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Abstract

Despite the signi�cant progress in multiagent teamwork, existing research does not ad-
dress the optimality of its prescriptions nor the complexity of the teamwork problem. With-
out a characterization of the optimality-complexity tradeo�s, it is impossible to determine
whether the assumptions and approximations made by a particular theory gain enough
eÆciency to justify the losses in overall performance. To provide a tool for use by mul-
tiagent researchers in evaluating this tradeo�, we present a uni�ed framework, the COM-
municative Multiagent Team Decision Problem (COM-MTDP). The COM-MTDP model
combines and extends existing multiagent theories, such as decentralized partially observ-
able Markov decision processes and economic team theory. In addition to their generality
of representation, COM-MTDPs also support the analysis of both the optimality of team
performance and the computational complexity of the agents' decision problem. In analyz-
ing complexity, we present a breakdown of the computational complexity of constructing
optimal teams under various classes of problem domains, along the dimensions of observ-
ability and communication cost. In analyzing optimality, we exploit the COM-MTDP's
ability to encode existing teamwork theories and models to encode two instantiations of
joint intentions theory taken from the literature. Furthermore, the COM-MTDP model
provides a basis for the development of novel team coordination algorithms. We derive a
domain-independent criterion for optimal communication and provide a comparative anal-
ysis of the two joint intentions instantiations with respect to this optimal policy. We have
implemented a reusable, domain-independent software package based on COM-MTDPs to
analyze teamwork coordination strategies, and we demonstrate its use by encoding and
evaluating the two joint intentions strategies within an example domain.

1. Introduction

A central challenge in the control and coordination of distributed agents is enabling them
to work together, as a team, toward a common goal. Such teamwork is critical in a vast
range of domains|for future teams of orbiting spacecraft, sensors for tracking targets, un-
manned vehicles for urban battle�elds, software agents for assisting organizations in rapid
crisis response, etc. Research in teamwork theory has built the foundations for successful
practical agent team implementations in such domains. On the forefront are theories based
on belief-desire-intentions (BDI) frameworks, such as joint intentions (Cohen & Levesque,
1991b, 1991a; Levesque, Cohen, & Nunes, 1990), SharedPlans (Grosz, 1996; Grosz & Kraus,
1996; Grosz & Sidner, 1990), and others (Sonenberg, Tidhard, Werner, Kinny, Ljungberg,
& Rao, 1994; Dunin-Keplicz & Verbrugge, 1996), that have provided prescriptions for co-
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ordination in practical systems. These theories have inspired the construction of practi-
cal, domain-independent teamwork models and architectures (Jennings, 1995; Pynadath,
Tambe, Chauvat, & Cavedon, 1999; Rich & Sidner, 1997; Tambe, 1997; Yen, Yin, Ioerger,
Miller, Xu, & Volz, 2001), successfully applied in a range of complex domains.

Yet, two key shortcomings limit the scalability of these BDI-based theories and imple-
mentations. First, there are no techniques for the quantitative evaluation of the degree of
optimality of their coordination behavior. While optimal teamwork may be impractical in
real-world domains, such analysis would aid us in comparison of di�erent theories/models
and in identifying feasible improvements. One key reason for the diÆculty in quantitative
evaluation of most existing teamwork theories is that they ignore the various uncertain-
ties and costs in real-world environments. For instance, joint intentions theory (Cohen &
Levesque, 1991b) prescribes that team members attain mutual beliefs in key circumstances,
but it ignores the cost of attaining mutual belief (e.g., via communication). Implementa-
tions that blindly follow such prescriptions could engage in highly suboptimal coordination.
On the other hand, practical systems have addressed costs and uncertainties of real-world
environments. For instance, STEAM (Tambe, 1997; Tambe & Zhang, 1998) extends joint
intentions with decision-theoretic communication selectivity. Unfortunately, the very prag-
matism of such approaches often necessarily leads to a lack of theoretical rigor, so it remains
unanswered whether STEAM's selectivity is the best an agent can do, or whether it is even
necessary at all. The second key shortcoming of existing teamwork research is the lack
of a characterization of the computational complexity of various aspects of teamwork deci-
sions. Understanding the computational advantages of a practical coordination prescription
could potentially justify the use of that prescription as an approximation to optimality in
particular domains.

To address these shortcomings, we propose a new complementary framework, the COM-

municative Multiagent Team Decision Problem (COM-MTDP), inspired by work in eco-

nomic team theory (Marschak & Radner, 1971; Yoshikawa, 1978; Ho, 1980). While our
COM-MTDP model borrows from a theory developed in another �eld, we make several
contributions in applying and extending the original theory, most notably adding explicit
models of communication and system dynamics. With these extensions, the COM-MTDP
generalizes other recently developed multiagent decision frameworks, such as decentralized
POMDPs (Bernstein, Zilberstein, & Immerman, 2000).

Our de�nition of a team (like that in economic team theory) assumes only that team
members have a common goal and that they work selessly towards that goal (i.e., they
have no other private goals of their own). In terms of our decision-theoretic framework, we
assume that all of the team members share the same joint utility function|that is, each
team member's individual preferences are exactly the preferences of the other members and,
thus, of the team as a whole. Our de�nition may appear to be a \bare-bones" de�nition of
a team, since it does not include common concepts and assumptions from the literature on
what constitutes a team (e.g., the teammates form a joint commitment (Cohen & Levesque,
1991b), attain mutual belief upon termination of a joint goal, intend that teammates suc-
ceed in their tasks (Grosz & Kraus, 1996), etc.). From our COM-MTDP perspective, we
view these concepts as more intermediate concepts, as the means by which agents improve
their team's overall performance, rather than ends in themselves. Our hypothesis in this
investigation is that our COM-MTDP-based analysis can provide concrete justi�cations for
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these concepts. For example, while mutual belief has no inherent value, our COM-MTDP
model can quantify the improved performance that we would expect from a team that
attains mutual belief about important aspects of its execution.

More generally, this paper demonstrates three new types of teamwork analyses made
possible by the COM-MTDP model. First, we analyze the computational complexity of
teamwork within subclasses of problem domains. For instance, some researchers have ad-
vocated teamwork without communication (Goldberg & Mataric, 1997). We use the COM-
MTDP model to show that, in general, the problem of constructing optimal teams without
communication is NEXP-complete, but allowing free communication reduces the problem
to be PSPACE-complete. This paper presents a breakdown of the complexity of optimal
teamwork over problem domains classi�ed along the dimensions of observability and com-
munication cost.

Second, the COM-MTDP model provides a powerful tool for comparing the optimality

of di�erent coordination prescriptions across classes of domains. Indeed, we illustrate that
we can encode existing team coordination strategies within a COM-MTDP for evaluation.
For our analysis, we selected two joint intentions-based approaches from the literature: one
using the approach realized within GRATE* and the joint responsibility model (Jennings,
1995), and another based on STEAM (Tambe, 1997). Through this encoding, we derive the
conditions under which these team coordination strategies generate optimal team behavior,
and the complexity of the decision problems addressed by them. Furthermore, we also
derive a novel team coordination algorithm that outperforms these existing strategies in
optimality, though not in eÆciency. The end result is a well-grounded characterization of

the complexity-optimality tradeo� among various means of team coordination.
Third, we can use the COM-MTDP model to empirically analyze a speci�c domain of

interest. We have implemented reusable, domain-independent algorithms that allow one to
evaluate the optimality of the behavior generated by di�erent prescriptive policies within a
problem domain represented as a COM-MTDP. We apply these algorithms in an example
domain to empirically evaluate the aforementioned team coordination strategies, charac-
terizing the optimality of each strategy as a function of the properties of the underlying
domain. For instance, Jennings reports experimental results (Jennings, 1995) indicating
that his joint responsibility teamwork model leads to lower waste of community e�ort than
competing methods of accomplishing teamwork. With our COM-MTDP model, we were
able to demonstrate the bene�ts of Jennings' approach under many con�gurations of our ex-
ample domain. However, in precisely characterizing the types of domains that showed such
bene�ts, we also identi�ed domains where these competing methods may actually perform
better. In addition, we can use our COM-MTDP model to re-create and explain previous
work that noted an instance of suboptimality in a STEAM-based, real-world implementa-
tion (Tambe, 1997). While this previous work treated that suboptimality as anomalous, our
COM-MTDP re-evaluation of the domain demonstrated that the observed suboptimality
was a symptom of STEAM's general propensity towards extraneous communication in a
signi�cant range of domain types. Both the algorithms and the example domain model are
available for public use in an Online Appendix 1.

Section 2 presents the COM-MTDP model's representation and places it in the context
of related multiagent models from the literature. Section 3 uses the COM-MTDP model to
de�ne and characterize the complexity of designing optimal agent teams. Section 4 analyzes
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the optimality of existing team coordination algorithms and derives a novel coordination
algorithm. Section 5 presents empirical results from applying our COM-MTDP algorithms
to an example domain. Section 6 summarizes our results, and Section 7 identi�es some
promising future directions.

2. The COM-MTDP Model

This section de�nes and describes the COM-MTDP model itself and its ability to represent
the important aspects of multiagent teamwork. We begin in Section 2.1 by de�ning the
underlying multiagent team decision problem with no explicit communication. Section 2.2
de�nes the complete COM-MTDP model with its extension to explicitly represent commu-
nication. Section 2.3 provides an illustration of how the COM-MTDP model represents the
execution of a team of agents. Finally, Section 2.4 describes related models of multiagent
coordination and shows how the COM-MTDP model generalizes them.

