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Abstract. The deployment of autonomous agents in real applications promises
great benefits, but it also risks potentially great harm to humans who interact with
these agents. Indeed, in many applications, agent designers pursue adjustable
autonomy (AA) to enable agents to harness human skills when faced with the
inevitable difficulties in making autonomous decisions. There are two key short-
comings in current AA research. First, current AA techniques focus on individual
agent-human interactions, making assumptions that break down in settings with
teams of agents. Second, humans who interact with agents want guarantees of
safety, possibly beyond the scope of the agent’s initial conception of optimal AA.
Our approach to AA integrates Markov Decision Processes (MDPs) that are ap-
plicable in team settings, with support for explicit safety constraints on agents’
behaviors. We introduce four types of safety constraints that forbid or require
certain agent behaviors. The paper then presents a novel algorithm that enforces
obedience of such constraints by modifying standard MDP algorithms for gener-
ating optimal policies. We prove that the resulting algorithm is correct and present
results from a real-world deployment.



1 Introduction

Agent applications, such as intelligent homes [6], smart organizations [8], and space
missions [3], offer a vision of agent teams deployed to support critical human activities.
While such deployment promises great benefits, it also runs a great risk of harm or cost
to the humans involved. To mitigate this risk, researchers have pursued two general
approaches. The first is inspired by Asimov’s First Law of Robotics, “A robot may not
injure a human being or through inaction allow a human being to come to harm” [1].
Here, researchers have emphasized tractable means of guaranteeing that agents obey
safety conditionsin planning and learning — unfortunately, despite the dramatic call to
arms to ensure such safety [11], this approach enjoys only a small following.

Instead, a second, alternative approach ofadjustable autonomy(AA) has gained
more popularity. AA enables an agent to act with varying degrees of autonomy (e.g., in
uncertain situations, the agent may transfer decision-making control to a more skilled,
more knowledgeable human supervisor). Unfortunately, this research has, to date, fo-
cused on individual agent-human interactions. It has failed to address multi-agent team
settings, such as our Electric Elves (henceforth E-Elves) application, where software
assistants employ AA in helping human users coordinate with their colleagues. In par-
ticular, existing AA strategies can result in a rigid transfer of decision-making control
to humans. In a team setting, such rigidity can cause costly miscoordination when the
humans fail to make timely decisions.

This paper presents a marriage of both approaches, while addressing their key short-
comings in complex multiagent environments. For the foreseeable future, harnessing
human skills via AA will be important when deploying agents in real-world settings.
However, inaccuracies in an agent’s world model can cause its seemingly optimal plans
to violate safety, so additional guarantees are important. For instance, in E-Elves, mod-
eling inaccuracies once caused a co-author’s software assistant to autonomously cancel
a critical meeting with his supervisor! Since these agents interact with different humans
with varying preferences, the designers cannot provide them with a single model that
represents everyone’s safety requirements with complete accuracy. On the other hand, it
is unreasonable (if not impossible) to have humans specify sufficient safety conditions
to completely determine correct agent behavior. Thus, the synergy of AA reasoning and
safety conditions is critical in multiagent domains.

This paper begins by describing our novel AA framework, which uses Markov De-
cision Processes (MDPs) [7] that encode individual and team costs and uncertainties.
The use of MDPs allows the agents to compute optimal policies for flexible transfer of
control and changes of coordination in AA, thus alleviating team miscoordination. The
paper then integrates safety guarantees within the MDP framework. In particular, we
enable humans to explicitly specify four different types of safety conditions:forbidden
actions, forbidden states, required actions, and required states, realized as symbolic
constraints on MDP states and actions, eliminating the need to determine sufficiently
high-magnitude reward values to guarantee safety. We provide clear probabilistic se-
mantics for these constraints, and present a novel algorithm that generates optimal MDP
policies subject to these symbolic constraints. One key result presented is the correct-
ness proof for the algorithm. By incorporating such explicit safety conditions, agents
can guarantee safety despite potential MDP model inaccuracies that may arise. An addi-



tional advantage of using symbolic constraints is the support for constraint propagation
as a preprocessing step, restricting the space of policies that standard value iteration
must consider and thus providing significant gains in the efficiency of policy genera-
tion. Finally, while we present results of these algorithms as implemented in the context
of MDPs for AA, they are applicable to MDPs in other domains as well.

