
Applying Constraint Reasoning to Real-world Distributed
Task Allocation

Paul Scerri, Pragnesh Jay Modi, Wei-Min Shen and Milind Tambe
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way, Marina del Rey, CA 90292

fscerri,modi,sheng@isi.edu, tambe@usc.edu

ABSTRACT
Distributed task allocation algorithms requires a set of agents
to intelligently allocate their resources to a set of tasks. The
problem is often complicated by the fact that resources may
be limited, the set of tasks may not be exactly known, and
the set of tasks may change over time. Previous resource
allocation algorithms have not been able to handle over-
constrained situations, the uncertainty in the environment
and/or dynamics. In this paper, we present extensions to
an algorithm for distributed constraint optimization, called
Adopt-SC which allows it to be applied in such real-world
domains. The approach relies on maintaining a probabil-
ity distribution over tasks that are potentially present. The
distribution is updated with both information from local
sensors and information inferred from communication be-
tween agents. We present promising results with the ap-
proach on a distributed task allocation problem consisting
of a set of stationary sensors that must track a moving tar-
get. The techniques proposed in this paper are evaluated on
real hardware tracking real moving targets.

1. INTRODUCTION
A distributed task allocation problem requires a set of

distributed agents to negotiate about how to allocate a set
of resources to a set of tasks. Previous research has pro-
posed distributed constraint satisfaction (DisCSP) as an ap-
proach to model and solve general multi-agent coordina-
tion problems [2] and recent work has applied the DisCSP
model to distributed task allocation problems[3]. However,
three key diÆculties remain in unlocking the promise of dis-
tributed constraint reasoning in real-world multi-agent do-
mains. First, many real-world domains require agents to rea-
son about limited resources. Task allocation problems with
limited resources are over-constrained problems[1]. Existing
distributed constraint satisfaction representations simply re-
turn failure when no solution is possible. Instead, we desire
agents to abandon the least important tasks, and thus �nd a
solution that is \closest" to a satisfactory solution. Second,
the set of tasks may not be completely known in advance
and agents may face ambiguity in determining which tasks
are present. Existing DisCSP methods require a known,
completely speci�ed, DisCSP problem as input and do not
allow agents to deal with uncertainty during the problem
solving process. Finally, the set of tasks may change over
time. Tasks may appear/disappear and agents must monitor
the environment and detect such changes. Current DisCSP

techniques do not deal with such dynamism.
In this paper, we consider how to apply distributed con-

straint reasoning to domains where resources are limited,
agents will have noisy information about which tasks are
present and tasks change dynamically over time. We present
techniques for addressing each issue. First, we generalize
the DisCSP representation to a Distributed Constraint Op-
timization Problem (DCOP), which allow solutions to have
degrees of quality or cost. We brie
y present a general, opti-
mal algorithm for DCOP named Adopt-SC [4]. The problem
generalization and Adopt-SC algorithm allow agents to rea-
son about allocating resources to only the most important
tasks when resources are limited, given that a set of tasks
is known and static. Second, agents maintain a probability
that a particular task is present. The probability distri-
bution is updated using both information from the agent's
sensors and using information inferred from the distributed
constraint problem-solving between agents. This probabil-
ity distribution inherently captures the uncertainty that the
agent has about the presence of tasks. This information in-
forms Adopt-SC about the correct values to assign to vari-
ables. Third, the dynamics of the environment are handled
by continually updating the probability distribution, inform-
ing Adopt-SC when \signi�cant" changes occur.
The DCOP algorithm uses a representation with discrete

variables and values. Tasks are mapped to variables and re-
sources allocated a task are mapped to values. However, the
underlying probabilistic reasoning uses a continuous prob-
ability distribution over tasks while the DCOP algorithm
requires a discrete task status to decide which tasks to as-
sign resources to (i.e., which variables require values). To
achieve this, each probability is mapped to one of three task
status: P , NP or U , representing present, not present and
unknown respectively. While tasks with status P or NP
can be handled by any DCOP algorithm tasks with status
U require special treatment. In particular, when the agent
must reply to another agent regarding resource allocation
for a task it will assume that the other agent is correct in
its assessment of the task as being present or absent. For
example, suppose Agent 1 sends a message to Agent 2 al-
locating resources to Task 1. If Agent 2 has the status of
Task 1 as U it will accept Agent 1's status of P (which it
infers because Agent 1 assigns resources to the task) and
reply accordingly. However, if Agent 2 has the status of the
task being either P or NP it will reply using that status,
regardless of what status Agent 1 had for the task.
Figure 1 shows the basic design of an agent, showing the

DCSP
Communication

Inferences
from comm.

