
Monitoring Deployed Agent Teams

Paper ID: 226
Keywords: Multi-agent teams, Modeling the behavior of other agents, Multi-agent

communication/collaboration, Plan-Recognition

ABSTRACT
Recent years have seen an increasing need for on-line monitoring
of deployed distributed teams of cooperating agents, for visualiza-
tion, for performance tracking, etc. However, in deployed applica-
tions, we often cannot rely on the agents communicating their state
to the monitoring system: (a) we rarely have the ability to change
the behavior of already-deployed agents such that they communi-
cate the required information (e.g., in legacy or proprietary sys-
tems); (b) different monitoring goals require different information
to be communicated (e.g., agents’ beliefs vs. plans); and (c) com-
munications may be expensive, unreliable, or insecure. This pa-
per presents a non-intrusive approach based on plan-recognition, in
which the monitored agents’ state is inferred from observations of
their normal course of actions. In particular, we focus on inference
of the team state based on its observedroutinecommunications, ex-
changed as part of coordinated task execution. The paper includes
the following key novel contributions: (i) alinear timeprobabilis-
tic plan-recognition algorithm, particularly well-suited for process-
ing communications as observations; (ii) an approach to exploiting
general knowledge of teamwork to predict agent responses during
normal and failing execution, to reduce monitoring uncertainty; and
(iii) a technique for trading expressivity for scalability, represent-
ing only certain useful monitoring hypotheses, but allowing for any
number of agents and their different activities, to be represented in
a single coherent entity. Our empirical evaluation illustrates that
monitoring based on observed routine communications enables sig-
nificant monitoring accuracy, while not being intrusive. The results
also demonstrate a key lesson: A combination of complementary
low-quality techniques is cheaper, and better, than a single, highly-
optimized monitoring approach.

1. INTRODUCTION
Recent years have seen tremendous growth of fully-deployed ap-
plications involving distributed, heterogeneous, multi-agent teams
(e.g., [6, 16]). This growth has lead to increasing need for moni-
toring techniques that allow a synthetic agent or human operator to
monitor and identify the state of the distributed team. Such mon-
itoring is critical for visualization [13], for identifying failures in
execution [6, 11], and for facilitating collaboration between the

monitoring agent and the members of the team [5].

This paper focuses on techniques that a monitoring agent may use
to accurately identify the state of a distributed team, for instance
to aid a human operator in tracking the team’s progress. We seek
practical techniques that are appropriate for realistic, large-scale
applications, and in particular techniques that are appropriate for
monitoring previously-deployed applications.

One approach to monitoring expects each monitored team-member
to communicate its state to the monitoring agent at regular intervals,
or at least whenever the team-member changes its state. This pro-
vides the monitoring agent with accurate information on the state
of the team. Unfortunately, this monitoring approach (henceforth,
report-based monitoring) suffers from several problems in moni-
toring deployed distributed teams:

1. It involves intrusive modifications to the behavior of moni-
tored agents, to cause them to communicate their state. How-
ever, many deployed distributed systems are built from het-
erogeneous agents, developed by different organizations at
different times. This makes modifications difficult. In partic-
ular, legacy and proprietary systems are notoriously difficult
to modify.

2. The information which the agents must communicate may
change depending on the monitoring task (e.g., visualization
vs. fault-detection). Requiring agents to change their reports
(based on monitoring tasks which may have not been fore-
seen) undermines the scalability of this approach.

3. It places heavy computational and bandwidth burdens on the
monitored agents and the communication lines involved,as
has been repeatedly noted in the literature(e.g., [9, 10, 5,
4, 16, 21]). In our own application domain, the agents nor-
mally exchange approximately 100 messages during task ex-
ecution. However, using reports, they will need to communi-
cate 50,000 messages. This difficulty only increases with a
scale-up in the number of agents.

4. It assumes completely reliable and secure communications
between the team-members and the monitoring agent. Un-
fortunately, this is often not possible. Failures do occur, and
communications must often be limited in adversarial settings
for security reasons.

An alternative monitoring approach is based on plan-recognition
(e.g., [17, 8, 11]): The monitoring agent infers the unobservable

state of the agents based on their observable actions, using knowl-
edge of the plans that give rise to the actions. This approach is
completely non-intrusive, requiring no changes to agents’ behav-
iors, and allows for changes in the requested monitoring informa-
tion. Furthermore, plan-recognition can rely on inference to com-
pensate for occasional communication losses, something not pos-
sible in report-based monitoring, and is thus much more robust to
communication failures.

Generally, the only observable actions of agents in a distributed
team are theirroutinecommunications, which the agents exchange
as part of task execution [13]. Unfortunately, most local actions
taken by an agent (for instance, displaying information on a con-
sole) are not observable to a remote monitoring agent (that may be
running hundreds of miles away). Fortunately, the growing popu-
larity of agent integration tools [20, 14] and agent communication
languages [3] increases standardization of aspects of agent commu-
nications, and provides increasing opportunities for observing and
interpreting inter-agent communications.

Given knowledge about the plans that the agents may be execut-
ing, a monitoring agent using plan-recognition can infer the current
state of the agents from such observed routine messages. However,
uncertainty in plan-recognition is a well-recognized major diffi-
culty. Such uncertainty (i) may mislead the monitoring agent in
its decision making, and (ii) can be expensive to reason about, as
the number of hypotheses grows exponentially in the number of
agents.

Indeed, such is the case in observing communications. Agent team
members cannot and do not in practice continuously communicate
among themselves about their state [10, 5]. Furthermore, commu-
nications sometimes occur in small subteams (i.e., only a single
agent or members of a particular subteam will communicate): In
our application, the agents roughly communicate once for every
twenty state-changes on average, with some agents only communi-
cating once or twice during the entire task execution. And yet, the
monitoring system must infer the state of all agents in the team, at
all times.

