 V4

(a)

Agent A2

(b)

Figure 2: Model of agents in argumentation

variables of different agents, modeling the existing conflict. The
remaining variables belonging to an agent are only locally con-
strained, and are referred to aslocal variables. These local vari-
ables model the facts that are (at least initially) only known locally
by an agent, i.e., not known by other agents. An agent’s local vari-
ables locally constrain its negotiation variables. In our initial ex-
perimental investigations in DCSP, we found it sufficient to model
each agent as having only one negotiation variable. We represent all
the local variables and local constraints as a single node constraint
on this negotiation variable. Thus, as illustrated in Figure 2.a, each
agent (denoted by a big circle) has only one negotiation variable
Xi and one local constraintLCi. Note that the local constraint of-
ten involves very complex computation. Furthermore, there is no
limitation on the number of external constraintsCij for each agent.

We can now begin to model the firing position example using
DCSP. Here, each helicopter pilot’s firing position is its single ne-
gotiation variable which is known to other agents. Furthermore,
there are external constraints among the negotiation variables of
neighboring agents: the firing positions must be at least 1000 me-
ters apart. Since enemy positions are locally observed by individual
agents and they constrain the firing positions, the enemy positions
form local constraints on an agent’s negotiation variable. Note that
we can easily extend this mapping to problems involving multiple
negotiation variables per agent, as shown in Figure 2.b. Here, the
squares labeled v1, v2, v3, and v4 are negotiation variables, and
the small circles and the links between them are local variables and
constraints. This extension will be considered in our future work.

Now, a major aspect of our mapping is to formalize argumen-
tation in the context of DCSP. The key here is that argumentation
can be mapped on as constraint propagation. That is, in DCSP al-
gorithms such as Asynchronous Weak Commitment search (AWC)
[15], agents communicates the values assigned to their externally
constrained negotiation variables. However, with argumentation,
agents also communicate their argument (justification) in the form
of local constraints (e.g., theLCi in Figure 2.a) under which they
made the selections of values for their variables. These local con-
straints are propagated by the agents receiving the argument. Such
constraint propagation requires that when negotiation variablesXi

andXj (belonging to agentsAi andAj respectively) share an ex-
ternal constraintCij(Xi; Xj) then these agents know the domains
of the negotiation variables. In particular,Ai is aware ofXj ’s do-
main, andAj is aware ofXi ’s domain; otherwise the communi-
cation of local constraints such asLCi may not be interpretable
by others. This assumption models the situations where our pilot
agents are aware of the overall region or set of positions that neigh-
boring pilots could take, but they do not know the local constraints
that restrict those positions. (Alternatively, the local constraintLCi

may explicitly outline the set of allowed values for the given nego-
tiation variable. There are tradeoffs in the different techniques, and
these may be optimized based on the domain.)

Concretely, argumentation in DCSP works as follows. Suppose
an agentAi selects a valuevi for its negotiation variableXi. It



will then send its selectionvi and its local constraintLCi to its
neighboring agentAj with the negotiation variableXj . Here we
assume agentsAi andAj are connected by the external constraint
Cij(Xi; Xj) whereXi has domainDi andXj has domainDj .
After receiving information fromAi, agentAj will propagate the
received constraint to reduceXj ’s domainDj . This may be ac-
complished as follows.Aj first infersD0

i by applyingLCi to Xi

(alternatively,LCi directly provides the values ofD0

i), andAj then
usesD0

i to change its domainDj to D0

j by applying the external
constraintCij(Xi; Xj). Aj modifies its local constraintLCj to
reflect the domain change (the modifiedLCj is communicated to
Aj ’s neighbors withvj later).

While this constraint propagation amounts only to arc consis-
tency, it is not run by itself to solve the DCSP, rather it is interleaved
with value selection. For instance, during each cycle of AWC, we
first propagate communicated constraints and then select values for
variables. Thus, we do not increase the number of communicated
messages, an important issue for DCSP. Here, one assumption is
that communication cost is mainly dependent on the number of
communications rather than message size. Hence, communication
of local constraints is not counted as extra communication cost.