DCSP
Communication

Inferences
from comm.

Information from
Sensors

{T1 = U, T2 = P, T3 = NP}

{T1 = 0.25, T2 = 0.7, T3 = 0.05}

Mapping

Agent

Other agents

Figure 1: Diagram of the basic architecture. Arrows
show the main channels of communication.

channels of communication and the information that
ows
along those channels. Notice that information
ows in both
directions, i.e., it
ows down from the high level negotiation
reasoning and up from the low level sensor readings. This
allows the agent to take advantage of both local information,
i.e., sensor readings, and global information, i.e., inferred
information from other agents, giving it an accurate picture
of which tasks are present.
The paper is structured as follows: Section 2 describes a

describes the Distributed Constraint Optimization problem,
a strict generalization of DisCSP and how it can be used to
represent Distributed Resource Allocation. Section 3 then
presents a new algorithm for DCOP that allows agents to
�nd optimal solutions to distributed optimization problems.
Section 4 presents the details of the probabilistic approach
to handling uncertainty in a DCOP algorithm. Section 5
presents results using the algorithm on real hardware.

2. DCOP REPRESENTATION
The following section describes the Distributed Constraint

Optimization (DCOP) problem and how we can map it into
a resource allocation problem.
A Distributed Optimization Problem consists of n vari-

ables V = fx1; x2; :::xng, each assigned to an agent, where
the values of the variables are taken from �nite, discrete
domains D1; D2; :::; Dn, respectively. Only the agent who
is assigned a variable has control of its value and knowl-
edge of its domain. For each pair of variables xi, xj , we
are given a cost function fij : Di � Dj ! N [1. The
cost functions are the analogue of constraints from DisCSP.
The objective is to �nd a complete assignment A� of values
to variables such that the total cost is minimized. (An as-
signment is complete if all variables in V are assigned some
value.) More formally, let C = fA j A is a complete assign-
ment of values to variables in V g. We wish to �nd A� such
that A� = argminA2C F (A), where

F (A) =
P

xi;xj2V

fij(di; dj) ; where xi di;

xj dj in A

This is a strict generalization of the standard representa-
tion of the Distributed Constraint Satisfaction Problem. For

Sector Number

1
O

2

Agent 3

Agent 2

Agent 4

Agent 1

Target 1

Target 2

.Target 1
50 .Target 2

70

.Target 3
80 .Target 4

20

Grid Configuration:

Figure 2: Sensor sector schematic(left) and a grid
layout con�guration with weighted targets (right)

example, a \hard" constraint is modeled as having in�nite
cost for all pairs of variable values that violate the constraint
and zero cost otherwise.
We formulate distribute resource allocation as a DCOP

in the following way. Formally, we have a set of all possible
tasks Ta, where jTaj = K. N tasks will be present at any
time, N < K. The set of tasks actually present are Tp(jTpj =
N). For each task in Ta, a DCOP variable has a value from
fAllocated;NotPresent; Ignoreg, representing present, not
present and ignore respectively. Resources must be allocated
to all tasks with P value. If a task is assigned the value
I, a cost function w: Ta! N [1 quanti�es the cost of
ignoring the task. The DCOP requires agents to choose
value for variables such that resources are assigned to only
the most important tasks and ignore tasks with small costs
when resources are limited. Section 3 describes Adopt-SC,
an algorithm for optimally solving DCOP problems.

