
Journal of Arti�cial Intelligence Research � (1600) 1�124 Submitted 6/79; published 12/79

Monitoring Teams by Overhearing:

A Multi-Agent Plan-Recognition Approach

Gal A. Kaminka galk@cs.cmu.edu

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213, USA

David V. Pynadath pynadath@isi.edu

Milind Tambe tambe@usc.edu

Computer Science Department and Information Sciences Institute

University of Southern California

4676 Admiralty Way

Los Angeles, CA 90292, USA

Abstract

Recent years are seeing an increasing need for on-line monitoring of teams of cooperating
agents, e.g., for visualization, or performance tracking. However, in monitoring deployed teams,
we often cannot rely on the agents to always communicate their state to the monitoring system.
This paper presents a non-intrusive approach to monitoring by overhearing, where the monitored
team's state is inferred (via plan-recognition) from team-members' routine communications, ex-
changed as part of their coordinated task execution, and observed (overheard) by the monitoring
system. Key challenges in this approach include the demanding run-time requirements of monitor-
ing, the scarceness of observations (increasing monitoring uncertainty), and the need to scale-up
monitoring to address potentially large teams. To address these, we present a set of complementary
novel techniques, exploiting knowledge of the social structures and procedures in the monitored
team: (i) an e�cient probabilistic plan-recognition algorithm, well-suited for processing communi-
cations as observations; (ii) an approach to exploiting knowledge of the team's social behavior to
predict future observations during execution (reducing monitoring uncertainty); and (iii) monitor-
ing algorithms that trade expressivity for scalability, representing only certain useful monitoring
hypotheses, but allowing for any number of agents and their di�erent activities to be represented
in a single coherent entity. We present an empirical evaluation of these techniques, in combination
and apart, in monitoring a deployed team of agents, running on machines physically distributed
across the country, and engaged in complex, dynamic task execution. We also compare the per-
formance of these techniques to human expert and novice monitors, and show that the techniques
presented are capable of monitoring at human-expert levels, despite the di�culty of the task.

1. Introduction

Recent years have seen tremendous growth of applications involving distributed multi-agent teams,
formed of agents that collaborate on a speci�c joint task (e.g., Jennings, 1995; Pechoucek, Marik,
& Stepankova, 2000, 2001; Kumar & Cohen, 2000; Kumar, Cohen, & Levesque, 2000; Horling,
Benyo, & Lesser, 2001; Lenser, Bruce, & Veloso, 2001; Barber & Martin, 2001). This growth has
led to increasing need for monitoring techniques that allow a synthetic agent or human operator
to monitor and identify the state of the distributed team. Previous work has discussed the critical
role of monitoring in visualization (e.g., Ndumu, Nwana, Lee, & Collis, 1999), in identifying failures
in execution (e.g., Horling et al., 2001), in providing advice to improve performance (e.g., Aiello,
Busetta, Dona, & Sera�ni, 2001), and in facilitating collaboration between the monitoring agent and
the members of the team (e.g., Grosz & Kraus, 1996).

c
1600 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Kaminka, Pynadath, and Tambe

This paper focuses on monitoring cooperative agent teams by overhearing their internal commu-
nications. This allows a human operator or a synthetic agent to monitor the coordinated execution
of a task, by listening to the messages team-members exchange with each other. It contrasts with
previous techniques that are impractical in settings where direct observations of the team members
are unavailable (e.g., when team-members are physically distributed away from the observer), or
in large-scale applications composed of already-deployed agents that are dynamically integrated to
jointly execute a task.

For example, one common technique, report-based monitoring, requires each monitored team-
member to communicate its state to the monitoring agent at regular intervals, or at least whenever
the team-member changes its state. Such reporting provides the monitoring agent with accurate
information on the state of the team. Unfortunately, report-based monitoring su�ers from several
di�culties in monitoring large deployed teams of interest in the real-world (see Section 2 for a
detailed discussion): First, it requires intrusive modi�cations to the behavior of agents, such that
they report their state as needed by the di�erent monitoring applications. However, since agents are
already deployed, such repeated modi�cations to the behavior of the agents are di�cult to implement
and complex to manage. In particular, legacy and proprietary systems are notoriously expensive to
modify (for instance, consider the notorious modi�cations to address the Year 2000 bug). Second, the
bandwidth requirements of report-based monitoring (which relies on communication channels) can
be unrealistic (Jennings, 1993, 1995; Grosz & Kraus, 1996; Pechoucek et al., 2000, 2001; Vercouter,
Beaune, & Sayettat, 2000). In addition, network delays and unreliable or lossy communication
channels are a key concern with report-based monitoring approaches.

We therefore advocate an alternative monitoring approach, based on multi-agent keyhole plan-
recognition (Tambe, 1996; Huber & Hadley, 1997; Devaney & Ram, 1998; Intille & Bobick, 1999;
Kaminka & Tambe, 2000). In this approach, the monitoring system infers the unobservable state
of the agents based on their observable actions, using knowledge of the plans that give rise to the
actions. This approach is non-intrusive, requiring no changes to agents' behaviors; and it allows for
changes in the requested monitoring information. It assumes access to knowledge of plans that may
explain observable action�however this knowledge is readily available to the monitoring system as
we assume it is deployed in a collaborative environment. Indeed, in some cases, the monitoring
system may be deployed by the human operator of the team. An additional bene�t of a plan-
recognition approach is that it can rely on inference to compensate for occasional communication
losses, and can therefore be robust to communication failures.

In general, the only observable actions of agents in a distributed team are their routine commu-
nications, which the agents exchange as part of task execution (Ndumu et al., 1999). Fortunately,
the growing popularity of agent integration tools (Tambe, Pynadath, Chauvat, Das, & Kaminka,
2000; Martin, Cheyer, & Moran, 1999) and agent communications (Finin, Labrou, & May�eld, 1997;
Reed, 1998) increases standardization of aspects of agent communications, and provides increasing
opportunities for observing and interpreting inter-agent communications. We assume that moni-
tored agents are truthful in their messages, since they are communicating to their teammates; and
that they are not attempting to deceive the monitoring agent or prevent it from overhearing (as it
is deployed by the human operator of the team). Given a (possibly stochastic) model of the plans
that the agents may be executing, a monitoring system using plan-recognition can infer the current
state of the agents from such observed routine messages.

However, the application of plan-recognition techniques for overhearing poses signi�cant chal-
lenges. First, a key characteristic of the overhearing task is the scarcity of observations. Explanations
for overheard messages (i.e., the observed actions) can sometimes be fairly easy to disambiguate, but
uncertainty arises because there are relatively few of them to observe: team members cannot and
do not in practice continuously communicate among themselves about their state (Jennings, 1995;
Grosz & Kraus, 1996). Thus team-members change their state while keeping quiet. Another key
characteristic of overhearing is that the observable actions are inherently multi-agent actions : When
agents communicate, it is only a single agent that sends the messages. The others implicitly act

2

Monitoring Teams by Overhearing

their role in the communications by listening. Yet despite the scarcity of observable communications,
and the multi-agent nature of the observed actions, a monitoring system must infer the state of all
agents in the team, at all times. Previous investigations of multi-agent plan-recognition (Tambe,
1996; Devaney & Ram, 1998; Intille & Bobick, 1999; Kaminka & Tambe, 2000) have typically made
the assumption that all changes to the state of agents have an observable e�ect: Uncertainty resulted
from ambiguity in the explanations for the observed actions. Furthermore, these investigations have
addressed settings where observable actions were individual (each action is carried out by a single
agent).

In addition to these challenges that are unique to overhearing, a monitoring system must address
additional challenges stemming from the use of monitoring in service of visualization. The represen-
tation and algorithms must support soft real-time response; reasoning must be done quickly to be
useful for visualization. Furthermore, real-world applications demand techniques that can scale up as
the number of agents increases, for monitoring large teams. However, many current representations
for plan-recognition are computationally intense (e.g., Kjærul�, 1992), or only address single-agent
recognition tasks (e.g., Pynadath & Wellman, 2000). Multi-agent plan-recognition investigations
have typically not explicitly addressed scalability concerns (Devaney & Ram, 1998; Intille & Bobick,
1999).

This paper presents Overseer, an implemented monitoring system capable of monitoring large
distributed applications composed of previously-deployed agents. Overseer builds on previous
work in multi-agent plan-recognition (Tambe, 1996; Intille & Bobick, 1999; Kaminka & Tambe,
2000) by utilizing knowledge of the relationships between agents to understand how their decisions
interact. However, as previous techniques proved insu�cient, Overseer includes a number of novel
multi-agent plan-recognition techniques that address the scarcity of observations, the as well as the
severe response-time and scale-up requirements imposed by realistic applications. Key contributions
include: (i) a linear time probabilistic plan-recognition representation and associated algorithms,
which exploit the nature of observed communications for e�ciency; (ii) a method for addressing
unavailable observations by exploiting knowledge of the social procedures of teams to e�ectively
predict (and hence e�ectively monitor) future observations during normal and failed execution, thus
allowing inference from lack of such observations; and (iii) YOYO*, an algorithm that uses knowledge
of the team organizational structure (team-hierarchy) to model the agent team (with all the di�erent
parallel activities taken by individual agents) using a single structure, instead of modeling each
agent individually. YOYO* sacri�ces some expressivity (the ability to accurately monitor the team
in certain coordination failure states) for signi�cant gains in e�ciency and scalability.

We present a rigorous evaluation of Overseer's di�erent monitoring techniques in one of its
application domains and show that the techniques presented result in signi�cant boosts to Over-
seer's monitoring accuracy and e�ciency, beyond techniques explored in previous work. We evaluate
Overseer's capability to address lossy observations, a key concern with report-based monitoring.
Furthermore, we evaluate Overseer's performance in comparison with human expert and novice
monitors, and show that Overseer's performance is comparable to that of human experts, despite
the di�culty of the task, and Overseer's reliance on computationally-simple techniques. One of
the key lessons that we draw in Overseer is that a combination of computationally-cheap multi-
agent plan-recognition techniques, exploiting knowledge of the expected structures and interactions
among team-members, can be competitive with approaches which focus on accurate modeling of
individual agents (and may be computationally expensive).

This paper is organized as follows. Section 2 presents the motivation for the design of Overseer,
using examples from an actual distributed application in which Overseer was applied. Section 3
presents a novel single-agent plan-recognition representation and associated algorithms, particularly
suited to monitoring an agent based on its observed communications. Section 4 explores several
methods Overseer uses to address uncertainty in using this representation for monitoring a team
of agents. Section 5 presents YOYO*, which allows e�cient reasoning using the methods previously
discussed. Section 6 presents an evaluation of the di�erent techniques incorporated in YOYO*.

3

Kaminka, Pynadath, and Tambe

Section 7 contrasts the techniques presented with previous related investigations, and �nally, Section
8 concludes and presents our plans for future work. In addition, several appendices present all
pseudo-code for algorithms discussed in the text, and portions of the data used in our experiments,
for those readers who may wish to replicate the experiments.

2. Motivation and Illustrative Examples

Several considerations, based on our experience with actual distributed applications, have directed
us towards the plan-recognition approach we advocate in this paper. We present these considerations
in the context of an illustrative complex distributed application, which we also use for evaluating
Overseer in Section 6. In this application, a distributed team of 11 to 20 agents executes a simula-
tion of an evacuation of civilians from a threatened location. The integrated system allows a human
commander to interactively provide locations of the stranded civilians, safe areas for evacuation and
other key points. Simulated helicopters then �y a coordinated mission to evacuate the civilians, rely-
ing on various information agents to dynamically obtain information about enemy threats, (re)plan
routes to avoid threats and obstacles, etc. The distributed team is composed of diverse agents from
four di�erent research groups: A Quickset multi-modal command input agent (Cohen, Johnston,
McGee, Oviatt, Pittman, Smith, Chen, & Clow, 1997), a Retsina route planner (Payne, Sycara,
Lewis, Lenox, & Hahn, 2000), the Ariadne information agent (Knoblock, Minton, Ambite, Ashish,
Modi, Muslea, Philpot, & Tejada, 1998) and eight synthetic helicopter pilots (Tambe, Johnson,
Jones, Koss, Laird, Rosenbloom, & Schwamb, 1995).

The agents were not designed to work together on this task�they were already built and deployed
prior to the creation of the team. The team is integrated using Teamcore (Tambe et al., 2000),
which accomplishes integration by �wrapping� each agent with a proxy that maintains collaboration
with other agents (via their own proxies). The proxies and agents form a team, jointly executing a
distributed application described by a team-oriented program. Such a program consists of:

� A team hierarchy, where a team decomposes into subteams, and sub-subteams.

� A plan hierarchy, which contains team plans that decompose into subteam plans

� Assignment of teams from the team hierarchy to plans in the plan hierarchy.

