Dynamic Distributed Resource Allocation: A
Distributed Constraint Satisfaction Approach

Pragnesh Jay Modi Hyuckchul Jung Milind Tambe Wei-Min Shen Shriniwas
Kulkarni

University of Southern California/Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292, USA
{modi,jungh,tambe,shen kulkap@isi.edu

Abstract. In distributed resource allocation a set of agents must assign their re-
sources to a set of tasks. This problem arises in many real-world domains such
as distributed sensor networks, disaster rescue, hospital scheduling and others.
Despite the variety of approaches proposed for distributed resource allocation,
a systematic formalization of the problem, explaining the different sources of
difficulties, and a formal explanation of the strengths and limitations of key ap-
proaches is missing. We take a step towards this goal by proposing a formalization
of distributed resource allocation that represents both dynamic and distributed as-
pects of the problem. We define four categories of difficulties of the problem. To
address this formalized problem, the paper defines the notion of Dynamic Dis-
tributed Constraint Satisfaction Problem (DDCSP). The central contribution of
the paper is a generalized mapping from distributed resource allocation to DD-
CSP. This mapping is proven to correctly perform resource allocation problems
of specific difficulty. This theoretical result is verified in practice by an imple-
mentation on a real-world distributed sensor network.

1 Introduction

Distributed resource allocation is a general problem in which a set of agents must in-
telligently assign their resources to a set of tasks such that all tasks are performed with
respect to certain criteria. This problem arises in many real-world domains such as
distributed sensor networks [7], disaster rescue[4], hospital scheduling[2], and others.
However, despite the variety of approaches proposed for distributed resource allocation,
a systematic formalization of the problem, explaining the different sources of difficul-
ties, and a formal explanation of the strengths and limitations of key approaches is
missing.

We propose a formalization of distributed resource allocation that is expressive
enough to represent both dynamic and distributed aspects of the problem. These two
aspects present some key difficulties. First, a distributed situation results in agents ob-
taining only local information, but facing globambiguity— an agent may know the
results of its local operations but it may not know the global task and hence may not

know what operations others should perform. Second, the situation is dynamic so a so-
lution to the resource allocation problem at one time may become unsuccessful when
the underlying tasks have changed. So the agents must continuously monitor the quality
of the solution and must have a way to express such changes in the problem. Given these
parameters of ambiguity and dynamism, we will define four classes of difficulties of the
problem. In order to address the resource allocation problem, the paper also defines the
notion of Dynamic Distributed Constraint Satisfaction Problem (DDCSP).

The central contribution of the paper is a reusable, generalized mapping from dis-
tributed resource allocation to DDCSP. This mapping is proven to correctly perform
resource allocation problems of specific difficulty. This theoretical result is verified in
practice by an implementation on a real-world distributed sensor network. Ideally, our
formalization may enable researchers to understand the difficulty of their resource al-
location problem, choose a suitable mapping using DDCSP, with automatic guarantees
for correctness of the solution.

2 Domains and Motivations

Among the domains that motivate this work, the first is a distributed sensor domain. This
domain consists of multiple stationary sensors, each controlled by an independentagent,
and targets moving through their sensing range (Figure 1.a and Figure 1.b illustrates
the real hardware and simulator screen, respectively). Each sensor is equipped with a
Doppler radar with three sectors. An agent may activate at most one sector of a sensor
at a given time or switch the sensor off. While all of the sensor agents must act as a
team to cooperatively track the targets, there are some key difficulties in such tracking.

First, in order for a target to be tracked accurately, at least three agents must con-
currently activate overlapping sectors. For example, in Figure 2 which corresponds to
Figure 1.b, if an agent Al detects a target 1 in its sector 0, it must coordinate with
neighboring agents, A2 and A4 say, so that they activate their respective sectors that
overlap with Al’s sector 0. Activating a sector is an agent’s operation. Since there are
three sectors of 120 degrees, each agent has three operations. Since target 1 exists in the
range of a sector for all agents, any combination of operations from three agents or all
four agents can achieve the task of tracking target 1.