2.1 Sensor Network Domain
A concrete instantiation of a resource allocation problem

is the following distributed sensor network domain[6]. It
consists of multiple �xed sensors, each controlled by an au-
tonomous agent, and multiple targets moving through their
sensing range. Each sensor is equipped with three radar
heads, each covering 120 degrees. Resource contention may
occur because an agent may activate at most one radar head,
or sector, at a given time. Hence, if di�erent tasks require
that di�erent sectors are used then both tasks cannot be
performed simultaneously. Three sensors must turn on over-
lapping sectors to accurately track a target. For example in
Figure 2 (left), when agent 1 detects a target in its sector
0 it must coordinate with neighboring agents so that they
activate their respective sectors that overlap with agent 1's
sector 0. Targets in a particular region are tasks that need to
be completed/tracked and a choice of three sensors to track
a target. Figure 2(right) shows a con�guration of 9 agents
and an example of resource contention. Since at least three
neighboring agents are required to track each target and no
agent can track more than one, only two of the four targets
can be tracked. The agents must �nd an allocation that
minimizes the weight of the ignored targets.

3. ALGORITHM FOR DCOP
We brie
y describe the Adopt-SC algorithm for DCOP

[4]. Adopt-SC (Adopt with Save Context) is a version of
the Adopt algorithm which saves all search paths in order
to increase eÆciency[5]. The Adopt-SC algorithm requires
variables to have a �xed total priority order. Any ordering is

suÆcient and lexicographic ordering is the simplest method.
Figure 4.a shows constraints pointing from higher priority
agents to lower ones. Two agents xi; xj are neighbors if their
cost function fij is not a constant. Given the constraint
graph and priority ordering, agents form a search tree where
each agent has at most one parent and there are no neighbors
in di�erent subtrees. Two agents xi; xj are linked if they are
neighbors, if xi is the parent or child of xj , or if they are both
linked to a common descendent. The solid arrows in Figure
4.b show links. The priority ordering and tree can be formed
in a preprocessing step, or alternatively, can be discovered
during algorithm execution. For simplicity of description of
the algorithm, we will assume the tree is already formed in a
preprocessing step. We will use the term parent to refer to an
agent's immediate higher priority agent in the tree, children
to refer to an agent's immediate lower priority agents in the
tree, and linked descendents (ancestors) to refer to linked
agents lower (higher) in the tree. In Figure 4.b, x1 is the
parent of x2, x2 is the parent of x3 and x3 is the parent of
x4 (as de�ned by the transfer of VIEW messages, which will
describe later). x4 is a linked descendent of x2.
A set of variable/value pairs specifying a (possibly incom-

plete) assignment is called a view).

� De�nition: A view is a set of pairs of the form
f(xi,di), (xj , dj)...g. A variable can appear in a view
no more than once. Two views are compatible if they
do not disagree on any variable assignment and a view
is larger than another if it contains more variables.

The de�ciency of a value of a variable in a view is deter-
mined by the sum of its cost functions.

� De�nition: The local de�ciency of a given view vw
wrt variable xi is de�ned as

Æ(xi; vw) =
P

xj2V

fij(di; dj) ; where xi di;

xj dj in vw

Procedures from the Adopt algorithm are shown in Figure
3. xi represents the agent's local variable and di represents
its current value. The algorithm begins by each agent in-
stantiating its variable concurrently and sending this value
to all its connected lower priority agents via a VALUE mes-
sage. After this, agents asynchronously wait for and re-
spond to incoming messages. Lower priority agents choose
values that have the least de�ciency given the current values
of higher priority agents stored in the Currentvw variable.
This often leads to quick, possibly suboptimal solutions. In
order to escape local minima, lower priority agents report
feedback to higher priority agents. When a lower priority
agent evaluates its local cost functions and realizes the sys-
tem is incurring cost greater than tolerance level � , shown in
Line (iii) of Figure 3, it constructs a VIEW message which
contains its current view of the higher priority agents' as-
signments and the associated amount of cost. It sends this
VIEW message only to the lowest higher priority connected
agent (its parent). As an agent receives VIEW messages,
it maintains the set of views and associated costs reported
to it from its children. Then, the agent will either abandon
its current variable value in favor of one with less total cost
(Line (ii)) or pass a VIEW message up to its lowest higher
priority agent. Figure 4.b shows the
ow of VALUE and
VIEW messages between agents as the algorithm executes.
Important properties of this algorithm are that an agent only