2.1 Multiagent Team Decision Problems

Given a team of seless agents, �, who intend to perform some joint task, we wish to evaluate
possible policies of behavior. We represent a multiagent team decision problem (MTDP)
model as a tuple, hS;A�; P;
�;O�;B�; Ri. We have taken the underlying components of
this model from the initial team decision model (Ho, 1980), but we have extended them to
handle dynamic decisions over time and to more easily represent multiagent domains (in
particular, agent beliefs). We assume that the model is common knowledge to all of the
team members. In other words, all of the agents believe the same model, and they believe
that they all believe the same model, etc.

2.1.1 World States: S

� S = �1 � � � � � �m: a set of world states, expressed as a factored representation (a
cross product of separate features).

The state of the world here is the state of the team's environment (e.g., terrain, location of
enemy). Thus, each �i represents the domain of an individual feature of that environment,
while S represents the domain of all possible combinations of values over the individual
features.

2.1.2 Domain-Level Actions: A�

fAigi2� is a set of actions for each agent to perform to change its environment, implicitly
de�ning a set of combined actions, A� �

Q
i2�Ai (corresponding to team theory's decision

variables).

Extension to Dynamic Problem: P The original team decision problem focused on
a one-shot, static problem. We extend the original concept so that each component is a
time series of random variables. The e�ects of domain-level actions (e.g., a ying action
changes a helicopter's position) obey a probabilistic distribution, given by a function P :
S �A� � S ! [0; 1]. In other words, for each initial state s at time t, combined action a
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taken at time t, and �nal state s0 at time t+ 1, Pr(St+1 = s0jSt = s;At
� = a) = P (s;a; s0).

The given de�nition of P assumes that the world dynamics obey the Markov assumption.

2.1.3 Agent Observations: 
�

f
igi2� is a set of observations that each agent, i, can experience of its world, implicitly
de�ning a combined observation, 
� �

Q
i2� 
i. 
i may include elements corresponding

to indirect evidence of the state (e.g., sensor readings) and actions of other agents (e.g.,
movement of other helicopters). In the original team-theoretic framework, the information

structure that represented the observation process of the agents was a set of deterministic
functions, Oi : S ! 
i.

Extension of Allowable Information Structures: O� We extend the information
structure representation to allow for uncertain observations. We use a general stochastic
model, borrowed from the partially observable Markov decision process model (Smallwood &
Sondik, 1973), with a joint observation function: O�(s;a;!) = Pr(
t

� = !jS
t = s;At�1

� =
a). This function models the sensors, representing any errors, noise, etc. In some cases, we
can separate this joint distribution into individual observation functions: O� �

Q
i2�Oi,

where Oi(s;a; !) = Pr(
t
i = !jSt = s;At�1

� = a). Thus, the probability distribution
speci�ed by O� forms the richer information structure used in our model. We can make
useful distinctions between di�erent classes of information structures:

Collective Partial Observability This is the general case, where we make no assump-
tions on the observations.

Collective Observability There is a unique world state for the combined observations of
the team: 8! 2 
�, 9s 2 S such that 8s0 6= s, Pr(
t

� = !jSt = s0) = 0. The set
of domains that are collectively observable is a strict subset of the domains that are
collectively partially observable.

Individual Observability There is a unique world state for each individual agent's ob-
servations: 8! 2 
i, 9s 2 S such that 8s0 6= s, Pr(
t

i = !jSt = s0) = 0. The set
of domains that are individually observable is a strict subset of the domains that are
collectively observable.

Non-Observability The agents receive no feedback from the world: 9! 2 
i, such that
8s 2 S and 8a 2 A�, Pr(


t
i = !jSt = s;At�1

� = a) = 1. This assumption holds
in open-loop systems, which come under frequent consideration in classical plan-
ning (Boutilier, Dean, & Hanks, 1999).

2.1.4 Policy (Strategy) Space

�iA is a domain-level policy (or strategy, in the original team theory speci�cation) to map
an agent's belief state to an action. In the original formalism, the agent's beliefs correspond
directly to its observations (i.e., �iA : 
i ! Ai).

Extension to Richer Belief State Space: B� We generalize the set of possible strate-
gies to capture the more complex mental states of the agents. Each agent, i 2 �, forms a
belief state, bti 2 Bi, based on its observations seen through time t, where Bi circumscribes
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the set of possible belief states for the agent. Thus, we de�ne the set of possible domain-
level policies as mappings from belief states to actions, �iA : Bi ! Ai. We de�ne the set
of possible combined belief states over all agents to be B� �

Q
i2�Bi. The corresponding

random variable, bt�, represents the agents' combined belief state at time t. We elaborate
on di�erent types of belief states and the mapping of observations to belief states (i.e., the
state estimator function) in Section 2.2.1.

2.1.5 Reward Function: R

A common reward function is central to the notion of teamwork in a MTDP: R : S�A� !
R. This function represents the team's joint preferences over states and the cost of domain-
level actions (e.g., destroying enemy is good, returning to home base with only 10% of
original force is bad). We assume that, as seless team members, each agent shares these
preferences at the individual level as well. Therefore, each team member wants exactly
what is best for the team as a whole.

2.2 Extension for Explicit Communication: ��

We make an explicit separation between domain-level actions (A�) and communicative
actions. As de�ned in this section, communicative actions a�ect the receiving agents' indi-
vidual belief states, but, unlike domain-level actions, they do not directly change the world
state. Although this distinction is sometimes blurry in real-world domains, we make this
explicit separation so as to isolate, as much as possible, the e�ects of the two types of
actions. The leverage gained from this separation provides the basis for the informative,
analytical results presented in the rest of this paper. To capture this separation, we extend
our initial MTDP model to be a communicative multiagent team decision problem (COM-
MTDP), that we de�ne as a tuple, hS;A�;��; P;
�;O�;B�; Ri, with a new component,
��, and an extended reward function, R.

2.2.1 Communication: ��

f�igi2� is a set of possible messages for each agent, implicitly de�ning a set of combined
communications, �� �

Q
i2� �i. An agent, i, may communicate message x 2 �i to its

teammates, who interpret the communication by updating their belief states in response. As
a �rst step in this work, we assume that all of the agents receive the messages instantaneously
and correctly (i.e., there is no lag or noise in the communication channels). This model is
common knowledge among all of the team members, so once an agent has sent a message,
it knows that its team members have received the message, and its team members know
that it knows that they have all received the message, and so on.

With communication, we divide each decision epoch into two phases: the pre-communi-
cation and post-communication phases, denoted by the subscripts �� and ��, respectively.
In particular, the agents update their belief states at two distinct points within each de-
cision epoch: once upon receiving observation 
t

i (producing the pre-communication be-
lief state bti��), and again upon receiving the other agents' messages (producing the post-
communication belief state bti��). The distinction allows us to di�erentiate between the belief
state used by the agents in selecting their communication actions and the more \up-to-date"
belief state used in selecting their domain-level actions. We also distinguish between the
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separate state-estimator functions used in each update phase:

b0i =SE
0
i () (1)

bti�� =SEi��(b
t�1
i�� ;


t
i) (2)

bti�� =SEi��(b
t
i��;�

t
�) (3)

where SEi�� : Bi � 
i ! Bi is the pre-communication state estimator for agent i, and
SEi�� : Bi ��� ! Bi is the post-communication state estimator for agent i. The initial
state estimator, SE0

i : ; ! Bi, speci�es the agent's prior beliefs, before any observations
are made. For each of these, we also make the obvious de�nitions for the corresponding
estimators for the combined belief states: SE���, SE���, and SE

0
�.

In this paper, as a �rst step, we assume that the agents have perfect recall. In other
words, the agents recall all of their observations, as well as all communication of the other
agents. Thus, their belief states can represent their entire histories as sequences of obser-
vations and received messages: Bi = 
�i � ��

�, where X
� denotes the set of all possible

sequences (of any length) of elements of X. The agents realize perfect recall through the
following state estimator functions:

SE0
i () = hi (4)

SEi��(




0
i ;�

0
�

�
; : : : ;




t�1
i ;�t�1

�

��
;
t

i)

=




0
i ;�

0
�

�
; : : : ;




t�1
i ;�t�1

�

�
;



t
i; �
��

(5)

SEi��(




0
i ;�

0
�

�
; : : : ;




t�1
i ;�t�1

�

�
;



t
i; �
��
;�t

�)

=




0
i ;�

0
�

�
; : : : ;




t
i;�

t
�

��
(6)

In other words, SE0
i initializes agent i's belief state to be an empty history, SEi�� appends a

new observation to agent i's belief state, and SEi�� appends new messages to agent i's belief
state. Under this paper's assumptions of perfect recall, all three state-estimator functions
take only constant time. However, we can potentially allow more complex functions (though
the complexity results presented hold only if the state-estimator functions take polynomial
time). For instance, although we assume perfect, synchronous, instantaneous communica-
tion here, we could potentially use the post-communication state estimator to model any
noise, temporal delays, asynchrony, cognitive burden, etc. present in the communication
channel.

We extend our de�nition of a policy of behavior to include a communication policy,
�i� : Bi ! �i, analogous to Section 2.1.4's domain-level policy. We de�ne the joint policies,
��� and ��A, as the combined policies across all agents in �.

2.2.2 Extended Reward Function: R

We extend the team's reward function to also represent the cost of communicative acts (e.g.,
communication channels may have associated cost): R : S�A���� ! R. We assume that
the cost of communication and of domain-level actions are independent of each other, so we
can decompose the reward function into two components: a communication-level reward,
R� : S � �� ! R, and a domain-level reward, RA : S � A� ! R. The total reward is
the sum of the two component values: R(s;a;�) = RA(s;a) + R�(s;�). We assume that
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communication has no inherent bene�t and may instead have some cost, so that for all
states, s 2 S, and messages, � 2 ��, the reward is never positive: R�(s;�) � 0. However,
although we assign communication no explicit value, it can have signi�cant implicit value
through its e�ect on the agents' belief states and, subsequently, on their future actions.