1.1-.-_,1-1 5ll=lll
Targe
Sansar} Sameed
Ll @

(a) sensor(left) and target(right) (b) simulator (top-down view)
Fig. 1. A distributed sensor domain

Second, there is ambiguity in selecting a sector to find a target. Since each sensor
agent can detect only the distance and speed of a target, an agent that detects a target
cannot tell other agents which sectors to activate. Assume that there is only target 1
in Figure 2 and agent Al detects the target first. A1 can tell A4 to activate sector 1.
However, Al cannot tell A2 which of the two sectors (sector 1 or sector 2) to activate
since it only knows that there is a target in its sector 0. That is, agents don’t know which
task is to be performed. Identifying a task to perform depends on the result of other
related agents’ operations. If there are multiple targets, a sensor agent may be required
to activate more than one sectors at the same time. For instance, in Figure 2, A4 needs to
decide whether to perform either a task for target 1 or a task for target 2. Since at most
one sector can be activated at a given time, A4 should decide which task to perform.
Thus, the relationship among tasks to perform will affect the difficulty of the resource
allocation problem.

Third, the situation is dynamic as targets move through the sensing range. The dy-
namic property of the domain makes problems even harder. Since target moves over
time, after agents activate overlapping sectors and track a target, they may have to find
different overlapping sectors.

The second domain which motivates our work is Robocup Rescue [4] for disaster
rescue after an earthquake. Here, multiple Fire engines, ambulances and police cars
must collaborate to save civilians from trapped, burning buildings and no centralized
control is available to allocate all of the resources. For instance, an ambulance must
collaborate with a fire engine have a fire extinguished before it can rescue a civilian.
The tasks are dynamic, e.qg., fires grow or shrink and also ambiguous e.g., a fire engine
could receive a report of a fire in an area, but not a specific building on fire. This domain
thus presents another example of a distributed resource allocation problem with many
similarities with the distributed sensor network problem.

The above applications illustrates the difficulty of resource allocation among dis-
tributed agents in dynamic environment. Lack of a formalism for dynamic distributed
resource allocation problem can lead to ad-hoc methods which cannot be easily reused.

Sector Number

Fig. 2. Each sensor (agent) has three sectors.

3 Formalization

A Dynamic Distributed Resource Allocation Problem is a structury, 2, ©> where

— Agisasetofagentsdg = {4, As, ..., Ap}.
- 2={0},03,...,0},...,0p} is a set of operations, where operatiofidenotes the
p‘th operation of agent;. Let Op(A4;) denote the set of operations 4f. Opera-
tions inOp(4;) aremutually exclusivean agent can only perform one operation at
atime.
— O s a set of tasks, where a task is a collection of sets of operations that satisfy the
following properties:
() VT €0, T C P(2)
(i) T is nonempty andyt € T', t is nonempty;
(i) Vt,, ts € T, t, € ts andts t,..

Property (iii) requires that each set of operations in a task should be minimal in
the sense that no other set is a subset of it. For instance, in Figure 2, a set of three
operations is necessary and sufficient to track target 1. Thatiss activating sector
0, A»’s activating sector 24,’s activating sector 1is a minimal set of operations for
the task of tracking target 1. For each task, we use Wgxo denote the union of all
the minimal sets of’.. More formally,

-VT, e 6,Max(T;)= | tr
tr€Tn

For instance, in Figure 2, target 1 can be tracked by four separate sets of operations as
described in Section 2. Here, if we uélﬁ;j to denote the operation of;’s activating
sectorp, target 1 can be also tracked by the union of the four sets, Max({0}, O3,
03, O1}.

We useT’(0}) to denote the tasks for whidh;, is required:

- YO0; € R,T(0})={T, | O}, € Max(T;)}

We require thav/ O; € 0N, | T(O;) | # 0. That is, every operation should serve
some tasks.