Currentvw: Current view of linked ancestor's variable values

di: xi's current variable value
Initialize: Currentvw fg;di null;
8xl 2 Children:
c(xl; fg) 0;
V iews(xl) fg;

hill climb;
when received (VALUE, (xj ; dj))
add (xj ; dj) to Currentvw;
hill climb;

when received (VIEW, xl, vw, cost)
add vw to V iews(xl);
c(xl; vw) cost;
hill climb;

procedure hill climb
8d 2 Di:
e(d) Æ(xi; Currentvw [f(xi; d)g);
8xl 2 Children:
vw largest view in V iews(xl) compatible
with Currentvw [f(xi; d)g);

e(d) e(d) + c(xl; vw);
choose d that minimizes e(d); | (ii)
if di 6= d then
di d;
SEND (VALUE, (xi; di)) to all linked descendents;

end if;
choose dh where (parent; dh) 2 Currentvw;
if e(di) greater than � then | (iii)
SEND (VIEW, xi, Currentvw, e(di)) to
parent;

Figure 3: Procedures from the Adopt-SC algorithm

0
0
1
1

xi
0

1

xj

1
0

f(xi,xj)
1
2
2
0

(b)

VIEW Messages
x1

x2

x3

x4

(a)

Links / VALUE messages

x3 x4

x2

x1

Neighbors

Figure 4: (a) Constraint graph and associated pri-
ority ordering. (b) Flow of VALUE and VIEW mes-
sages between agents.

stores variable/value information about connected variables,
rather than building a complete path from root to leaf, and
agents are able to search for solutions asynchronously.
When time is limited, we can increase the value of the

� parameter, which in turn allows agents to ignore smaller
costs by not reporting to higher priority agents. Although
this gives up optimality gurantees, it prevents higher priority
agents from switching their values, thus allowing the system
to reach a stable state more quickly. A key property of this
local tolerance is that agents still attempt to �nd values that
minimize costs, as long as it can be done locally without
backtracking. In general, the � parameter would need to be
engineered using domain knowledge but our point is that
Adopt is \tune-able" in this way.

4. DEALING WITH UNCERTAINTY AND
DYNAMICS IN ADOPT-SC

In this section we lay out the details of the use of an under-
lying probability distribution for Adopt-SC and its integra-
tion into the workings of the resource allocation algorithm.
For each task in Ta, a task status from fP;NP; Ug, rep-

resenting present, not present and unknown respectively, is
maintained. The set of task status for Tais called the task
status vector, denoted V An for Agent An. The task status is
used by Adopt-SC to decide which variable values to assign.
Tasks, which map to variables, with status P could be as-
signed either value Allocated or Ignored. Tasks with status
NP must be assigned the value NotPresent. Finally, tasks
with status U can be assigned any value, depending on the
value at other agents. A task status vector projection is the
set of tasks in V Anwhere the value is of a certain type, e.g.
the set V An

U is those tasks for which An has the value U . The

aim of the uncertainty reasoning is to make V An

P = Tp, i.e.,
to make the tasks the agent thinks are present be the same
as the tasks that are actually present.
For each T 2 alltasks the probability that the task is

currently present is Pr(T). The agent maintains this prob-
ability for each task, i.e., it maintains probabilities PR =
fPr(T1) : : : P r(TN)g. Each agent's probability distribution
is maintained locally, hence agents may have di�erent views
on which tasks are present. A function maps PR to V An .
The details of this mapping are somewhat arbitrary and
need to chosen in a domain dependent manner. In the sen-
sor network domain we use the following mapping:

if Pr(T) < 0:2 then NP (1)

else if Pr(T) > 0:8 then P

else U

4.1 Algorithm
The low level probabilistic component and Adopt-SC's

task allocation algorithm run asynchronously. Earlier, we
described the workings of the task allocation algorithm, in
this section we describe the algorithms operating on the
probabilistic representation and describe how they are in-
tegrated with Adopt-SC.
The interface between the probabilistic representation and