As an example, Figure 1-a shows a part of the team/subteam hierarchy used in the evacuation-
domain (described below). Here, for instance, TRANSPORT is a subteam of FLIGHT-TEAM,
itself a subteam of TASK-FORCE. Figure 1-b shows an abbreviated plan-hierarchy for the same
domain. High-level team plans, such as Evacuate, typically decompose into other team plans,
such as Process-Orders, and, ultimately, into leaf-level plans that are executed by individuals.
Temporal transitions are used to constrain the order of execution of plans. There are teams assigned
to execute the plans, e.g., the TASK FORCE team jointly executes Evacuate, while only the
TRANSPORT subteam executes the Transport-Operations (Transport-Ops) step. The team-
oriented program for this application consists of about 40 team-plans. Some plans may get executed
repeatedly though, so each agent may execute up to hundreds of plan steps as part of the execution
of a single team-oriented program.

To execute the team-oriented program, each proxy uses a domain-independent teamwork model,
called STEAM (Tambe, 1997). The teamwork model automatically generates the communication
messages required to ensure appropriate coordination among the proxies. For instance, STEAM
requires that if an agent privately obtains a belief bel that terminates a team plan, then that agent
should send a message to the rest of the team to terminate that team plan, along with the private
belief bel that led to that termination. To avoid jamming the communication channels with a �ood
of messages about every single plan, STEAM chooses to communicate selectively. Thus, whereas
communicating about the initiation and termination of each and every plan would have led to 2000

4

Monitoring Teams by Overhearing

TASK FORCE

FLIGHT
TEAM

TRANSPORTESCORT

ROUTE
PLANNER

ESCORT

FOLLOW

TRANSPORT

DIVISION 1

...

.....

ESCORT

LEAD

(a) (b)

EVACUATE

.....

[TASK FORCE]

EXECUTE
MISSION

[TASK FORCE]

PROCESS

[TASK FORCE]

MANEUVERS
ZONE
LANDING

....

FLY-FLIGHT
PLAN

[FLIGHT TEAM]

FLY-CONTROL
ROUTE....

ORDERS

[FLIGHT TEAM]

[FLIGHT TEAM]

TRANSPORT
OPERATIONS

ESCORT

[ESCORT] [TRANSPORT]

OPERATIONS

ORDERS
GET

[GET ORDERS]

GET ORDERS
ROLE

Figure 1: Portions of the team-hierarchy (a) and plan-hierarchy (b) used in our domain. Dotted
lines show temporal transitions.

or more messages generated in one run, only about 100 messages get exchanged in any one run when
using STEAM (Tambe et al., 2000).

Figure 2 displays some of the messages exchanged among team members in the evacuation appli-
cation, through the use of STEAM. The �rst message is sent from a proxy called �teamquickset� to
members of a team TEAM-EVAC (another name for TASK FORCE). The content of this message
indicates that the team should terminate a plan called determine-number-of-helos. The second
message is sent from a proxy called �team_auto2� to members of a subteam TEAM-ESCORT-
FOLLOW (a subteam of ESCORTS). The content of this message indicates that the subteam should
establish commitment to a plan named prepare-to-execute-mission. We present a complete run
in Appendix B.

As discussed in Section 1, the capability for automated monitoring the progress of the team is
critical. This need for team monitoring is further ampli�ed in distributed settings, since a human
operator in one place cannot directly observe the agents executing in a remote location. For instance,
in trial runs of the evacuation simulation application described above, monitoring sometimes requires
a series of frantic phone calls among human operators in di�erent states, trying to verify the successful
execution of the system as it was operating. And even when this agent team was co-located on
multiple computers in one room, the diversity of agents made it extremely di�cult for an observer
to automatically monitor the state of the team just from observing the di�erent agent output screens.

Overseer was built to provide such monitoring by tracking the routine communications among
the agents (Figure 2). Using plan-recognition, it allows humans and agents to query about the present
and future likely plans of the entire team, its subteams and individuals�to monitor progress, com-
pute likelihoods of failure, etc. However, given that the agent team communicates selectively about
the plans being executed, Overseer's plan-recognition faces signi�cant uncertainty. Furthermore,
Overseer must be able to answer queries on-line, and must therefore work e�ciently. As discussed
later, addressing these challenges has required several novel team-based plan-recognition techniques
to be developed.

Several considerations have led us away from report-based monitoring for this and other Team-
core applications. First, report-based monitoring requires that agents' code be modi�ed to commu-
nicate the reports needed for monitoring; as monitoring requirements change from one application
to the next, so does the information needed about each agent. Unfortunately, the agents and their

5

Kaminka, Pynadath, and Tambe

Log Message Received; Fri Sep 17 18:27:54 1999:

Logging Agent: teamquickset

Message==> tell

:content teamquickset terminate-jpg constant determine-number-of-helos

number-of-helos-determined *yes* 4 4 98 kqml_string

:receiver TEAM-EVAC 9 kqml_word

:reply-with nil 3 kqml_word

:team TEAM-EVAC 9 kqml_word

:sender teamquickset 12 kqml_word

:kqml-msg-id 21547+tsevet.isi.edu+7 22 kqml_word

Log Message Received; Fri Sep 17 18:30:35 1999:

Logging Agent: TEAM_auto2

Message==> tell

:content TEAM_auto2 establish-commitment prepare-to-execute-mission

58 kqml_string

:receiver TEAM-ESCORT-FOLLOW 18 kqml_word

:reply-with nil 3 kqml_word

:team TEAM-ESCORT-FOLLOW 18 kqml_word

:sender TEAM_auto2 10 kqml_word

:kqml-msg-id 20752+dui.isi.edu+16 20 kqml_word

Figure 2: Example KQML messages used as observations by Overseer.

proxies are already deployed in several government laboratories and universities. Modifying the
agents at each deployed location is problematic and intrusive�they interfere with carefully designed
timing speci�cations of given tasks, requiring further modi�cations by other agents developers. The
distributed nature of Teamcore implies that there is no centralized server which controls the be-
havior of the agents, but instead changes are required in the di�erent proxy types. Indeed, in general,
modifying legacy and proprietary applications (including the integration architecture) is of course
known to be a di�cult process, and so a solution that requires constant modi�cations to the agents
and architecture will not scale up.

A second important consideration was the computational and bandwidth requirements of report-
based monitoring. As has been repeatedly noted in the literature, one cannot expect agents to be
able to communicate continuously and fully monitor all other agents (e.g., Jennings, 1993, 1995;
Grosz & Kraus, 1996; Pechoucek et al., 2001; Vercouter et al., 2000). In a team of 11 (used as an
example in this paper), regularly scheduled state reports from the agents at the required temporal
resolution would require approximately 50,000 messages to be sent during a 15-minute run, with the
number nearly doubling when we reach 20 agents. If we instead have the 11 agents only report on
state changes, announcing plan initiation and termination, approximately 2,000 messages have to
be sent. However, this is still an order-of-magnitude more than the normal 100 messages or so that
are exchanged by the 11 agents as part of routine execution. Even if the network could support the
bandwidth necessary for report-based monitoring, there is also a signi�cant computational burden
on the monitoring system to process all the incoming reports.

On the other hand, a plan-recognition approach seemed like a natural �t for the task. First, it
doesn't require any changes in the behavior of the monitored agents, and is thus very suitable for
monitoring agents that are already deployed. Second, it doesn't add any computational burdens
to the monitored agents or the network, since it uses only what observations are already available.
Third, the main knowledge source plan-recognition systems typically rely on�a plan library�is in
fact easily available in accessible form to the monitoring system from the team-oriented program

6

Monitoring Teams by Overhearing

which is used to integrate the agents, since the operator deploying the monitoring system is assumed
to be the one to describe the integration team-oriented program in the �rst place. Thus plan-
recognition's sometimes criticized assumption of a correct plan-library is in fact satis�ed fully in this
monitoring application.

Note that this assumption holds even if agents are not all using the same integration architecture:
The only knowledge we rely on is a (possibly stochastic) model of how components of execution
�t together, and the communications that are used to integrate them. Therefore, while this paper
focuses on team-oriented programs (described above), the techniques introduced appear generalizable
to other types of representation languages for distributed systems, such as TÆMS (Decker, 1995),
team-oriented programming (Tidhar, 1993a) and others. Furthermore, the plan-library need not
contain implemetation details�only the names of the key steps. Thus even agents utilizing radically-
di�erent representations than a plan-hierarchy can be monitored, as long as they have execution
states corresponding to the team-oriented program, which they must have in order to coordinate
with the team in the �rst place.

Monitoring by overhearing poses unique challenges as previously discussed. However, it also
o�ers unique opportunities for plan recognition. We had earlier stated our assumption that agents
are truthful in their communications, and do not seek to deceive their teammates or the monitoring
system, nor prevent overhearing in any way (e.g., encryption). This assumption is justi�ed as the
monitoring system is deployed by the operator of the monitored agents. As a result, failures of the
team to coordinate (e.g., due to clock asynchrony) may cause corresponding failures in monitoring.
However, we do not make additional assumptions about the messages beyond those that are made
by the monitored agents themselves.

This assumption allows a plan-recognition system to treat observations with certainty: When a
message is overheard terminating plan X , the monitoring system can infer with certainty that indeed
the plan X is no longer executed. However, this does not eliminate plan recognition ambiguity.
First, multiple instantiations of plan X may exist, and the message does not specify which one
was terminated. Second, upon termination of the plan, the monitored team-member must often
choose between multiple alternative plan steps to follow X , and yet this choice is not evident in
the observations. Indeed, the di�culty of monitoring by overhearing is demonstrated by human
monitoring performance: Novice human monitors have managed to only achieve approximately 60%
accuracy on average.

3. Monitoring a Team of Agents as Separate Individuals

In this section, we present a representation and associated baseline algorithms to support overhearing
based on the plan-hierarchy and team-hierarchy. We begin by making an assumption of agent
independence, where observations and beliefs about one agent's state of execution have no bearing
on our beliefs about another agent's state. This assumption can be traded for another: If we assume
instead that team-members are successful in their coordination, then knowing that one agent has
begun executing a joint plan would naturally increase the likelihood that its teammates have begun
as well, thus agents are not independent. In fact, successful teamwork requires interdependency
among the agents (Grosz, 1996).

An initial assumption of agent independence provides a baseline of comparison, as it more closely
follows current approaches to multi-agent plan recognition, which often assume that observations
about each individual agent are continuously available. Later sections (Sections 4 and 5) will high-
light the unique challenges tackled in monitoring by overhearing, and will take agent interdependen-
cies into account.

We thus begin by maintaining a separate plan recognizer for each agent. Each recognizer observes
only those messages that its respective agent sends. On the basis of these observations, the recognizer
maintains a probabilistic estimate of the state of execution of the various plans the agent may be
currently executing. Knowledge of the plans assigned to agents and their team memberships is

7

Kaminka, Pynadath, and Tambe

available in our application from the the plan-hierarchy and team-hierarchy of the team-oriented
program used in constructing the monitored application.

Section 3.1 presents the language we use for the probabilistic representation of a team-oriented
program. We exploit various independence properties within team-oriented programs to achieve a
compact representation of the possible plan states of the agents. Section 3.2 presents an algorithm
for updating the recognizer's beliefs about the agents' plan states upon the observation of a message.
This algorithm performs the update with an e�ciency gained by exploiting the particular semantics
of communicated messages, namely that each such message is an observation that indicates the
initiation/termination of a particular plan with certainty. Section 3.3 presents an algorithm for
updating the recognizer's beliefs about the agents' plan states when no message has been observed.
In the absence of any such evidence, this algorithm e�ciently updates the recognizer's beliefs by using
a temporal model of the agents' plan execution that makes a strong Markovian assumption. Finally,
Section 3.4 presents the overall recognition procedure, as well as an illustration and complexity
analysis of that procedure.

3.1 Plan-State Representation

We address uncertainty in monitoring through a probabilistic model that supports quantitative
evaluation of the recognized plan hypotheses. Since we are monitoring these agents through the
duration of their execution, we use a time series of plan-state variables. At each point in time, the
agent's plan state is the state of the team-oriented program that it is currently executing, i.e., a
path from root to leaf in the team-oriented program tree. We represent the plans in the program by
a set of boolean random variables, fXtg, where each variable Xt is true if and only if the agent is
actively executing plan X at time t. We then represent our beliefs about the agent's actual state at
time t as a probability distribution over all variables fXtg. The distribution includes dependencies
among the di�erent plans in the team-oriented program (e.g., parent-child relationships), as well as
the temporal dependencies between the plan state at times t and t+1. To simplify the dependency
structure, it is useful to introduce additional boolean random variables, done(X; t), that are true if
and only if plan X was executed at time t� 1 and its execution has terminated at time t.