All the tasks in@ are not always present. We uég,,..n: t0 denote the set of
tasks that are currently present. This set is determined by the environment. Agents can
execute their operations at any time, but the success of an operation is determined by
the set of tasks that are currently present. More formally,

— Definition 1: V O}, € £, if O}, is executed an@ T, € Ocurrent SUch thalld], € Max(T>),
thenO,, is said tosucceed

A task is performed when all the operations in some minimal set succeed. More for-
mally,

— Definition 2: VT, € O, T, is performediff 3¢, € T, such that all the operations in
succeed.

In Robocup Rescue domain, if a rescue task requires a set of operations from two fire
engines, an ambulance, and a police car, all the required operations should succeed for
the success of the rescue task.

We assume that no mutually exclusive operations are required for the same task just
as, in sensor network problem, each sensor agent cannot activate more than one sector
to perform one task. Thus, we have the following requirement:

- VT, € @ andVA; € Ag, | Max(T,) N Op(4;) | < 1.

To eliminate the possibility of performing phantom tasks, we assume that a per-
formed task should be a task in the current task set:

— No phantom tasks assumptionvT;. € @, if T;. is performed, thefl’, € Ocurrent.

We also assume that at least one agent is notified of the existence of a current task by
having its corresponding operation succeed. This is reasonable because the task will fail
if no agent is notified.

- Notification assumption VT, € O, if T € Ocurrent, thend O}, € Max(T) such tha},
succeeds.

We now define some properties of a given resource allocation problem. Multiple tasks
in O.rene €aN be performed concurrently with some conditions. For instance, two
different tasksI; andT, can be performed concurrently if all the operations for per-
forming T} can be executed concurrently with those for performiihgWe define two
types ofconflict-freeto denote tasks that can be performed concurrently 80,z

— Definition 3: V 17, Ts € Ocurrent, I and T arestrongly conflict fredff the following
statement is true:
if T, # Ts, thenV A; € Ag, | Max(T) N Op(4;) | +
| Max(Ts) N Op(A4;) | <1 holds.

The condition implies that an agent can serve at most one current task.

— Definition 4: V T,.,Ts € Ocurrent, I andT; areweakly conflict freeff the following
statement is true:
if T, # T, then there exist, € T, andts € T s.t.V A; € Ag, | t» N Op(A;) | + | ts N
Op(4;) | <1 holds.

Here, the condition implies that, for two current tasks, there exist two sets of operations
that do not require mutually exclusive operations from an agent.

When there is no centralized control, no agent knows what the current task is. When
an operationD; of an agent4; succeeds, the agent only knows that there is an uniden-
tified task to be performed from a task €@t If | T(O;’,) | =1, there is no ambiguity
in identifying a task to be performedi; whose operation succeeds can look up the
task and inform other related agents of what the current task is. However, there can be
multiple tasks for which?é is required. If T(O;',) | > 1, A; has to decide what the task
is in a cooperative way with other agents. A tagke T(O;) can be identified when
all the operations in an operation g$ete T, succeed. Since operations from different
agents are involved, the decision problem cannot be solved by an individual agent.

The Dynamic Distributed Resource Allocation Problem is to identify current tasks
that can change over time and assign operations that are required by the current tasks.

The difficulty of the problem depends on both the ambiguity of the tasks from a dy-
namic distributed environment and the relation among tasks which may require con-
flicting resources. Here, we outline four problem classes of increasing difficulty based
on ambiguity and the relation among tasks.

— Class 1 (static, strongly conflict free, no ambiguity)In this class of problems, the
tasks iNO.y,ren: fixed, but unknown, and arstrongly conflict freeFurthermore,

YOi € £2,|T(0}) | =1, so there is no ambiguity in identifying a task for when an
operation succeeds.

— Class 2 (static, strongly conflict free, ambiguity) In this class of problems, the
tasks iNO.,,ren: fixed, but unknown, and argtrongly conflict freeFurthermore,

VOi € 2,|T(0}) | > 1, so there is ambiguity in identifying a task for when an
operation succeeds.

— Class 3 (dynamic, strongly conflict free, ambiguity)Dynamism means th&...;-r¢n:
changes over time. In other words, the set of tasks that must be performed by the
agents is dynamic.