2 Electric Elves

E-Elves [8] is a real-world experiment, where an agent team of 16 agents, including
12 proxies (assisting 12 people) have been running 24/7 for the past seven months at
USC/ISI. Each proxy, called “Friday” (after Robinson Crusoe’s servant, Friday), acts on
behalf of its user in the agent team. Each Friday uses a teamwork model, STEAM [10]
to manage its teamwork. If a user is delayed to a meeting, Friday can reschedule the
meeting, relaying the delay to other Fridays, who in turn inform their human users of
the delay. If there is a research presentation slot open, Friday responds to the invitation
on behalf of its user. Friday can also order its user’s meals and track the user’s location.
Friday communicates through its user’s workstation display and wireless devices (e.g.,
PDAs, mobile phones).

AA is critical in Friday agents. The more autonomous Friday is, the more effort it
saves its user. However, in our early implementation, Friday sometimes made costly
mistakes when acting autonomously (e.g., unwarranted meeting cancellation). Such
mistakes arose, in part, because of the uncertainty in the domain and the real-world
costs of actions. Given such costs and uncertainties, AA aims to enable each Friday to
intelligently decide between acting autonomously and transferring control to a human
user.

Unfortunately, the team context of domains like E-Elves raises a novel AA chal-
lenge in the potential for miscoordination when transferring control to human users.
In another example from our early implementation, Friday agents would sometimes
rigidly transfer control to their users (e.g., to ask whether they planned to attend a meet-
ing). In some cases, a user would be unable to respond, sometimes due to getting stuck
in traffic. While waiting for a response, Friday’s inaction would cause miscoordination
with its teammates (other Friday agents), since it failed to inform them whether its user
would attend. This, in turn meant that the other attendees (humans) wasted their time
waiting for their teammate. Later, under a different set of circumstances, Friday did not
ask the user and instead, following its best guess, autonomously informed the other Fri-
days that its user would not attend the meeting. However, the userdid plan to attend, so
the human team suffered a serious cost from receiving this incorrect information from
Friday. Friday must instead plan a course of action that makes the best tradeoff possible
between the possible costs, both present and future, of inaction and of incorrect action.

3 General Approach to AA in Teams

We consider the general problem of AA in teams as follows. We assume a team with
a joint activity,�, and a human team member who performs role,�, in �. A software
assistant must aid the user in performing� (e.g., by securing more resources from the



team) and must keep the team informed about whether the user will perform�. Given
the uncertainty in whether its user can perform�, the AA challenge for the software
assistant is to decide when to act autonomously and when to transfer decision-making
control to the user (e.g., when informing the team that the user cannot perform�). For
instance, in E-Elves,� is a meeting,� is the user’s attendance at the meeting, and the
key resource is time. Friday attempts to ensure that its user can attend the meeting. One
difficulty here is that rigid transfer-of-control regimes cause team miscoordination (as
discussed in Section 2). Another difficulty is balancing the user’s needs in performing
� against the team’s needs for� to succeed.

We provide a general approach to this AA problem in teams, based on Markov
Decision Processes (MDPs) [7]. In this paper, we use reward functions over both state-
action pairs (RA : S � A ! [0; 1]) and states (RS : S ! [0; 1]). The key elements of
our approach are as follows. First, the MDP reward functions factor in the individual
benefits due to performing�, team costs due to changes in�, costs of consulting a
user, etc. Second, an agent does not rigidly transfer decision-making control to a user;
instead, it defines an MDP policy for flexibly transferring control back and forth to
ensure team coordination. Thus, if an agent transfers control to a user and the user
fails to respond, then the MDP policy guides the agent to act autonomously, to avoid
team miscoordination. Third, when an agent is required to act autonomously to avoid
miscoordination, the MDP policy mitigates the significant risks by guiding the agent
to change its coordination arrangements, postponing or reordering activities to “buy
time” to lower decision cost/uncertainty. For instance, in E-Elves, an agent may delay a
meeting, improving the user’s chances of attending the meeting, and also buying more
time for user input.

To generate such an MDP, the set of actions,A, includes: wait (do nothing), reduce
autonomy (ask the user for information), autonomously inform other agents that the
user is performing (or not performing)�, or change the coordination of� (e.g., asking
for delays in performing�). Each state,s 2 S, is a tuple:frel-time-�, user-status,
�-status, user-response, other� attributesg. Here,rel-time-� measures time left until
performance of� in �. Similarly, user-statusenables an agent to (probabilistically)
estimate the time the user will actually need before performing� in �.