Adopt-SC is intentionally kept simple so that changes to ei-
ther component do not require signi�cant changes in the
other. Information
ows from the probabilistic representa-
tion to Adopt-SC via messages indicating that the status of

a task has changed. For example, a message is sent when
the status of a task changes from U to P . In the other
direction, Adopt-SC sends messages indicating which tasks
other agents believe to be present, whenever it receives a
communication providing that information. For example, if
Agent 2 communicates the presence of Task 1 to Agent 1,
Adopt-SC at Agent 1 will send a message to the probabilistic
component indicating the presence of Task 1. Notice that
Adopt-SC sends this message regardless of its beliefs about
the task, since the probabilistic component can use the in-
formation to change its probability distribution, reinforcing
or lessening the probability a task is present.
The probabilistic component has two distinct modes of

operation. Which mode of operation to use is determined
by whether Adopt-SC has allocated the agent to a task that
is currently present. In the sensor network domain this can
be determined by whether Adopt-SC has speci�ed using a
radar head that can detect a target. If Adopt-SC has al-
located resources of the agent to a present task then the
probabilistic component has a passive monitoring role. If
Adopt-SC allocates the agent to a task that is not present
then the probabilistic component acts pro-actively to deter-
mine which tasks are present. In other words, the probabilis-
tic component is only pro-active when Adopt-SC is failing.
Adopt-SC is given responsibility for making decisions if it
can because it is able to make globally optimal allocation
decisions while the probabilistic component can only ran-
domly choose between detected targets. When Adopt-SC is
failing, i.e., it is asking for actions towards a task that is not
present, the probabilistic component, with a superior ability
to determine which tasks are present, assumes control.
In its passive, monitoring mode the probabilistic compo-

nent updates its probability distribution and informs Adopt-
SC when the status of a task changes. In its active mode,
the probabilistic component takes actions which aim to de-
termine the presence of a task as quickly as possible. Deter-
mining what action will most readily determine the presence
of tasks can be easily inferred from its sensor model. That
is, the action that is most likely to resolve uncertainty, given
the current state of PR is chosen.
In the following, each of the di�erent observations are dis-

cussed in some detail. In the next section, results using the
approach with real hardware are presented.

4.2 Using Observations to Reduce Uncertainty
The probability distribution over tasks and its mapping

to V An is at the heart of the approach presented here.
Hence, maintaining as accurate as possible distribution is
essential to the success of the approach. Creating and main-
taining this distribution in a noisy, dynamic world requires
both combining multiple measurements to reduce uncer-
tainty while giving more weight to the most recent mea-
surements to ensure the current situation is captured. Four
pieces of information are used to update the probability dis-
tribution.

� Updates based on observations made while performing
a task, using a learned environment model. Formally,
this information is Pr(T jS), where S is a sensor read-
ing.

� Updates made based on inferences from overheard com-
munications from other nodes. Formally, this informa-
tion is Pr(T jM) where M is a message.

� Updates made based on knowledge of the dynamics
of the domain. In particular, the probability that a
task is present given the probability that it was present
earlier. Formally, this information is Pr(TtjPr(Tt�1)),
where Pr(Tt) is the probability task T is present at
time t.

� Updates based on probabilistic information about re-
lationships between tasks. Formally, this information
is Pr(T1jPr(T2) ^ : : : ^ Pr(TN)).

We refer to each type of information as an observation,
denoted O. Each of the types of observation provides some
evidence about the presence of a task, T . In particular,
given a model of the types of observation that can be re-
ceived we can calculate Pr(T jO). That evidence should be
combined with previous evidence to make Pr(T) more ac-
curate. However, since the situation changes dynamically,
more recent evidence should be weighted more heavily than
older information. The integration of the new observations
with the previous evidence uses a variation on the standard
probability rule:

Pr(T jO) =
Pr(OjT)� Pr(T)

Pr(O)

In this equation O is the new observation. Pr(OjT) is the
probability of getting the observation given that the task is
present. This probability is calculated in di�erent ways, de-
pending on the type of observation. For example, a model
of the sensors provides this information for sensor observa-
tions. Pr(T) is the a priori probability of task T . Since we
know the probability that the task was present in the previ-
ous time step we can use that information to calculate the
probability that the task is present in the current time step.
That is:

Pr(Tt) =
Pr(TtjTt�1)� Pr(Tt�1)

Pr(Tt�1jTt)

where Pr(Tt) is the probability of task T being present

at time t. For simplicity, we set
Pr(TtjTt�1)

Pr(Tt�1jTt)
= w. Essen-

tially, this assumes that the dynamics of the environment
are uniform across tasks and times. Thus, the calculation of
the probability of a task given a new measurement and an
previous probability is:

Pr(TtjO) =
Pr(OjTt)�wPr(Tt�1)

Pr(O)

(Our current implementation uses a simpli�ed version of
this calculation.) The integration of new observations iter-
atively updates PR. When any Pr(T)changes enough that
it causes the status of a task to change a message is sent to
Adopt-SC which then may start a new round of negotiation
to determine a new optimal task allocation.