There are a number of possible representations for capturing the distribution and performing
inference over these variables. However, the generality of the plan hierarchy, the dynamic nature of
the domain, and the requirements of the task eliminate most existing approaches from consideration.
For instance, we could potentially generate a DBN�Dynamic Belief Network (Kjærul�, 1992)�
to represent the probabilistic distribution over the plan variables. To do so, we include nodes
representing all of the plan variables, Xt, as well as representing done(X; t). The links among
these nodes represent the structure of the plan hierarchy (e.g., parent-child relationships, temporal
constraints), and we can �ll in the conditional probability tables accordingly. We also represent the
temporal progress of the team by including nodes for the variables at the next time slice, Xt+1.
We add links from the Xt nodes to the Xt+1 nodes and represent the dynamics in the conditional
probability tables on those links. For each transition from a node Xt to a node Yt+1 (X 6= Y),
we would also add binary nodes indicating the observation of a message along that transition.
Thus, for a plan hierarchy with M plan nodes, the corresponding DBN representation will have
O(4M +M2) = O(M2) binary random variables.

The standard DBN inference algorithms maintain a belief state, bt, representing the posterior
probability distribution over the variables in time slice, t, conditioned on all of the observations
made so far (from time 0�t). These inference algorithms can update the belief state to incorporate
new evidence about any variables, Xt, and they can also compute the next time-tick's belief state,
bt+1. We can extract the desired probability over plan-state variables by examining the posterior
probabilities stored in bt. Given the dependency structure of our plan model, the space and time
complexity of performing inference using this DBN (either incorporating a single observation, or

computing bt+1) is O(2
M2

) for a single agent.

8

Monitoring Teams by Overhearing

This DBN method is not su�ciently e�cient to support on-line monitoring in real-world domains,
since on each and every time step, the recognizer must perform an inferential step of exponential
computational complexity. There exist single-agent plan-recognition techniques that avoid the ex-
ponential complexity of DBNs by using a representation and inference algorithms aimed at the par-
ticular properties of the plan-recognition task (e.g., Pynadath & Wellman, 2000). Such specialized
representations avoid the full generality of DBNs, while still capturing a broad class of interesting
planning agent models. Given a specialized representation, the single-agent plan-recognition algo-
rithms can exploit the particular structure of the plan models to achieve e�cient online inference.

Drawing our inspiration from the success of this work in single-agent domains, we adopt a similar
methodology in our multi-agent domain. In other words, we have developed a novel plan-recognition
representation more suited to capturing team-oriented programs. The structural assumptions we
make in this representation support e�cient inference with our specialized algorithms, as well as more
naturally supporting an extension to represent inter-agent dependencies (as discussed in Section 4).

We represent the team-oriented plan as a directed graph, whose vertices are plans, and whose
edges signify temporal and hierarchical decomposition transitions between plans: Children edges
denote hierarchical decomposition of a plan into sub-plans. Sibling edges denote temporal orderings
between plans. Following the structure of the plan hierarchy, the variables fXtg form a directed
connected graph, such that each node Xt has at most one hierarchical-decomposition incoming
transition from a parent node (representing its parent plan), and any number of temporal incoming
transitions from plans that precede it in order of execution. The graph may contain multiple nodes
for a single plan, if the plan is the potential child of multiple parent plans. The node may have any
number of temporal outgoing transitions to immediate successor sibling nodes (representing plans
that may follow it in order of execution), and any number of hierarchical-decomposition outgoing
transitions to the node's �rst children (i.e., those that will be executed �rst by a decomposition of
the plan Xt. The graph forms a tree along hierarchical decomposition transitions, so that no plan
can have itself as a descendent. On the other hand, there may be cycles along temporal transitions
(to siblings). In other words, a plan may have an outgoing temporal transition to itself (meaning
that it can be selected for execution again upon termination), or to a node that has a temporal path
leading back to the plan (meaning that it is the �rst node in a temporal sequence of plans that may
be executed repeatedly). It may also have two alternative temporal paths leading indirectly from
one node to another.

To perform inference with this representation, we borrow the standard DBN inference algorithms'
notion of a belief state, bt. As in the DBN case, the belief state represents the posterior probability
distribution over the variables in time slice, t, conditioned on all of the observations made so far.
In addition, for each plan, we distinguish between a state of actual execution and a blocked state,
indicating that execution has terminated, but execution of a successor has not yet begun (perhaps
because the agent is in the process of sending a message). Thus, bt(X; block) is our belief that X has
terminated, but the agent has not begun execution of a successor; bt(X;:block) is then our belief
at time t that the monitored agent is currently executing X , which has not yet terminated. More
precisely, we de�ne bt(X; block) � Pr(Xt; done(X; t+1)jE) and bt(X;:block) � Pr(Xt;:done(X; t+
1)jE), where E again denotes all of the evidence we have received so far. If the recognizer observes
a message from an agent at time t, it updates its previous belief state, bt, by incorporating the
evidence into its new belief state, bt+1, according to the method described in Section 3.2. If it does
not observe a message from an agent at time t, it propagates belief into its new belief state, bt+1,
using the method described in Section 3.3 to simulate plan execution over time.

3.2 Belief Update with Observed Message

While observing team communications, the recognizer can expect to occasionally receive evidence
in the form of messages (sent by an individual agent member) that identify either plan initiation or
termination. In incorporating this evidence, we exploit the assumption that the agents are truthful

9

Kaminka, Pynadath, and Tambe

in their messages. In other words, if we observe an initiation message for a plan, X , at time t, then
Xt is true with certainty. Likewise, if we observe a termination message for a plan, X , at time t,
then done(X; t + 1) is true with certainty. More precisely, the algorithms presented in this section
are specialized to exploit the property of observed communications, where for any observation
,
either Pr(Xtj
; E) = 1 or Pr(done(X; t)j
; E) = 1, for any possible previously observed evidence, E .

Though messages are assumed truthful, there still remains ambiguity. First, while a message
uniquely speci�es the relevant plan, it does not uniquely specify the relevant node. In other words,
the recognizer is still unsure about which particular Xt node the message refers to, since the graph
may contain multipleXt nodes consistent with the message. Furthermore, when a message announces
termination of a plan (even with no ambiguity about the corresponding node), there still remains
ambiguity about the next plan selected by the agent.

The observations available in the overhearing tasks of immediate interest to us fall into this
level of ambiguity. In our evacuation scenario example, there are two nodes corresponding to the
plan land-troops, because there is one instance of land-troops for picking up the people to be
transported and another for dropping them o�. If the recognizer observes a message indicating that
an agent has terminated land-troops, then we know for certain that the agent has begun executing
land-troops, but there is ambiguity about which node is currently relevant. Furthermore, there
may exist ambiguity about which plan the agent will select after terminating land-troops.

Algorithm 1 presents the pseudo-code for the complete procedure for incorporating evidence from
observations.

Algorithm 1 Incorporate-Evidence(msg m, beliefs b, plans M)

1: Initialize distributions b0; bt+1 0:0 for all plans in M
2: for all plans X 2M consistent with m do

3: if m is an initiation message then
4: for all plans W that precede X do

5: b0(X;:block) b0(X;:block) + bt(W;block)�wx�wx
6: else {m is a termination message}
7: for all plans Y 2M that succeed X do

8: b0(Y;:block) b0(Y;:block) + bt(X; block)�xy�xy
9: Normalize distribution b0

10: for all plans X 2M with b0 > 0 do

11: bt+1(X;:block) b0(X;:block)
12: Propagate-Down(X; b0(X;:block); b;M)
13: tmp X
14: while parent(tmp) 6= null do
15: bt+1(parent(tmp);:block) bt+1(parent(tmp);:block) + bt+1(tmp;:block)
16: tmp parent(tmp)

Incorporating Evidence of an Observed Initiation Message (lines 3�8) Suppose that, at
time t, we have observed a message, msg, that corresponds to initiation. If only one plan, X , is
consistent with msg, then we know, with certainty, that the agent is executing X , regardless of
whatever evidence we have previously observed. Therefore, we can simply set our belief that Xt is
true to be 1.0. If multiple plans are consistent with msg, we distribute the unit probability over each
consistent plan, weighted by our prior belief in seeing the given message. This prior belief depends
on all predecessor plans of X that may have terminated prior to seeing this message.

To support the computation of the beliefs over transitions from predecessor plans to successors,
as well as the beliefs of seeing a message for a given transition, Overseer stores two parameters:
� and �. The former is the probability of entering a successor plan, X , given that predecessor plan,
W , has just completed: �wx � Pr(Xt+1jWt; done(W; t+1)). The latter is the probability of seeing a
message, given that the agent took the speci�ed transition: �wx � Pr(msgtjWt; done(W; t+1); Xt+1).

10

Monitoring Teams by Overhearing

We can use previous runs to acquire suitable values for these parameters, � and �, by producing
a frequency count over transitions and messages seen during those runs (see Section 4.2 for more
discussion of the use of � in Overseer).

Therefore, given the observation of an initiation message, msg, at time t, we wish to distribute
the unit probability over all plans, X , (in the unblocked state) that are consistent with msg. We can
derive our new belief in plan X at time t+ 1 as follows:

Pr(Xt+1jmsg; E) =
Pr(msg;Xt+1jE)

Pr(msgjE)

The denominator is simply a normalization factor, and it is the same for all candidate plans, X .
Therefore, we ignore it in this derivation, and focus on only the numerator, which we can expand
over all possible predecessor plans, W , and possible termination states of W :

/
X

W

Pr(msg;Xt+1;Wt; done(W; t+ 1)jE) +
X

W

Pr(msg;Xt+1;Wt;:done(W; t+ 1)jE)

The second term is 0, since we cannot proceed fromW to X if W has not terminated. In the second
term, we can expand the joint probability into its component conditional probabilities:

/
X

W

[Pr(msgjWt; done(W; t+ 1); Xt+1; E)

� Pr(Xt+1jWt; done(W; t+ 1); E)

� Pr(Wt; done(W; t+ 1)jE)]

We assume that the probability of sending a message and the distribution over plan transitions obey
a Markov property, so that they are independent of the plan history before time t, given the current
plan at time t. Thus, the �rst two conditional probabilities are independent of our previous history
of observations. The third is exactly our previous belief that W is blocked:

/
X

W

[Pr(msgjWt; done(W; t+ 1); Xt+1) Pr(Xt+1jWt; done(W; t+ 1))

bt(W; block)]

The �rst two conditional probabilities are exactly our parameters, � and �:

/
X

W

�wx�wxbt(W; block) (1)

Lines 4�5 of Algorithm 1 perform exactly the derived summation of Equation 1 (the normalization
step is carried out on line 9 (see below). A similar procedure is followed when a message is observed
indicating the termination of X (lines 6�8). In such a case, we know that the agent was executing
X in the previous time step but that it has moved on to some successor. Thus, for each of X 's
potential successor plans Y , we set our belief in Y to be proportional to a transition probability,
similar to that for the initiation message:

Pr(Yt+1jmsg; E) =
Pr(msg; Yt+1jE)

Pr(msgjE)

11

Kaminka, Pynadath, and Tambe

The denominator is again a normalization factor that we ignore. We can expand the numerator over
possible states of X 's execution:

/Pr(msg; Yt+1; Xt; done(X; t+ 1)jE)

+ Pr(msg; Yt+1;:Xt; done(X; t+ 1)jE)

+ Pr(msg; Yt+1; Xt;:done(X; t+ 1)jE)

+ Pr(msg; Yt+1;:Xt;:done(X; t+ 1)jE)

Only the �rst term is nonzero, since the others correspond to states of execution that are inconsistent
with the observed message:

/Pr(msg; Yt+1; Xt; done(X; t+ 1)jE)

We can rewrite this joint probability as a product of conditional probabilities:

/Pr(msgjXt; done(X; t+ 1); Yt+1; E)

� Pr(Yt+1jXt; done(X; t+ 1); E)

� Pr(Xt; done(X; t+ 1)jE)

We again use our Markovian assumptions to simplify the conditional probabilities, and we rewrite
the third probability using our belief state:

/Pr(msgjXt; done(X; t+ 1); Yt+1) Pr(Yt+1jXt; done(X; t+ 1))

� bt(X; block)

Finally, we rewrite the �rst two conditional probabilities using our parameters, � and �:

/�xy�xybt(X; block) (2)

Lines 7�8 of Algorithm 1 perform exactly the derived summation of Equation 2.

Normalization of the sum (line 9). Line 9 normalizes the sum to recapture a well-formed
probability distribution. Note that the normalization step must take into account the fact that
evidence may be incorporated for plan steps where one is an ancestor of another�in which case the
evidence for the ancestor plan is probabilistically redundant. The more speci�c evidence (for the
descendent plan) will be more useful for visualization, as it is more accurate.

Propagation of Evidence (lines 10�16) Finally, the recalculated beliefs are set (line 11) and
then the changes are recursively propagated down the decomposition hierarchy to the plan's children
(line 12), via the call to Algorithm 2. In addition, the recalculated beliefs are propagated up to the
plan's ancestors in the decomposition hierarchy (lines 13�16), since evidence of a child plan being
active is evidence of its parent being active as well. We assume here that we have no knowledge
about the relative likelihood of the child plans, so we treat each as equally likely. If we had additional
knowledge about these likelihoods, we could easily exploit it in our Propagate-Down algorithm.