3.2 Applications of Model
The DCSP based computational model of argumentation can be

applied to the firing position example and the distributed sensor net-
work. We have already seen the mapping to the pilot agents with
their firing positions as negotiation variables and enemy positions
as local constraints in Section 3.1. Here, argumentation enables
other pilots to quickly rule out incompatible firing positions from
their domains. With respect to the distributed sensor network, we
desire that whenever a target is detected by an agent, all neigh-
boring agents turn on overlapping sectors so as to also detect this
target. We model this as follows: Each sensorAi has a negotia-
tion variable,sectori, with domainf0,1,2,don’t careg. Intuitively,
the choice of value of this variable corresponds toAi’s choice to
make that particular sector active or to go in a “dont’care” mode.
’Overlaps’ is an external constraint over sector variables of two
agents,Ai andAj . Thus, overlaps(sectori, sectorj) is true iff
sectori andsectorj cover an overlapping region of space or any-
one has a value “don’t care”. Furthermore, each agent has a local
constraint,sectori = �, on its sector value. This constraint is en-
forced when a target is detected in sector� by Ai. “don’t care”
has other constraints that we will not go into here. This model is
an initial mapping of the distributed sensor network. As we take
more resources and testing environment into account (e.g., power,
bandwidth, noise, etc.), the mapping can develop to include them.

Argumentation leads to constraint propagation in this domain as
follows. SupposeAi detects a target in sector 0.Ai’s local con-
straint on its sector value (sectori = 0) will be enforced preventing
it from changing its sector to something else. Sincesectori is a ne-
gotiation variable,Ai will send the value assigned to this variable,
along with the local constraint (sectori = 0) as an argument, to all
its neighbors such asAj . Aj will then process the argument (prop-
agateAi’s local constraint on its own domain), eliminating non-
overlapping sector values, e.g., “0” from its own domain. Thus,Aj

may be left withf1, 2, don’t careg. Aj may select value 2 for its
sector, overlapping withAi. It may then announce its choice of
value and reduced domain to its neighbors.

While constraint propagation caused by argumentation reduces
an agents’ domain, there is still a choice of values available. Thus,
a key question that remains open is how should an agent choose
a value for its negotiation variable from its reduced domain? This
issue leads us to consider different negotiation strategies discussed
in the next section.

4. NEGOTIATION STRATEGIES
Given the mapping of argumentation to DCSP presented in the

previous section, different NVA strategies can be formalized using
DCSP. A negotiation strategy refers to the decision function used
by an agent to make a proposal or counter-proposal. In the mapping
to DCSP, a negotiation strategy is modeled as a value ordering used
to choose a value of an assignment for a negotiation variable. A
value ordering heuristic ranks the value of variables[3]. Different
value ordering heuristics lead to different negotiation strategies.

In AWC[15], the min-conflict heuristic is used for value order-
ing: given a variable that is in conflict, min-conflict heuristic as-
signs it a value that minimizes the number of conflicts[10]. This
min-conflict heuristic is used as a baseline negotiation strategy and
we refer it as Sbasic. Choosing Sbasic, a state of the art strategy
as baseline is critical to ensure that any improvements we suggest
are real. However, the Sbasic strategy doesn’t exploit argumen-
tation in generating a more cooperative response to other agents.
Argumentation enables agents to consider the constraints that the
neighboring agents have on their domains, which are communi-
cated as arguments. Taking the domains of neighboring agents into
account enables an agent to generate a more cooperative response,
i.e., select a value which gives more choices to neighbors, and thus,
potentially lead to faster negotiation convergence. To elaborate on
this point, we first define our notion of cooperativeness. For this
definition, letAi be an agent with a negotiation variableXi, do-
mainDi, and a set of neighboring agentNi.