This paper presents a number of novel techniques used by OVER-
SEER, a fully-implemented monitoring agent, to reduce the uncer-
tainty and increase the efficiency of monitoring potentially large
distributed teams, under the severe response-time and scale-up re-
quirements imposed by realistic applications. OVERSEERis reg-
ularly used in monitoring complex, distributed applications com-
posed of heterogeneous agents. It includes the following key con-
tributions: (i) an efficient,linear timeprobabilistic plan-recognition
mechanism, particularly well-suited for processing communica-
tions in agent teams; (ii) a method for exploiting the procedures
used by a team to effectively predict (and hence effectively mon-
itor) team responses during normal and failed execution; and (iii)
YOYO*, an algorithm that models the agent team (with all the dif-
ferent parallel activities taken by individual agents) using a single
structure, instead of modeling each agent individually—sacrificing
some expressivity (the ability to accurately monitor the team in cer-
tain coordination failure states) for efficiency and scalability. In
particular, YOYO* runs in linear time by restricting itself to co-
herent monitoring hypotheses, while a more general approach that
avoids these restrictions runs the risk of run times exponential in
the number of agents.

In applying these techniques, OVERSEER mainly utilizes two

knowledge-bases to carry out its task: (a) knowledge of theplan
hierarchy involved in carrying out the task (e.g., knowledge that
a particular sequence of steps in the plan calls for aroute-planner
agent to plan routes and pass them tohelicopter agents); and (b)
the team’s organizational hierarchy (team-hierarchy), which speci-
fies which agents and subteams are part of what teams. The team-
hierarchy enables OVERSEERto engage inSocially-Attentive Mon-
itoring [11], exploiting knowledge about the relationships that the
agents ideally maintain, and the procedures that the take to maintain
these relationships. In addition, OVERSEERutilizes a computation-
ally cheap, but low-accuracy, temporal model to reason about plan
durations.

We present a rigorous evaluation of OVERSEER’s monitoring capa-
bilities in one of its application domains (described in Section 2)
and show that the techniques presented result in a significant boost
to OVERSEER’s monitoring accuracy and efficiency, while sacrific-
ing little in terms of being able to detect failures. While previous
work in multi-agent plan recognition has either focused on exploit-
ing explicit teamwork reasoning, e.g., [17], or explicitly reasoning
about uncertainty, e.g., [8], a key novelty in OVERSEERis that it
effectively blends these two threads together.

2. AN EXAMPLE DISTRIBUTED TEAM
OVERSEERhas been applied in multiple applications, monitoring
distributed teams of heterogeneous, software agents, consisting of
10 to 20 team members who are collaborating across the Internet.
In this section, we describe one of these applications, which we
have used to evaluate OVERSEER. In this application, a distributed
team of 11 agents is executing a simulation of an evacuation of
civilians from a threatened location. The integrated system al-
lows a human commander to interactively provide locations of the
stranded civilians, safe areas for evacuation and other key points.
Simulated helicopters then fly a coordinated mission to evacuate
the civilians, relying on various information agents to dynamically
obtain information about enemy threats, (re)plan routes to avoid
threats and obstacles, etc. The distributed team is composed of di-
verse agents from four different research groups: A Quickset multi-
modal command input agent [1], a route planner [15], the Ariadne
information agent [12] and eight synthetic helicopter pilots [19].

The team is integrated using the Teamcore multi-agent integration
architecture [20], which accomplishes integration by “wrapping”
each agent with a proxy that maintains collaboration with other
agents (via their own proxies). A distributed application is formed
by a team of agents jointly executing the application task, described
by a team-oriented program. This program consists of a set of hi-
erarchical team plans, with assigned roles for teams and subteams.
As an example, Figure 1-a shows a part of the team/subteam hi-
erarchy used in the evacuation-domain (described below). Here,
for instance, TRANSPORT is a subteam of Task-Force. Figure 1-b
shows an abbreviated plan-hierarchy for the same domain. High-
level team plans, such as EVACUATE, typically decompose into
other team plans, such as PROCESS-ORDERS, and, ultimately, into
leaf-level plans that are executed by individuals. Temporal transi-
tions are used to constrain the order of execution of plans. There are
teams assigned to execute the plans, e.g.,Task Forceteam jointly
executes EVACUATE, while only the TRANSPORT subteam exe-
cutes the TRANSPORT-OPS step. The team-oriented program for
this application consists of about 40 team-plans.

To execute the team-oriented program, each proxy uses a domain-
independent teamwork model, called STEAM [18]. STEAM al-

TASK FORCE

FLIGHT
TEAM

TRANSPORTESCORT

ROUTE
PLANNER

ESCORT

FOLLOW

TRANSPORT

DIVISION 1

...

.....

ESCORT

LEAD

(a) (b)

EVACUATE

.....

[TASK FORCE]

EXECUTE
MISSION

[TASK FORCE]

PROCESS

[TASK FORCE]

MANEUVERS
ZONE
LANDING

....

FLY-FLIGHT
PLAN

[FLIGHT TEAM]

FLY-CONTROL
ROUTE....

ORDERS

[FLIGHT TEAM]

[FLIGHT TEAM]

TRANSPORT
OPERATIONS

ESCORT

[ESCORT] [TRANSPORT]

OPERATIONS

ORDERS
GET

[GET ORDERS]

GET ORDERS
ROLE

Figure 1: Portions of the team-hierarchy (a) and plan-
hierarchy (b) used in our domain. Dotted line show temporal
transitions.

lows the agents to automatically coordinate using selective com-
munications, exchanging messages which either attempt initiation
of a joint-execution of a team-plan, or termination of such a joint-
execution (similarly to normal teamwork protocols). Normally,
agents only communicate about some plans, and only rarely do
they announce both initiation and termination of a specific plan.
Also, termination messages are usually sent only by a single team-
member, the first to discover a cause for termination of joint execu-
tion.

OVERSEER monitors these routine communications, and allows
humans and agents to query about the present and future likely
plans of the entire team, its subteams and individuals—to monitor
progress, compute likelihoods of failure, etc.