3.3 Belief Update with No Observation

In overhearing tasks, there is a great deal of uncertainty about when agents complete the execution
of their plan steps, since agents do not necessarily send messages upon every termination or initiation
of a plan. Therefore, if no messages are observed at time t, then the system's beliefs for time t+ 1
must be calculated based on the possibility that the agents may have initiated or terminated plans

12

Monitoring Teams by Overhearing

Algorithm 2 Propagate-Down(plan Y , probability �, beliefs b, plans M)

1: C fc j c 2M; c �rst child of Y g
2: �0 �= j C j
3: for all plans c 2 C do

4: bt+1(Y;:block) bt+1(Y;:block) + �0

5: Propagate-Down(c; �0; b;M)

without sending any messages. To support the necessary belief update, we need a model of plan
execution that provides us with a probability of plan termination over time (i.e., Pr(done(X; t))).
In principle, this probability distribution can be arbitrarily complex, and its structure may vary
enormously from domain to domain, and even from plan to plan within the same domain. In some
domains, obtaining an accurate model of this distribution requires complex knowledge acquisition
from domain experts or else a complex learning process on the part of the agent. In addition, an
accurate model may be too complex to support e�cient online inference.

Overseer instead uses a temporal model that supports both e�cient inference and simple pa-
rameter estimation procedures. Overseermodels the duration of a (leaf) plan, X , as an exponential
random variable. In other words, the probability of the plan completing execution within � time
units increases as 1 � e���X . The single parameter, �X , corresponds to 1/(mean duration of X),
which we can easily acquire from domain experts or previous runs. As for inference, the exponential
random variable has a Markovian property, in that the probability of the plan's completion between
times t and t+ 1 is

Pr(done(X; t+ 1)jXt) � 1� e��x ;

independent of how long the agent has been executing X before time t. This strong assumption
may not fully hold in some real-world domains, but it is often a good approximation. Also, the
error associated with this approximation may be acceptable, given the enormous gain in inferential
e�ciency (as we show in the remainder of this section).

These e�ciency gains manifest themselves when Overseer rolls the model forward in time to
compute its belief state for the next time slice. Given the exponential random variable as a model
of plan duration, the probability of completion of a leaf plan is a constant, 1� e��x , for each plan
X . For plans with children, the probability of completion is exactly the probability of completion of
its last child (according to the temporal ordering of the children).

Having computed the probability of plan termination, Overseer then evaluates which plan the
agent may execute next. It examines the possible successors and, for each, computes the probability
of taking the corresponding transition, conditioned on the fact that no message was observed (1�
�xy), and on the prior probability of taking this message (�xy). Again, as mentioned in Section 3.2,
Overseer makes a Markovian assumption that the plan history before time t does not a�ect the
likelihood of the various transitions. Given this assumption, it can combine the two parameters,
� and �, to get the desired conditional probability of the transition, given that we observed no

13

Kaminka, Pynadath, and Tambe

message:

Pr(Yt+1jXt; done(X; t+ 1);:msgt)

=
Pr(:msgtjXt; done(X; t+ 1); Yt+1) Pr(Yt+1jXt; done(X; t+ 1))

Pr(:msgtjXt; done(X; t+ 1))

=
(1� �xy)�xyX

Z

Pr(:msgtjXt; done(X; t+ 1); Zt+1) Pr(Zt+1jXt; done(X; t+ 1))

=
(1� �xy)�xyX

Z

(1� �xz)�xz

=
(1� �xy)�xy

�X
(3)

The normalizing denominator, �X , is the sum of the numerator over all possible successors, Y ,
which we can pre-compute o�-line. We can use the value of �X to determine the likelihood that the
agent will send a message upon terminating plan X at time t. In the special case when �X = 0,
Equation 3 is not well-de�ned, as all possible transitions from X require a message. In this case,
the agent cannot have begun execution of any successor, even though it has completed execution of
X . �X is therefore the probability mass signifying our belief that the agent is no longer executing
X at time t+1, and is not waiting for a message (i.e., it is in a blocked state). In other words, it is
our increased belief that the agent is executing one of X 's immediate successors at time t+1, given
that we have seen no message.

Algorithm 3 presents the pseudo-code for the process of propagating the probabilities forward
in time when a message is not observed. First, it initializes all the values to 0 (lines 1�5). The
process continues by going over all plans X 2 M , in post-order�we explore children plans (i.e.,
plans reachable by hierarchical decomposition transitions) before their parents, and sibling plans
in order of execution. For each plan, the algorithm executes four stages: (1) It determines the
plan's outgoing probabilities (lines 7�10); (2) it determines �x, the outgoing probability mass that is
propagated along the outgoing temporal transitions without being blocked by waiting for a message
(lines 11�12); (3) it propagates �x along the non-blocked temporal outgoing transitions (lines 13�
20); and �nally (4) it computes our belief that the agent will execute the plan at the next time-tick
bt+1(X;:block) or will be blocking (lines 21�22). The remainder of this section explains these four
stages in detail.

Calculating the outgoing probability outx (lines 7�10). In Algorithm 3, the variable outx
represents the total temporal outgoing probability from plan, X , given our belief that the agent was
executing X at time t. If a plan X is a leaf, then we derive its temporal outgoing probability, outx,
from the temporal model discussed previously, given our belief that the agent is currently executing
X (lines 7�8). If X is a parent, lines 9�10 are, in fact, redundant: They serve only to remind the
reader that for a parent, Y , outy follows from Y 's children when they execute line 20. This depends
critically on the post-order traversal of the plan-hierarchy: the outgoing probability of a parent Y is
derived from the outgoing probabilities of its last hierarchical-decomposition children, and thus all
children's outgoing probabilities must be calculated before their parents'.

Determining the non-blocked outgoing probability �x (lines 11�12). The probability, �x
is the sum over all possible values of the numerator in Equation 3 (i.e., over all temporal outgoing
transitions originating in X), as illustrated in the derivation. As we see in line 21, �x is critical for
calculating the belief that the agent has terminated execution of X; but has not yet begun execution
of a successor (i.e., the belief bt+1(X; block) that the agent is blocking).

14

Monitoring Teams by Overhearing

Algorithm 3 Propagate-Forward(beliefs b, plans M)

1: for all plans X 2M do

2: bt+1(X;:block) 0:0
3: bt+1(X; block) 0:0
4: outx 0:0
5: �x 0:0
6: for all plans X 2M in post-order do {children in temporal order before parents}
7: if X is a leaf then
8: outx bt(X;:block)(1� e��x) {calculate probability of X terminating at time t}
9: else {X is a parent}
10: outx is known { because post-order guarantees all children set it in line 20}
11: for all temporal outgoing transitions Tx!y from X do

12: �x �x + (1� �xy)�xy
13: if �x > 0 then {some transition can be taken}
14: for all temporal outgoing transitions Tx!y from X do

15: � outx(1� �xy)�xy
16: if Tx!y leads to a successor plan Y then

17: bt+1(Y;:block) bt+1(Y;:block) + �
18: Propagate-Down(Y; �; b;M)
19: else {Tx!y is a terminating transition}
20: outparent(x) outparent(x) + (1� �xy)�xy {parent's outgoing probability is its children's}
21: bt+1(X; block) bt+1(X; block) + outx � �x
22: bt+1(X;:block) bt+1(X;:block)� outx

Propagating �xalong temporal outgoing transitions (lines 13�20). This is the key compo-
nent in the propagation. For every temporal outgoing transition Tx!y, Overseer calculates �, a
temporary variable that holds the probability mass corresponding to Overseer's belief in the joint
event of (i) the agent having completed execution of X , (ii) the agent taking the transition TX!Y ,
and (iii) the agent doing so without sending out an observable message. The calculation of � is
derived as follows:

� = Probability that X is done ^ no message was observed ^ agent chose Tx!y

= Pr(done(X; t)jXt) Pr(:msgjXt; done(X; t)) Pr(Yt+1jXt; done(X; t);:msgt)

= outx � �x �
(1� �xy)�xy

�x

= outx � (1� �xy)�xy (4)

If the transition Tx!y leads to a successor plan Y (lines 16�18), then � is added to Y 's future state
(at time t+1) as temporal incoming probability. Since decomposition is assumed to be immediate,
this incoming probability is propagated (added) to Y 's �rst children (Algorithm 2). If there are
multiple �rst children, then they denote alternative plan decompositions for a single agent, and we
compute the probability over them by dividing the probability incoming to the parent among them.
If any children have �rst child plans of their own, we distribute this new incoming probability in
turn, using the same method. Only in the next time-step does the algorithm propagate from �rst
children to the next child, in order of execution. The reason for this is that we assume that all plans
take at least a single time step to complete.

If the transition Tx!y is the special-case termination transition (line 19�20), then X has no
successors. In this case, the outgoing temporal probability � is added to X 's parent's outgoing
probability outparent(x) so that it may be used when propagating parent(x)'s temporal outgoing
probability along its own temporal outgoing transitions. Note again that the post-order traversal of
the plan-hierarchy guarantees that all children are explored before their parents, thus outparent(x) is
fully computed by the time the algorithm reaches parent(x).

15

Kaminka, Pynadath, and Tambe

Computing X's new blocked and non-blocked probabilities (lines 21�22). Now that
the outgoing probability mass has been propagated to X 's children and siblings, the only steps
remaining involve re-calculation of Overseer's belief in X 's blocked and non-blocked states. The
total temporal outgoing probability (whether blocked or not) is outx; it must subtracted from future
belief that the agent is executing X . The probability mass that left bt(X;:block) but is blocking
on a message that was not observed by Overseer is outx � �x. It is added to X 's future blocked
state.

3.4 Discussion

The overhearing approach outlined in this section maintains a separate plan-recognition mechanism
for each agent, ignoring any inter-agent dependencies. Using an array of individual models (Figure
3) that are updated with the passage of time, or as messages are observed, the state of a team is
taken to be the combination of the most likely state of each individual agent. Algorithm 4 embodies
this approach: It is called every time tick, collects all messages that are observed, and updates the
state of the agents.

EVACUATE

.....

[TASK FORCE]

EXECUTE
MISSION

[TASK FORCE]

PROCESS

[TASK FORCE]

MANEUVERS
ZONE
LANDING

....

FLY-FLIGHT
PLAN

[FLIGHT TEAM]

FLY-CONTROL
ROUTE....

ORDERS

[FLIGHT TEAM]

[FLIGHT TEAM]

TRANSPORT
OPERATIONS

ESCORT

[ESCORT] [TRANSPORT]

OPERATIONS

[GET ORDERS]
ORDERS
GET

EVACUATE

.....

[TASK FORCE]

EXECUTE
MISSION

[TASK FORCE]

PROCESS

[TASK FORCE]

MANEUVERS
ZONE
LANDING

....

FLY-FLIGHT
PLAN

[FLIGHT TEAM]

FLY-CONTROL
ROUTE....

ORDERS

[FLIGHT TEAM]

[FLIGHT TEAM]

TRANSPORT
OPERATIONS

ESCORT

[ESCORT] [TRANSPORT]

OPERATIONS

[GET ORDERS]
ORDERS
GET

Figure 3: Array of single-agent recognizers�one for each agent.

Algorithm 4 Array-Overseer(beliefs b, plan-hierarchy array M [], agents A)

1: for all Agents a 2 A do

2: if A message ma from a was observed then

3: Incorporate-Evidence(ma; b; M [a])
4: else {No message was sent by a }
5: Propogate-Forward(b; M [a])

As an illustration of the operation of this algorithm, consider the example domain of the
evacuation scenario. Overseer begins with a belief that the agent is executing its top-
level plan (and its �rst child, Process-Orders) at time 0 (i.e., b0(Evacuate;:block) = 1:0,
b0(ProcessOrders;:block) = 1:0). If Overseer observes a message about the initiation of
Fly-Flight-Plan by one of the helicopters, then it applies Incorporate-Evidence (Algorithm 1).
From the plan-hierarchy (Figure 1b) it is known that Process-Orders cannot be a possible current
or future plan of the agent, and that the helicopter in question is executing Fly-Flight-Plan, i.e.,
bt(ProcessOrders;:block) = 0, bt(F lyF lightP lan;:block) = 1:0. This probability mass is propa-
gated to Fly-Flight-Plan's �rst children, of which there is one, and thus the belief in this child is
set to 1.0 as well.

After some time passes and no message is observed, there is uncertainty as to whether
Fly-Flight-Plan and Landing-Zone-Maneuvers are active, as both are possible future states,
and the duration of Fly-Flight-Plan is uncertain. Overseer would still assign a probability
of 1.0 to the top-level plan Evacuate. However, some probability mass from Fly-Flight-Plan

would be propagated every time-tick to Landing-Zone-Maneuvers by Propagate-Forward (Al-

16

Monitoring Teams by Overhearing

gorithm 3). For each such propagation, the incoming temporal probability mass being added to
the belief in the execution of Landing-Zone-Maneuvers would be propagated to its �rst children
immediately. Assuming that the helicopter agent is free to select either Transport-Operations or
Escort-Operations, the incoming probability would be split evenly and added to the prior belief
in each of the two �rst children. In the same temporal propagation step, any outgoing belief from
these �rst children would be propagated via their own outgoing temporal transitions.