As with the observability function, we parameterize the communication costs associated
with message transmissions:

General Communication: We make no assumptions about communication.

Free Communication: R�(s;�) = 0 for any � 2 ��, and s 2 S. In other words,
communication actions have no e�ect on the agents' reward.

No communication: �� = ;, i.e., no explicit communication. Alternatively, communica-
tion may be prohibitively expensive, so that 8� 2 ��, and s 2 S, R�(s;�) = �1.

The free-communication case appears in the literature, when researchers wish to focus
on issues other than communication cost. Although, real-world domains rarely exhibit
such ideal conditions, we may be able to model some domains as having approximately free
communication to a suÆcient degree. In addition, analyzing this extreme case gives us some
understanding of the bene�t of communication, even if the results do not apply across all
domains. We also identify the no-communication case because such decision problems have
been of interest to researchers as well (Goldberg &Mataric, 1997). Of course, even if�� = ;,
it is possible that there are domain-level actions in A� that have implicit communicative
value by acting as signals that convey information to the other agents. However, we still
label such agent teams as having no communication for the purposes of the work here, since
many of our results exploit an explicit separation between domain- and communication-level
actions.

2.3 Model Illustration

We can view the evolving state as a Markov chain with separate stages for domain-level
and communication-level actions. In other words, each agent team member, i 2 � begins
in some initial state, S0, with initial belief states, b0i = SE0

i (). Each agent receives an
observation 
0

i drawn according to the probability distribution O�(S
0;null;
0

�) (there are
no actions yet). Then, each agent updates its belief state, b0i�� = SEi��(b

0
i ;


0
i ).

Next, each agent i 2 � selects a message according to its communication policy, �0
i =

�i�(b
0
i��), de�ning a combined communication, �0

�. Each agent interprets the commu-
nications of all of the others by updating its belief state, b0i�� = SEi��(b

0
i��;�

0
�). Each

then selects an action according to its domain-level policy, A0
i = �iA(b

0
i��), de�ning a

combined action A0
�. By our central assumption of teamwork, each agent receives the

same joint reward, R0 = R(S0;A0
�;�

0
�). The world then moves into a new state, S1,

according to the distribution, P (S0;A0
�). Again, each agent i receives an observation 
1

i

drawn from 
i according to the distributionO�(S
1;A0

�;

1
�), and it updates its belief state,

b1i�� = SEi��(b
0
i��;


1
i ).

The process continues, with agents choosing communication- and domain-level actions,
observing the e�ects, and updating their beliefs. Thus, in addition to the time series of world
states, S0; S1; : : : ; St, the agents themselves determine a time series of communication-level
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and domain-level actions, �0
�;�

1
�; : : : ;�

t
� and A1

�;A
1
�; : : : ;A

t
�, respectively. We also have

a time series of observations for each agent i, 
0
i ;


1
i ; : : : ;


t
i. Likewise, we can treat the

combined observations, 
0
�;


1
�; : : : ;


t
�, as a similar time series of random variables.

Finally, the agents receive a series of rewards, R0; R1; : : : ; Rt. We can de�ne the value,
V , of the policies, ��A and ���, as the expected reward received when executing those
policies. Over a �nite horizon, T , this value is equivalent to the following:

V T (��A;���) = E

"
TX
t=0

Rt

�������A;���
#

(7)

2.4 Related Work

The COM-MTDP model subsumes many existing multiagent models, as presented in Ta-
ble 1 (i.e., we can map any instance of these models into a corresponding COM-MTDP).
This generality enables us to perform novel analyses of real-world teamwork domains, as
demonstrated by Section 4's use of the COM-MTDP model for analyzing the optimality of
communication decisions.

2.4.1 Decentralized POMDPs

With its model of observability and world dynamics, our COM-MTDP model closely par-
allels the structure of the decentralized partially observable Markov decision process (DEC-
POMDP) (Bernstein et al., 2000). Following our notational conventions, a DEC-POMDP
is a tuple, hS;A�; P;
�; O�; Ri. There is no set of possible messages, ��, so the DEC-
POMDP falls into the class of domains with no communication. The DEC-POMDP obser-
vational model, O, is general enough to capture collectively partially observable domains.

2.4.2 Partially Observable Identical Payoff Stochastic Games

Stochastic games provide a rich framework for multiagent decision making when the agents
may have their own individual goals and preferences. The identical payo� stochastic game

(IPSG) restricts the agents to share a single payo� function, appropriate for modeling
the single, global reward function of the team context. The partially observable IPSG

(POIPSG) (Peshkin, Kim, Meuleau, & Kaelbling, 2000) is a tuple, hS;A�; P;
�;O�; Ri,
very similar to the DEC-POMDP model. In other words, the observation function, O�, is
general enough to support collectively partially observable domains, and there is no commu-

nication.

2.4.3 Multiagent MDPs

Another relevant model is the multiagent Markov decision process (MMDP) (Boutilier,
1996), which is a tuple, hS;A�; P;Ri, in our notation. Like the DEC-POMDP, the MMDP
has no communication. In addition, the MMDP is a multiagent extension to the completely
observable MDP model, so it assumes an environment that is individually observable.
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Model �� O�

DEC-POMDP no communication collective partial observability

POIPSG no communication collective partial observability

MMDP no communication individual observability

Xuan-Lesser general communication collective observability

Table 1: Existing models as COM-MTDP subsets.

2.4.4 Xuan-Lesser Framework

The COM-MTDP's separation of communication from other actions is similar to previous
work on multiagent decision models (Xuan, Lesser, & Zilberstein, 2001), which supported
general communication. However, while the Xuan-Lesser model generalizes beyond indi-
vidually observable environments, it supports only a subset of collectively observable envi-
ronments. In particular, the Xuan-Lesser framework cannot represent agents who receive
local observations of a common world state, where the observations of di�erent agents could
potentially be interdependent.

3. COM-MTDP Complexity Analysis

We can use the COM-MTDP model to prove some results about the complexity of con-
structing optimal agent teams (i.e., teams that coordinate to produce optimal behavior in
a problem domain). The problem facing these agents (or the designer of these agents) is
how to construct the joint policies, ��� and ��A, so as to maximize their joint reward,
as represented by the expected value, V T (��A;���). In all of the results presented, we
assume that all of the values in a model instance (e.g., transition probabilities, rewards) are
rational numbers, so that we can express the particular instance as a �nite-sized input.

Theorem 1 The decision problem of whether there exist policies, ��� and ��A, for a given

COM-MTDP, under general communication and collective partial observability, that yield
a total reward at least K over some �nite horizon T is NEXP-complete if j�j � 2 (i.e.,

more than one agent).

Proof: To prove that the COM-MTDP decision problem is NEXP-hard, we reduce a DEC-
POMDP (Bernstein et al., 2000) to a COM-MTDP with no communication by copying
all of the other model features from the given DEC-POMDP. In other words, if we are
given a DEC-POMDP,



S; fAigmi=1; P; f
igmi=1; O;R

�
, we can construct a COM-MTDP,

hS0; fA0ig
m
i=1;�

0
�; P

0; f
0ig
m
i=1;O

0
�;B

0
�; R

0i, as follows:

S0 = S

A0i = Ai

�0 = ;

P 0(s; ha1; : : : ; ami ; s
0) = P (s0js; a1; : : : ; am)
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0i = 
i

O0
�(s; ha1; : : : ; ami ; h!1; : : : ; !mi) = O(!1; : : : ; !mja1; : : : ; am; s)

B0
i = [Tj=1(


i)j (i.e., observation sequences of length no more than the �nite horizon)

R0(s; ha1; : : : ; ami ;�) = R(s; a1; : : : ; am)

The DEC-POMDP assumes perfect recall, so we use the state estimator functions from
Equations 5 and 6. Since there is no communication for this COM-MTDP, we have a �xed
silent policy, ���. We can translate any domain-level policy, ��A, into a DEC-POMDP
joint policy, Æ, as follows:

Æi(oi1; : : : ; o
i
t) � �iA(



oi1; : : : ; o

i
t

�
) (8)

The expected utility of following this joint policy, Æ, within the DEC-POMDP is identical
to that of following ��� and ��A within the constructed COM-MTDP. Thus, there exists
a policy with expected utility greater than K for the COM-MTDP if and only if there
exists one for the DEC-POMDP. The decision problem for a DEC-POMDP is known to be
NEXP-complete, so the COM-MTDP problem must be NEXP-hard.

To show that the COM-MTDP is in NEXP, our proof proceeds similarly to that of
the DEC-POMDP. In other words, we guess the joint policy, ��, and write it down in
exponential time (we assume that T � jSj). We can take the COM-MTDP plus the policy
and generate (in exponential time) a corresponding MDP where the state space is the space
of all possible combined belief states of the agents. We can then use dynamic programming
to determine (in exponential time) whether �� generates an expected reward of at least K.
2

In the remainder of this section, we examine the e�ect of communication on the com-
plexity of constructing team policies that generate optimal behavior. We start by examining
the case under the condition of free communication, where we would expect the bene�t of
communication to be the greatest. To begin with, suppose that each agent is capable of
communicating its entire observation (i.e., �i � 
i). Before we analyze the complexity of
the team decision problem, we �rst prove that the agents should exploit this capability and
communicate their true observation, as long as they incur no cost in doing so:

Theorem 2 Under free communication, consider a team of agents using a communication

policy: �i�(b
t
i��) � 
t

i. If the domain-level policy ��A maximizes V T (��A;���), then this

combined policy is dominant over any other policies. In other words, for all policies, �0�A
and �0��, V

T (��A; ���) � V T (�0�A;�
0
��).