Several key concerns have led us to rely on plan-recognition in
building OVERSEER. The main concern has been the difficulty
of modifying agent behavior to support report-based monitoring.
There are several difficulties here: First, the agents are already de-
ployed in several places, e.g. government laboratories and univer-
sities. Modifying the agents at each deployed location is problem-
atic. Second, such modifications are intrusive—they interfere with
carefully designed timing specifications of given tasks, requiring
further modifications by other agents developers. Third, the dis-
tributed nature of TEAMCORE implies that there is no central-
ized server which controls the behavior of the agents, but instead
changes are required in the different proxy types. Fourth, the evac-
uation task is but one of different applications using TEAMCORE
(e.g., see [20]), and thus arbitrary modifications in one application
would require consideration of other applications. Indeed, as mon-
itoring requirements change, the information needed about each
agent changes as well. A solution that would require constant re-
design of the agents and architecture such that they report to ac-
commodate changing monitoring needs will not scale up.

A second concern has been the prohibitive communication costs of
report-based monitoring. In a team of 11 (used as an example in
this paper), regularly scheduled state reports from the agents at the
required temporal resolution would require approximately 50,000
messages to be sent during a 15-minute run, with the number nearly
doubling when we reach 20 agents. If we instead have the 11 agents
only report on state changes, announcing plan initiation and termi-
nation, approximately 2,000 messages have to be sent. However,
this is still an order-of-magnitude more than the normal 100 mes-
sages or so that are exchanged by the 11 agents as part of routine
execution.

We emphasize that we do not rule out the use of report-based mon-

itoring using communications. Our choice of a plan-recognition
approach stems from the problems we have found in using reports
with an already-deployed application. When it is possible, focused
communications in service of monitoring can ease the monitoring
task [20].

3. INDIVIDUAL-BASED MONITORING
This section introduces a novel plan-recognition algorithm which
underlies OVERSEER’s monitoring of each agent in a team, individ-
ually. The algorithm is particularly suited for monitoring communi-
cations, and allows for linear-time inference. It uses an approach to
monitoring each single agent, based on observed communications
originated by the agent, and on predictions of plan-execution dura-
tion. To monitor multiple agents, our initial attempt in OVERSEER

was to build an array of such single-agent plan-recognizers, one for
each agent. OVERSEERthen maintains the state of the agents by
updating their plan-hierarchy based on messages that are observed,
and the time that has passed.

For instance, if OVERSEER observes a message about the ini-
tiation of FLY-F L IGHT-P L A N by one of the helicopters, then
it knows from Figure 1b thatPROCESS-O RD E RS cannot be a
possible future plan of the agent. However, there is uncer-
tainty as to whetherFLY-F L IGHT-P LA N andLANDING-Z ONE-
MANEUVERSare active, as both are possible future states, and
the duration ofFLY-F L IGHT-P L AN is not certain. Furthermore,
since OVERSEERdoes not observe any message hinting at the state
of other team-members, it updates their hypothesized state based
on estimated plan-duration , taking into account the time that has
passed since the last update.

We address the uncertainty in such monitoring through a proba-
bilistic model that supports quantitative evaluation of the hypothe-
ses. Since we monitor agents in terms of the selected plans, we use
a time series of state variables, where, at each point of time, the
agent’s state is the state of the team-oriented program that it is cur-
rently executing, i.e., a path from root to leaf in the team-oriented
program tree. We represent the plans in the program by a set of
boolean random variables,fXi;tg, where each variableXi;t is true
if and only if planXi is active at timet. Beliefs about the agent’s
actual state at timet are then represented as a probability distribu-
tion over all variablesfXi;tg.

In the example above, OVERSEERwould assign (at timet, after
observing the message) a probability of 0 to PROCESS-ORDERS

(bt(ProcessOrders) = 0), and a probability of 0.5 to each of
FLY-F L IGHT-P LA N and LANDING-Z ON E-MAN E U V ER S(as-
suming it can rule out the plans that follow EXECUTE-MISSION)—
bt(F lyF lightP lan) = bt(LandingZoneManeuvers) = 0:5.

OVERSEERbegins with a belief that the agent is executing its top-
level plan at time 0 (with certainty, i.e.,bt(Evacuate) = 1:0). If
it observes a message from an agent, it incorporates the evidence
into its beliefs about the sender, according to the method described
in Section 3.2. If it does not observe a message from an agent,
it propagates belief about currently executing plans throughout the
hierarchy representing this agent, using the method described in
Section 3.1 to simulate plan execution in time.

3.1 Belief Update with No Observation
If OVERSEERdoes not observe communication, then it rolls the
model forward to the next time slice. For each plan that the agent
could be executing, it computes, using a plan-duration model (tem-

poral model) how likely it is that the agent will complete execu-
tion and go on to its next plan. For simplicity, we treat the dura-
tion of a leaf plan,X, as an exponential random variable, where
the probability of the plan lasting more than� time units decays
exponentially ase��X� . The parameter�X then corresponds to
1/(average duration ofX), and can be acquired from domain ex-
perts or previous runs. Given this model of plan duration, the
probability of the plan’s completion between timest andt + 1 is
Pr(done(X; t)jXt) = 1� e��X .

Once it uses the temporal model to compute the probability of plan
termination, OVERSEERdetermines which plan the agent will ex-
ecute next. It examines the possible successors and computes the
probability of taking the corresponding transition, conditioned on
the fact that no message was observed. For each planX, OVER-
SEER uses the probability of entering each successor,Y , given
thatX has just completed:�xy = Pr(Yt+1jXt; done(X; t)). It
also uses the probability of seeing a message given the transition,
�xy = Pr(msgtjXt; Yt+1). The parameters�, and�, can be ac-
quired from previous runs as well.