4.2.1 Updates from Sensors
In the sensor network domain, essentially the same actions

are taken to detect tasks as to perform those tasks. Using
a learned model of the environment the agent can leverage
measurements taken in the course of performing a task to
reason about the presence of all tasks. This technique for
reducing uncertainty is purely local, i.e., the agent uses only

Tasks
Sector Reading T1 T2 T3 T4 T5 T6

0 0 10 20 14 14 18 22
0 1 3 21 17 7 21 28
0 2 9 13 10 21 24 20
0 3 8 17 9 20 27 16
0 4 0 0 17 22 27 31
0 5 0 0 13 25 47 13
0 6 0 0 0 42 57 0
1 0 9 21 21 13 18 15
1 1 7 30 19 7 23 11
1 2 24 28 11 8 9 18
1 3 24 29 20 2 3 18
1 4 0 16 24 20 30 8
1 5 0 3 26 40 26 2
1 6 0 0 64 35 0 0
2 0 33 17 14 8 10 16
2 1 27 18 18 13 9 13
2 2 17 11 16 31 14 7
2 3 19 39 21 4 9 4
2 4 32 29 9 0 18 9
2 5 42 47 1 0 8 0
2 6 0 100 0 0 0 0

Table 1: Mapping from sensor readings to probabil-
ity distribution across tasks.

local information to reduce uncertainty. Table 1, shows part
of the model for a particular sensor in a particular con�g-
uration of the sensor network domain. Column one gives
the sector in which the agent takes the reading. Column
two gives the strength of the reading, higher numbers in-
dicate stronger readings which in turn indicate there is a
target close by. Columns 3-6 give the percentage of times
the task is present when a reading of that strength is taken
in that sector. Weak readings do not give accurate informa-
tion about the presence of tasks. For example, if a reading
of strength 0 is taken in sector 0 very little information is
garnered about which tasks are likely to be present. Strong
readings provide much more information. For example, if a
reading of strength 6 is taken in sector 0 that reading was
due the presence of either Task 4 or 5. Even with this strong
reading the agent is not able to completely determine which
task is present and must rely on information from other
agents to determine exactly which task it is.
For the sensor network domain the model is created by

running the system for several hours, comparing the read-
ings of the sensors with the actual state of the world. This
is e�ectively a simple form of supervised learning.

4.2.2 Updates from Overheard Communication
In order to �nd a good (optimal, if time is available) al-

location of resources to tasks, Adopt-SC requires agents ne-
gotiate as described above. Since the task status vector for
each agent will be di�erent, agents can infer useful infor-
mation from communications from other agents. The local
sensing actions of each agent are suited to detecting particu-
lar tasks. Inferring information from communication allows
an agent to leverage the ability of another agent to accu-
rately detect a particular task.
At the level of Adopt-SC negotiations the agents are not

dealing with the probability a task exists, instead they are
using Ignore, Allocated and NotPresent. Messages with
Ignore or Allocated imply the presence of the task, while
messages with NotPresent imply the absence of a task.
Since each agent uses the same probabilistic reasoning if an
agent sends a message indicating the presence (absence) of a
task it must have a probability above (below) its threshold.
If the thresholds are reasonably high (low) communicated
messages provide good information about the presence of
tasks.
However, a communication does not give detailed infor-

mation about the certainty with which the communicat-
ing agent believes in the presence of the task. For ex-
ample, if agent A sends a message allocating resources to
a task, T , the agent receiving the message can only infer
threshold < PrA(T) < 1:0. Potentially, the agents could
also communicate their perspective of the probability that
a task is present but this would add to the required commu-
nication bandwidth and has so far not been required.