The inference procedure described by Algorithms 1�4 exploits the particular structure of our
representation in ways that more general existing algorithms cannot. The pseudo-code demonstrates
that for a single monitored agent, both types of belief updates have a time complexity linear in the
number of plans and transitions inM , i.e., O(M). Thus for N agents, the space and time complexity
of Algorithm 4 is O(MN).

We gain this e�ciency (compared to an approach such as DBN) from two sources. First, we make
a Markovian assumption that the probability of observing a message depends on only the relevant
plan being active, independently of execution history. With this assumption, we can incorporate
evidence, based on only our beliefs at time t. Second, we make another Markovian assumption in
the temporal model, allowing our propagation algorithm to reason forward to time t + 1 based on
only our beliefs at time t, without regard for previous history.

4. Monitoring a Team by Overhearing

The previous section has outlined an e�cient plan-recognition mechanism that is particularly suit-
able for monitoring a single agent based on its communications. Monitoring a team was achieved by
monitoring each member of the team independently of the others. Unfortunately, although the time
complexity of this approach is acceptable, its monitoring (recognition) results are poor. The evalu-
ation in Section 6.1 provides more details, but, in short, the average accuracy using this approach
over all experiments was less than 4%.

The main cause for this low accuracy is the scarcity of observations, one of the identifying
characteristics of monitoring by overhearing. As previously discussed, in such monitoring, agents
often switch their state unobservably (i.e., without sending a message). Therefore, the monitoring
system critically needs to estimate correctly the times at which agents switch state. Since some agents
rarely communicate (i.e., there are very few observations about them), variance in their temporal
behavior (with respect to the system's predictions) tends to cause large errors in monitoring.

To address this issue, we bring back for discussion the agent independence assumption which we
have made in the previous section. After all, team-members do not communicate independently of
each other: Communications in a team is an action that is intended to change the state of a listener
(Cohen & Levesque, 1990). Agents that only rarely send a message may still change their state
upon receiving a message. In other words, although observed messages are used in the previous
section to update the belief in the state of the sender, they could also be used to update the state
of any listeners. To do this, the monitoring system must know about the relationships between the
team-members.

Knowledge of the social structures enables additional sophisticated forms of monitoring. For
instance, in order to maintain their social structures, team-members communicate with each other
predictably, during particular points in the execution of a task. Such predictions of future observable
behavior�communications�can be used to further reduce the uncertainty. However, it is often the
case that while it can be di�cult to correctly predict that a speci�c agent will communicate at a
speci�c point in task execution, it is easy to predict that some team-member will. Knowledge of
the procedures employed by a team to maintain its social structures can be very useful allows a
monitoring system to make such predictions.

To reason about the e�ects of communications on receivers, and about future observable be-
havior of team-members, a monitoring system must utilize knowledge of the social structures and
social procedures used by team-members to maintain these structures. Such exploitation of social

17

Kaminka, Pynadath, and Tambe

knowledge for monitoring is called Socially-Attentive Monitoring (Kaminka & Tambe, 2000). This
section discusses these concepts in detail.

4.1 Exploiting Social Structures

While computationally cheap, the approach described earlier proved insu�cient in the evacuation
domain. In monitoring by overhearing tasks, the monitoring system must address scarce observa-
tions, as agents rarely communicate all at the same time. Indeed, in the evacuation application,
only a single message was observed (on average) for every 20 combined individual state changes.

Under such challenging conditions, a system for monitoring by overhearing must come to rely
extensively on its ability to estimate when agents change their internal state without sending a
message. The representation presented earlier used a simple, but e�cient, temporal model to do
this, based on the estimated average duration of plans. However, we have found high variance in
the actual duration of plan execution, compared to the duration predicted by the average-duration
model:

� Plan execution times vary depending on the external environment. For instance, when all the
agents in the team are running on a local network, their response times to queries may be
shorter than when communicating across continents. Indeed, latency times in the Internet
vary greatly, and are di�cult to predict.

� Plan execution times vary depending on when a plan-step is executed internally. For instance,
the traveling plans, used repeatedly within the given evacuation team-oriented program,
take anywhere from 15 seconds to almost two minutes to execute, depending on the particular
route being followed.

� Plan execution times vary depending on the outcome of a plan-step. For instance, when the
route-planner is functioning correctly, it responds within a few seconds. However, when it
crashes it does not return an answer at all, and the other agents wait for a relatively long time
before relying on a time-out to decide that it had failed.

This problem can be addressed in principle by a more expressive model of execution duration, for
instance taking into account the internal execution context. However, in practice, such a model
would likely be much more expensive computationally, as it would need to rely on knowledge of
previous and future steps, breaking the Markovian assumption (e.g., to determine duration based on
when a plan-step is executed, an improved temporal model would have to reason about the likelihood
that a given instance of the plan-step is the second instance, as opposed to a third). As applications
grow in scale in the real world, an increasingly more complex temporal model would have to be
continuously re�ned to cover the increasingly complex temporal behavior of agents. Fortunately,
a temporal model is only one way in which a monitoring system can estimate the times in which
agents change their internal state unobservedly.

An alternative method for estimating unobserved state changes is to utilize known dependencies
between agents to exploit evidence about the state of one agent to infer the state of another. In
particular, it is often true in team settings that one agent would send a message intending to a�ect
the state of all its receivers in a particular way. Thus in principle, under the assumption that
the receivers do change their state predictably, an observation of such a message can be used as
evidence in the inference of the sender's state, as well as all receivers', i.e., the state of all team-
members. We can trade the agent independence assumption made earlier with an assumption of
successful coordination. This is a reasonable assumption in team settings, given that agents are
actively attempting to maintain their teamwork with such communications (Tambe, 1997; Kumar
et al., 2000; Dunin-Keplicz & Verbrugge, 2001).

The e�ects of a message on a receiver are dependent on the relationship between the sender
and the receiver (where we take such a relationship to be described by a mathematical relation

18

Monitoring Teams by Overhearing

between the possible states of the sender and the receiver). In principle, such relationships underly
social structures�structures of interactions between agents that make the decisions of one team-
member dependent, to some predictable degree, on those of its teammates. Using knowledge of these
dependencies, a monitoring agent may use observations of a communication action by an agent to
infer the possible state of another.

One simple example of such a structure is common in many teams (e.g., Jennings, 1993; Kinny,
Ljungberg, Rao, Sonenberg, Tidhar, & Werner, 1992), and indeed is present also in our application:
roles that govern which team-members undertake what tasks in service of the team goal. Such
roles ideally bias the decision mechanism of the team-members towards making decisions that are
appropriate for their roles. Thus knowledge of the roles of team-members can be useful to counter
the uncertainty faced by a monitoring agent. For instance, suppose the monitoring agent knows
that in the evacuation application, for instance, a particular helicopter team-member is to choose
Transport-Ops, rather than Escort-Ops, as a child of Landing-Zone-Maneuvers (because the
team-member belongs to the TRANSPORT team, rather than the ESCORT team). This knowledge
can reduce the uncertainty the monitoring agent has�under the assumption that the team-member
did not incorrectly choose an inappropriate plan for its role. Overseer in fact uses knowledge of
roles in such a manner to alleviate uncertainty. This monitoring use of role information has been
used in previous work (Tambe, 1996; Intille & Bobick, 1999), discussed in Section 7.

However, a much more important social structure exists in teams. Agents in teams work together,
as team-member are ideally in agreement about their joint goals and plans (Cohen & Levesque, 1991;
Levesque, Cohen, & Nunes, 1990; Jennings, 1995; Grosz & Kraus, 1996, 1999; Tambe, 1997; Rich
& Sidner, 1997; Lesh, Rich, & Sidner, 1999; Kumar & Cohen, 2000; Kumar et al., 2000). This
phenomenon�sometimes called team coherence (Kaminka & Tambe, 2000)�holds at di�erent levels
in the team. Agents in an atomic subteam work together on the plans selected for the subteam,
subteams work together with sibling subteams on higher level joint plans, etc. Individual agents
may still choose their own execution, but they do so in service of agreed-upon joint plans. Provided
the monitoring agent knows what plans are to be jointly executed by which subteams, and what
transitions are to be taken together by which subteams, it can use coherence as a heuristic, preferring
hypotheses in which team-members are in agreement about their joint plans, over hypotheses in
which they are in disagreement.

For example, suppose that the entire team is known to be executing Fly-Flight-Plan (Figure
1-b). Now, a message from one member of the TRANSPORT subteam is observed, indicating that it
has begun execution of the Transport-Ops plan step. Since this plan step is to be jointly executed
by all members of the TRANSPORT subteam (and only them), we can use coherence to prefer
the hypothesis that the other subteam members have also initiated execution of Transport-Ops.
Furthermore, since this plan-step is in service of the Landing-Zone-Maneuvers plan, which is to be
jointly executed by the TRANSPORT and ESCORT subteams, we can prefer the coherent hypothesis
that team-members of ESCORT are executing Landing-Zone-Maneuvers. Now, based on their
known role, we can now come back down the plan-hierarchy and infer that members of the ESCORT
subteam are executing Escort-Ops, etc.

This knowledge of the expected relationships, and in particular knowledge of which plans are
joint to team-members (i.e., are subject to coherence), is part of the speci�cation of a distributed
application�and can thus be provided to an overhearing system by the designer or operator. In
fact, it is often readily available, since it is used by the agents themselves in their coordination.
For instance, we have earlier discussed the assumption that team-oriented programs are available to
the monitoring agent, and that these hold knowledge about what plans in the hierarchy are to be
executed by which (sub)teams is encoded in the plan-hierarchy. The team hierarchy contains the
knowledge about what subteam/agent is part of another subteam.

Coherence can be a very powerful heuristic. It assumes non-failing cases, where team-members
successfully maintain their joint execution of particular plans. Under this assumption, evidence
about a decision made by one team-member in�uences (through coherence), our belief of what its

19

Kaminka, Pynadath, and Tambe

team-mates have decided. And lacking such evidence, coherence prefers hypotheses in which at least
the team-members have made joint decisions. For instance, suppose a transition from a team plan
is to be taken only by the TRANSPORT team. Under non-failure circumstances, there are only
two coherent hypotheses considering this transition: Either all members of TRANSPORT took the
transition, or none did. Evidence for one member, supporting one of these hypotheses, can be used
to infer the state of the other members.

The signi�cance of this property of coherence is that if the monitoring system can reduce the
uncertainty for even one agent, then this reduction will be ampli�ed through the use of the coherence
heuristic to apply to the other agents as well. The use of the coherence heuristic can thus lead to
a signi�cant boost in monitoring accuracy, since the number of hypotheses underlying any further
(probabilistic) disambiguation is cut down dramatically. Section 6.1 provides an in-depth evaluation
of the use of coherence and knowledge of roles to select plan recognition hypotheses in Overseer.

The use of coherence signi�cantly increases the time complexity of the computation. At the
very least, it requires setting inter-agent links in the array of plan recognizers used by Overseer
(Section 3.4), such that these links represent a probabilistic association between plans that are to be
executed jointly (in contrast with the temporal and hierarchic decomposition transitions used thus
far). For instance, if a speci�c plan X is to be executed jointly by agents A and B, then such a
link would be constructed between the variable XA

t (representing agent A's execution of a plan X)
and the variable XB

t (representing agent B's execution of the same plan). In general, there would

be N�(N�1)
2 such inter-agent links between N agents, for each one of the joint plans (of which there

are at most M). Thus given N agents, and the array of recognizers M [], where each individual
agent's plan-hierarchy is of size M , the run-time complexity of an exact-inference algorithm would
be at least O(MN2) and quite likely much worse (since in general there is an exponential number of
coherent and non-coherent hypotheses to select from). In the next section (Section 5.1), we describe
a highly scalable (in the number of agents) representation for reasoning about coherent hypotheses.

4.2 Exploiting Procedures that Maintain Social Structures

A monitoring system can exploit knowledge of the procedures agents use to maintain their social
structures to alleviate some of the uncertainty resulting from the scarceness of observations. For
instance, if the monitoring system could accurately predict future observable behavior of monitored
agents, then while it has not observed the predicted behavior, the monitoring system may infer that
the agents have not reached the state associated with the predicted behavior. Thus such predictions
can be used to eliminate monitoring hypotheses, by setting an individual agent's �XY probabilities to
re�ect a prediction that a message will be transmitted by the agent as its execution of X terminates
and it initiates Y . For instance, in our own application, the Ariadne information agent is queried
for possible threats before each route is followed in the evacuation. It may therefore be possible to
predict that before each route is taken by the helicopters, a message will be sent by the Ariadne
agent to its teammates; thus while no such message is observed, the Ariadne agent can be inferred
to have not yet executed this step. Furthermore, under the assumption of coherence (discussed
above), the monitoring system may further infer that all team-members have not yet executed this
step, i.e., a new route was not taken by the team. Such inference is obviously dependent on the
system's observational capabilities, but we have found it to be useful even under lossy observations
by the monitoring system (see Section 6.2).