OVERSEERmakes a Markovian assumption that the plan history
before timet does not affect the probabilities. It then combines
these values to get the desired conditional probability:

Pr(Yt+1jXt; done(X; t);:msgt)

=
(1��xy)�xy

Pr(:msgtjXt;done(X;t))

=
(1��xy)�xy

�X

The normalizing denominator,�X , is the sum of the numerator over
all possible successors,Y , and can be pre-computed off-line. Ifall
possible transitionsrequire a message, then�X will be zero. In
this case, the agent cannot have begun execution of any successor,
even though it has completed execution ofX. We use ablocked
state associated with each plan to indicate this contingency. Thus,
bt(X;:block) is our belief at timet that X is executed by the
monitored agent, and has not terminated;bt(X; block) is our belief
thatX has terminated, but the agent has not begun execution of a
successor.

If a particular transition indicates the termination of the entire ex-
ecution path, then the probability of the transition corresponds to
the probability that theparentplan has completed. Intuitively, the
probability that we have terminated a last child is the probability
that we have terminated execution of the parent. We therefore com-
pute the probability of transitions out of the parent plan using the
last child’s completion probability.

If the plan has children, then we must also distribute the in-
coming probability (from parent or previous plans) among them
(PROPAGATE-DOWN). Since we assume that all plans take at least
a single time step to complete, we consider only the first child when
we first propagate probabilities from the parent. In Figure 1b, upon
first entering the top-level planEVACUATE, the only possible child
plan that can be active at time 0 isPROCESS-O RD E R S. If there are
multiple first children then they denote alternative execution paths
for a single agent, and we compute the probability over them by
dividing the probability incoming to the parent among them. If any
children have child plans of their own, this new incoming probabil-
ity is distributed in turn, using the same method. In the next time-
step, we propagate not only from the parent to its first children,
but also from these children to the next child in order of execution,
etc. Algorithm 1 presents the pseudo-code for the overall propa-

gation computations, calling the PROPAGATE-DOWN function for
this downward update.

Algorithm 1 PROPAGATE-FORWARD(beliefsb, plansM)

1: for all plansX 2M do
2: bt+1(X;:block)+ = bt(X;:block)e��X

3: if �X = 0 then {Message required}
4: bt+1(X; block) bt(X;:block)(1� e��x) + bt(X; block)
5: else{Message not required}
6: for all plansY that succeedX do
7: � bt(X;:block)(1 � e��x)(1 � �xy)�xy=�x
8: if Y = done then
9: bt+1(parent(X); block)+ = �

10: else{Y is a sibling plan}
11: bt+1(Y;:block)+ = �
12: PROPAGATE-DOWN(Y;� b;M)

3.2 Belief Update with Observed Message
While observing team communication, we can expect to see mes-
sages sent by an individual member that identify either plan initi-
ation or termination. Suppose we have observed a message,msg,
that corresponds to initiation. Then, if only one plan,X, is con-
sistent withmsg, then we know, with certainty, that the agent is
executingX, regardless of whatever evidence we have previously
observed, i.e.,Pr(Xtjmsgt; evidt�1) = 1. If multiple plans are
consistent withmsg, we distribute the unit probability over each
plan, weighted by any prior belief in seeing the given message.

If we observe a message indicating the termination ofX, then we
know that the agent was executingX in the previous time step but
that it has moved on to some successor. Thus, for each state,Y , that
can followX, we set our belief ofY to be proportional to a transi-
tion probability, similar to those in Section 3.1, except that we are
now conditioning on observing a message. Algorithm 2 presents
the pseudo-code for the complete procedure for incorporating ob-
servational evidence.

Algorithm 2 INCORPORATE-EVIDENCE(msgm, beliefsb, plans M)

1: for all plansX 2M consistent withm do
2: if m is an initiation messagethen
3: b0(X;:block) bt(X;:block)
4: else{m is a termination message}
5: for all plansY 2M that succeedX do
6: b0(Y;:block) bt(X; block)�xy�xy=(1 � �x)
7: normalize distributionb0

8: for all plansX 2M with b0 > 0 do
9: bt+1(X;:block) b0(X;:block)

10: bt+1(parent(X);:block)+ = b0(X;:block)
11: PROPAGATE-DOWN(X;b0(X;:block); b;M)

3.3 Individual Agent Recognition Complexity
The pseudo-code of Algorithms 1–2 demonstrates that both types
of belief updates have a time complexity linear in the number of
plans and transitions inM . We gain this efficiency from two
sources. First, the Markovian assumption in the temporal model
allows our propagation algorithm to reason forward to timet + 1
based on only our beliefs at timet, without regard for previous
history. Second, we make another Markovian assumption that the
probability of observing a message depends only on a relevant plan
being active and is independent of the past history. With that as-
sumption, we can incorporate evidence, again, based on only our
beliefs at timet.

4. EXPLOITING TEAMWORK

The previous section has outlined OVERSEER’s basic approach,
which runs plan-recognition separately for each agent, without con-
sidering the effects of an agent’s communication on its peers. Using
an array of individual models that are updated as messages come in,
and with the passage of time, the state of a team is taken to be the
combination of the most likely state of each agent, i.e., the approach
takes a team to be a collection of individual agents.

This approach unfortunately proved insufficient by itself (see re-
sults in Section 5). The scarcity of observations makes monitoring
more reliant on the temporal knowledge. But as there is high vari-
ance in the temporal behavior of the plans, the temporal knowledge
was only of limited use. One way to tackle this difficulty would be
to improve the temporal model, at the cost of losing its appealing
computational efficiency and weak dependence on domain knowl-
edge.

However, a key source of knowledge is not being used in the pre-
vious approach: A team is more than a collection of individuals:
It involves social structures and procedures that maintain them [9],
which can be used to better predict the behavior of team-members.
In a team, relationships and interactions among agents are pre-
dictable (at least to a degree), and this property can be used to
alleviate uncertainty.

Such exploitation of social knowledge for monitoring is called
Socially-Attentive monitoring[11]. The following sections report
on several novel socially-attentive techniques that significantly im-
prove monitoring accuracy and scalability. The techniques inte-
grate team and teamwork knowledge as the basis for disambiguat-
ing the monitoring hypotheses, eliminating hypotheses which are
unlikely to be useful. Such elimination not only significantly boosts
accuracy, but can also be used to reduce the space requirements of
monitoring.