— Class 4 (dynamic, weakly conflict free, ambiguity)By relaxingstrongly conflict
free tasks assumption, we make agents’ decision even harder.Weilkly con-
flict free tasks, agents may need to select an operation among mutually exclusive
operations. Agents should negotiate to find a solution without involving mutually
exclusive operations for each task@,ren¢ -

As the number of class increases, the problem hardness also increases. A solution
method can solve any problem in lower classes.

3.1 Application of formalism

To illustrate this formalism in the distributed sensor network domain, we cast each
sensor as an agent and activating a sector is an operation. A task then, is a set of minimal
sets of operations that can track a target. For example, in Figure 2, target 1 can be
tracked by four different sets of operatiof@3, 02, 03}, {03, O, O}, {04, OE,

01}, and {0}, O3, O1}. We define a task for each target in an area of overlap of
sectors. For the situation illustrated in Figuré®,,,en: = {T1, Tz}, T1 = {{0¢}, O3,

03}, {03, 03, 01}, {05, 03, 01}, {0g, 03, O1}}, T» = {{0§, O3 }}.

When an operation that is required for multiple task succeeds, an agent may not
know which of those tasks are actually present. Suppose that only target 1 is in Figure 2
andAs; is the first agent who detects the target 1. Aftgis operationO; is successfully
executedAs cannotidentify the current task'{ above) among the tasks whose element
includesO3: for instance3 is included in botiT} andTs. A3 and other related agents
should cooperatively find the current task and solve the resource allocation problem.

4 Dynamic DCSP

A Constraint Satisfaction Problem (CSP) is commonly defined by a set of variables,

each associated with a finite domain, and a set of constraints on the values of the vari-
ables. A solution is the value assignment for the variables which satisfies all the con-
straints. A distributed CSP is a CSP in which variables and constraints are distributed

among multiple agents. Each variable belongs to an agent. A constraint defined only
on the variable belonging to a single agent is callédcal constraint In contrast, an
external constraininvolves variables of different agents. Solving a DCSP requires that
agents not only solve their local constraints, but also communicate with other agents to
satisfy external constraints.

DCSP assumes that the set of constraints are fixed in advance. This assumption is
problematic when we attempt to apply DCSP to domains where features of the envi-
ronment are not known in advance and must be sensed at run-time. For example, in
distributed sensor networks, agents do not know where the targets will appear. This
makes it difficult to specify the DCSP constraints in advance. Rather, we desire agents
to sense the environment and then activate or deactivate constraints depending on the
result of the sensing action. We formalize this idea next.

We take the definition of DCSP one step further by defining Dynamic DCSP (DD-
CSP). DDCSP allows constraints to be conditional on some predicate P. More specifi-
cally, adynamicconstraint is given by a tuple (P, C), where P is an arbitrary predicate
that is continuously evaluated by an agent and C is a familiar constraintin DCSP. When
P is true, C must be satisfied in any DCSP solution. When P is false, C may be violated.
An important consequence of dynamic DCSP is that agents no longer terminate when
they reach a stable state. They must continue to monitor P, waiting to see if it changes.
If its value changes, they may be required to search for a new solution. Note that a so-
lution when P is true is also a solution when P is false, so the deletion of a constraint
does not require any extra computation. However, the converse does not hold. When a
constraint is added to the problem, agents may be forced to compute a new solution. In
this work, we only need to address a restricted form of DDCSP i.e. it is only necessary
thatlocal constraintde dynamic.

AWC [8] is a sound and complete algorithm for solving DCSPs. An agent with local
variableA;, chooses a value for A; and sends this value to agents with whom it has
external constraints. It then waits for and responds to messages. When the agent receives
a variable value 4; = v;) from another agent, this value is stored in an AgentView.
Therefore, an AgentView is a set of paif§A;,v;), (Ak, vi), ...}. Intuitively, the
AgentView stores the current value of non-local variables. A subset of an AgentView
is a NoGood if an agent cannot find a value for its local variable that satisfies all con-
straints. For example, an agent with varialdlemay find that the sef(4;, v;), (4x,

vi)} is @ NoGood because, given these valuesAprand A, it cannot find a value

for A; that satisfies all of its constraints. This means that these value assignments can-
not be part of any solution. In this case, the agent will request that the others change

their variable value and a search for a solution continues. To guarantee completeness, a
discovered NoGood is stored so that that assignment is not considered in the future.