However, in general, such speci�c individual predictions can be di�cult to make. Team-members
are often engaged in joint tasks, which require many agents to tackle a problem together. In these
settings, predicting individual communications may be impossible. For instance, consider a dis-
tributed search problem in which a target solution is to be found somewhere in the search-space;
di�erent areas of the search space are divided amongst the agents, with the understanding that the
�rst to �nd the target will communicate with the others. It would be di�cult to accurately predict
which one of the agents will communicate (�nd the target), since if we could predict that, we could

20

Monitoring Teams by Overhearing

focus all agents' e�orts on that area alone. Yet it is easy to predict that at least one agent will �nd
the target and communicate. Similarly, in the evacuation application, it may be di�cult to predict
which helicopter will reach the civilians �rst�but it is easy to predict that one of them will, and
will then communicate their location.

Indeed, teams utilize social procedures or conventions (Jennings, 1993) by which team-members
maintain their relationships with one another. Removal of the agent independence assumption al-
lows the monitoring system to exploit knowledge of such procedures, by making predictions as to the
behavior of team-members in coordinating with one another. For instance, knowledge of the failure-
recovery procedures used by a team to recover from coordination failures allows the monitoring
system to predict the future behavior of team-members in case of failed execution. Similarly, knowl-
edge of the communication procedures used by the team (as part of its team-members' coordination)
allows predicting future observable messages�future interactions between team-members�without
necessarily specifying a particular individual agent that will carry them out.

For example, suppose Overseer overhears a message indicating that the �ight team has ini-
tiated joint execution of Fly-Flight-Plan (Figure 1-b). After some time has passed, it is now
possible that the team is either still executing Fly-Flight-Plan, or it has terminated it already and
begun joint execution of Landing-Zone-Maneuvers. However, if Overseer knows that at least one
team-member will explicitly communicate after terminating Fly-Flight-Plan and before initiating
Landing-Zone-Maneuvers, then while such communications are not observed, the monitoring sys-
tem can eliminate the possibility that the team is executing the latter, eliminating any uncertainty
in this case (only Fly-Flight-Plan is possible).

We leave discussion of how technically a social procedure of the form �at least one team-member
will communicate when its subteam will take this transition from X to Y � can be converted into �XY
values to the next section, where we present a technique for representing team-wide � probabilities
in a way that allows e�cient reasoning. In the remainder of this section, we address instead how
knowledge of such social procedures may be acquired.

Social procedures of communications may be simple per-case rules, or may involve complex al-
gorithms. For instance, Jennings (1993) suggests using heuristic application-dependent rules to
determine communication decisions. STEAM (Tambe, 1997) instead uses a decision-theoretic pro-
cedure that considers the cost of communication and the cost of miscoordination in the decision to
communicate. Other procedures have been proposed as well (e.g., Cohen & Levesque, 1991; Jen-
nings, 1995; Rich & Sidner, 1997). However, regardless of their complexity, a key point is that a
monitoring system does not necessarily have to have full knowledge of these procedures in order
to exploit them for predictions: it only needs to approximate their outcome, since it can use a
combination of techniques to combat plan-recognition ambiguity, rather than relying just on one
technique.

The decisions of social procedures can be acquired by learning from previous runs of the system.
Although a detailed exploration of appropriate learning mechanisms is outside the scope of this
paper, we provide a strict demonstration of the feasibility of learning social procedures by simple
rote-learning, which proved e�ective in generating a useful communications model that signi�cantly
reduced the uncertainty in monitoring the evacuation application. This simple mechanism records
during execution which plans are explicitly communicated about, and whether they were initiated
or terminated. The learned rules are e�ective immediately, and are stored for future monitoring of
the same task.

Figures 4a�d present the results from using of this rote-learning mechanism in four di�erent
runs on the same tasks. The X-axis denotes observed communication message-exchanges as the
task progresses. Overall, between 22 and 45 exchanges take place in a run, each exchange including
between one and a dozen broadcast messages in which agents announce termination or initiation
of a plan. The Y-axis shows the number of hypotheses considered by Overseer after seeing each
message, without using any probabilistic temporal knowledge. Thus greater uncertainty about which
hypothesis is correct would be re�ected by higher values on the Y-axis. At the beginning of task

21

Kaminka, Pynadath, and Tambe

execution, all possible plans are considered possible, since we ignore temporal knowledge in this
graph. As progress is made on the task, less and less steps remain possible before the end is reached,
and so we expect to see a gradual (non-monotonic) decline as we move along the X-axis. A technique
that successfully eliminates hypotheses from considerations results in Y-axis values lower than those
of this baseline execution curve.

In Figure 4, the line marked No Learning shows this baseline (i.e., no predictions, and with the
learning component turned o�). The baseline shows that a relatively high level of ambiguity exists,
since the system cannot make any predictions about future states of the agents, other than that they
are possible. When the learning technique is applied on-line (i.e., any message seen is immediately
used for future predictions), some learned experience is immediately useful, and ambiguity is reduced
somewhat (the line marked On-Line Learning). However, some exchanges are either encountered
late during task execution, or are seen only once. Those cannot be e�ectively used to reduce the
ambiguity of the monitoring system on the �rst run. However, the third line (After Learning)
presents the number of hypotheses considered when a fully-learned model is used. Here, the model
was learned on run G, then applied without any modi�cations in the other runs of the system. As
can be seen, it shows a signi�cantly reduction in the number of hypotheses considered by Overseer.
Further evaluation of the use of communications predictions is presented in Sections 6.1 and 6.2;
however, a full exploration of the use of learning for this task is beyond the scope of this paper.

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 R

ec
og

ni
ze

d
Pl

an
s

Observed Communication Exchanges

No learning
On-line learning

Using previously learned predictions

(a) Learning in experiment C

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 R

ec
og

ni
ze

d
Pl

an
s

Observed Communication Exchanges

No learning
On-line learning

Using previously learned predictions

(b) Experiment E

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 R

ec
og

ni
ze

d
Pl

an
s

Observed Communication Exchanges

No learning
On-line learning

Using previously learned predictions

(c) Experiment G

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45

N
um

be
r

of
 R

ec
og

ni
ze

d
Pl

an
s

Observed Communication Exchanges

No learning
On-line learning

Using previously learned predictions

(d) Experiment I

Figure 4: Learning of communication decisions in di�erent experiments.

22

Monitoring Teams by Overhearing

4.3 Discussion

A key characteristic of monitoring by overhearing tasks is the scarcity of observations available to
the monitoring system. Fortunately, the observations available to the monitoring system can often
be viewed as observations of multi-agent actions : The sender of the message not only changes its
own state, but often also intends to change the state of the recipients (Cohen & Levesque, 1990).
Thus even a single observation can be used as evidence for inferring the state of both sender and
receivers. This stands in contrast to previous work, which addressed monitoring of multiple single-
agent actions.

In monitoring a team, the monitoring system can use knowledge of social structures and proce-
dures to exploit information about the activities of one team-member, in hypothesizing about the
activities of another team-member. These techniques are not speci�c to the representation presented
earlier. For instance, an increased belief in one agent's execution of a plan X based on evidence
for a teammate's execution of X can be also used by constructing appropriate probabilistic links
between nodes representing these beliefs in a large DBN representing the two agents. If we start
with the DBN representation as discussed in Section 3.1, we can replicate the single-agent network
(containing M plans) for each of the N separate agents. The number of nodes is then O(M2N),
since we represent the plans and transitions for each individual agent. We can also introduce the
appropriate inter-agent links to capture the inter-agent dependencies represented by our model of
teamwork. However, upon introducing such links, the computational complexity of performing DBN
inference explodes to O(2M

2N).
Obviously, such �social reasoning� can be computationally expensive, even with the e�cient

representation described earlier. The next section provides details of an e�cient mechanism for
reasoning about a team using information about role and coherence, and utilizing communications
predictions. Using this mechanism, the techniques described in this section have resulted in an
accuracy of up to 97% (84% average across all experiments)�compared to average 4% without the
use of social knowledge. Sections 6.1 and 6.2 present a detailed discussion of these results.

5. Plan-Recognition for Overhearing

The previous section has outlined socially-attentive monitoring techniques, alleviating the uncer-
tainty in monitoring a team of agents by exploiting knowledge of the social structures and social
procedures of the monitored team. It discussed using coherence and role maintenance to exploit
knowledge of the ideal agreement of agents that speci�c plans be executed together, and that other
speci�c plans are assigned to agents ful�lling their roles. Furthermore, it discussed disambiguation
based on predictions of future observable behavior, based on knowledge of the social procedures em-
ployed by team-members. These disambiguation heuristics eliminate many (incorrect) hypotheses
from being considered. However, reasoning using these techniques can be computationally expensive.

This section presents an e�cient algorithm, building on the representation previously presented,
which facilitates scalable monitoring by overhearing of large teams. The key idea here is to rep-
resent only those hypotheses which the heuristics would have considered valid, eliminating from
consideration plans and transitions that would be considered illegal with the heuristics. Relying on
the team-hierarchy for bookeeping, all coherent hypotheses are represented using a single recognizer
instead of an array of recognizers, o�ering considerable scalability in team monitoring. However,
since the algorithm can no longer represent certain hypotheses, this scalability comes at the expense
of expressivity. We discuss the scalable representation and the trade-o� it o�ers below.

5.1 E�cient Reasoning with Team Coherence

Coherence is a very strong constraint, since for a team of agents there are only a linear number
(O(M) where M is the size of the plan-hierarchy) of coherent hypotheses, but an exponential num-

23

Kaminka, Pynadath, and Tambe

ber of incoherent hypotheses (O(MN) where N is the number of agents; the proof is in Appendix
A). We can exploit this property by designing monitoring algorithms that reason only about the
linear number of coherent hypotheses, and therefore o�er better scalability as the number of agents
increases. Such algorithms may not be able to reason about incoherent hypotheses, and are therefore
less expressive. However, Section 6 demonstrates that the level of accuracy even with such limited
expressiveness is su�cient for our purposes. Furthermore, algorithms that reason only about co-
herent hypotheses may still be able to detect incoherent hypotheses, representing a failure state in
which two or more team-members are in disagreement with each other.

We begin by presenting the YOYO* algorithm, an e�cient technique for reasoning about coherent
hypotheses (Algorithm 5). YOYO* replaces the array-based algorithm described earlier (Algorithm
4). Similarly to it, YOYO* is called every time tick. If no message is observed, the state of the
entire team is propagated forward in time. Otherwise, all observed messages are collected together
and used as evidence for the (di�erent) plans implied by these messages.

Algorithm 5 YOYO*(plan-hierarchy M , team-hierarchy H, beliefs b)

1: if no new messages are observed then

2: Team-Propagate-Forward(b, M)
3: else

4: Initialize distributions b0; bt+1 0 for all plans U 2M . ; Initialize I;E to be empty sets.
5: for all Messages mi do

6: I I [fX j X 2M; mi is a an initiation message; X consistent with mig
7: E E [fY j Y 2M; mi is a termination message; Y consistent with mig

8: for all plans X 2 I do

9: T teammsg(X) {T is the agent sending the message initiating X}
10: for all plans W 2M that precede X, where the transition W ! X is allowed for T do

11: b0(X;:block) b0(X;:block) + bt(W;block)�wx�wx
12: for all plans X 2 E do

13: T teammsg(X) {T is the agent sending the message terminating X}
14: for all plans Y 2M;Y =2 I that succeed X, where the transition X ! Y is allowed for T do

15: b0(Y;:block) b0(X;:block) + bt(X; block)�xy�xy
16: Normalize distribution b0 taking teams into account
17: for all plans X where b0(X;:block) > 0 do

18: bt+1(X;:block) b0(X;:block)
19: Team-Propagate-Down(X; b0(X;:block); b;M)
20: T team(X)
21: P X
22: while parent(P) 6= null do
23: bt+1(parent(P);:block) bt+1(P;:block)
24: if team(parent(P)) = parentteam(T) then
25: Scale(parent(P); T; P; b)
26: T = parentteam(T)
27: P parent(P)

YOYO*'s key novelty is that it relies on a single plan-hierarchy that is used to represent all
team-members together (regardless of their number), instead of an array of such structures. In
other words, each variable Xt represents Overseer's belief that all agents in the teams associated
with X (as described in the team-oriented program) are executing the plan X at time t. Thus
YOYO* makes extensive use of the information associating plans and transitions in M with teams
and subteams in H , the team-hierarchy. The team hierarchy plays a critical bookeeping role in
this respect, since it maintains the knowledge critical for correctly applying coherence in the single
recognizer.

24

Monitoring Teams by Overhearing

This key distinction between YOYO* and the array-based approach causes a subtle, but critical,
di�erence in the way probabilities are propagated along transitions. In a plan-hierarchy M of an
individual agent, part of an array of such models, each outgoing transition represented a hierarchical
decomposition or temporal step that the agent is allowed to take. Alternative outgoing transitions
therefore represent alternative paths of execution available to the agent. On the other hand, in a
plan-hierarchy M used by YOYO*, alternative outgoing transitions tagged by di�erent subteams
(that are not ancestors of one another) represent not a decision point for the agent, but alternative
paths of execution as decided by the agents' roles and team-memberships.