4.1 Efficient Reasoning with Team Coherence
A key difference between monitoring a team and monitoring a
group of individuals is that we expect the team to worktogether:
Team-member are ideally in agreement about their joint goals and
plans. This phenomenon—calledteam-coherence[11]—holds at
different levels in the team. Agents in an atomic subteam work
together on the plans selected for the subteam, subteams work to-
gether with sibling subteams on higher level joint plans, etc. Indi-
vidual agents may still choose their own execution, but they do so
in service of agreed-upon joint plans.

Assuming non-failure conditions, we can use coherence as a heuris-
tic, preferring hypotheses in which team-members are in agreement
about their joint plans, over hypotheses in which they are in dis-
agreement. This requires knowledge about what plans in the hi-
erarchy are to be executed by what (sub)teams (as encoded in the
plan-hierarchy, part of the team-oriented program), and knowledge
about what subteam/agent is part of another subteam (the team-
hierarchy).

For example, suppose that the entire team is known to be executing
FLY-FLIGHT-PLAN (Figure 1-b). Now, a message from one mem-
ber of the TRANSPORT subteam is observed, indicating that it has
begun execution of the TRANSPORT-OPSplan step. Since this plan
step is to be jointly executed by all members of the TRANSPORT
subteam (and only them), we can use coherence to prefer the hy-
pothesis that the other subteam members have also initiated exe-
cution of TRANSPORT-OPS. Furthermore, since this plan-step is

in service of the LANDING-ZONE-MANEUVERSplan, which is to
be jointly executed by the TRANSPORT and ESCORT subteams,
we can prefer the coherent hypothesis that team-members of ES-
CORT are executing LANDING-ZONE-MANEUVERS. We can now
come back down the plan-hierarchy and infer that members of the
ESCORT subteam are executing ESCORT-OPS, etc.

Preference for coherent hypotheses not only significantly promotes
accuracy (see Section 5), but also offers hope for resolving scala-
bility issues. Indeed, coherence is a very strong constraint, since
there is in general only a linear number (in the size of the plan-
hierarchy) of coherent hypotheses, but an exponential number of
incoherent hypotheses. We can exploit this property of coherence
in designing monitoring algorithms that reason only about coherent
hypotheses, and therefore offer better scalability as the number of
agents increases. Such algorithms may not be able to reason about
incoherent hypotheses, and are therefore less expressive. However,
the results demonstrate (Section 5) that the level of accuracy even
with such limited expressiveness is more than sufficient for our pur-
poses.

We present here the YOYO* algorithm, an efficient technique for
reasoning about coherent hypotheses (Algorithm 3, building on Al-
gorithms 1 & 2). Per its name, YOYO* climbs up and down the
team- and plan-hierarchies (as in the example above), to re-align
prior knowledge such that it is coherent with the new observation.
YOYO*’s key novelty is that it relies on asingleplan-hierarchy that
is used to represent all team-members together, instead of an array
of plan-hierarchies. It thus offers a much more scalable solution to
monitoring the teams—space complexity remains constant as the
number of agents increases (provided no changes are made to the
plan-library). On the other hand, YOYO* sacrifices expressivity, as
it is unable to represent incoherent hypotheses (though it is able to
detect their occurrence). For example, a hypothesis that one agent
is executing LANDING-ZONE-MANEUVERS while the other one
is executing FLY-FLIGHT-PLAN cannot be represented in YOYO*.
However, YOYO* may be able to detect that a failure of this type
occurred.

Algorithm 3 YOYO*(plan-hierarchy M, team-hierarchy H)

1: Loop forever:
2: if messages rec’d–new planS teamT , then
3: Incorporate-Evidence(T, S)
4: tmp T
5: while tmp is not the root team inH do
6: find in M lowest common ancestor A of S joint totmp

and its sibling teams
7: for each child transition of A whose subteam6=tmp do
8: SCALE(the subtree roots at the child), so state probabil-

ities of each subteam’s child plan sums up to the new
probability of A

9: tmp parentof(tmp)
10: else
11: PROPAGATE-FORWARDin M

The key idea in YOYO* is that once a step is taken upwards in the
plan-hierarchy (line 6), it is followed by a traversal of the subtrees
below the new root node such that all the evidence below the node
is made coherent. This is done by the SCALE procedure, which
re-distributes the new state probability of a parent among its chil-
dren, such that each child gets scaled based on its relative weight
in the parent. The end result is that the state probabilities of the
children are made to sum up to the state probability of the parent.

The process is recursive, but never re-visits a subtree.

YOYO* also requires minor modifications toPROPAGATE-
FORWARD (Algorithm 1) and INCORPORATE-EVIDENCE (Algo-
rithm 2). INCORPORATE-EVIDENCE must take a team T into ac-
count when incorporating evidence: Only transitions that T is al-
lowed to take may be followed. PROPAGATE-FORWARDmust ad-
dress teams as well: Given some total outgoing probability (either
to a sibling or child transition), if the outgoing transitions are to be
taken by different teams (such as the TRANSPORT and ESCORT
teams), the same total probability would be used for each transition,
instead of splitting the outgoing probability between the transitions.

The following demonstrates how YOYO* handles the example
given above (see Section 5 for in-depth evaluation): When the
message from the member of the TRANSPORT subteam is ob-
served, the new evidence is first incorporated for the transport team.
Among other changes, the probability of the plan TRANSPORT-
OPS goes up significantly. Then, YOYO* begins climbing up
and down the team- and plan-hierarchies: It first finds the low-
est common ancestor of TRANSPORT-OPS that is shared by the
TRANSPORT team and its sibling. This is the LANDING-ZONE-
MANEUVERS plan. It has one child that is to be taken by the
ESCORT team (different than TRANSPORT), and so the subtree
pointed to by this child transition is scaled up–which means that
the probabilities indicating that the ESCORT team is executing
ESCORT-OPSgoes up, based on evidence from the TRANSPORT
team. The process then continues to EXECUTE-MISSION, etc.