One example of such an AA MDP is thedelay MDP, covering all meetings for
which Friday may act on behalf of its user. Friday can take any of 12 actions, special-
izations of the general actions already described. For example, informing other agents
that the user is performing� corresponds to announcing that the user will attend a meet-
ing. Changing the coordination of� corresponds to delaying the meeting. When Friday
reduces its autonomy and asks, its user can respond with any of the 10 options from Fig-
ure 1a. In the delay MDP’s state representation,rel-time-� becomesrel-time-meeting,
user-statusbecomesuser location, �-statusbecomesstatus of meeting, etc. Figure 1b
shows a portion of the state space, showing therel-time-meeting, user-response, and
user locationfeatures. The figure also shows some state transitions (a transition labeled
“delay n” corresponds to the action “delay byn minutes”). Each state contains other
features (e.g.,previous-delays), not pictured, relevant to the overall joint activity, for a
total of 2760 states in the MDP for each individual meeting.



Fig. 1. (a) Dialog box for delaying meetings in E-Elves.(b) A small portion of thedelay MDP.

In general, our AA MDP framework uses a reward functionR(s; a) = f(rel-time-�(s);
user-status(s); �-status(s); a), where the first three components reflect the value of the
team activity in its current status (e.g., active but without user performing�), while
the action component reflects the cost of changing the coordination of the team activ-
ity, �. This reward function has a maximum when the user performs� (e.g., the delay
MDP encodes a maximum reward in the state where the user is at the meeting loca-
tion when the meeting starts). Thedelay MDPdivides this function further into more
specific components. One such component, denotedruser , focuses on the user attend-
ing the meeting at the meeting time.ruser gives the agent incentive to delay meetings
when its user’s late arrival is possible, but large delays incur a team cost from rearrang-
ing schedules. The team cost is considered by incorporating a negative reward, denoted
rrepair , with magnitude proportional to the number of delays so far and the number of
attendees, into the delay reward function. However, without a delay, the other attendees
may waste time waiting for the agent’s user to arrive. Therefore, the reward function
includes a component,rtime, that is negative in states after the start of the meeting if
the user is absent, but positive otherwise. The overall reward function for a state,s, is a
weighted sum:r(s) = �userruser(s) + �repairrrepair(s) + �timertime(s).

The delay MDP’s transition probabilities represent the likelihood that a user move-
ment (e.g., from office to meeting location) will occur in a given time interval. Figure 1b
shows multiple transitions due to “ask” and “wait” actions, with the thickness of the ar-
rows reflecting their relative probability. The designer encodes the initial probabilities,
which a learning algorithm may then customize. Other state transitions correspond to
uncertainty associated with a user’s response (e.g., when the agent performs the “ask”
action, the user may respond with specific information or may not respond at all, leaving
the agent to effectively “wait”).

Given the MDP’s state space, actions, transition probabilities, and reward function,
an agent can usevalue iterationto generate a policyP :S!A that specifies the opti-
mal action in each state [7]. These policies allow user-assistant agents to avoid rigidly
committing to transfer-of-control decisions. Thus, if the agent decides to give up auton-
omy, it does not wait indefinitely for a user response. Instead, the agent continuously
reassesses the developing situation, possibly changing its previous autonomy decisions.
For instance, one possible policy, for a subclass of meetings, specifies “ask” in stateS0
of Figure 1b (i.e., the agent gives up some autonomy). If the world reaches stateS3, the
policy specifies “wait”. However, if the agent then reaches stateS5, the policy chooses



“delay 15”, which the agent then executes autonomously. Thus, the agent’s AA is an
ongoing process, rather than a single decision.

In addition, when an agent must act autonomously to avoid miscoordination, it can
minimize the risk of error by carefully planning a change in coordination (e.g., delaying
the meeting). The delay MDP is especially suitable for producing such a plan, because
it generates policies by looking ahead at the future costs of team miscoordination and
erroneous actions. For instance, through the delay MDP, an agent can reason that a
short delay will buy more time for a user to respond to its query, incurring a small
communication cost but potentially reducing the uncertainty of a costly decision. Thus,
before deciding to autonomously cancel a meeting, an agent might choose a 15-minute
delay to give time for an absent user to arrive, or at least respond.