� Definition 1: For a valuev 2Di and a set of agentsNsub
i �

Ni, flexibility functionis defined asfco(v;Nsub
i ) =�jc(v;Aj)

such thatAj 2N
sub
i andc(v;Aj) is the number of values of

Xj that are consistent withv. 1

� Definition 2: For a valuev of Xi, cooperativenessof v is
defined asfco(v;Ni). That is, thecooperativenessof v mea-
sures how much flexibility (choice of values) is given to all
of Ai’s neighbors byv.

� Definition 3: A maximally cooperativevalue ofXi is de-
fined asvmax such that, for any other valuevother 2 Di,
fco(vmax; Ni)� fco(vother; Ni).

Here, the concept of cooperativeness goes beyond merely sat-
isfying constraints of neighboring agents and enables even faster
convergence. That is, an agentAi can provide a more cooperative
response to a neighbor agentAj , by selecting a value for its nego-
tiation variable that not only satisfies the constraint withAj , but
maximizes flexibility (choice of values) forAj . If Ai selectsvmax,
givingAj more choice, thenAj can more easily select a value that
satisfiesAj ’s local constraints and other external constraints with
its neighboring agents such asAk. This is indeed partly the ra-
tionale for the helicopter pilots in the firing position example (de-
scribed in Section 2) to offer the maximum flexibility to each other.
Having lower possibility of constraint violation, this cooperative
response can lead to faster convergence.

Sbasic tries to minimize the number of constraint violations with-
out taking neighboring agents’ own restrictions into account for
value ordering. An agentAi’s selected valuev with Sbasic is thus
not guaranteed to be maximally cooperative, i.e.,fco(v;Ni) �
fco(vmax; Ni). Hence, Sbasic is not the most cooperative strat-
egy to neighboring agents. However, other cooperative strategies
can be introduced and formalized in terms of value ordering; i.e.,
1One objection to using a sum (�) is that a valuev with higher sum
may be selected even if some constituentXj are inconsistent —
sum may be unfair to some neighboring agents. However, because
of our constraint propagation, we guarantee that such inconsistency
does not arise, reducing any potential unfairness.



an agentAi can rank each value (v) in its domainDi based on the
cooperativenessfco(v;Ni) of that value. These strategies rely on
the basic framework from AWC.

Since AWC, the state of the art DCSP algorithm is central to
the NVA strategies we discuss below, it is important to first discuss
AWC in some detail. In the AWC framework, the Sbasic strategy is
used in two cases described below. When an agentAi selects a new
value for its negotiation variableXi, the value selection depends on
whetherAi can find a consistent valuev from the domainDi ofXi.
Here,v is said to be consistent ifv satisfiesAi’s constraints with
higher priority agents2. If there exists a consistent valuev in Di,
we refer to it asgoodcase. In the good case, an agent applies Sbasic

minimizing constraint violations with lower priority agents. On the
contrary, if there is no suchv, we refer to it asnogoodcase. In
thenogoodcase, an agent increases its priority and usesSbasic to
minimize constraint violations over all neighboring agents[15].

Different negotiation strategies are described in terms of thegood
andnogoodcases because different value ordering methods can be
applied in these two cases. To explain the negotiation strategies,
let Nhigh

i (Nlow
i ) be the subset ofNi such that, for everyAj 2

Nhigh
i (Nlow

i ), the priority ofAj ’s negotiation variableXj is higher
(lower) than the priority ofAi’s negotiation variableXi. In the
goodcase, an agentAi computes a set (Vi) of consistent values for
Xi from its domainDi. Based on cooperativeness, four different
negotiation strategies can be considered in thegoodcase as follows:

� Shigh: each agentAi selects a valuev from Vi which maxi-
mizesfco(v;N

high
i ) i.e.,Ai attempts to give maximum flex-

ibility towards its higher priority neighbors.

� Slow: each agentAi selects a valuev from Vi which maxi-
mizesfco(v;N low

i ).

� Sall: each agentAi selects a valuev from Vi which maxi-
mizesfco(v;Ni), i.e. max flexibility to all neighbors.

� Sbasic: each agentAi selects a value fromVi based on min-
conflict heuristic as described above.

We now define cooperativeness relation among these strategies
based on the cooperativeness of values they select.