4.2 Predicting Team Responses
Another key difference between monitoring a team as opposed to
group of individual agents, is that teams utilize procedures (some-
times called conventions [9]) by which they maintain their com-
mitments. Knowledge of these procedures can be useful to alleviate
uncertainty, since it allows us to make predictions as to the behavior
of team-members in coordinating with one another. In particular,
knowledge of the communication procedures used by the team al-
lows predicting future observed messages. And knowledge of fail-
ure/recovery procedures allow predictions of failure states, given
the current state of the team and the fault models the team uses in
taking corrective actions.

The team’s communication procedures determine at what points
during the execution of the task the team will communicate, either
establishing or terminating a plan. In many cases, a correct predic-
tion that a transition will not be taken without a message being ob-
served can completely rule out all but one hypothesis. For instance,
if an establishment message is expected as agents take the transition
from FLY-FLIGHT-PLAN to LANDING-ZONE-MANEUVERS(Fig-
ure 1), then the plan-recognition system, while not observing such a
message, can eliminate (or at least rank much lower) the possibility
that the team is executing LANDING-ZONE-MANEUVERS.

The knowledge required for such team-responses predictions can
be acquired by learning. Indeed, simple rote-learning was sufficient
in many cases to build a very effective model of the communication
policy of an team. The model proved sufficiently effective to allow
OVERSEERto determine that a particular message was delayed or
missing, thus detecting failures that we had not considered origi-
nally. However, the learned predictions did not fare well in han-
dling rare communication patterns, such as those occurring during
certain rare failures.

5. RESULTS AND EVALUATION
OVERSEERis a fully implemented system, which is used in actual
runs of the evacuation application over the Internet. The first part
of the evaluation tests the contribution of the different techniques
in OVERSEERto recognizing the correct state of the agents. Figure
2 compares the average accuracy for a sample of our actual runs,
marked ’A’ through ’J’ (X-axis). In each run, the team executed
its task completely. At different points during the 10–20 minute
execution, theactualstate of the system was compared to the state
predictedby OVERSEER, where the prediction was taken to be the
current most-likely hypothesis. Each run had 22–45 such compar-
isons (data-points). The average accuracy for each run across those
comparisons is given in the 0-1 (0-100%) range, on the Y-axis. The
results were found to be statistically significant with confidence
greater than 99.999%.

The average accuracy when using the individual models with no
coherence (as in Section 3) is presented in the leftmost bar (marked
Temporal) in each group (Figure 2), and is clearly very low. This
approach is a straightforward attempt at monitoring multiple agents
by monitoring each individual, without considering the interactions
between them. The next bar presents the average recognition accu-
racy when only coherence is used to rule out hypotheses (Section
4.1), with ties broken randomly. Coherence is clearly an effective
constraint, as it brings the accuracy up by approximately 15%with-
out using any temporal knowledge. The next bar to the right (Co-
herent, Temporal) presents the results of combining both coherence
and the probabilistic temporal model (Sections 3 and 4.1). This ap-
proach offers a significant boost in accuracy, when compared to the
approach relying on either information alone.

The next bar to the right (Coherent, Comm) shows the effects of
combining the use of coherence with the use of predictions based
on knowledge of the communication procedures used by the team
(Section 4.2). Here, the communication predictions were used to
restrict the set of coherent hypotheses considered, with ties broken
randomly. The results show that while a temporal model can im-
prove the accuracy of the recognition, alternatively, a significant
boost in accuracy is achieved through the ability to predict at what
point during task execution communication will occur. Indeed, in
many cases, such predictions were able to rule out all hypotheses
but one or two. The remaining bar (Coherence, Temporal, Comm)
presents the average accuracy in each run using the combination
of all techniques. Clearly, this combined technique is superior to
the use of any single technique alone, or a simpler combination, re-
sulting in average accuracy (across all runs) of 84%. While such
high-accuracy is sufficient for our application, further improve-
ments could be realized by improving the learned communication
model. Indeed, OVERSEER’s combination of techniques highlights
a key lesson: Straightforward modeling of a team as a collection of
individuals is insufficient, as it does not take the structured interac-
tions between team-members into account.

To show the system in action, rather than summarized average ac-
curacy, Figure 3 shows the system’s results in two particular runs
(I, J). The figure presents the accumulative number of errors as time
goes by during the run, where an error means that the most likely
hypothesis does not reflect the true state of the agent/team). Each
message exchange corresponds to one to a dozen messages com-
municated by the agents, initiating or terminating a plan.

The line markedCoherentshows the cumulative number of errors if
only coherence is used to select the correct hypothesis. Most such

A B C D E F G H I J
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temporal

Coherent

Coherent,
Temporal

Coherent, Comm

Coherent,
Temporal, Comm

Evaluation Run

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 2: Average accuracy in sample runs.

�

�

��

��

��

��

��

��

��

��

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

2EVHUYHG 0HVVDJH ([FKDQJHV

$
F
F
X
P
X
OD
WL
Y
H
�
(
U
U
R
U
V

&RKHUHQW

&RKHUHQW�
&RPP

&RKHUHQW�
7HPSRUDO

&RKHUHQW�
7HPSRUDO�
&RPP

(a) Run I

�

�

��

��

��

��

��

��

��

��

� � �

�
�

�
�

�
�

�
�

�
�

�
�

2EVHUYHG 0HVVDJH ([FKDQJHV

$
F
F
X
P
X
OD
WL
Y
H
�
(
U
U
R
U
V

&RKHUHQW

&RKHUHQW�
&RPP

&RKHUHQW�
7HPSRUDO

&RKHUHQW�
7HPSRUDO�
&RPP

(b) Run J

Figure 3: Accumulative number of errors in runs I and J.

choices turn out to be erroneous since a random choice is made
among the competing hypotheses. The line markedCoherent, Tem-
poral shows the results for the same runs using both coherence and
the temporal model to choose the most likely hypothesis. This ap-
proach is much more successful in run J than in I, as evident by the
slower rise in the number of cumulative errors.