4 Avoiding Harm: Safety Constraints

The MDP-generated policies ensure that an agent’s actions are optimal with respect
to its current model. However, they do not automatically ensure that agents will avoid
harm and obey thesafety constraintsof interest to a human interacting with it. The
MDP model of costs and likelihoods may contain inaccuracies, perhaps from the agent’s
changing environment. Furthermore, in domains such as ours, where agents must inter-
act with different people, the costs and likelihoods may vary significantly from person
to person. As an example, students may want to enforce a safety constraint that their
Fridays never cancel a meeting with a faculty member, but faculty may not wish to
enforce the same (a purely hypothetical case). An agent could potentially learn an indi-
vidualized MDP model with enough user feedback. However, learning may require an
arbitrarily large number of interactions with the humans involved. In the meantime, the
agent’s incorrect model can still lead to catastrophic results.

4.1 Definition of Constraints

To prevent such catastrophes, it is important to allow humans to directly specify im-
portant safety conditions. One way to ensure that agents avoid harm is to forbid them
from entering specific states or performing specific actions in specific states. For in-
stance, a user may forbid an agent from autonomously cancelling a meeting in some
states (e.g., any state involving a meeting with a supervisor). We define suchforbidden-
action constraints to be a set,Cfa, where each element constraint is a boolean function,
cfa : S � A ! ft; fg. Similarly, we defineforbidden-state constraints to be a set,
Cfs, with elements,cfs : S! ft; fg. If a constraint returnst for a particular domain
element (either state or state-action pair, as appropriate), then the constraint applies to
the given element. For example, a forbidden-action constraint,cfa, forbids the actiona
from being performed in states if and only if cfa(s; a) = t.

To provide probabilistic semantics, suitable for an MDP context, we first provide
some notation. Denote the probability that the agent will ever arrive in statesf after
following a policy,P , from an initial statesi asPr(si

�
!sf jP ). Then, we define the

semantics of a forbidden-state constraintcfs as requiringPr(si
�
! sf jP ) = 0. The

semantics given to a forbidden-action constraint,cfa, is a bit more complex, requiring



Pr(si
�
!sf^P (sf )=ajP ) = 0 (i.e.,cfa forbids the agent from entering statesf andthen

performing actiona). In some cases, an aggregation of constraints may forbidall actions
in statesf . In this case, the conjunction allows the agent to still satisfy all forbidden-
action constraints by avoidingsf (i.e., the statesf itself becomes forbidden). Once a
state,sf , becomes indirectly forbidden in this fashion, any action that potentially leads
the agent from an ancestor state intosf likewise becomes forbidden. Hence, the effect
of forbidding constraints can propagate backward through the state space, affecting
state/action pairs beyond those which cause immediate violations.

The forbidding constraints are powerful enough to express a variety of safety con-
straints. For instance, some E-Elves users have forbidden their agents from reschedul-
ing meetings to lunch time. To do so, the users provide a feature specification of the
states they want to forbid, such asmeeting-time=12 PM. Such a specification generates
a forbidden-state constraint,cfs, that is true in any state,s, wheremeeting-time=12 PM
in s. Similarly, some users have forbidden cancellations by providing a specification
of the action they want to forbid,action=“cancel”. This generates a forbidden-action
constraint,cfa, that is true for any state/action pair,(s; a), with a =“cancel”. Users can
easily create more complicated constraints by specifying values for multiple features, as
well as by using comparison functions other than= (e.g.,6=, >). We have also noticed
synergistic interactions between AA and forbidden constraints, such as forbidding an
agent from taking autonomous action in some states (i.e., the agent must instead reduce
its level of autonomy and ask the user for input).

While powerful, the forbidden constraints are unable to express all safety constraints
of interest. In particular, some safety constraintsrequire that an agent to visit certain
states states or to perform a specific action in certain states. For instance, in our E-Elves
domain, we may require our agents to, at some point during their execution, notify our
teammates about our state, whetherattending, not attending, or cancelled, as we want
to avoid team miscoordination through complete inaction. We do not require this noti-
fication property to be true in any particular state, or in all states. The intent is only to
ensure that the teammates are eventually notified, so it is difficult to express this prop-
erty as a forbidden-state constraint (e.g., forbidding all states without this notification
property).