� Definition 4: For two different strategiesS� andS�, S� is
more cooperativethanS� iff (i) for all Ai, Xi, andv�, v�
2 Di such thatv� andv� are selected byS� andS� respec-
tively, fco(v�; Ni)� fco(v� ; Ni) and (ii) for someAi, when
fco(v�; Ni) 6= fco(v� ; Ni), fco(v�; Ni)> fco(v� ; Ni).

� Theorem 1: The strategySall ismaximally cooperativestrat-
egy in thegoodcase, i.e., for any other strategySother, Sall
is more cooperative thanSother.
Proof: By contradiction. Assume thatSother is more co-
operative. ForAi, vall is selected bySall and vother by
Sother such that iffco(vall; Ni) 6= fco(vother; Ni), then
fco(vall; Ni) < fco(vother; Ni). However, by the definition
of Sall, vother would be selected bySall instead ofvall. A
contradiction.

By theorem 1, Sall is more cooperative than the other strategies
Shigh, Slow, Sbasic for the goodcase. Both Shigh and Slow have
trade-offs. For instance, Shigh may leave very little or no choice
to an agent’s neighbors in Nlowi , making it impossible for them to
select any value for their negotiation variables. Slow has a converse
effect. Sbasic also has trade-offs because it does not consider the
flexibility of neighboring agents.

2A non-negative integer is assigned to each variable as a priority.
Agent and variable in our description are used interchangeably be-
cause each agent has only one variable in the current mapping.

Sall-Shigh   Sall-Slow   Sall-Sbasic Shigh-Sall   Slow-Sall   Sbasic-Sall

Sbasic-Slow   Slow-Slow   Shigh-SlowSbasic-Shigh  Slow-Shigh  Shigh-Shigh Sbasic-Sbasic  Slow-Sbasic  Shigh-Sbasic

Sall-Sall

Figure 3: Cooperativeness relationship
The above four different strategies can be also considered in the

nogoodcase. The computation in thenogoodcase is identical to the
goodcase except that theVi is the set of all values inDi, since there
isn’t a set of consistent values. Sall is also the most cooperative
strategy in thenogoodcase. Note that, in thisnogoodcase, Xi ’s
priority is increased as usual as described above, andNhigh

i and
N low
i are based on the variable’s priority prior to this increase.
Based on the ideas introduced above, we can combine different

negotiation strategy combinations for thegoodandnogoodcases:
there are 16 possible strategy combinations from the four negoti-
ation strategies(Shigh, Slow, Sall, and Sbasic above) for thegood
case andnogoodcases. Since, henceforth, we will only consider
strategy combinations, we will refer to them as strategies for short.
In the following, some examples of NVA strategies used for exper-
iments are described. Each strategy below is described in terms of
its response in thegoodandnogoodcases. Note that all the strate-
gies are enhanced with argumentation (constraint propagation): in-
deed, except forSbasic, these strategies cannot be applied without
argumentation. In the next section, we systematically experimented
with all the 16 strategies. Here, three exemplar strategies are listed.

� Sbasic-Sbasic: This is the original AWC. Min-conflict heuris-
tic is used for thegoodandnogoodcase.

� Slow-Shigh: For thegoodcase, an agent is maximally coop-
erative towards its lower priority neighbor agents by using
Slow (the selected value doesn’t violate the constraints with
higher neighbors). On the contrary, for thenogoodsituations,
an agent attempts to be maximally cooperative towards its
higher priority neighbors by using Shigh.

� Sall-Sall: In both thegoodand thenogoodcases, an agent
uses Sall for the value ordering, which is to select a value
that maximizes flexibility of all neighbor agents.

Figure 4 describes a cooperative negotiation strategy chosen by
an agentAi in AWC[15] framework. Checkagentview is a pro-
cedure of AWC in which an agent checks the consistency of its
value assignment with other agents’ values (agentview) and se-
lects a new value if it violates any constraint. Cooperative nego-
tiation strategies amount to value ordering heuristics in the pro-
cedure. For Figure 4, let’s assume thatAi selects a negotiation
strategy S�-S� such that�, � 2 fhigh, low, all, basicg. In the
new cooperativevalue procedure (Figure 4), Shigh, Slow, and Sall
use min-conflict heuristic to break ties among the values with the
same max flexibility.