The most straightforward way to attempt to deal with dynamism in DCSP is to
consider AWC as a subroutine that is invoked anew everytime a constraint is added.
Unfortunately, in many domains such as ours, where the problem is dynamic but does
not change drastically, starting from scratch may be prohibitively inefficient. Another
option, and the one that we adopt, is for agents to continue their computation even as
local constraints change asynchronously. The potential problem with this approach is
that when constraints are removed, a stored NoGood may now become part of a so-

lution. We solve this problem by requiring agents to store their own variable values
as part of non-empty NoGoods. For example, if an agent with varidblnds that
a valuev; does not satisfy all constraints given the AgentVigid ;, v;), (Ax, v)},
it will store the set{(4;,v;), (4;,v;), (Ax, vr)} as a NoGood. With this modifica-
tion to AWC, NoGoods remain “no good” even as local constraints change. Let us call
this modified algorithm Locally-Dynamic AWC (LD-AWC) and the modified NoGoods
“LD-NoGoods” in order to distinguish them from the original AWC NoGoods.

Lemma I: LD-AWC is sound and complete.

The soundness of LD-AWC follows from the soundness of AWC. The completeness
of AWC is guaranteed by the recording of NoGoods. A NoGood logically represents a
set of assignments that leads to a contradiction. We need to show that this invariant is
maintained in LD-NoGoods. An LD-NoGood is a superset of some non-empty AWC
NoGood and since every superset of an AWC NoGood is no good, the invariant is true
when a LD-NoGood is first recorded. The only problem that remains is the possibility
that an LD-NoGood may later become good due to the dynamism of local constraints.
A LD-NoGood contains a specific value of the local variable that is no good but never
contains a local variable exclusively. Therefore, it logically holds information about
external constraints only. Since external constraints are not allowed to be dynamic in
LD-AWC, LD-NoGoods remain valid even in the face of dynamic local constraints.
Thus the completeness of LD-AWC is guaranteed.

5 Generalized Mapping

In this section, we map the Class 3 Resource Allocation Problem, which subsumes Class
1 and 2, onto DDCSP. Our goal is to provide a general mapping so that any resource
allocation problem can be solved in a distributed manner by a set of agents by applying
this mapping.

Our mapping of the Resource Allocation Problem is motivated by the following
idea. The goal in DCSP is for agents to choose values for their variable so all constraints
are satisfied. Similarly, the goal in resource allocation is for the agents to choose op-
erations so all tasks are performed. Therefore, in our first attempt we map variables to
agents and values of variables to operations of agents. So for example, if amagent
has three operations it can perforf®)i, O, 0%}, then the variable corresponding to
this agent will have three values in its domain. However, this simple mapping attempt
fails because an operation of an agent may not always succeed. Therefore, in our sec-
ond attempt, we define two values for every operation, one for success and the other for
failure. In our example, this would result in six values.

It turns out that even this mapping is inadequate for the Class 2 and 3 Resource
Allocation Problem. This is because an operation can be required for more than one
task. We desire agents to be able to not only choose which operation to perform, but
also to choose for which task they will perform the operation. For example in Figure 2,
Agent A3 is required to active the same sector for both targets 1 and 2. We want A3 to
be able to distinguish between the two targets, so that it does not unnecessarily require
A2 to activate sector 2 when target 2 is present. So, for each of the values defined so
far, we will define new values corresponding to each task that an operation may serve.

More formally, given a Class 3 Resource Allocation Problefg, (2, ©), the cor-
responding DCSP is defined over a setofariables,

- A={A,, As,..., Ay}, one variable for eacH; € Ag. We will use the notation;
to interchangeably refer to an agent or its variable.