Hence, we introducerequired-state and required-action constraints, defined as
sets,Crs andCra, respectively, with elements analogous to their forbidding counter-
parts. The interpretation provided to the required-state constraint is symmetric, but op-
posite to that of the forbidden-state constraint:Pr(si

�
! sf jP ) = 1. Thus, from any

state, the agentmusteventually reach a required state,sf . Similarly, for the required-
action constraint,Pr(si

�
!sf ^P (sf )=ajP ) = 1. The users specify such constraints as

they do for their forbidding counterparts (i.e., by specifying the values of the relevant
state features or action, as appropriate). In addition, the requiring constraints also prop-
agate backward. Informally, the forbidden constraints focus locally on specific states or
actions, while the required constraints express global properties over all states.

4.2 Value Iteration with Constraint Propagation

We have extended standard value iteration to also consider constraint satisfaction when
generating optimal policies. The value of each state is no longer a single value, but a tu-



ple hF;N;Ui, whereF is a boolean indicating whether the state is forbidden or not,N

is a set of requiring constraints that will be satisfied, andU is the expected value (as in
traditional value iteration),. For instance, if the value of a state,V (s) = ht; fcrsg; 0:3i,
then executing the policy from states will achieve an expected value of 0.3 and will
satisfy required-state constraintcrs. However, it is not guaranteed to satisfy any other
required-state, nor any required-action, constraints. In addition,s is forbidden, so there
is a nonzero probability of violating a forbidden-action or forbidden-state constraint.
We do not recordwhich forbidding constraints the policy violates, since violating any
one of them is equally bad. Wedo have to record which requiring constraints the pol-
icy satisfies, since satisfying all such constraints is preferable to satisfying only some
of them. Therefore, the size of the value function grows linearly with the number of
requiring constraints, but is independent of the number of forbidding constraints.

We initialize the value function over states as follows:

V 0(s) 

* _
c2Cfs

c(s); fc 2 Crsjc(s)g ; RS(s)

+
(1)

Thus, s is forbidden if any forbidden-state constraints apply and is needed by any
required-state constraints that apply.

In value iteration, we must define an updated value functionV t+1 as a refinement
of the previous iteration’s value function,V t. States become forbidden inV t+1 if they
violate any constraints directly or ifanyof their successors are forbidden according to
V t. States satisfy requirements if they satisfy them directly or ifall of their successors
satisfy the requirement. We defineS0 to be the set of all successors:fs0 2 SjMa

ss0 > 0g.
The following expression provides the precise definition of this iterative step:

V t+1(s) max
a2A

* _
c2Cfs

c(s) _
_

c2Cfa

c(s; a) _
_

V t(s0)=hU 0;F 0;N 0i;s02S0

F 0;

fc 2 Crsjc(s)g [ fc 2 Crajc(s; a)g [
\

V t(s0)=hU 0;F 0;N 0i;s02S0

N 0;

RS(s) +R(s; a) +
X

V t(s0)=hU 0;F 0;N 0i;s02S0

Ma
ss0U

0

+
(2)

The maximization uses the following preference ordering, wherex � y means that
y is preferable tox:

ht;N; Ui � hf;N 0; U 0i

hF;N;Ui � hF;N 0 � N;U 0i

hF;N;Ui � hF;N;U 0 > Ui

In other words, satisfying a forbidden constraint takes highest priority, satisfying more
requiring constraints is second, and increasing expected value is last. We define the
optimal action,P (s), as the action,a, for which the finalV (s) expression above is
maximized.

Despite the various set operations in Equation 2, the time complexity of this iteration
step exceeds that of standard value iteration by only a linear factor, namely the number



of constraints,jCfsj+ jCfaj+ jCrsj+ jCraj. The efficiency derives from the fact that
the constraints are satisfied/violated independently of each other. The determination
of whether a single constraint is satisfied/violated requires no more time than that of
standard value iteration, hence the overall linear increase in time complexity.