Proof: Suppose we have some other communication policy, �0��, that speci�es something
other than complete communication (e.g., keeping quiet, lying). Suppose that there is some
domain-level policy, �0�A, that allows the team to attain some expected reward, K, when
used in combination with �0��. Then, we can construct a domain-level policy, ��A, such
that the team attains the same expected reward, K, when used in conjunction with the
complete-communication policy, ���, as de�ned in the statement of Theorem 2.

The communication policy, �0��, produces a di�erent set of belief states (denoted b0
t
i��

and b0ti��) than those for ��� (denoted bti�� and bti��). In particular, we use state estimator
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functions, SE0
i�� and SE0

i�� as de�ned in Equations 5 and 6 to generate b0
t
i�� and b0

t
i��.

Each belief state is a complete history of observation and communication pairs for each
agent. On the other hand, under the complete communication of ���, the state estimator
functions of Equations 5 and 6 reduce to:

SEi��(



0
�; : : : ;


t�1
�

�
;
t

i) =



0
�; : : : ;


t�1
� ;
t

i

�
(9)

SEi��(



0
�; : : : ;


t�1
� ;
t

i

�
;�t

�) =



0
�; : : : ;


t�1
� ;�t

�

�
=



0
�; : : : ;


t�1
� ;
t

�

�
(10)

Thus, ��A is de�ned over a di�erent set of belief states than �0�A. In order to determine
an equivalent ��A, we must �rst de�ne a recursive mapping, m, that translates the belief
states de�ned by ��� into those de�ned by �0��:

mi(b
t
i��) =mi

�

bt�1i�� ;


t
�

��
= mi

�

bt�1i�� ;




t
i;


t
�

���
=
D
mi(b

t�1
i��);

D

t
i;�

0t
�

EE
=

*
mi(b

t�1
i��);

*

t
i;
Y
j2�

�0
t
j

++

=

*
mi(b

t�1
i��);

*

t
i;
Y
j2�

�0j�(SE
0
j��(mj(b

t�1
j��);


t
j))

++
(11)

Given this mapping, we then specify: �iA(b
t
i��) = �0iA(mi(b

t
i��)). Executing this domain-

level policy, in conjunction with the communication policy, ���, results in the identical
behavior as execution of the alternate policies, �0�A and �0��. Therefore, the team following
the policies, ��A and ��� will achieve the same expected value of K, as under �0�A and
�0��. 2

Given this dominance of the complete-communication policy, we can prove that the
problem of constructing teams that coordinate optimally is simpler when communication is
free.

Theorem 3 The decision problem of determining whether there exist policies, ��� and
��A, for a given COM-MTDP with free communication under collective partial observabil-
ity, that yield a total reward at least K over some �nite horizon T is PSPACE-complete.

Proof: To prove that the problem is PSPACE-hard, we reduce the single-agent POMDP to
a COM-MTDP. In particular, if we are given a POMDP, hS;A; P;
; O;Ri, we can construct
a COM-MTDP, hS0; A01;�

0
1; P

0;
01; O
0
1; B

0
1; R

0i, for a single-agent team (i.e., � = f1g):

S0 = S

A01 = A

�01 = ;

P 0(s; ha1i ; s
0) = P (s; a1; s

0)


01 = 
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O0
1(s; ha1i ; h!1i) = O(s; a1; !1)

B0
1 = [Tj=1(
)

j (i.e., observation sequences of length no more than the �nite horizon)

R0A(s; ha1i) = R(s; a1)

R0�(s;�) = 0

This COM-MTDP satis�es our assumption of free communication. The POMDP assumes
perfect recall, so we use the state estimator functions from Equations 5 and 6. Just as in
the proof of Theorem 1, we can show that there exists a policy with expected utility greater
than K for this COM-MTDP if and only if there exists one for the POMDP. The decision
problem for the POMDP is known to be PSPACE-hard (Papadimitriou & Tsitsiklis, 1987),
so the COM-MTDP problem under free communication must be PSPACE-hard.

To show that the problem is in PSPACE, we take a COM-MTDP under free communi-
cation and reduce it to a single-agent POMDP. In particular, if we are given a COM-MTDP,
hS;A�;��; P; 
�;O�;B�; Ri, we can construct a single-agent POMDP, hS0; A0; P 0;
0; O0;

R0i, as follows:

S0 = S

A0 = A�

P 0(s;a; s0) = P (s;a; s0)


0 = 
�

O0(s;a;!) = O�(s;a;!)

R0(s;a) = RA(s;a)

From Theorem 2, we need to consider only the complete-communication policy for the
COM-MTDP and this policy has a zero reward. Therefore, the decision problem for the
COM-MTDP is simply to �nd a domain-level policy that produces an expected reward
exceeding K. Given full communication, the state estimator functions for the COM-MTDP
(as shown in the proof of Theorem 2) reduce to Equation 10. A policy for our POMDP
speci�es an action for each and every history of observations: �0 : [Tj=1(


0)j ! A0. The
history of observations for the single-agent POMDP corresponds to the belief states of our
COM-MTDP under full communication. Therefore, we can translate a POMDP-policy, �0,
into an equivalent domain-level policy for the COM-MTDP:

�A(h!0;!1; : : : ;!ti) � �0(h!0;!1; : : : ;!ti) (12)

A team following �A will perform the exact same domain-level actions as a single agent
following �0. Thus, there exists a policy with expected utility greater than K for the COM-
MTDP if and only if there exists one for the POMDP. The decision problem for a POMDP
is known to be in PSPACE (Papadimitriou & Tsitsiklis, 1987), so the COM-MTDP problem
(under free communication) must be in PSPACE as well. 2
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Theorem 4 The decision problem of determining whether there exist policies, ��� and
��A, for a given COM-MTDP with free communication and collective observability, that
yield a total reward at least K over some �nite horizon T is P-complete.

Proof: The proof follows that of Theorem 3, but with a reduction to and from the MDP
decision problem, rather than the POMDP. The MDP decision problem is P-complete (Pa-
padimitriou & Tsitsiklis, 1987). 2

Theorem 5 The decision problem of determining whether there exist policies, ��� and

��A, for a given COM-MTDP with individual observability, that yield a total reward at

least K over some �nite horizon T (given integers K and T ) is P-complete.

Proof: The proof follows that of Theorem 4, except that we can reduce the problem to
and from an MDP regardless of what communication policy the team uses. 2

Theorem 6 The decision problem of determining whether there exist policies, ��� and

��A, for a given COM-MTDP with non-observability, that yield a total reward at least K

over some �nite horizon T (given integers K and T ) is NP-complete.

Proof: The proof follows that of Theorem 4, except that we can reduce the problem to and
from an single-agent non-observable MDP (NOMDP) regardless of what communication
policy the team uses. In particular, because the agents are all equally ignorant of the state,
communication has no e�ect. The NOMDP decision problem is NP-complete (Papadim-
itriou & Tsitsiklis, 1987). 2

Thus, we have used the COM-MTDP framework to characterize the diÆculty of problem
domains in agent teamwork along the dimensions of communication cost and observability.
Table 2 summarizes our results, which we can use in deciding where to concentrate our
energies in attacking teamwork problems. We can use these results to draw some conclusions
about the challenges to designers of multiagent teams:

� The greatest challenges lie in those domains with either collective observability or
collective partial observability and with nonzero communication cost.

� Under collective observability and collective partial observability, teamwork without
communication is highly intractable, but, with free communication, the complexity
becomes on par with that of single-agent planning problems.

� Agent team designers have much to gain by increasing the observational capabilities of
their team (e.g., by adding new sensor agents) because of the reduction in complexity
gained by making the domain collectively observable.

� Furthermore, the results from Theorems 3 and 4 hold in any domain where the result
from Theorem 2 holds (i.e., when complete communication is the dominant policy).
Therefore, while perfectly free communication may be rare, these results show that
investment in communication in teamwork can pay o� with a signi�cant simpli�cation
of optimal teamwork.
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Individually Collectively Collectively Non-
Observable Observable Partially Observable Observable

No Comm. P-complete NEXP-complete NEXP-complete NP-Complete

General Comm. P-complete NEXP-complete NEXP-complete NP-Complete

Free Comm. P-complete P-complete PSPACE-complete NP-Complete

Table 2: Time complexity of COM-MTDPs.

� On the other hand, when the world is individually observable or non-observable, com-
munication makes no di�erence in performance.

� It should be noted that even under those conditions where the problem is P-complete,
the complexity of optimal teamwork is polynomial in the number of states of the
world, which may still be impractically high.

� The above complexity results pertain to �nding policies that are optimal subject to
the domain properties. We will �nd di�erent expected rewards of the optimal policies
under di�erent observability and communication properties. For instance, cutting o�
all of the agents' sensors makes the domain non-observable and reduces the complexity
of generating an optimal policy from NEXP to NP, but we would expect an associated
drop in the expected reward achieved by the team.