The domain of each variable is given by:

- VA; € Ag,Dom(4;) = U 0OixT(0;)x{yes,ng.
Ojen

In this way, we have a value for every combination of operations an agent can per-
form, a task for which this operation is required, and whether the operation succeeds or
fails. For example in Figure 2, Agent A3 has two operations (sector 1 and 2) with only
one possible task (target) and one operation (sector 0) with two possible tasks (target 1
and 2). This means it would have 8 values in its domain.

A word about notation¥ Of € 2, the set of values D! xT'(O})x{yes} will
be abbreviated by the terr@;’,*yes and the assignment; = O;,*yes denotes that
v € O;’,*yes s.t.A; = v. Intuitively, the notation is used when an agent detects that
an operation is succeeding, but it is not known which task is being performed. This
analagous to the situation in the distributed sensor network domain where an agent may
detect a target in a sector, but not know its exact location. Finally, when a variable
A; is assigned a value, we assume the corresponding agent is required to execute the
corresponding operation.

Next, we must constrain agents to assign “yes” values to variables only when an
operation has succeeded. However, in Class 3 problems, an operation may succeed at
some time and fail at another time since tasks are dynamically added and removed
from the current set of tasks to be performed. Thus, every variable is constrained by the
following dynamic local constraints.

— Dynamic Local Constraint 1 (LC1): VT, € ©, V0! € Max(T}), we have LC14;)
= (P, C), where
P: O} succeeds.
C:A; = O)*yes

— Dynamic Local Constraint 2 (LC2): VT, € O, VO;', € Max(T.), we have LC24,)
= (P, C), where
P: O} does not succeed.
C: A; # O} *yes

The truth value of P is not known in advance. Agents must execute their operations,
and based on the result, locally determine if C needs to be satisfied. In the Class 1
and 2 problems, the set of current tasks does not change and thus, the truth value of P,
although initially unknown, once known will not change over time. On the other hand,
in the Class 3 and 4 problems, where the set of current tasks is changing over time, the
truth value of P will change, and hence the corresponding DCSP will be truly dynamic.

We now define the external constraint (EC) between variables of two different
agents. EC is a normal static constraint and is always present.

— External Constraint: VT, € @, VO; € Max(T;), YA; € A,

EC(A,, Aj):

(1) A; = O} T,yes, and

(2)Vt, € T, S0} € t,,3g S.L.OJ € t,.
= A; =0;T,yes

The EC constraint requires some explanation. Condition (1) states that anAgent
has found an operation that succeeds for tAskCondition (2) quantifies the other
agents whose operations are also requiredforlf A; is one of those agents, the
consequentrequires it to choose its respective operation f@t.theA; is not required

for T)., condition (2) is false and EC is trivially satisfied. Finally, note that every pair of
variablesA; and A;, have two EC constraints between them: one fréyrto A; and
another from4; to A4;. The conjunction of the two unidirectional constraints can be
considered one bidirectional constraint.

We will now prove that our mapping can be used to solve any given Class 3 Re-
source Allocation Problem. The first theorem shows that our DDCSP always has a
solution, and the second theorem shows that if agents reach a solution, all current tasks
are performed. It is interesting to note that the converse of the second theorem does not
hold, i.e. it is possible for agents to be performing all talskforea solution state is
reached. This is due to the fact that when all current tasks are being performed, agents
whose operations are not necessary for the current tasks could still be violating con-
straints.

Theorem | : Given a Class 3 Resource Allocation Probledy,2,0), O .yrrent C O,
there exists a solution to the corresponding DDCSP.
proof: We proceed by presenting a variable assignment and showing that it is a solution.

LetB ={A; € A | 3T, € chwnt,ﬂo;', € Max (I)}. We will first assign values to
variables inB, then assign values to variables that are ndBivA; € A:if A; € B, by the def
of B, 3T: € Ocurrent, 30, € Max(T’). In our solution, we assigd; = O, T,yes. If A; ¢ B,
we may choose an@; T, no € Dom(4;) and assignd; = O} T, no.

To show that this assignment is a solution, we first show that it satisfies the EC constraint. We
arbitrarily choose two variables}; and 4;, and show that EC{;, A;) is satisfied. We proceed
by cases.