4.2.3 Scheduling Observation Actions
Adopt-SC assigns weights to tasks, prioritizing tasks with

higher weights. Normally, if the status of some task is U the
agent will not actively try to allocate resources to that task,
nor will it take actions to determine whether or not the task
is actually present. However, if it is currently allocating re-
sources to a task with lower weight than a task with status
U it will periodically schedule actions to resolve the uncer-
tainty surrounding that task. In particular, in the sensor
network domain it can switch to the sector most likely to
determine whether or not the task is present. This behavior
ensures that important tasks are not ignored simply because
no agent checks whether the task is present. However, nei-
ther do the agents spend time checking for tasks that are
of lower priority than the one to which they are currently
allocating resources.

4.3 Modeling dynamics
The �nal method for updating the probability distribution

is to update based on probabilistic, temporal relationships
between tasks. For example, in the sensor network domain
since tasks are related to target locations future tasks can
be probabilistically predicted based on the limitations of the
movement of targets. Speci�cally, if a target is in a partic-
ular area, making a particular task present when that task
is no longer present the target should be in an adjacent
area, hence providing information about which tasks might
be present next.

5. HARDWARE EXPERIMENTS
The probability approach was inspired by work with real

hardware. In particular, experience working with the hard-
ware showed that handling dynamism and uncertainty are
important aspects of tasks allocation in the real world. In
this section, we describe the hardware setup, experiment
and results.
The sensors were arranged in a diamond in a small room

inside the Information Sciences Institute (a very noisy en-
vironment for the sensors). The con�guration is shown in
Figure 7 (a photograph of the radar and target (toy train)
are shown in Figure 6). The lines on the sensors show the
orientation of the radar heads. Notice that the sensors at the
ends of the room did not need to change sectors, while the

Figure 5: Left: A Doppler radar for tracking moving
targets. Right: Target to be tracked.

Figure 6: Photograph of target (train) with sensor
during experiment.

Sensor

Approx.
range of
radar

Track

Figure 7: The con�guration of the room, sensors
and target track for hardware experiments. Dotted
ellipses from sensor on left hand sensor show ap-
proximate range of two of the sensors radar heads.

sensors on the sides of the room needed to switch between
two sectors.
The hardware experiments were performed before the prob-

ability model was fully implemented1. Adopt-SC interpreted
raw sensor readings directly as either indicating the presence
or absence of a task (i.e., rather than going via the proba-
bility model). If the agent does not activate the sensor that
would determine the presence of a task in a speci�c amount
of time the status of that tasks switches to U . As with the
algorithm described above, if the task allocation algorithm
suggests a sector where there is currently a task it pursues
that task. When the task allocation algorithm suggests a
sector where there is no target detected it switches to look-
ing in a sector marked U . Finally, information received from
other agents about the presence of tasks is taken at face
value and its task status updated according. Hence, if an-
other agent sends a message indicating the presence of a task
that the agent has marked as U the agent will change the
status of the task to present when the message is received.
While the approach used on the hardware is super�cially

quite di�erent to the probabilistic model presented above,
the idea of integrating several di�erent sources of informa-
tion to reduce uncertainty is common. The probabilistic
approach was formalized based on analysis of results of this
simpler approach.
The aim of the sensor network is to obtain an accurate

track of one or more moving targets. Creating such a track
involves a variety of algorithms working together, e.g., the
task allocation algorithm and an algorithm for combining

1The full model was not implemented until after we lost
access to the hardware.

6
7
8
9

10
11
12
13
14
15

6.5 7 7.5 8 8.5 9 9.5 10 10.5

"t.txt" index 6 using 2:3

Figure 8: Track produced by four sensors following
a target moving on an oval track.