4. Evaluating Team Coordination

Table 2 shows that providing optimal domain-level and communication policies for teams is
a diÆcult challenge. Many systems alleviate this diÆculty by having domain experts pro-
vide the domain-level plans (Tambe, 1997; Tidhar, 1993). Then, the problem for the agents
reduces to generating the appropriate team coordination, ���, to ensure that they prop-
erly execute the domain-level plans, ��A. In this section, we demonstrate the COM-MTDP
framework's ability to analyze existing teamwork approaches in the literature. Our method-
ology for such analysis begins by encoding such a teamwork method as a communication-
level policy. In other words, we translate the method into an algorithm that maps agent
beliefs (e.g., observation sequences) into communication decisions. To evaluate the per-
formance of this policy, we then instantiate a COM-MTDP that represents the states,
transition probabilities, and reward function of a domain of interest. Our methodology
provides an evaluation of the policy in terms of the expected reward earned by the team
when following the policy in the speci�ed domain.

We demonstrate this methodology by using our COM-MTDP framework to analyze joint
intentions theory (Cohen & Levesque, 1991b, 1991a; Levesque et al., 1990), which provides
a common basis for many existing approaches to team coordination. Section 4.1 models two
key instantiations of joint intentions taken from the literature (Jennings, 1995; Tambe, 1997)
as COM-MTDP communication policies. Section 4.2 analyzes the conditions under which
these policies generate optimal behavior and provides a third candidate policy that makes
communication decisions that are locally optimal within the context of joint intentions. In
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addition to providing the results for the particular team coordination strategies investigated,
this section also illustrates a general methodology by which one can use our COM-MTDP
framework to encode and evaluate coordination strategies proposed by existing multiagent
research.

4.1 Joint Intentions in a COM-MTDP

Joint intention theory provides a prescriptive framework for multiagent coordination in a
team setting. It does not make any claims of optimality in its teamwork, but it provides
theoretical justi�cations for its prescriptions, grounded in the attainment of mutual belief
among the team members. We can use the COM-MTDP framework to identify the domain
properties under which attaining mutual belief generates optimal behavior and to quantify
precisely how suboptimal the performance will be otherwise.

Joint intentions theory requires that team members jointly commit to a joint persistent
goal, G. It also requires that when any team member privately believes that G is achieved
(or unachievable or irrelevant), it must then attain mutual belief throughout the team
about this achievement (or unachievability or irrelevance). To encode this prescription of
joint intentions theory within our COM-MTDP model, we �rst specify the joint goal, G, as
a subset of states, G � S, where the desired goal is achieved (or unachievable or irrelevant).

Presumably, such a prescription indicates that joint intentions are not speci�cally in-
tended for individually observable environments. Upon achieving the goal in an individually

observable environment, each agent would simultaneously observe that St 2 G. Because
of our assumption that the COM-MTDP model components (including O�) are common
knowledge to the team, each agent would also simultaneously come to believe that its team-
mates have observed that St 2 G, and that its teammates believe that it believes that all
of the team members have observed that St 2 G, and so on. Thus, the team immediately
attains mutual belief in the achievement of the goal under individual observability without
any additional communication necessary by the team.

Instead, the joint intention framework aims at domains with some degree of unobserv-
ability. In such domains, the agents must signal the other agents, either through communi-
cation or some informative domain-level action, to attain mutual belief. However, we can
also assume that joint intention theory does not focus on domains with free communication,
where Theorem 2 shows that we can simply have the agents communicate everything, all
the time, without the need for more complex prescriptions.

The joint intention framework does not specify a precise communication policy for the
attainment of mutual belief. In this paper, we focus on communication only in the case of
goal achievement, but our methodology extends to handle unachievability and irrelevance as
well. One well-known approach (Jennings, 1995) applied joint intentions theory by having
the agents communicate the achievement of the joint goal, G, as soon as they believe G to be
true. To instantiate the behavior of Jennings' agents within a COM-MTDP, we construct a
communication policy, �J��, that speci�es that an agent sends the special message, �G, when
it �rst believes that G holds. Following joint intentions' assumption of sincerity (Smith &
Cohen, 1996), we require that the agents never select the special �G message in a belief
state unless they believe G to be true with certainty. With this requirement and with our
assumption of the team's common knowledge of the communication model, we can assume
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that all of the other agents immediately accept the special message, �G, as true, and that
the agents know that all their team members accept the message as true, and so on. Thus,
the team attains mutual belief that G is true immediately upon receiving the message, �G.
We can construct the communication policy, �J��, in constant time.

The STEAM algorithm is another instantiation of joint intentions that has had success in
several real-world domains (Tambe, 1997; Pynadath et al., 1999; Tambe, Pynadath, Chau-
vat, Das, & Kaminka, 2000; Pynadath & Tambe, 2002). Unlike Jennings' instantiation, the
STEAM teamwork model includes decision-theoretic communication selectivity. A domain
speci�cation includes two parameters for each joint commitment, G: � , the probability of
miscoordinated termination of G; and Cmt, the cost of miscoordinated termination of G. In
this context, \miscoordinated termination" means that some agents immediately observe
that the team has achieved G while the rest do not. STEAM's domain speci�cation also
includes a third parameter, Cc, to represent the cost of communication of a fact (e.g., the
achievement of G). Using these parameters, the STEAM algorithm evaluates whether the
expected cost of miscoordination outweighs the cost of communication. STEAM expresses
this criterion as the following inequality: � � Cmt > Cc. We can de�ne a communication
policy, �S�� based on this criterion: if the inequality holds, then an agent that has observed
the achievement of G will send the message, �G; otherwise, it will not. We can construct
�S�� in constant time.

4.2 Locally Optimal Policy

Although the STEAM policy is more selective than Jennings', it remains unanswered
whether it is optimally selective, and researchers continue to struggle with the question
of when agents should communicate (Yen et al., 2001). The few reports of suboptimal
(in particular, excessive) communication in STEAM characterized the phenomenon as an
exceptional circumstance, but it is also possible that STEAM's optimal performance is the
exception. We use the COM-MTDP model to derive an analytical characterization of opti-
mal communication here, while Section 5 provides an empirical one by creating an algorithm
using that characterization.

Both policies, �J��, and �
S
�� consider sending �G only when an agent �rst believes that

G has been achieved. Once an agent has the relevant belief, they make di�erent choices, and
we consider here what the optimal decision is at this point. The domain is not individually
observable, so certain agents may be unaware of the achievement of G. When not sending
the �G message, these unaware agents may unnecessarily continue performing actions in
the pursuit of achieving G. The performance of these extraneous actions could potentially
incur costs and lead to a lower utility than one would expect when sending the �G message.

The decision to send �G or not matters only if the team achieves G and one agent
comes to know this fact. We de�ne the random variable, TG, to be the earliest time at
which an agent knows this fact. We denote agent KG as the agent who knows of the
achievement at time TG. If KG = i, for some agent, i, and TG = t0, then agent i has some
pre-communication belief state, bt0i�� = �, that indicates that G has been achieved. To more
precisely quantify the di�erence between agent i sending the �G message at time TG vs.
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never sending it, we de�ne the following value:

�T (t0; i; �) �E

"
T�t0X
t=0

Rt0+t

������t0
i = �G; TG = t0;KG = i; bt0i�� = �

#

�E

"
T�t0X
t=0

Rt0+t

������t0
i = null; TG = t0;KG = i; bt0i�� = �

#
(13)

We assume that, for all times other than TG, the agents follow some communication policy,
���, that never speci�es �G. Thus, �T measures the di�erence in expected reward that
hinges on agent i's speci�c decision to send or not send �G at time t0. Given this de�nition,
it is locally optimal for agent i to send the special message, �G, at time t0, if and only
if �T � 0. We de�ne the communication policy, ���+� , as the communication policy
following ��� for all agents at all times, except for agent i under belief state �, when
agent i sends message �. With this de�nition, ���+�G , is the policy under which agent i
communicates the achievement of G, and �

��+null is the policy under which it does not.
Therefore, we can alternatively describe agent i's decision criterion as choosing ���+�G
over �

��+null if and only if �T � 0.
Unfortunately, while Equation 13 identi�es an exact criterion for locally optimal commu-

nication, this criterion is not yet operational. In other words, we can not directly implement
it as a communication policy for the agents. Furthermore, Equation 13 hides the underly-
ing complexity of the computation involved, which is one of the key goals of our analysis.
Therefore, we use the COM-MTDP model to derive an operational expression of �T � 0.
For simplicity, we de�ne notational shorthand for various sequences and combinations of
values. We de�ne a partial sequence of random variables, X<t, to be the sequence of ran-
dom variables for all times before t: X0, X1, : : : , Xt�1. We make similar de�nitions for the
other relational operators (i.e., X>t, X�t, etc.). The expression, (S)T , denotes the cross
product over states of the world,

QT
t=0 S, as distinguished from the time-indexed random

variable, ST , which denotes the value of the state at time T . The notation, s�t0 [t], speci�es
the element in slot t within the vector s�t0 . We de�ne the function, �, as shorthand within
our probability expressions. It allows us to compactly represent a particular subsequence
of world and agent belief states occurring, conditioned on the current situation, as follows:

Pr
�
�
�

t; t0

�
; s;���

��
� Pr(S�t;�t

0

= s; b���
�t;�t0 = ���

��TG = t0;KG = i; bt0i�� = �)
(14)

Informally, � (ht; t0i ; s;���) represents the event that the world and belief states from time
t through t0 correspond to the speci�ed sequences, s and ���, respectively, conditioned on
agent i being the �rst to know of G's achievement at time t0 with a belief state, �. We de�ne
the function, ���, to map a pre-communication belief state into the post-communication
belief state that arises from a communication policy:

���(���;���) � SE���(���;���(���)) (15)

This de�nition of ��� is a well-de�ned function because of the deterministic nature of the
policy, ���, and state-estimator function, SE���.