Let A;, A; € A be given.

case 1:A; ¢ B
SinceA; = O;Trno, condition (1) of EC constraint is false
and thus EC is trivially satisfied.
case 2.A; € B,A; ¢ B
A; = O} T,yes in our solution. Let, € T, s.t.O;,
€ tr. We know thatl’, € Ocurrent and sinced; ¢
B, we conclude thaOJ € t,.. So condition (2)
of the EC constraint is false and thus EC is trivially satisfied.
case 3:A; € B,A; € B
A; = O}T,yes andA; = O} T.yes in our solution. Let,
€ T, s.t.0}, € t,. SinceT, andT; are both in
Ocurrent and therefore strongly conflict free,
AOI € 2s1.04 €t,.So condition
(2) of EC(A;,A;) is false and thus EC is trivially

satisfied.

Next, we show that our assignment satisfies the LC constraintd; IE B then A; =
O;TTyes, and LC1, regardless of the truth value of P, is clearly not violated. Furthermore, it
is the case thaf);', succeeds, sincE. is present. Then the precondition P of LC2 is not satisfied
and thus LC2 is not present. ; ¢ B andA; = OLT,no, it is the case thaD;, is executed
and, by definition, does not succeed. Then the precondition P of LC1 is not satisfied and thus
LC1 is not present. LC2, regardless of the truth value of P, is clearly not violated. Thus, the LC
constraints are satisfied by all variables.

We can conclude that all constraints are satisfied and our value assignment is a solution to
the DDCSPO

Theorem Il : Given a Class 3 Resource Allocation Problédy,2,0), O .urrent C O

and the corresponding DDCSP, if an assignment of values to variables in the DDCSP is
a solution, then all tasks i@..-.n: are performed.

proof sketchl et a solution to the DDCSP be given. We want to show that all taskk.in, ¢+

are performed. We proceed by choosing a tAske O.yrren:. If we can show that it is indeed
performed and since our choice is arbitrary, we can conclude that all membéxs, 6t .. are
performed.

Let T, € Ocurrent. By the Notification Assumption, some operatio?, required byT,
will be executed. However, the corresponding agéntwill be unsure as to which task it is
performing wherO;; succeeds. This is due to the fact th)j,t may be required for many different
tasks. It may randomly choose a tagk, € T'(O}), and LC1 requires it to assign the value
O;Tsyes. The EC constraint will then require that all other agehtswhose operations are
required forT; also execute those operations and assignr= OgTsyes. We are in solution, so
LC2 cannot be present fof;. Thus,Og succeeds. Since all operations requiredFpisucceed,

T is performed. By thé&lo Phantom Tasks AssumptionTs € Ocurrent. But Since we already
know thatT; andT’. have an operation in common, the Strongly Conflict Free condition requires
thatT, = T;.. ThereforeT, is indeed performed]

Given our formalization of dynamic environments, when tasks change, this implies
changes only in local constraints of agents, and hence the theorems are able to address
dynamic changes in tasks. Class 4 tasks require dynamism in external constraints as
well, and this is not handled and an issue for future work.

6 Experiments in a Real-World Domain

We have successfully applied the DDCSP approach to the distributed sensor network
problem, using the mapping introduced in Section 3. Indeed, in recent evaluation trials
conducted in government labs in August and September 2000, this DDCSP implemen-
tation was successfully tested on four actual hardware sensor nodes (see Figure 1.a),
where agents collaboratively tracked a moving target. This target tracking requires ad-
dressing noise, communication failures, and other real-world problems; although this
was done outside the DDCSP framework and hence not reported here.

The unavailability of the hardware in our lab precludes extensive hardware tests; but
instead, a detailed simulator that very faithfully mirrors the hardware has been made
available to us. We have done extensive tests using this simulator to further validate the
DDCSP formalization: indeed a single implementation runs on both the hardware and

the simulator. One key evaluation criteria for this implementation is how accurately it

is able to track targets, e.g., if agents do not switch on overlapping sectors at the right
time, the target tracking has poor accuracy. Here, the accuracy of a track is measured
in terms of theRMS(root mean square) error in the distance between the real position
of atarget and the target’s position as estimated by a team of sensor agents. Our results
here — assuming a square sensor node configuration of Figure 1.b — are as follows.
Domain experts expect an RMS of approx 3 units, and thus they believe these results
are satisfactory. Our RMS for Class 1 problems is 0.9 units, and for Class 3 problems,
the RMS is 3.5 units.