Because expected value has the lowest priority, we can separate the iterative step
of Equation 2 into two phases: constraint propagation and value iteration. During the
constraint-propagation phase, we compute only the first two components of our value
function,hF;N; �i. The value-iteration phase computes the third component,h�; �; Ui, as
in standard value iteration. However, we can ignore any state/action pairs that, accord-
ing to the results of constraint propagation, violate a forbidding constraint (ht;N; �i) or
requiring constraint (hf;N � Crs [ Cra; �i). Because of the componentwise indepen-
dence of Equation 2, the two-phase algorithm computes an identical value function as
the original, single-phase version (over state/action pairs that satisfy all constraints).

The worst-case time complexity of the two versions is also identical. However,
in practice, the two-phase algorithm achieves significant speedup through the rapid
elimination of state/action pairs during constraint propagation. While the single-phase
version generally requires as much time as standard value iteration (i.e., without con-
straints), the two-phase algorithm often computes a policy in dramaticallylesstime, as
the results in Section 5 demonstrate.

4.3 Correctness of Propagation Algorithm

Given a policy,P , constructed according to the algorithm of Section 4.2, we must show
that an agent followingP will obey the constraints specified by the user. If the agent
begins in some state,s 2 S, we must prove that it will satisfy all of its constraints if and
only if V (s) = hf; Cra [ Crs; Ui. We prove the results for forbidding and requiring
constraints separately.

Theorem 1. An agent following policy,P , with value function,V , generated as in Sec-
tion 4.2, from any states 2 S will violate a forbidding constraint with probability zero
if and only ifV (s) = hf;N; Ui (for someU andN ).

Proof: We first partition the state space,S, into subsets,Sk, defined to contain all
states that can violate a forbidding constraint after a minimum ofk state transitions.
In other words,S0 contains those states that violate a forbidding constraint directly;
S1 contains those states that do not violate any forbidding constraints themselves, but
have a successor state (followingP ) that does (i.e., a successor state inS0); S2 contains
those states that do not violate any forbidding constraints, nor have any successors that
do, but who have at least one successor state that has a successor state that does (i.e.,
a successor state inS1); etc. There are at mostjSj nonempty subsets in this mutually
exclusive sequence. To make this partition exhaustive, the special subset,S1, contains
all states from which the agent will never violate a forbidding constraint by following
P . We first show, by induction overk, that8s 2 Sk (0 � k � jSj), V (s) = ht;N; Ui,
as required by the theorem.

Basis step (S0): By definition, the agent will violate a forbidding constraint ins 2
S0. Therefore, either9c 2 Cfs such thatc(s) = t or9c 2 Cfa such thatc(s; P (s)) = t,
so we know, from Equation 2,V (s) = ht;N; Ui.



Inductive step (Sk; 1 � k � jSj): Assume, as the induction hypothesis, that8s0 2
Sk�1, V (s0) = ht;N 0; U 0i. By the definition ofSk, each state,s 2 Sk, has at least one
successor state,s0 2 Sk�1. Then, according to Equation 2,V (s) = ht;N; Ui, because
the disjunction overS0 must includes0, for whichF 0 = t.

Therefore, by induction, we know that for alls 2 Sk (0 � k � jSj), V (s) =
ht;N; Ui. We now show that8s 2 S1, V (s) = hf;N; Ui. We prove, by induction
overt, that, for any state,s 2 S1, V t(s) = hf;N; Ui.

Basis step (V 0): By definition, if s 2 S1, there cannot exist anyc 2 Cfs such that
c(s) = t. Then, from Equation 1,V 0(s) =



f;N0; U0

�
.

Inductive step (V t; t > 0): Assume, as the inductive hypothesis, that, for anys0 2
S1, V t�1(s0) = hf;N 0; U 0i. We know thatV t(s) = hf;N t; U ti if and only if all
three disjunctions in Equation 2 are false. The first is false, as described in the basis
step. The second term is similarly false, since, by the definition ofS1, there cannot
exist anyc 2 Cfa such thatc(s; P (s)) = t. In evaluating the third term, we first
note thatS0 � S1. In other words, all of the successor states ofs are also inS1 (if
successors0 2 Sk for some finitek, thens 2 Sk+1). Since all of the successors are in
S1, we know, by the inductive hypothesis, that the disjunction overV t�1 in all these
successors is false. Therefore, all three disjunctive terms in Equation 2 are false, so
V t(s) = hf;N t; U ti.