The line markedCoherent, Commshows the results using coher-
ence and the response predictions. In run I, it was able to fully
compensate for the lack of temporal knowledge, generating ap-
proximately the same number of errors as resulted inCoherent,
Temporal. However, in run J, theCoherent, Commtechnique did
not fare as well. This is at least partially because of agent failures
that have occurred this run, that rendered the team communications
predictions useless, since the agents did not use their usual commu-
nications, but were communicating instead about the failures. This
clearly shows a limitation of the simple learning approach we took,
and we intend to address it in future work. Finally, the remaining
line displays the results of using coherence, the temporal model,
and the model predicting communications. In both runs, we see
again that this combined technique fares significantly better than
either technique by itself.

There are several general lessons that emerge. First, communica-
tion predictions can be very effectively used instead of a more so-
phisticated, more accurate, temporal model. Our own application’s
temporal behavior has a lot of variance, but rather than relying on
sophisticated temporal model (that may be computationally expen-
sive), the communication predictions facilitate high levels of mon-
itoring accuracy. Indeed, an important second lesson is that suc-
cessful monitoring agents can integrate independent low-accuracy
techniques, rather than focus on a particular higher-accuracy mon-
itoring technique (such as a more sophisticated temporal model).

A second part of evaluating OVERSEER examines a key trade-
off between the expressivity and efficiency involved in the plan-
recognition techniques we have presented. From the accuracy
discussion above, it is clear that coherence is a useful heuristic.
YOYO* takes an extreme approach, strictly ruling out reasoning
about incoherences. It is impossible for YOYO*, for instance, to

represent an incoherence in which two team-members are in dis-
agreement about the plan executed by the common team. An ap-
proach in which each individual is represented separately allows for
such representation, and in this respect is more expressive. How-
ever,YOYO* is still able to detect many incoherences–it would fail
to find the states referred to in the messages and announce failure.

On the other hand, YOYO* offers great computational advantages
when compared to the individual representation approach. YOYO*
requires a single, fully-expanded, plan-hierarchy to represent the
entire team. This hierarchy is a union of all the individual agent
plan-hierarchies. In the worst case, every agent carries out a com-
pletely different plan. In this case, YOYO*’s space complexity will
be as inefficient as the individual recognition approach, requiring as
much space (but not more). However, a more typical case is where
agents to share many plans and transitions, because they carry them
out jointly. In this case, YOYO* offers significant savings. The best
case is when a homogeneous team is jointly executing all tasks,
with no sub-teams or individual roles. Then the reduction in space
complexity is from N models to 1.In our application domains the
space savings are about 91%: In monitoring a team of 11 agents,
66 plan-nodes were used in YOYO*, 726 nodes were used in the in-
dividual models array. The array also requires 66 additional nodes
with each additional monitored agent (assuming no addition to the
plan-hierarchy itself).

YOYO* builds on a key insight—that team activity is more than
a collection of individual activities. This insight is used to exploit
information about the activities of one team-member, in hypothe-
sizing about the activities of another team-member. The accuracy
results demonstrate that this is an important factor in monitoring
teams. Furthermore, the insight is useful in restricting the hypothe-
ses space that must be maintained in reasoning about the activities
of a team, as demonstrated by the computational savings we pre-
sented.

6. RELATED WORK
OVERSEERdiffers from most previous work on plan-recognition in
being focused on monitoring multiple agents, not a single agent. A
small number of previous studies have addressed this problem, and
we discuss them below.

Like OVERSEER, previous work by Tambe [17] also focuses on
explicitly using team intentions for inferringteam plansfrom ob-
servations. However, OVERSEERuses a more advanced teamwork
model (e.g., it can predict failure states and recovery actions), uses
knowledge about procedures used by a team (i.e., communication
decisions), and also explicitly reasons about uncertainty and time,
allowing it to answer queries related to the likelihood of current and
future team plans (issues not addressed in [17]).

Work such as [2, 8] focuses on explicitly addressing uncertainty
in plan recognition in multi-agent contexts, but does not exploit
explicit notions of teamwork. For instance, [2] uses pattern match-
ing to recognize tactics in military operations. Similarly, [8] re-
lies entirely on coordination constraints among agents to recog-
nize team tactics. However, as is well known, teamwork is more
than just simultaneous coordinated activity [5]. Thus, a purely
coordination-based approach is likely to face difficulties in general
(as acknowledged in [8]): If a team member were to suddenly fail,
a pure coordination-based approach may fail to recognize the plan
the team attempted to execute. In contrast, OVERSEERcan predict
role replacement and continue with its monitoring. An additional

difference is that OVERSEERmonitors a team using very limited
observations—only of some agents, some of the time, while while
both [2] and [8] use observations of all agents, at all times.

Huber [7] demonstrates the use of probabilistic plan-recognition in
coordinating with multiple agents, and its benefits in communica-
tion savings. Huber’s work does not take into account any knowl-
edge of relationship between agents, and does not focus on effi-
ciency in representing multiple agents, in contrast to YOYO*.

An complementary line of work on TEAMCORE has demonstrated
that plan-recognition-based monitoring can be used to dynamically
adapt the communication patterns of agents, such that monitoring
is made easier [20]. This work (i) reduced, but did not eliminate un-
certainty, and (ii) did not present methods to address uncertainty, as
we do here. However. it presents an interesting future direction for
OVERSEER’s development, where it takes active steps to improve
its monitoring capabilities.

7. SUMMARY AND FUTURE WORK
We have presented OVERSEER, a system for monitoring previously
deployed distributed teams. Monitoring of such teams is a difficult
challenge, as one cannot rely purely on cooperative reports from
the monitored agents: (i) A previously deployed system is diffi-
cult to modify such that agents communicate their state, especially
when using off-the-shelf, proprietary, and legacy components; (ii)
the monitored information may change based on the monitoring
task, and it is unreasonable to expect developers to change the be-
havior of the agents for each such change; and (iii) as is well recog-
nized in the literature, requirements for communication costs and
reliability are prohibitive.