This creates a critical di�erence in how the values of �XY and �XY are to be interpreted. Where
previously (in Section 3) the value of �xy referred to the probability that a speci�c agent will take
a transition X ! Y (given that it has terminated execution of X), in YOYO* it refers to the
probability that an entire team will take the transition together. YOYO* is unable to represent
hypotheses in which some team-members take one transition, and others do not�unless these two
di�erent groups of members form di�erent subteams that are represented in the team-hierarchy, and
the di�erent transitions are tagged as being allowed for the di�erent subteams.

The value of �XY is also interpreted di�erently, in a very critical way. Where in the previous
sections it was taken to represent the probability that a speci�c individual will communicate when a
transition X ! Y is taken, in YOYO* its value represents instead the probability that one or more
team-members will communicate when the transition is taken by the team. Thus it no longer refers
to individual agents, but to a (sub-)team. In this way, YOYO* solves the issue of how to represent
predictions of the type �at least one team-member will communicate when this step is reached�,
discussed previously.

For example, suppose YOYO* sets the belief that the team is executing the
Landing-Zone-Maneuvers plan-step to some probability p. Landing-Zone-Maneuvers, in YOYO*,
has two (�rst) children: Escort-Ops and Transport-Ops, to be executed by members of th ES-
CORT and TRANSPORT subteams, respectively. Unlike in the individual agent case, the probabil-
ity p should not be divided among these two children, but should be duplicated to them: A belief
that the entire team is executing Landing-Zone-Maneuvers implies an equally-likely belief that the
TRANSPORT subteam is executing Transport-Ops, and that the ESCORT subteam is executing
Escort-Ops. We explain YOYO*'s operation in detail below:

No message is observed (lines 1�2). Since no observations are available, the state of the entire
team is jointly propagated forward in time by calling Team-Propagate-forward (Algorithm 7,
Appendix A). This is a slightly modi�ed version of the propagate-forward (Algorithm 3) that
takes di�erent subteams into account in propagating beliefs: Given some total outgoing probability
(either to a sibling or child transition), if the outgoing transitions are to be taken by di�erent
teams where one team is not an ancestor of another (such as the TRANSPORT and ESCORT
sub-teams), the same total probability would be used for each transition, instead of splitting the
outgoing probability between the transitions. Appropriately, Team-Propagate-forward relies on
a modi�ed version of the Propagate-Down algorithm (Algorithm 2), called Team-Propagate-
Down (Algorithm 6, Appendix A). This latter algorithm is also used in the incorporation of evidence
(lines 3�27). The propagation process is O(M).

One or more messages are observed (lines 3�7). If one or more messages are observed (since
YOYO* is a single algorithm monitoring multiple potential message senders, more than one message
may be observed at once), YOYO* begins to incorporate these observations into the maintained
beliefs about the team. This process is somewhat similar to the Incorporate-Evidence algorithm,
described earlier (Algorithm 1), but takes into account multiple observations (since all N agents may
have sent a message). Multiple messages (from di�erent agents) may all refer to the same plan, but
YOYO* must not incorporate evidence for them multiple times.

The simple loop (lines 5�7) builds the set I (of initialized plans) and E (of terminated plans) by
going over all incoming messages that have arrived at time t. This process takes (in the worst case)

25

Kaminka, Pynadath, and Tambe

O(N). Here, YOYO* does better than the array approach, since multiple messages always cause
multiple updates in the array, but in YOYO*, multiple messages may all refer to a single plan, thus
triggering a single update.

Incorporating evidence about initiated and terminated plans (lines 8�15). For each one
of these plans X in I (line 8), YOYO* now sets the new belief b0, weighted by any prior belief in
X 's initiation (lines 10�11), similarly to how this is done in the incorporate-evidence algorithm
(Algorithm 1), but taking into account the team implied by the sender of the processed message
(line 9). This is done by a lookup into M using the sender T (teammsg(mi)): Only transitions
in M that T is allowed to take are followed. By de�nition, any transition that is allowed to be
taken by a super-team of T is allowed for T . A similar process is then done with any termination
messages (lines 12�15), but of course looking at possible successors of any plans consistent with the
messages. However, since we do not want to cause updates in both line 11 and line 15 in cases where
a termination message and an initiation message refer to the same transition, the loop over the plans
Y (line 14) skips any plans which have already been addressed in the previous step. Overall, this
process is O(M).

Normalizing the temporary distribution b0 (line 16). The temporary distribution b0 resulting
from the processing of initiation and termination messages is normalized, in a similar fashion to
the analogous step in algorithm 1. However, the process must take into account not only the
plan-hierarchy in question, but also the team-hierarchy. Unlike a typical normalization procedure,
evidence for two di�erent plans, selected by two di�erent teams, may not necessarily compete with
each other, and therefore may not necessarily require normalization. For instance, if two messages
are observed, one implying that team A has initiated execution of plan P , and another implying
that team B has initiated execution of plan Q, then if P and Q are both children of a joint parent
J (executed jointly by the two subteams A;B), then the same normalized likelihood (1.0) should
be assigned to P and Q (and J�but this will be assigned to it by the propagation steps described
below). This is a O(M) process.

Propagating the evidence up and down M (lines 17�27). First, the beliefs are set for
each plan implied by the observations, and its children (lines 18�19). Then, the team T that is to
execute this plan is determined by a lookup into M using team(X) (line 20). Now YOYO* begins
to propagate the evidence up to the plan's parents (lines 21�26). Any belief in the child plan is
propagated and added to the belief in its parent (line 23). However, if the parent plan (parent(P))
is to be executed by a super-team of the current team T , then any change to its probability must
be propagated to its other children, that are to be executed by other (subteams). Thus the upward
propagation is alternated with downward propagation along hierarchical decomposition transitions1.
This downward step is executed whenever the team that is responsible for joint execution of the
parent plan is no longer the current subteam being considered (T), but its parent team in the team-
hierarchy H , given by parentteam(T) (lines 24�26). When this condition is satis�ed, any change in
the beliefs about the parent plan must be propagated down to any children it has that are to be
executed by other subteams. This is done via the Scale algorithm (Algorithm 8, Appendix A).

The downward propagation (line 25) implements a subtle but critical step: It re-aligns any beliefs
YOYO* maintains about subteams other than those implied by the message so that these beliefs
are made coherent with existing evidence. The Scale procedure, which re-distributes the new state
probability of a parent among its children, such that each child gets scaled based on its relative
weight in the parent. The end result is that the state probabilities of the children are made to sum
up to the state probability of the parent. The process is recursive, but never re-visits a subtree, since
it is only carried out for hierarchical-decomposition transitions that were not previously updated.

Once this downward propagation is done, YOYO* updates the current team to be its parent in the
team-hierarchy, in line 26. Note that the call to parentteam re�ects a lookup in the team-hierarchy

1. This alternating upward-downward propagation is the origin for YOYO*'s name.

26

Monitoring Teams by Overhearing

H , rather than the plan-hierarchy M . Finally, regardless of whether downward propagation took
place, the temporary variable P is updated to climb up the hierarchical decomposition in M (line
27).

Each iteration through the loop begun on line 17 is O(M + H) as in the worst case both the
plan-hierarchy and team-hierarchy are traversed. However, this loop many repeat (in the worst
case) for each of the plans in the plan-hierarchy, and thus overall, the process is O(M(M +H)) =
O(M2 +MH).

The following example illustrates YOYO*'s inference upon an observation of a message. Suppose a
single member of the TRANSPORT subteam communicates that it is initiating the Transport-Ops
plan. Upon observing this message, YOYO* looks up the sender, to determine what transitions
can be taken by it (line 8). It then proceeds to determine the new beliefs in team T 's execution of
the Transport-Ops plan (lines 9�10, then 16), and incorporates these new beliefs to re�ect a much
increased belief that the TRANSPORT subteam is executing Transport-Ops and its children (lines
18�19). Since this plan's parent, Landing-Zone-Maneuvers, is not null, YOYO* enters the loop in
lines 22�27). First, it increases the belief in the execution of the parent (line 23). Then, it checks the
condition on line 24: Indeed, the team that is to execute Landing-Zone-Maneuvers is TEAM-FLY-
OUT, the parent of the TRANSPORT subteam (i.e., Landing-Zone-Maneuvers is to be executed
jointly by the TRANSPORT and ESCORT subteams). YOYO* therefore calls the Scale procedure
(line 25) to re-adjust Landing-Zone-Maneuvers' other children subtrees. Landing-Zone-Maneuvers
has two hierarchical-decomposition children: Transport-Ops (which YOYO* has already updated)
which is to be executed by the TRANSPORT subteam, and Escort-Ops, which is to be executed
by the ESCORT subteam. Scale climbs down from Landing-Zone-Maneuvers to Escort-Ops,
increasing YOYO*'s beliefs that the ESCORT team is executing the Escort-Ops plan. This process
re-aligns any prior beliefs YOYO* had about the likelihood that Escort-Ops was being executed
with current evidence, in e�ect updating beliefs about the plans executed by the ESCORT subteam,
based on a single observation made of a member of the TRANSPORT team. The process now
repeats this loop until the entire set of beliefs is updated and aligned with respect to the observed
message.

5.2 Scalability in the Number of Agents

YOYO* o�ers signi�cant computational advantages when compared to the individual representation
(array) approach. YOYO* requires only a single, fully-expanded plan-hierarchy to represent the
entire team. This hierarchy is a union of all the individual agent plan-hierarchies, containing all
transitions and plans, tagged by the subteams that are allowed to execute them. In addition YOYO*
uses a single copy of the team hierarchy. Suppose M is the size of the plan-hierarchy, H is the size
of the team-hierarchy, and N the number of agents in the team. When agents are added to the
monitored team, the team hierarchy grows by one new node that represents the new agent, and
is connected to the appropriate sub-team in the team hierarchy. YOYO*'s space complexity is
therefore O(M +H). Since H grows with N , we could write it O(M +N) (compare to the array
approach: O(MN), Algorithm 4).

To analyze YOYO*'s run-time complexity, we have to consider the behavior of Algorithm 5
separately in cases where no communications are observed, and in cases where at least one message
is observed. If no messages are observed, then an update takes the form of a single call to Team-
Propagate-Forward (Algorithm 7), an O(M) process. This is clearly a best-case scenario for
YOYO*. If one agent communicates, then YOYO* would have to go through M and H in its
upward-downward propagation process only once, thus O(M +H) = O(M +N).

The worst case scenario for YOYO* occurs if all agents send messages, and each one of these N
messages refers to a di�erent plan (messages about the same plans would be merged in lines 5�7).
In this case, there would be up to M di�erent plans for which evidence exists, and each one of them
would require a separate update through lines 17�27. Thus YOYO*'s complexity in this case is

27

Kaminka, Pynadath, and Tambe

O(N +M +M +M(M +H)) = O(N +M2 +MH) = O(N +M2 +MN)

Clearly, this worst-case cannot be continuously sustained by a monitored team, since agents cannot
continuously communicate about their state. We thus believe that the average case in real-world
domains with many agents would be much closer to the O(M+N) case presented earlier (see Section
6.4 for empiric evaluation). In any case, YOYO*'s complexity compares favorably with a procedure
reasoning about coherent hypotheses using an array of recognizers, an O(MN2) process (at least),
even if only one agent communicates (Section 4.1).

5.3 Discussion

YOYO* explicitly represents a team as a single coherent entity. Its space and run-time requirements
are preferable to the array based approach when the number of agents grow, and it considerably
simpli�es reasoning about coherence and communications predictions. On the other hand, YOYO*
sacri�ces the capability to represent failing team activities (incoherent hypotheses), where one team-
member is executing one team-plan while its teammate is executing another. This does not at all
mean that individual actions taken by agents are somehow locked together in synchronous execution,
or that individual agents must all execute the same individual action at the same time. For instance,
two team-members A; B that are each executing a completely di�erent path of execution at the
same time (i.e., plan steps A1; :::; Ak and B1; :::; Bl) can be easily represented by a plan hierarchy
that includes an overall joint plan J , having two �rst hierarchical decomposition children, A1 and
B1, to be selected by A and B, respectively. A1 would have an outgoing temporal transition to
A2, etc. and similarly B1 would have an outgoing temporal transition to B2, etc. Since J is to be
executed by the two team-members jointly, any initial evidence for any one of the agent executing
any of its individual plans would be used by YOYO* as evidence for the other team-member having
begun its own parallel execution of its own individual execution path. Further evidence about one
agent executing its own individual actions would only increase the likelihood that the other agent
is continuing its own execution, at its own pace. However, it would be impossible for YOYO* to
correctly represent a monitoring hypothesis in which A is executing some child of J , Ai, while B is
executing some plan that is not J , nor a child of J . Given the results of the evaluation we conducted
(Section 6), which demonstrated the importance of coherence in accurate visualization, the tradeo�
of expressivity vs. scalability is justi�ed: Overseer's accuracy was much improved due to the use
of coherence.