406



The Communicative Multiagent Team Decision Problem

Theorem 7 If we assume that, upon achievement of G, no communication other than �G
is possible, then the condition �T (t0,i,�) � 0 holds if and only if:

X
s�t02(S)t0

X
�
�t0
�� 2B

t0
�

Pr(�(h0; t0i ; s
�t0 ;�

�t0
�� ))
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0
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�t0
�� 2B
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�� 2B

T�t0+1
�

Pr
�
�(ht0; T i ; s

�t0 ;�
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�� )

����t0
i
= null;�(h0; t0i ; s

�t0 ;�
�t0
�� )

�

�

TX
t=t0

RA

�
s�t0 [t];��A

�
���

�
���

�t0 [t];�
��+null

���!

��
X
s2G

X
�2B�

Pr (�(ht0; t0i ; s;�))R�(s; �G) (16)

Proof: The complete proof of the following theorem appears in Online Appendix 1.
The de�nition of �T in Equation 13 is the di�erence between two expectations, where each
expectation is a sum over the possible trajectories of the agent team. Each trajectory must
includes a sequence of possible world states, since the agents' reward at each point in time
depends on the particular state of the world at that time. The agents' reward also depends
on their actions (both domain- and communication-level). These actions are deterministic,
given the agents' policies, ��A and ��, and their belief states. Thus, in addition to summing
over the possible states of the world, we must also sum over the possible states of the agents'
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beliefs (both pre- and post-communication):

�T (t0; i; �)

=
X

s�T2(S)T

X
���

�T2(B)T

X
���

�T2(B)T

Pr
�
S�T = s�T ;b��

�T = ���
�T ;b��

�T = ���
�T

j�t0
i = �G; TG = t0;KG = i; bt0i�� = �

�

�
TX
t=0

R(s�T [t];�A(���
�T [t]);��(���

�T [t]))

�
X

s�T2(S)T

X
���

�T2(B)T

X
���

�T2(B)T

Pr
�
S�T = s�T ;b��

�T = ���
�T ;b��

�T = ���
�T

j�t0
i = null; TG = t0;KG = i; bt0i�� = �

�

�
TX
t=0

R(s�T [t];�A(���
�T [t]);��(���

�T [t])) (17)

We can rewrite these summations more simply using our various shorthand notations:

=
X

s�T2(S)T

X
���

�T2(B)T

Pr(�(h0; T i ; s;���
�T )j�t0

i = �G)

�
TX
t=0

R(s�T [t];�A(���(���
�T [t];���G));���G(���

�T [t]))

�
X

s�T2(S)T

X
���

�T2(B)T

Pr(�(h0; T i ; s;���
�T )j�t0

i = null)

�
TX
t=0

R(s�T [t];�A(���(���
�T [t];��null));��null(���

�T [t])) (18)

The remaining derivation exploits our Markovian assumptions to rearrange the summations
and cancel like terms to produce the theorem's result. 2

Theorem 7 states, informally, that we prefer sending �G whenever the the cost of exe-
cution after achieving G outweighs the cost of communication of the fact that G has been
achieved. More precisely, the outer summations on the left-hand side of the inequality
iterate over all possible past histories of world and belief states, producing a probability
distribution over the possible states the team can be in at time t0. For each such state, the
expression inside the parentheses computes the di�erence in domain-level reward, over all
possible future sequences of world and belief states, between sending and not sending �G.
By our theorem's assumption that no communication other than �G is possible after G has
been achieved, we can ignore any communication costs in the future. However, if we relax
this assumption, we can extend the left-hand side in a straightforward manner into a longer
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Individually Collectively Collectively Non-
Observable Observable Partially Observable Observable

No Comm. 
(1) 
(1) 
(1) 
(1)

General Comm. 
(1) O((jSj � j
�j)
T ) O((jSj � j
�j)

T ) 
(1)

Free Comm. 
(1) 
(1) 
(1) 
(1)

Table 3: Time complexity of locally optimal decision.

expression that accounts for the di�erence in future communication costs as well. Thus, the
left-hand side captures our intuition that, when not communicating, the team will incur a
cost if the agents other than i are unaware of G's achievement. The right-hand side of the
inequality is a summation of the cost of sending the �G message over possible current states
and belief states.

We can use Theorem 7 to derive the locally optimal communication decision across
various classes of problem domains. Under no communication, we cannot send �G. Under
free communication, the right-hand side is 0, so the inequality is always true, and we know
to prefer sending �G. Under no assumptions about communication, the determination is
more complicated. When the domain is individually observable, the left-hand side becomes
0, because all of the agents know that G has been achieved (and thus there is no di�erence
in execution when sending �G). Therefore, the inequality is always false (unless under free
communication), and we prefer not sending �G. When the environment is not individually
observable and communication is available but not free, then, to be locally optimal at time
t0, agent i must evaluate Inequality 16 in its full complexity. Since the inequality sums
rewards over all possible sequences of states and observations, the time complexity of the
corresponding algorithm is O((jSj � j
�j)

T ). While this complexity is unacceptable for most
real-world problems, it still provides an exponential savings over searching the entire policy
space for the globally optimal policy, where any agent could potentially send �G at times
other than TG. Table 3 provides a table of the complexity required to determine the locally
optimal policy under the various domain properties.

We can now show that although Theorem 7's algorithm for locally optimal communica-
tion provides a signi�cant computational savings over �nding the global optimum, it still
outperforms existing teamwork models, as exempli�ed by our �J�� and �S�� policies. First,
we can use the criterion of Theorem 7 to evaluate the optimality of the policy, �J��. If
�T (t0; i; �) � 0 for all possible times t0, agents i, and belief states � that are consistent
with the achievement of the goal G, then the locally optimal policy will always specify
sending �G. In other words, �J�� will be identical to the locally optimal policy. However,
if the inequality of Theorem 7 is ever false, then �J�� is not even locally, let alone globally,
optimal.

Second, we can also use Theorem 7 to evaluate STEAM by viewing STEAM's inequality,
� � Cmt > Cc, as a crude approximation of Inequality 16. In fact, there is a clear corre-
spondence between the terms in the two inequalities. The left-hand side of Inequality 16
computes an exact expected cost of miscoordination. However, unlike STEAM's monolithic
� parameter, the optimal criterion evaluates a complete probability distribution over all
possible states of miscoordination by considering all possible past sequences consistent with
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the agent's current beliefs. Likewise, unlike STEAM's monolithic Cmt parameter, the opti-
mal criterion looks ahead over all possible future sequences of states to determine the true
expected cost of miscoordination. Furthermore, we can view STEAM's parameter, Cc, as an
approximation of the communication cost computed by the right-hand side of Inequality 16.
Again, STEAM uses a single parameter, while the optimal criterion computes an expected
cost over all possible states of the world.

STEAM does have some exibility in its representation, because Cmt, � , and Cc are
not necessarily �xed across the entire domain. For instance, Cmt may vary based on the
speci�c joint plan that the agents may have jointly committed to (i.e., there may be a
di�erent Cmt for each goal G). Thus, while Theorem 7 suggests signi�cant additional exi-
bility in computing Cmt through explicit lookahead, the optimal criterion derived with the
COM-MTDP model also provides a justi�cation for the overall structure behind STEAM's
approximate criterion. Furthermore, STEAM's emphasis on on-line computation makes the
computational complexity of Inequality 16 (as presented in Table 3) unacceptable, so the
approximation error may be acceptable given the gains in eÆciency. For a speci�c domain,
we can use empirical evaluation (as demonstrated in the next section) to quantify the error
and eÆciency to precisely judge this tradeo�.

5. Empirical Policy Evaluation

In addition to providing these analytical results over general classes of problem domains, the
COM-MTDP framework also supports the analysis of speci�c domains. Given a particular
problem domain, we can construct an optimal communication policy or, if the complexity of
computing an optimal policy is prohibitive, we can instead evaluate and compare candidate
approximate policies. To provide a reusable tool for such evaluations, we have implemented
the COM-MTDP model as a Python class with domain-independent methods for the eval-
uation of arbitrary policies and for the generation of both locally optimal policies using
Theorem 7 and globally optimal policies through brute-force search of the policy space.
This software is available in Online Appendix 1.

This section presents results of a COM-MTDP analysis of an example domain involving
agent-piloted helicopters, where we focus on the key communication decision faced by many
multiagent frameworks (as described in Section 4), but vary the cost of communication and
degree of observability to generate a space of distinct domains with di�erent implications
for the agents' performance. By evaluating communication policies over various con�gura-
tions of this particular testbed domain, we demonstrate a methodology by which one can
use the COM-MTDP framework to model any problem domain and to evaluate candidate
communication policies for it.

5.1 Experimental Setup

Consider two helicopters that must y across enemy territory to their destination, as il-
lustrated in Figure 1. The �rst, piloted by agent Transport, is a transport vehicle with
limited �repower. The second, piloted by agent Escort, is an escort vehicle with signi�cant
�repower. Somewhere along their path is an enemy radar unit, but its location is unknown
(a priori) to the agents. Escort is capable of destroying the radar unit upon encountering
it. However, Transport is not, but it can escape detection by the radar unit by traveling
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Figure 1: Illustration of helicopter team scenario.

at a very low altitude (nap-of-the-earth ight), though at a lower speed than at its typical,
higher altitude. In this scenario, Escort will not worry about detection, given its superior
�repower; therefore, it will y at a fast speed at its typical altitude.