Among the cooperative strategies described above, Sall-Sall is
the most cooperative strategy because it is maximally cooperative
to neighboring agents by Sall in bothgoodandnogoodcases. Fig-
ure 3 shows a partial order over the cooperativeness of 16 different
strategies. A higher strategy is more cooperative than a lower one.
In general, the strategies at the same level are not comparable to
each other such as Slow-Shigh and Shigh-Slow. However, strate-
gies such as Sbasic-Sbasic were not originally defined with the no-
tion of cooperativeness as defined in this section; and could thus be
considered less cooperative than a strategy such as Slow-Shigh that
attempts to be explicitly cooperative to neighboring agents.



Procedurecheck agent view // for a strategy S�-S�
1. Propagate constraints from neighbor agents (Di may change);

2. Check constraints violation for local (LCi) constraint and external
constraints(Cij ) with higher priority neighbor agentAj ;
If there is any violation,
fFind a value setDco �Di whose values are consistent;
If Dco 6= ; // goodcase

new cooperative value(�, Dco)
check agent view;

Else //nogoodcase (no consistent value inDi)
Record and communicatenogood;
Xi’s priority = max of neighbors’ priorities + 1;
new cooperative value(�,Di)
check agent view;g

Else // no violation
fIf there exists a change forXi, communicate it to neighbor agents;g

Procedurenew cooperative value (Input: strategy�, domain� � Di;
Output:Xi’s new valuevnew )

1. If � � basic, selectvnew 2 � wherevnew minimizes the number
of constraint violation (min-conflict) with lower priority agents;

2. Else (� 2 fhigh, low, allg)

 =N�

i (Here,Nall
i � Ni);

for each valuev 2�
v’s flexibility = sum of flexibility for eachAj 2 
 given byv;

find v 2� which has max flexibility and set the selectedv to vnew ;
Figure 4: Cooperative negotiation strategy in AWC framework

5. EXPERIMENTAL EVALUATION
DCSP experiments in this work were motivated by the firing po-

sition example and the distributed sensor domain. In the experi-
ments, each pilot was modeled as an agent and each agent had one
negotiation variable to model the pilot’s firing position. The do-
main of this variable was the set of positions that the agent could
take. However, the domain was restricted by local node constraints
such as the enemy positions for firing position example. The ne-
gotiation variable also had external constraints with the negotiation
variables of its neighboring agents. This external constraint mod-
eled the real-world constraint that, in firing position example, if two
pilots were neighbors, then their positions must at least be some
fixed distance from each other. If this external constraint was vio-
lated, then clearly, the current values of the agents were in conflict
with each other. This mapping also works well for the distributed
sensor domain, where each sensor is modeled as an agent whose
negotiation variable takes on sector values, and is constrained by
local constraints from target position, power usage, etc. The ex-
ternal constraint for the variables modeled the overlap constraint
explained in Section 3.2.

Based on these mappings, a DCSP was constructed, and the goal
of argumentation was to find values for agents’ negotiation vari-
ables that satisfied all of their local and external constraints. Two
different types of DCSP configurations were considered in the ex-
periments: a chain and a grid. In the chain configuration, each
agent had two neighboring agents, to its right and left (except for
end points). Since there was a constraint between the negotiation
variables of neighboring agents, the negotiation variables essen-
tially formed a chain. In a grid configuration, the negotiation vari-
ables formed a grid in which a variable was constrained by its four
neighbors except the ones on the grid boundary. These configura-
tions were motivated by our two domains.