Therefore, by induction, we know that for alls 2 S1, V (s) = hf;N; Ui. By the
definition of the state partition, these two results prove the theorem as required.2

Theorem 2. An agent following policy,P , with value function,V , generated as de-
scribed in Section 4.2, from any states 2 S will satisfy each and every requiring
constraint with probability one if and only ifV (s) = hF;Cra [ Crs; Ui (for someU
andF ).

Proof Sketch: The proof parallels that of Theorem 1, but with a state partition,Sk,
wherek corresponds to themaximumnumber of transitions before satisfying a requir-
ing constraint. However, here, states inS1 are those thatviolate the constraint, rather
than satisfy it. Some cycles in the state space can prevent a guarantee of satisfying a
requiring constraint within any fixed number of transitions, although the probability of
satisfactionin the limit may be 1. In our current constraint semantics, we have decided
that such a situation fails to satisfy the constraint, and our algorithm behaves accord-
ingly. Such cycles have no effect on the handling of forbidding constraints, where, as
we saw for Theorem 1, we need consider only theminimum-length trajectory.2

The proofs of the two theorems operate independently, so the policy-specified action
will satisfy all constraints, if such an action exists. The precedence of forbidding con-
straints over requiring ones has no effect on the optimal action in such states. However,
if there are conflicting forbidding and requiring constraints in a state, then the prefer-
ence ordering causes the agent to choose a policy that satisfies the forbidding constraint
and violates a requiring constraint. The agent can make the opposite choice if we sim-
ply change the preference ordering from Section 4.2. Regardless of the choice, from
Theorems 1 and 2, the agent can use the value function,V , to identify the existence of
any such violation and notify the user of the violation and possible constraint conflict.



5 Evaluation

We begin with an evaluation of the overall utility of E-Elves and then evaluate the MDP-
based AA framework and the safety constraints separately. We have used the E-Elves
system (described in Section 2) within our research group, and here are some key facts
about our experience so far:

– Running since 6/1/2000, 24 hours/day, 7 days/week (occasionally interrupted for
enhancements).

– Mean number of messages/day among agents: 85
– Number of meetings: 689; autonomous rescheduling: 213; user rescheduling: 152
– Number of meeting presenters selected: 10, 8 autonomously and 2 by users
– Number of meals ordered: 54, with mean 1.4 people per order

The fact that E-Elves users were (and still are) willing to use the system over such a long
period and in a capacity so critical to their daily lives is a testament to its effectiveness.

Our MDP-based approach to AA has provided much value to the E-Elves users,
as attested to by the large number (689) of meetings that the users have allowed their
agent proxies to monitor using the delay MDP. The large number (213) of autonomous
rescheduling corresponds to a large amount of user effort saved. As for the correctness
of the MDP approach, over the entire span of their operation, the agents have per-
formed without any catastrophic mistakes. For example, the policy described in Sec-
tion 3 avoided the problems with rigid transfer of control, as described in Section 2.
When giving up autonomy, the agent’s policy specified waiting a certain amount of
time to give the user a chance to respond. However, as the meeting drew closer, the
policy eventually preferred taking back autonomy, so that the agent can act on its own
before any miscoordination takes place. Figure 2 demonstrates how often the agents
required this ability. The solid line plots the percentage of meetings vs. the number of
transfers of autonomy. A transfer of autonomy takes place either when the agent asks
the user for input or else when the agent, having asked the user for input without re-
ceiving it, stops waiting and acts autonomously. For some simple meeting instances, the
agent was able to act completely autonomously, without ever giving up control (e.g., the
user arrives at the meeting early). Ignoring these “easy” cases, the dashed line shows an
alternate histogram over only those meetings for which the agent had to ask the user at
least once. Although the current agents do occasionally make mistakes, these errors are
typically on the order of asking for input a few minutes earlier than desired, etc. Unfor-
tunately, the inherent subjectivity and intrusiveness of user feedback has complicated
our determination of the optimality of the agents’ decisions.

In evaluating our safety-constraint framework, we have already proven the correct-
ness of our algorithm. The constraints have also been useful. For instance, one typical
user has added five safety constraints. Two forbidden-state constraints prevent meetings
on Saturday or Sunday (e.g., forbidmeeting-day=Sunday). A second forbidden-state
constraint prevents his agent from rescheduling a meeting to lunch timeif not originally
scheduled at that time (i.e., forbid combination ofmeeting-time=12 PM andprevious-
delays> 0). The user has also specified a forbidden-action constraint preventing can-
cellations in meetings with his superiors (i.e., forbidaction=“cancel”). Therefore, his
agent never performs any erroneous, autonomous cancellations.