The two agents form a top-level joint commitment, GD, to reach their destination.
There is no incentive for the agents to communicate the achievement of this goal, since they
will both eventually reach their destination with certainty. However, in the service of their
top-level goal, GD, the two agents also adopt a joint commitment, GR, of destroying the
radar unit. We consider here the problem facing Escort with respect to communicating the
achievement of goal, GR. If Escort communicates the achievement of GR, then Transport

knows that it is safe to y at its normal altitude (thus reaching the destination sooner).
If Escort does not communicate the achievement of GR, there is still some chance that
Transport will observe the event anyway. If Transport does not observe the achievement
of GR, then it must y nap-of-the-earth the whole distance, and the team receives a lower
reward because of the later arrival. Therefore, Escort must weigh the increase in expected
reward against the cost of communication.

In the COM-MTDP model of this scenario (presented in Figures 2, 3 and 4), the world
state is the position (along a straight line between origin and destination) of Transport,
Escort, and the enemy radar. The enemy is at a randomly selected position somewhere
in between the agents' initial position and their destination. Transport has no possible
communication actions, but it can choose between two domain-level actions: ying nap-of-
the-earth and ying at its normal speed and altitude. Escort has two domain-level actions:
ying at its normal speed and destroying the radar. Escort also has the option of communi-
cating the special message, �GR , indicating that the radar has been destroyed. In the tables
of Figures 2, 3 and 4, the \�" symbol represents a wild-card (or \don't care") entry.

If Escort arrives at the radar, then it observes its presence with certainty and can
destroy it to achieve GR. The likelihood of Transport's observing the radar's destruction is
a function of its distance from the radar. We can vary this function's observability parameter
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� = fEscort (E);Transport (T )g
S = �E � �T � �R

Position of Escort: �E = f0; 1; : : : ; 8; 9;Destinationg
Position of Transport: �T = f0; 0:5; : : : ; 9; 9:5;Destination;

Destroyedg
Position of Radar: �R = f1; 2; : : : ; 8;Destroyedg

A� = AE �AT = fy;destroy;waitg � fy-NOE;y-normal;waitg
�� = �E � �T = fclear (�GR);nullg � fnullg

RA(h�E; �T ; �Ri ;a) =

�E �T a RA

0; : : : ; 9 0; : : : ; 9:5;Destroyed � 0
0; : : : ; 9 Destination � rT

Destination 0; : : : ; 9:5;Destroyed � rE
Destination Destination � rE + rT

R�(s; hnull;nulli) = 0
R�(s; h�GR ;nulli) = �r� 2 [0; 1]

Figure 2: COM-MTDP model of states, actions, and rewards for helicopter scenario.

(� in Figure 4) within the range [0; 1] to generate distinct domain con�gurations (0 means
that Transport will never observe the radar's destruction; 1 means Transport will always
observe it). If the observability is 1, then they achieve mutual belief of the achievement of
GR as soon as it occurs (following the argument presented in Section 4.1). However, for any
observability less than 1, there is a chance that the agents will not achieve mutual belief
simply by common observation. The helicopters receive a �xed reward for each time step
spent at their destination. Thus, for a �xed time horizon, the earlier the helicopters reach
there, the greater the team's reward. Since ying nap-of-the-earth is slower than normal
speed, Transport will switch to its normal ying as soon as it either observes that GR has
been achieved or Escort sends the message, �GR . Sending the message is not free, so we
impose a variable communication cost (r� in Figure 2), also within the range [0; 1].

We constructed COM-MTDP models of this scenario for each combination of observabil-
ity and communication cost within the range [0; 1] at 0.1 increments. For each combination,
we applied the Jennings and STEAM policies, as well as a completely silent policy. For this
domain, the policy, �J��, dictates that Escort always communicate �GR upon destroying
the radar. For STEAM, we vary the � and Cc parameters with the observability and com-
munication cost parameters, respectively. We used two di�erent settings (low and medium)
for the cost of miscoordination, Cmt. Following the published STEAM algorithm (Tambe,
1997), Escort sends message �GR if and only if STEAM's inequality � � Cmt > Cc, holds.
Thus, the two di�erent settings, low and medium, for Cmt generate two distinct communica-
tion policies; the high setting is strictly dominated by the other two settings in this domain.
We also constructed and evaluated locally and globally optimal policies. In applying each
of these policies, we used our COM-MTDP model to compute the expected reward received
by the team when following the selected policy. We can uniquely determine this expected
reward given the candidate communication policy and the particular observability and com-
munication cost parameters, as well as the COM-MTDP model speci�ed in Figures 2, 3,
and 4.
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� P (h�E0; �T0; �R0i ; haE; aT i ; h�E1; �T1; �R1i) =
PE(�E0; aE ; �E1) � PT (h�T0; �R0i ; aT ; �T1) � PR(h�E0; �R0i ; aE ; �R1)

Escort: Initial distribution, Pr(�0
E = 0) = 1

�E0 aE �E1 PE
Destination � Destination 1
0; : : : ; 8 y �E0 + 1 1
0; : : : ; 8 destroy �E0 + 1 1

9 y Destination 1
9 destroy Destination 1
� wait �E0 1

Transport: Initial distribution, Pr(�0
T = 0) = 1

�T0 �R0 aT �T1 PT
Destination � � Destination 1
Destroyed � � Destroyed 1
0; : : : ; 9 � y-NOE �T0 + 0:5 1
9:5 � y-NOE Destination 1

0; : : : ; 8:5 Destroyed y-normal �T0 + 1 1
9; 9:5 Destroyed y-normal Destination 1
� 6= Destroyed y-normal Destroyed 1
� � wait �T0 1

Radar: Initial distribution, 8� 2 f1; 2; : : : ; 8g, Pr(�0
R = �) = 0:125

�E0 �R0 aE �R1 PR
� �E0 destroy Destroyed 1
� � 6= destroy �R0 1
� 6= �E0 � �R0 1

Figure 3: COM-MTDP model of transition probabilities for helicopter scenario (excludes
zero probability rows).
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� 
� = 
E � 
T

{ 
E = �E � �T � 
RE , where agent Escort's possible observations of the radar
consist of 
RE = fpresent;destroyed;nullg

{ 
T = �E��T �
RT , where agent Transport's possible observations of the radar
consist of 
RT = fdestroyed;nullg

� O�(s; haE ; aT i ; h!E; !T i) = OE(s; haE; aT i ; !E) � OT (s; haE ; aT i ; !T )

{ OE(h�E; �T ; �Ri ; haE; aT i ; h�E; �T ; !REi) =

�E �R aE !RE OE

� destroyed destroy destroyed 1
� destroyed 6= destroy null 1
�R 1; : : : ; 9 � present 1
6= �R 1; : : : ; 9 � null 1

{ OT (h�E ; �T ; �Ri ; haE ; aT i ; h�E ; �T ; !RT i) =

�T �R aE !RT OT

0; : : : ; 9:5 � destroy destroyed �e�(�R��T )(1��)

0; : : : ; 9:5 � destroy null 1� �e�(�R��T )(1��)

0; : : : ; 9:5 � 6= destroy null 1
destroyed � � null 1

� 2 [0; 1]

Figure 4: COM-MTDP model of observability for helicopter scenario. These tables exclude
both zero probability rows and input feature columns from which O is indepen-
dent. For example, both agents' observation functions are independent of the
transport's selected action, so neither table includes a aT column.
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Figure 5: Suboptimality of silent and Jennings policies.

Figure 6: Suboptimality of STEAM policy under both low and medium costs of miscoordi-
nation.

5.2 Experimental Results

Figures 5 and 6 plot how much utility the team can expect to lose by following the Jennings,
silent, and the two STEAM policies instead of the locally optimal communication policy
(thus, higher values mean worse performance). We can immediately see that the Jennings
and silent policies are signi�cantly suboptimal for many possible domain con�gurations. For
example, not surprisingly, the surface for the policy, �J��, peaks (i.e., it does most poorly)
when the communication cost is high and when the observability is high, while the silent
policy does poorly under exactly the opposite conditions.

Previously published results (Jennings, 1995) demonstrated that the Jennings policy
led to better team performance by reducing waste of e�ort produced by alternate policies
like our silent one. These earlier results focused on a single domain, and Figure 5 partially
con�rms their conclusion and shows that the superiority of the Jennings policy over the
silent policy extends over a broad range of possible domain con�gurations. On the other
hand, our COM-MTDP results also show that there is a signi�cant subclass of domains (e.g.,
when communication cost and observability are high) where the Jennings policy is actually
inferior to the silent policy. Thus, with our COM-MTDP model, we can characterize the
types of domains where the Jennings policy outperforms the silent policy and vice versa.
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Figure 6 shows the expected value lost by following the two STEAM policies. We can
view STEAM as trying to intelligently interpolate between the Jennings and silent policies
based on the particular domain properties. In fact, under a low setting for Cmt, we see
two thresholds, one along each dimension, at which STEAM switches between following the
Jennings and silent policies, and its suboptimality is highest at these thresholds. Under
a medium setting for Cmt, STEAM does not exhibit a threshold along the dimension of
communication cost, due to the increased cost of miscoordination. Under both settings,
STEAM's performance generally follows the better of those two �xed policies, so its maxi-
mum suboptimality (0.587 under both settings) is signi�cantly lower than that of the silent
(0.700) and Jennings' (1.000) policies. Furthermore, STEAM outperforms the two policies
on average, across the space of domain con�gurations, as evidenced by its mean subopti-
mality of 0.063 under low Cmt and 0.083 under medium Cmt. Both values are signi�cantly
lower than the silent policy's mean of 0.160 and the Jennings' policy's mean of 0.161. Thus,
we have been able to quantify the savings provided by STEAM over less selective policies
within this example domain.