Our experiments followed the method used in [15] and same cri-
teria were used for evaluation. In particular, evaluations were per-
formed by measuringcyclesandconstraint checks. Cyclesis the
number of negotiationcyclesconsumed until a solution is found,
and constraint checks(to measure the total computation cost) is
the sum of the maximal numbers of constraint checks performed
by agents at each of the negotiation cycle. Experiments were per-
formed for the 16 negotiation strategies described in Section 4. The
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Figure 5: Comparing negotiation strategies: constraint checks

number of agents was 512 and the domain size of each negotiation
variable is one dozen for the chain and 36 for the grid. The exper-
imental results reported below were from 500 test runs and all the
problem instances were solvable with multiple solutions3.

5.1 Performance of negotiation strategies
NVA strategies described in Section 4 were compared on both

the chain and the grid configurations. In Figure 5,constraint checks
in the grid is shown for all the 16 strategies. The horizontal axis
plots the ratio of the number of locally constrained agents to the
total number of agents. Each locally constrained agent has a local
constraint (described in Section 3) which restricts available values
for its negotiation variable into a randomly selected contiguous re-
gion. Thus, for example, local constraint ratio 0.1 means that 10
percent of the agents have local constraints. Local constraint ratio
will henceforth be abbreviated as LCR. Having local constraints,
agents have less choice to assign a value to their negotiation vari-
ables. The vertical axis plots the number ofconstraint checks. The
results for all the 16 strategies on both configurations (chain and
grid) showed that Slow-Slow or Slow-Shigh was the best, and the
results also showed that those strategies with Shigh or Sbasic for
thegoodcase performed worse than the others.

Given 16 strategies, it is difficult to understand different pat-
terns in Figure 5. For expository purposes, we will henceforth
present the results from four specific strategies. First, Sall-Sall is
selected because it is the maximally cooperative strategy. Second,
the original AWC strategy (Sbasic-Sbasic) is selected to compare
it with other negotiation strategies. Third, Slow-Slow is selected
because it showed the best performance overall in the chain and
the grid. Lastly, Slow-Shigh is selected because it performed better
than Slow-Slow in a special case. Using these four strategies does
not change the conclusions from our work, rather it is done solely
for expository purpose.

Figure 6 shows theconstraint checksof the selected strategies
on both configurations described above. These graphs show the in-
teresting result that maximal cooperativeness towards neighboring
agents is not the best strategy. Though Sall-Sall performed better
than Sbasic-Sbasic in the grid and at higher LCR in the chain, it
was worse than other less cooperative strategies. More specifically,
Slow-Slow, one of the lower level cooperative strategies from Fig-
ure 3, showed the best performance in the chain and the grid except
for the LCR of 0.0 and 0.9. (Sall-Sall and Slow-Shigh were better
than Slow-Slow at 0.0 in the chain and at 0.9 in the grid, respec-
tively.) While Sall-Sall did not win in terms ofconstraint checks,
one possible explanation is its overhead in value selection - thus,
it may still win in the number ofcycles. However, the results in
Figure 7 eliminate such a possibility becausecyclesshow that Sall-
Sall was not the winner: even in terms of negotiationcycles, it was

3The results shown in the graphs below are for top 10% harder
problems since we’re more interested in difficult problem instances.
At each ratio, the problems were sorted with the number of nego-
tiation cycles with Sbasic-Sbasic. The average over all problems
showed a similar pattern.
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equivalent to or worse than other less cooperative strategies.
The results above are surprising because, in cooperative envi-

ronments, we expected that the most cooperative strategy Sall-Sall
would perform the best. However, much less cooperative strategy
Slow-Slow or Slow-Shigh showed the best performance. So, we
conclude that a certain level of cooperativeness is useful, but even
in fully cooperative settings, maximal cooperativeness is not nec-
essarily the best NVA strategy.

A related key point to note is that choosing the right negotiation
strategy has significant impact on convergence. Certainly, choos-
ing Sbasic-Sbasic may lead to significantly slower convergence rate
while appropriately choosing Slow-Slow or Slow-Shigh can lead to
significant improvements in convergence. For instance, between
Sbasic-Sbasic and the best cooperative strategy in the grid configu-
ration, max average difference was 4-fold inconstraint checksand
7-fold in cycles. For some individual cases, there was more than
30-fold speedup inconstraint checksandcycles.