Fig. 2.Histogram of transfers of control per meeting.

To evaluate the synergy between AA and constraints, we merged user-specified con-
straints from all E-Elves users, resulting in a set of 10 distinct constraints. We started
with an unconstrained instance of thedelay MDPand added these constraints one at a
time, counting the policies that satisfied the applied constraints. We then repeated these
experiments on expanded instances of thedelay MDP, where we increased the initial
state space by increasing the frequency of decisions (i.e., adding values to therel-time-
meetingfeature). Figure 3a displays these results (on a logarithmic scale), where lineA

corresponds to the originaldelay MDP(2760 states), and linesB (3320 states),C (3880
states), andD (4400 states) correspond to the expanded instances. Each data point is a
mean over five different orderings of constraint addition. For all four MDPs, the con-
straints substantially reduce the space of possible agent behaviors. For instance, in the
original delay MDP, applying all 10 constraints eliminated 1180 of the 2760 original
states from consideration, and reduced the mean number of viable actions per accept-
able state from 3.289 to 2.476. The end result is a 50% reduction in the size (log10) of
the policy space. On the other hand, constraints alone did not provide a complete policy,
since all of the plots stay well above 0, even with all 10 constraints. Since none of the
individual users were able/willing to provide 10 constraints, we cannot expect anyone
to add enough constraints to completely specify an entire policy. Thus, value iteration
is still far from redundant.

Fig. 3. (a) Number of possible policies (logarithmic). (b) Time required for policy generation.



The constraints’ elimination of behaviors also decreases the time required for policy
generation. Figure 3b plots the total time for constraint propagation and value iteration
over the same four MDPs as in Figure 3a (averaged over the same five constraint or-
derings). To smooth out any variability in machine load, each data point is also a mean
over five separate iterations, for a total of 25 iterations per data point. The values for
the zero-constraint case correspond to standard value iteration without constraints. The
savings in value iteration over the restricted policy space dramatically outweigh the cost
of prepropagating the additional constraints. In addition, the savings increase with the
size of the MDP. For the originaldelay MDP(A), there is a 28% reduction in policy-
generation time, while for the largest MDP (D), there is a 53% reduction. Thus, the
introduction of constraints speeds up policy generation, providing another example of
the synergy between the two components of our implementation. We are continuing to
conduct experiments to more exhaustively cover the set of possible constraints, con-
straint orderings, state space sizes, etc.

6 Summary and Related Work

It is a tribute to Asimov’s creative intellect that his laws of robotics have not only fas-
cinated generations of readers, but also inspired a research direction in autonomous
agents. This paper builds on several key themes from prior work in this direction, as
well as previous AA research. Our contribution to this line of research is to explicitly
address safety in the context of AA, as well as to address AA in team settings (where
agents must simultaneously satisfy team and individual responsibilities). This paper
also introduces safety constraints that forbid or require certain states or actions in the
context of MDPs. This paper presents an algorithm to propagate such constraints, ad-
dressing constraint interactions in optimal policy generation for the MDP and proving
its correctness. It also presents experimental results that demonstrate the utility, in both
safety and efficiency, of this algorithm in a real-world domain.

Existing research has already addressed the Asimovian concept of safety by empha-
sizing computationally tractable means of avoiding harm within the context of classical
planning [11] and finite-state machines [5]. In other related work, previous AA research,
in user control of robots [3] or in mixed-initiative planning [4], has focused on interac-
tions between an individual agent and an individual human. Our research builds on both
traditions, contributing the use of MDPs for AA in agent team settings and then provid-
ing a novel extension of supporting safety constraints. Our forbidden-action constraints
support human-specified partial policies, as developed by other researchers [2]. How-
ever, constraints over states, as well as the required-action constraints, raise the novel
issue of constraint propagation not addressed earlier. In previous work [9], we presented
a specialized version of our MDP approach to AA, that focused on the delay MDP. This
paper contributes a generalization of that approach using notions of role,�, and team ac-
tivity, � and integrates four types of safety constraints absent in that work. The success
we have achieved by combining and extending these two approaches (safety conditions
and AA) within E-Elves demonstrates the value of such an approach in such real-world,
multiagent domains.
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