Table 1 presents further results from the implementation. Experiments were con-
ducted for up to 8 nodes solving Class 3 problems. Each cell in the table presents the
number of messages exchanged, the number of sector changes, and in parenthesis, the
number of messages exchanged per sector change. For instance, in configuration in-
volving one dynamic target and 6 nodes, agents exchanged 190 messages, for 23 sector
changes, i.e., 8.23 message per sector change. More nodes involve more sector changes,
since a dynamic target passes through regions covered by different nodes, and the nodes
must search for this target to pin down its location.

Num nodes 4 6 8
one target57,6 (9.50)190,23 (8.26)247,35 (7.05
two targets - 91,13 (7.00)244,29 (8.41

Table 1.Results from Sensor Network Domain.

The key results here are that: (i) The dynamic DCSP algorithm presented in Section
4 is able to function correctly; (ii) increasing number of nodes does not result in increas-
ing numbers of messages per sector change, providing some evidence for scalability of
our mapping.

7 Summary and Related Work

In this paper, we proposed a formalization of distributed resource allocation that is
expressive enough to represent both dynamic and distributed aspects of the problem.
We define four categories of difficulties of the problem and address these formalized
problems by defining the notion of Dynamic Distributed Constraint Satisfaction Prob-
lem (DDCSP). The central contribution of the paper is a generalized mapping from
distributed resource allocation to DDCSP. Through both theoretical analysis and ex-
perimental verifications, we have shown that this approach to dynamic and distributed
resource allocation is powerful and unique, and can be applied to real-problems such as
the Distributed Sensor Network Domain.

In terms of related work, there is significant research in the area of distributed re-
source allocation; for instance, Liu and Sycara’s work[5] extends dispatch scheduling
to improve resource allocation. Chia et al's work on distributed vehicle monitoring and
general scheduling (e.qg. airport ground service scheduling) is well known but space lim-
its preclude us from a detailed discussion [1]. However, a formalization of the general

problem in distributed settings is yet to be forthcoming. Our work takes a step in this
direction and provides a novel and general DDCSP mapping, with proven guarantees
of performance. Some researchers have focused on formalizing resource allocation as a
centralized CSP, where the issue of ambiguity does not arise[3]. The fact that resource
allocation is distributed and thus ambiguity must be dealt with, is a main component
of our work. Furthermore, we provide a mapping of the resource allocation problem to
DDCSP and prove its correctness, an issue not addressed in previous work. Dynamic
Constraint Satisfaction Problem has been studied in the centralized case by [6]. How-
ever, there is no distribution or ambiguity during the problem solving process. The work
presented here differs in that we focus on distributed resource allocation, its formaliza-
tion and its mapping to DDCSP. Indeed, in the future, our formalization may enable
researchers to understand the difficulty of their resource allocation problem, choose a
suitable mapping using DDCSP, with automatic guarantees for correctness of the solu-
tion.

References

1. M. Chia, D. Neiman, and V. Lesser. Poaching and distraction in asynchronous agent activities.
In ICMAS 1998.

2. K. Decker and J. Li. Coordinated hospital patient schedulingCMAS 1998.

3. C. Frei and B. Faltings. Resource allocation in networks using abstraction and constraint
satisfaction techniques. Froc of Constraint Programmindg.999.

4. Hiroaki Kitano. Robocup rescue: A grand challenge for multi-agent system$CMAS
2000.

5. J. Liu and K. Sycara. Multiagent coordination in tightly coupled task schedulingENtAS
1996.

6. S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problem&AA, 1990.

7. Sanders. Ecm challenge problem, http://www.sanders.com/ants/ecm.htm. 2001.

8. M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm for complex local
problems. INCMAS July 1998.