However, within a given domain con�guration, STEAM must either always or never
communicate, and this inexibility leads to signi�cant suboptimality across a wide range
of domain con�gurations. On the other hand, Figure 6 also shows that there are domain
con�gurations where STEAM is locally optimal. In this relatively small-scale experimental
testbed, there is no need to incur STEAM's suboptimality, because the agents can compute
the superior locally optimal policy in under 5 seconds. In larger-scale domains, on the other
hand, the increased complexity of the locally optimal policies may render its execution
infeasible. In such domains, STEAM's constant-time execution would potentially make it a
preferable alternative. This analysis suggests a possible spectrum of algorithms that make
di�erent optimality-eÆciency tradeo�s.

To understand the cause of STEAM's suboptimality, we can examine its performance
more deeply in Figures 7 and 8, which plot the expected number of messages sent using
STEAM (with both low and medium Cmt) vs. the locally optimal policy, at observability
values of 0.3 and 0.7. STEAM's expected number of messages is either 0 or 1, so STEAM
can make at most two (instantaneous) transitions between them: one threshold value each
along the observability and communication cost dimensions.

From Figures 7 and 8, we see that the optimal policy can be more exible than STEAM
by specifying communication contingent on Escort's beliefs beyond simply the achievement
of GR. For example, consider the messages sent under low Cmt in Figure 7, where STEAM
matches the locally optimal policy at the extremes of the communication cost dimension.
Even if the communication cost is high, it is still worth sending message �GR in states where
Transport is still very far from the destination. Thus, the surface for the optimal policy,
makes a more gradual transition from always communicating to never communicating. We
can thus view STEAM's surface as a crude approximation to the optimal surface, subject
to STEAM's fewer degrees of freedom.

We can also use Figures 7 and 8 to identify the domain conditions under which joint
intentions theory's prescription of attaining mutual belief is or is not optimal. In particular,
for any domain where the observability is less than 1, the agents will not attain mutual belief
without communication. In both Figures 7 and 8, there are many domain con�gurations
where the locally optimal policy is expected to send fewer than 1 �GR message. Each of
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Figure 7: Expected number of messages sent by STEAM and locally optimal policies when
the observability is 0.3.

Figure 8: Expected number of messages sent by STEAM and locally optimal policies when
the observability is 0.7. Under both settings, STEAM sends 0 messages.
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Figure 9: Suboptimality of locally optimal policy.

these con�gurations represents a domain where the locally optimal policy will not attain
mutual belief in at least one case. Therefore, attaining mutual belief is suboptimal in those
con�gurations!

These experiments illustrate that STEAM, despite its decision-theoretic communication
selectivity, may communicate suboptimally under a signi�cant class of domain con�gura-
tions. Previous work on STEAM-based, real-world, agent-team implementations informally
noted suboptimality in an isolated con�guration within a more realistic helicopter trans-
port domain (Tambe, 1997). Unfortunately, this previous work treated that suboptimality
(where the agents communicated more than necessary) as an isolated aberration, so there
was no investigation of the degree of such suboptimality, nor of the conditions under which
such suboptimality may occur in practice. We re-created these conditions within the experi-
mental testbed of this section by using a medium Cmt. The resulting experiments (as shown
in Figure 7) illustrated that the observed suboptimality was not an isolated phenomenon,
but, in fact, that STEAM has a general propensity towards extraneous communication in
situations involving low observability (i.e., low likelihood of mutual belief) and high com-
munication costs. This result matches the situation where the \aberration" occurred in the
more realistic domain.

The locally optimal policy is itself suboptimal with respect to the globally optimal
policy, as we can see from Figure 9. Under domain con�gurations with high observability,
the globally optimal policy has the escort wait an additional time step after destroying
the radar and then communicate only if the transport continues ying nap-of-the-earth.
The escort cannot directly observe which method of ight the transport has chosen, but
it can measure the change in the transport's position (since it maintains a history of its
past observations) and thus infer the method of ight with complete accuracy. In a sense,
the escort following the globally optimal policy is performing plan recognition to analyze
the transport's possible beliefs. It is particularly noteworthy that our domain speci�cation
does not explicitly encode this recognition capability. In fact, our algorithm for �nding the
globally optimal policy does not even make any of the assumptions made by our locally
observable policy (i.e., single agent is deciding whether to communicate or not, regarding
a single message, at a single point in time); rather, our general-purpose search algorithm
traverses the policy space and \discovers" this possible means of inference on its own. We
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expect that such COM-MTDP analysis can provide an automatic method for discovering
novel communication policies of this type in other domains, even those modeling real-world
problems.

Indeed, by exploiting this discovery capability within our example domain, the globally
optimal policy gains a slight advantage in expected utility over the locally optimal policy,
with a mean di�erence of 0.011, standard deviation of 0.027, and maximum of 0.120. On the
other hand, our domain-independent code never requires more than 5 seconds to compute
the locally optimal policy in this testbed, while our domain-independent search algorithm
always required more than 150 minutes to �nd the globally optimal policy. Thus, through
Theorem 7, we have used the COM-MTDP model to construct a communication policy
that, for this testbed domain, performs almost optimally and outperforms existing team-
work theories, with a substantial computational savings over �nding the globally optimal
policy. Although these results hold for an isolated communication decision, we expect the
relative performance of the policies to stay the same even with multiple decisions, where the
inexibility of the suboptimal policies will only exacerbate their losses (i.e., the shapes of
the graphs would stay roughly the same, but the suboptimality magnitudes would increase).

6. Summary

The COM-MTDP model is a novel framework that complements existing teamwork research
by providing the previously lacking capability to analyze the optimality and complexity of
team decisions. While grounded within economic team theory, the COM-MTDP's exten-
sions to include communication and dynamism allow it to subsume many existing multiagent
models. We were able to exploit the COM-MTDP's ability to represent broad classes of
multiagent team domains to derive complexity results for optimal agent teamwork under
arbitrary problem domains. We also used the model to identify domain properties that can
simplify that complexity.

The COM-MTDP framework provides a general methodology for analysis across both
general domain subclasses and speci�c domain instantiations. As demonstrated in Section 4,
we can express important existing teamwork theories within a COM-MTDP framework and
derive broadly applicable theoretical results about their optimality. Section 5 demonstrates
our methodology for the analysis of a speci�c domain. By encoding a teamwork problem as
a COM-MTDP, we can use the leverage of our general-purpose software tools (available in
Online Appendix 1) to evaluate the optimality of teamwork based on potentially any other
existing theory, as demonstrated in this paper using two leading instantiations of joint
intentions theory. In combining both theory and practice, we can use the theoretical results
derived using the COM-MTDP framework as the basis for new algorithms to extend our
software tools, just as we did in translating Theorem 7 from Section 4 into an implemented
algorithm for locally optimal communication in Section 5. We expect that the COM-MTDP
framework, the theorems and complexity results, and the reusable software will form a basis
for further analysis of teamwork, both by ourselves and others in the �eld.
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7. Future Work for COM-MTDP Team Analysis

While our initial COM-MTDP results are promising, there remain at least three key areas
where future progress in COM-MTDPs is critical. First, analysis using COM-MTDPs (such
as the one presented in Section 5) requires knowledge of the rewards, transition probabil-
ities, and observation probabilities, as well as of the competing policies governing agent
behavior. It may not always be possible to have such a model of the domain and agents'
policies readily available. Indeed, other proposed team-analysis techniques (Nair, Tambe,
Marsella, & Raines, 2002b; Raines, Tambe, & Marsella, 2000), do not require a priori hand-
coding of such models, but rather acquire them automatically through machine learning
over large numbers of runs. Also, in the interests of combating computational complexity
and improved understandability, some researchers emphasize the need for multiple models
at multiple levels of abstraction, rather than focusing on a single model (Nair et al., 2002b).
For instance, one level of the model may focus on the analysis of the individual agents' ac-
tions in support of a team, while another level may focus on interactions among subteams
of a team. We can potentially extend the COM-MTDP model in both of these directions
(i.e., machine learning of model parameters, and hierarchical representations of the team to
provide multiple levels of abstraction).

Second, it is important to extend COM-MTDP analysis to other aspects of teamwork
beyond communication. For instance, team formation (where agents may be assigned spe-
ci�c roles within the team) and reformation (where failure of individual agents leads to role
reassignment within in the team) are key problems in teamwork that appear suitable for
COM-MTDP analysis. Such analysis may require extensions to the COM-MTDP frame-
work (e.g., explicit modeling of roles). Ongoing research (Nair, Tambe, & Marsella, 2002a)
has begun investigating the impact of such extensions and their applications in domains
such as RoboCup Rescue (Kitano, Tadokoro, Noda, Matsubara, Takahashi, Shinjoh, & Shi-
mada, 1999). Analysis of more complex team behaviors may require further extensions
to the COM-MTDP model to explicitly account for additional aspects of teamwork (e.g.,
notions of authority structure within teams).

Third, extending COM-MTDP analysis beyond teamwork to model other types of co-
ordination may require relaxation of COM-MTDP's assumption of seless agents receiving
the same joint reward. More complex organizations may require modeling other non-joint
rewards. Indeed, enriching the COM-MTDP model in this manner may enable analy-
sis of some of the seminal work in multiagent coordination in the tradition of PGP and
GPGP (Decker & Lesser, 1995; Durfee & Lesser, 1991). Such enriched models may �rst
require new advances in the mathematical foundations of our COM-MTDP framework, and
ultimately contribute towards the emerging sciences of agents and multiagent systems.
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