Here, to check the statistical significance of the performance dif-
ference, two-tailed t-test was done with the following two null hy-
potheses. For the null hypotheses, let���� be an averagecon-
straint checks(or cycles) of a strategy S�-S�.

1. �basic�basic = �low�low
2. �all�all = �low�low
The t-test was done at each LCR in the chain and the grid: at

the LCR of 0.9 in the grid,�low�low was replaced with�low�high
. Both null hypotheses above are rejected, i.e., the differences are
significant, with p-value< 0.01 for all values of LCR (one excep-
tion is in the chain, p-value at LCR of 0.1 is less than 0.03).

5.2 Benefits of Argumentation
One critical question to be answered was how much total amount

of conflict resolution effort was saved by incorporating argumen-
tation in negotiation, and whether the overhead of argumentation
could be justified. With argumentation, agents avoid making pro-
posals which cannot be accepted by others, which may speed up
convergence. However, because of computational overhead in con-
straint propagation, there could be a possibility for argumentation
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to be counterproductive. To answer the question, two different
versions of Sbasic-Sbasic were compared. The first version was
the Sbasic-Sbasic described in Section 4. The second version was
same with Sbasic-Sbasic except that it didn’t use any argumenta-
tion (constraint propagation). Let this second strategy be Sbasic-
Sbasic(noarg). In Sbasic-Sbasic, each agent received arguments (lo-
cal constraints) from neighbors and used the propagated constraints
for reducing its local problem space. However, the agent had an
overhead of checking extra constraints. In Sbasic-Sbasic(noarg),
agents did not receive arguments from neighbors, and thus did not
have to propagate constraints. Figure 8 shows the experimental re-
sults for the chain configuration with 16 agents4. Argumentation
helped Sbasic-Sbasic to reduce the total negotiation effort as mea-
sured byconstraint checks(Figure 8.a) andcycles(Figure 8.b).

One interesting point in Figure 8 is that the benefit of argumenta-
tion varied non-monotonically as the LCR of the agents changed. In
particular, in terms of bothcycleandconstraint checks, the conver-
gence speed difference between Sbasic-Sbasic and Sbasic-Sbasic(noarg)
was the lowest when there were too few or too many locally con-
strained agents (e.g., at 0.0, 0.1, and 1.0). Understandably, when
there were too few locally constrained agents, there were few argu-
ments to communicate. So, argumentation was not very helpful.
What was surprising was that, as the proportion of locally con-
strained agents increased, the performance with argumentation did
not monotonically improved. Thus, we can begin to offer guidance
on when to actually apply argumentation for maximum benefits.

5.3 Real-world Applications: Initial Results
A key benefit of our new computational model of argumentation

is that it can be efficiently implemented in real-world applications.
Indeed, we have successfully applied the DCSP-based model of ar-
gumentation in the distributed sensor network (using the formaliza-
tion introduced in Section 3.2). Because the real hardware (Figure
1.a) was not available in our lab, this implementation has been ex-
tensively tested in a distributed sensor node simulator (Figure 1.b)
that mirrors the hardware. A key evaluation criteria for this imple-
mentation is how accurately it is able to track targets, e.g., if agents
do not switch on overlapping sectors at the right time, the target
tracking has poor accuracy. The accuracy is measured in terms of
the RMS (root mean square) error in distance between the real po-
sition of a target and the target’s position as estimated by sensor
agents. Although domain experts termed the RMS error of up to 3
units as acceptable, our initial results showed that in test configura-
tions, our RMS error was less than 1 unit.

In addition to the applicability of DCSP-based model in this do-
main, lessons from our NVA strategy investigation are directly ap-
plicable, particularly as we scale up the number of agents. Our ini-
tial results showed that combining scale-up to 6 or 8 nodes with in-
appropriate NVA strategies leads the tracking errors above 3 units.

4The results for no-argumentation with larger number of agents are
not shown because experiments were too slow taking an hour for
an individual run with 512 agents.