1350
1400
1450
1500
1550
1600
1650
1700
1750

F
ix

ed
 u

p

F
ix

ed
 u

/d

Lo
ca

l

T
=

50
00

T
=

20
00

T
=

10
00

M

ea
su

re
m

en
ts

Measurements / Setup

Figure 9: Number of measurements made by various
algorithms.

measurements from multiple sensors. A sample track is
shown in Figure 8. For this experiment we are only in-
terested in the performance of the task allocation algorithm
and in particular the way the algorithm deals with uncer-
tainty. Hence, the quality of the track produced is not a
good metric, rather we use a metric which gives the num-
ber of measurements of the target taken by the agents. The
more measurements taken the more often the sensors were
focused on the target and not searching for it or looking
in the wrong sector. Three di�erent algorithms were used.
The results are shown in Figure 9 (the x-axis shows the
number of measurements taken and the y-axis shows the
algorithm used). The �rst algorithm used a �xed con�gu-
ration of sectors based on the known track of the target.
One con�guration had the sensors on the sides of the room
both looking towards one end of the room (\�xed up" in the
�gure), while the other had the sensors on the sides of the
room looking to opposite ends of the room (\�xed u/d" in
the �gure). The next algorithm ("local" in the �gure) used
only local sensing information, changing sectors whenever it
failed to sense a target in the sector it was currently using.
Finally, Adopt-SC was used with various timeout lengths
(1 second { \T=1000" in the �gure, 2 seconds { \T=2000"
and 5 seconds { \T=5000"). Each algorithm was run three
times, each time for 20 minutes. The values shown on the
graphs are the average number of measurements across the
three runs.
Adopt-SC performed clearly better than the other algo-

rithms because the four nodes together were better able to
resolve uncertainty and �nd the target than the localized
algorithms. The \local" algorithm performed worst because
it was most susceptible to the noise in the environment. A
single false reading indicating the presence of a target would
result in the agent wasting a signi�cant amount of time. The
algorithms utilizing information from others as well as their
own information were less susceptible to single noisy mea-
surements. The reason for the di�erence in performance of
Adopt-SC with di�erent time out values is not exactly clear
but it likely related to the speed of the moving target.

6. SOFTWARE EXPERIMENTS
The full probability model and associated algorithms have

been implemented for use in a simulator of the sensor net-
work domain. Systematic experiments are currently being
performed. Initial results appear promising with agents ac-
curately �nding targets despite a large amount of simulated
noise.

7. CONCLUSIONS
Using DisCSP for task allocation in the real world in-

volves dealing with three issues that are not addressed by
DisCSP algorithms. In particular, over-constrained situa-
tions, dynamics and uncertainty need to be addressed. In
this paper we have proposed extensions to an asynchronous,
distributed constraint optimization algorithm that addresses
these issues. In particular, we use a probability model over
possible tasks, updating that model with information from
sensors, communication from other agents and knowledge
of the dynamics of the environment. Reasoning based on
that probability model was used to choose actions for not
only which tasks to attend to but also to choose actions to
�nd whether tasks are currently present. The approach was

tested on both real hardware and in a simulator and was
shown to perform well. Future work will involve using more
details of the underlying probability distribution in the con-
straint satisfaction algorithm.

8. REFERENCES
[1] K. Hirayama and M. Yokoo. An approach to

over-constrained distributed constraint satisfaction
problems: Distributed hierarchical constraint
satisfaction. In Proc. of the 4th Intl. Conf. on
Multi-Agent Systems(ICMAS), July 2000.

[2] M. Yokoo E.H. Durfee T. Ishida and K. Kuwabara. The
distributed constraint satisfaction problem:
Formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering, 10(5):673{685, 1998.

[3] P. J. Modi, H. Jung, W. Shen, M. Tambe, and
S. Kulkarni. A dynamic distributed constraint
satisfaction approach to resource allocation. In Proc of
Constraint Programming, 2001.

[4] P. J. Modi, W. Shen, and M. Tambe. Distributed
constraint optimization and its application. Technical
Report ISI-TR-509, University of Southern
California/Information Sciences Institute, 2002.

[5] P. J. Modi, W. Shen, and M. Tambe. Distributed
constraint optimization and its application. In
Proceedings of AAAI'02 Workshop on Coalition
Formation, 2002.

[6] BAE Systems / Sanders. Ecm challenge problem.
http://www.sanders.com/ants/ecm.htm, 2001.

[7] Noam M. Shazeer, Michael L. Littman, and Greg A.
Keim. Solving crossword puzzles as probabilistic
constraint satisfaction. In AAAI/IAAI, pages 156{162,
1999.