To address this challenge, OVERSEER, employs a novel technique
which utilizes plan-recognition to infer agents’ state from the ob-
servableroutine communications. Such a technique is not intru-
sive, but suffers from large uncertainty, due to the limited number
of observations available. To tackle this uncertainty, OVERSEER

employs a number of novel techniques, which exploit knowledge
of the relationships between the agents to alleviate uncertainty and
increase efficiency of monitoring: (i) An efficient probabilistic al-
gorithm for plan-recognition; (ii) YOYO*, an approach for efficient
recognition of coherent hypotheses; and (iii) the use of team re-
sponses predictions to alleviate uncertainty. These techniques are
general-purpose, and could be potentially applied to the growing
number of distributed agent-based applications such as [1, 6, 16].

We provided an in-depth empirical evaluation of these techniques
in one of the domains in which OVERSEERis applied. The evalu-
ation carefully examines the contribution of each technique to the
overall recognition success, and demonstrates that these technique
work best together, as they complement relative weaknesses of each
other. The paper also presented an evaluation of the expressivity–
scalability trade-off in OVERSEER.

8. REFERENCES
[1] Philip R. Cohen, Michael Johnston, David McGee, Sharon Oviatt,

Jay Pittman, Ira Smith, Liang Chen, and Josh Clow. Quickset:
Multimodal interaction for distributed applications. InProceedings of
the Fifth Annual International Multimodal Conference (Multimedia
’97), pages 31–40, 1997.

[2] Mark Devaney and Ashwin Ram. Needles in a haystack: Plan
recognition in large spatial domains involving multiple agents. In
Proceedings of the National Conference on Artificial Intelligence,
pages 942–947, Madison, WI, 1998.

[3] Tim Finin, Yannis Labrou, and Mayfield. KQML as an agent
communication language. In Jeff Bradshaw, editor,Software Agents.
MIT Press, 1997.

[4] Barbara J. Grosz and S. Kraus. The evolution of sharedplans. In
M. Wooldridge and A. Rao, editors,Foundations and Theories of
Rational Agency, pages 227–262. 1999.

[5] Barbara J. Grosz and Sarit Kraus. Collaborative plans for complex
group actions.Artificial Intelligence, 86:269–358, 1996.

[6] Bryan Horling, Victor R. Lesser, Regis Vincent, Ana Bazzan, and
Ping Xuan. Diagnosis as an integral part of multi-agent adaptability.
Technical Report CMPSCI Technical Report 1999-03, University of
Massachusetts/Amherst, January 1999.

[7] Marcus James Huber and Tedd Hadley. Multiple roles, multiple
teams, dynamic environment: Autonomous netrek agents. In
W. Lewis Johnson, editor,Proceedings of the International
Conference on Autonomous Agents, pages 332–339, Marina del Rey,
CA, 1997. ACM Press.

[8] Stephen S. Intille and Aaron F. Bobick. A framework for recognizing
multi-agent action from visual evidence. InProceedings of the
National Conference on Artificial Intelligence, pages 518–525.
AAAI Press, July 1999.

[9] Nicholas R. Jennings. Commitments and conventions: the
foundations of coordination in multi-agent systems.Knowledge
Engineering Review, 8(3):223–250, 1993.

[10] Nicholas R. Jennings. Controlling cooperative problem solving in
industrial multi-agent systems using joint intentions.Artificial
Intelligence, 75(2):195–240, 1995.

[11] Gal A. Kaminka and Milind Tambe. Robust multi-agent teams via
socially-attentive monitoring.Journal of Artificial Intelligence
Research, 12:105–147, 2000.

[12] Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen
Ashish, Pragnesh Jay Modi, Ion Muslea, Andrew G. Philpot, and
Sheila Tejada. Modeling Web sources for information integration. In
Proceedings of the National Conference on Artificial Intelligence,
1998.

[13] D. T. Ndumu, H. S. Nwana, L. C. Lee, and J. C. Collis. Visualizing
and debugging distributed multi-agent systems. InProceedings of the
International Conference on Autonomous Agents. ACM Press, May
1999.

[14] NEON: New Era of Networks, Inc. Product: NEONet.
http://www.neonsoft.com/.

[15] Terry R. Payne, Katia Sycara, Michael Lewis, Terri L. Lenox, and
Susan Hahn. Varying the user interaction within multi-agent systems.
In Proceedings of the International Conference on Autonomous
Agents, pages 412–418, 2000.

[16] Michal Pechoucek, Vladimir Marik, and Olga Stepankova. Role of
acquaintance models in an agent-based production planning system.
In Proceedings of the International Workshop on Cooperative
Information, 2000.

[17] Milind Tambe. Tracking dynamic team activity. InProceedings of the
National Conference on Artificial Intelligence (AAAI), August 1996.

[18] Milind Tambe. Towards flexible teamwork.Journal of Artificial
Intelligence Research, 7:83–124, 1997.

[19] Milind Tambe, W. Lewis Johnson, Randy Jones, Frank Koss, John E.
Laird, Paul S. Rosenbloom, and Karl Schwamb. Intelligent agents for
interactive simulation environments.AI Magazine, 16(1), Spring
1995.

[20] Milind Tambe, David V. Pynadath, Nicholas Chauvat, Abhimanyu
Das, and Gal A. Kaminka. Adaptive agent integration architectures
for heterogeneous team members. InProceedings of the
International Conference on Multiagent Systems, pages 301–308,
Boston, MA, 2000.

[21] Laurent Vercouter, Philippe Beaune, and Claudette Sayettat. Towards
open distributed information systems by the way of a multi-agent
conception framework. InWorking Notes of the AAAI-2000
Workshop on Agent-Oriented Information Systems (AOIS-2000),
pages 29–38, 2000.