However, in some cases, a cooperative response enables targets to
be tracked with RMS error less than 3 units. These results illustrate
the utility of the DCSP model and the NVA strategy investigation.

6. RELATED WORK
While this paper builds on several previous efforts in argumen-

tation[6] and distributed constraint satisfaction[15], it is a unique
effort in synthesizing these two areas. Argumentation has been rig-
orously investigated using different logics including specially de-
signed logics of argumentation[6][11]. Some of these efforts focus
on formal modeling of agents’ detailed mental states, or specific
techniques for resolving conflicts in argumentation (e.g., defining
defeat in argumentation). Unfortunately, such formalization ap-
pears too detailed and computationally complex to be suitable for
empirical investigation of the effects of argumentation on large-
scale conflict resolution convergence. Furthermore, these efforts
have not focused on formalizing different collaborative NVA strate-
gies or empirically investigating the impact of such strategies. In-
deed, we are unaware of experimental investigations in large-scale
convergence using such logical frameworks of argumentation. In
contrast, we have built on constraint propagation in DCSP in mod-
eling argumentation. We have also investigated different collabora-
tive NVA strategies using value ordering in this framework. Thus,
by avoiding detailed modeling of individual agents’ mental states,
and by building on highly efficient DCSP algorithms, we enable
systematic experimental investigation of the computational proper-
ties of argumentation systems in the large-scale.

In other related work, some computational models for negotia-
tion strategies have been offered, e.g., [9]. However, these efforts
focus on non-collaborative strategies, do not focus on investigating
argumentation, and do not focus on scale-up.

Our work has built on the rich foundations of the existing DCSP
work[1, 14, 15]. Our ability to experimentally investigate argu-
mentation and NVA strategies is a testimony to the effectiveness
of using DCSP as a computational model. We have modeled argu-
mentation as constraint propagation[7], and negotiation strategies
as value ordering heuristics[3]. While these enhancements came
about in service of studying NVA, they appear to be useful as pos-
sible enhancements to DCSP algorithms.

Finally, research on distributed resource allocation is also re-
lated. While resource allocation is itself a broad area of research,
our use of argumentation for resource conflict resolution and the
use of enhanced DCSP for modeling such conflict resolution sets
our work apart. For instances, [8] extends dispatch scheduling
to improve resource allocation; and [2] on distributed scheduling
airport-ground scheduling service. While these systems do not use
argumentation, hopefully our investigations will begin to shed light
on the utility of argumentation in these domains.

7. CONCLUSION
Argumentation is an important conflict-resolution technique in

multi-agent research. However, much of the existing work has fo-
cused on smaller-scale systems, and major questions regarding the
computational performance of large-scale collaborative argumen-
tation and different NVA strategies remain unaddressed. Yet it is
difficult to answer these questions with ad-hoc implemented argu-
mentation systems or complex and detailed logical frameworks.

Instead, to address these issues, we provided a novel compu-
tational model of argumentation in terms of constraint propaga-
tion in DCSP. Since, this model exploits existing efficient DCSP
techniques, and efficiently incorporate argumentation as constraint
propagation, it appears better suited for conducting large-scale ex-
periments to investigate computational performance of argumenta-

tion. The key contributions of this paper are: (1) modeling of argu-
mentation in terms of constraint propagation in DCSP; (2) formal-
izing and investigating different cooperative NVA strategies; (3)
conducting large-scale experiments that quantitatively measure the
performance of argumentation and different NVA strategies. These
experiments illustrate that argumentation can indeed lead to signifi-
cant improvement in convergence of conflict resolution. Our exper-
iments with NVA strategies illustrate that choosing the right strat-
egy can lead to very significant improvement in convergence. The
experiments also reveal a surprising result: even in a fully coopera-
tive setting, the most cooperative argumentation strategy is not the
best in terms of convergence in negotiation. These results can help
guide the development of real-world multi-agents systems. Finally,
key ideas from argumentation, such as cooperative response, could
feed back into improvements in existing DCSP algorithms.
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