Although YOYO* sacri�ces the capability to reason about certain failure (incoherence) hypothe-
ses, it is still capable of supporting failure-detection, an important secondary goal of visualization.
In earlier work, we have shown the merits of coherence in service of detecting disagreements in a
team, in particular demonstrating that coherent monitoring leads to sound centralized disagreement
detection, and may lead to sound and complete disagreement detection under speci�c circumstances
(Kaminka & Tambe, 2000). As YOYO* is in fact a very e�cient way to reason about coherent
hypotheses, it provides a good basis for providing sound disagreement detection results.

A concern about the generality of the technique may be raised based on YOYO*'s reliance on the
team-hierarchy. However, we believe it is reasonable to expect that large, complex, real-world multi-
agent systems of the type targeted by this paper would have an organizational hierarchy of some sort
associated with them (see, for instance, Tidhar, 1993b). Human organizations certainly demonstrate
the emergence of such hierarchies, especially as the organizations grow larger (e.g., big corporations,
government organizations) or tackle mission-critical tasks (e.g., military organizations). In addition,
team-hierarchies for computational agents are critical for planning, for maintaining network and
system security, etc. Thus we believe our use of a team-hierarchy is not a weakness in our approach,
as organizational structures will become as wide-spread in computational multi-agent systems as
they already are in human multi-agent systems. Indeed, it may be possible to gradually learn a

28

Monitoring Teams by Overhearing

team-hierarchy for a given coordinated team for the purpose of monitoring; however, discussion of
this possibility is outside the scope of this paper.

Indeed, using a team-hierarchy, we can apply our assumption of coherence to other representa-
tions and algorithms as well. For instance, if we start with the DBN representation of the team from
Section 4.3, we can unify the multiple random variables used to represent the separate agents into
a single random variable for an overall team/subteam. As in YOYO*, the size of the representation
grows with the size of the plan hierarchy, and not the number of agents. Thus, the number of nodes
will be the same as for the single-agent case, O(M2), as discussed in Section 3.1. However, again, the
complexity of inference in answering plan-recognition queries will still be exponential in the number
of nodes, O(2M

2

).

6. Evaluation

This section presents a detailed evaluation of the di�erent contributions contained withinOverseer.
We begin by exploring the relative contribution of each technique to the success of Overseer as a
whole (Section 6.1). We then focus on evaluating Overseer's use of communications predictions
with respect to lossless and lossy observations (Section 6.2). We then present a comparison of
Overseer's performance with that of human experts and non-experts (Section 6.3). Finally, we
empirically evaluate YOYO*'s scalability in our application domain (Section 6.4).

6.1 Accuracy Evaluation

The �rst part of the evaluation tests the contribution of the di�erent techniques in Overseer to
the successful recognition of the correct state of the team-members. Figure 5 compares the average
accuracy for a sample of our actual runs, marked 'A' through 'J' (X-axis). In each such 10�20-minute
run, the team executed its task completely. At di�erent points during the execution, the actual state
of the system was compared to the state predicted by Overseer, where the prediction was taken
to be the current most-likely hypothesis. Each run had 22�45 such comparisons (data-points). The
percentage of correct monitoring hypotheses for each run across those comparisons is given in the
0-1 (0-100%) range, on the Y-axis.

A B C D E F G H I J
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Temporal

Coherent

Coherent,
Temporal

Coherent, Comm

Coherent,
Temporal, Comm

Evaluation Run

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 5: Percent accuracy in sample runs.

The accuracy when using the individual models with no coherence (as in Section 3) is presented
in the leftmost bar (marked Temporal) in each group (Figure 5), and is clearly very low. This
approach is a straightforward attempt at monitoring multiple agents by monitoring each individual,

29

Kaminka, Pynadath, and Tambe

without considering the interactions between them, as described in Section 3. The next bar presents
the monitoring accuracy when only coherence is used to rule out hypotheses (Section 5.1), with ties
broken randomly. The next bar to the right (Coherent, Temporal) presents the results of combining
both coherence and the probabilistic temporal model (Sections 3 and 5.1). Then, the bar marked
(Coherent, Comm) shows the e�ects of combining the use of coherence with the use of predictions
based on knowledge of the communication procedures used by the team (Section 4.2). Here, the
communications predictions were used to restrict the set of coherent hypotheses considered, with
ties broken randomly. The remaining bar (Coherence, Temporal, Comm) presents the monitoring
accuracy in each run using the combination of all techniques.

The results presented in Figure 5 demonstrate the e�ectiveness of the socially-attentive monitor-
ing techniques we presented. First, the results show that the coherence heuristic brings the accuracy
up by 15�30% without using any probabilistic reasoning. This boost in performance is a particularly
interesting result, because of the relation between the coherence technique and previous techniques
explored in the literature (Tambe, 1996; Intille & Bobick, 1999). Previous work has successfully used
the relationships between agents to increase the accuracy of monitoring. The boost in Overseer's
accuracy based on the use of role and teamwork relationships con�rms the results from previous
investigations. However, the results also demonstrate that the technique is not su�cient in this
domain.

Overseer adds a number of novel techniques not addressed in previous work. The �rst such
technique combines coherence with a temporal model of plan-duration (Coherent, Temporal), and it
results in signi�cant increases to the accuracy, because the probabilistic temporal information now
allows Overseer to better handle the lack of observations. A possible alternative, which we explore
in this evaluation, is to rely instead on the communications predictions to rule out hypotheses about
future states that may or may not have been reached (Coherent, Comm). It is therefore interesting
to compare the performance of these two techniques by comparing the (Coherent, Temporal) and
(Coherent, Comm) bars.

In almost all runs the average accuracy when using coherence and communications predictions
is signi�cantly higher than when using coherence and the temporal model. This is despite the fact
that the more e�ective coherence technique uses arbitrary (random) selection among the available
hypotheses: The reason for this is that in many cases the communication predictions are powerful
enough to rule out all hypotheses but one or two, signi�cantly decreasing the uncertainty of the
agents' plan-horizons. Thus even a random selection stands a better chance than a more informed
(by a temporal model) selection among many more (10�20) hypotheses..

However, runs J and B show a reversal of this trend compared to the other runs. Figures 6a�b
show the accumulative number of errors as task execution progresses during run I (Figure 6-a) and
during run J (Figure 6-b). An error is de�ned as a failure to choose the correct hypothesis as the most
likely one (i.e., the most likely hypothesis does not re�ect the true state of the agent/team). Each
message exchange corresponds to one to a dozen messages communicated by the agents, establishing
or terminating a plan. In the two �gures, a lower slope means better performance (less errors).
The line marked Coherent shows the accumulative number of errors if only coherence is used to
select the correct hypothesis�most such choices turn out to be erroneous since a random choice
is made among the competing hypotheses. The line marked Coherent, Temporal shows the results
using both coherence and the temporal model to choose the most likely hypothesis. Similarly,
the line marked Coherent, Comm shows the results using both coherence and the communications
predictions. Finally, the remaining line displays the results of using the combined technique, using
coherence, the temporal model, and the communications predictions.

In Figure 6-a, we see that the two techniques (Coherent, Temporal and Coherent, Comm) have
almost equal slopes and result in almost equal number of errors at the end of run I, though from
Figure 5 we know that due to the alleviated uncertainty, the use of communications predictions
leads to overall higher probability of success (i.e., the Coherent, Comm technique results in fewer
alternative hypotheses, and thus has a better chance of being correct). However, in Figure 6-b we

30

Monitoring Teams by Overhearing

�

�

��

��

��

��

��

��

��

��

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

2EVHUYHG 0HVVDJH ([FKDQJHV

$
F
F
X
P
X
OD
WL
Y
H
�
(
U
U
R
U
V

&RKHUHQW

&RKHUHQW�
&RPP

&RKHUHQW�
7HPSRUDO

&RKHUHQW�
7HPSRUDO�
&RPP

(a) Run I

�

�

��

��

��

��

��

��

��

��

� � �

�
�

�
�

�
�

�
�

�
�

�
�

2EVHUYHG 0HVVDJH ([FKDQJHV

$
F
F
X
P
X
OD
WL
Y
H
�
(
U
U
R
U
V

&RKHUHQW

&RKHUHQW�
&RPP

&RKHUHQW�
7HPSRUDO

&RKHUHQW�
7HPSRUDO�
&RPP

(b) Run J

Figure 6: Accumulative number of errors in runs I and J.

see that in run J the situation has changed dramatically. First, we see that the two lines are no
longer similar. The line marked Coherent, Comm has greater slope than in run I, indicating that
the communications predictions are not able to reduce the uncertainty, resulting in lower average
accuracy. Second, we see that the temporal model results in many less errors, as evidenced by
the much slower-rising slope of the line marked Coherent, Temporal. Thus in this case, the actual
duration of plans matched the temporal model more accurately than in other runs.

In trying to understand this di�erence between runs J, B and the other runs of the system,
we discovered that runs J and B involved relatively more failures on the part of team-members,
including agents crashing or not responding at all. The communications predictions, however, were
learned based on successful runs�and thus did not correctly predict the communication messages
that would result as the team detected and recovered from the failures. Thus the uncertainty was not
alleviated, and the arbitrary selection was made among relatively many hypotheses. This explains
the relatively lower accuracy of the (Coherent, Comm) technique in run J and B. This clearly shows
a limitation of the simple learning approach we took, and we intend to address it in future work.
However, there are other factors that in�uence the accuracy of the communication models, since this
lower accuracy did not occur in other runs where failures have occurred.

The results of the Coherent, Temporal technique vary as well. We have been able to determine
that failures cause a relative increase in the relative accuracy of the Coherent, Temporal technique.
However, variance in the results is due to additional factors. In run C, for instance, this technique
results in relatively higher accuracy, but no failure has occurred. Certainly, the mission speci�cations
themselves di�er between runs, machine loads cause the mission execution to run slower or faster,
etc. The great variance in the temporal behavior of the system was the principal reason for our
using the communication prediction. This variance is obvious in the graphs.

In summary, despite the variance in the results of the Coherent, Temporal technique (due to
variance in the temporal behavior of the system and the simplicity of the temporal model), and the
possible sensitivity of the Coherent, Comm technique to learned predictions, it is clear that the two
techniques work well in combination, building on the coherence heuristic, and compensating for each
other's weaknesses. In all runs, the combined technique Coherent, Temporal, Comm was superior
to either technique alone. Its performance varied between 72% accuracy (Run E) to 97% (Run I).
The average accuracy across all runs of this all-combination technique was 84%, resulting in very
signi�cant increases in accuracy compared to the initial solution with which we began our investiga-
tion (less than 4%), and to human novice performance (see Section 6.3). Thus the communications

31

Kaminka, Pynadath, and Tambe

predictions need not be perfect, and the temporal knowledge need not be precise, in order to be
useful.

6.2 Evaluating the Use of Communications Predictions

One key question about the use of the communications predictions is their sensitivity to loss of
observations. The e�cacy of the technique (see Figure 5, in the previous section) stems from its
capability to make inferences based on an expected future observation. The predictions used in the
previous section assumed no observation loss, i.e., if a prediction stated that a particular message was
to be observed, than the probability assigned to this prediction was 1.0. But in settings involving
lossy observation streams, such inference will prove incorrect, as Overseer will �wait� for the
observation and will therefore not correctly monitor the actual state of team-members.

To evaluate the predictions' sensitivity to observation loss, we chose three of the experimental
runs, E, I, and J, which represent the extreme performance results of Overseer: Run E had the
lowest accuracy (72%), Run I had the highest (97%), and run J showed an interesting reverse in
relative performance of the Coherent, Temporal and Coherent, Comm (see Figure 5). For each of
these runs, we simulated observation loss at a rate of 10%, repeating each trial three times with
di�erent random seeds. In other words, we ran a total of 9 trials, in which a random 10% of the
messages to be observed by Overseer were not observable to Overseer (though they still reached
the evacuation team-members�team-performance was identical to the original settings). We then
set the predictions to appropriately use 90%�10% settings: each expected message was predicted to
appear with 0.9 probability (as opposed to 1.0 probability originally).

The results of these experiments are presented in Figure 7. For each of the three di�erent runs,
two bars are presented. The left (shaded) bar shows the original results as presented in the previous
section (i.e., with no observation loss, and no treatment of possible loss in the predictions). The
right bar shows the average accuracy achieved by Overseer on the three trials (for each run) in
which 10% of the observations were not observable to Overseer. The error-bars on the right bar
mark the minimum and maximum accuracy values achieved in the three trials for each run. Run I's
error-bars are unseen since all three trials resulted in the same accuracy.

There are a number of promising conclusions that can be drawn from these results. First, in
both runs E and I, Overseer's average accuracy dropped by less than 8%, i.e., the performance
of Overseer dropped by less than the level of loss introduced. Indeed, in run E, in which the
original performance was the poorest, there was almost no change in performance. Performance
in run J did drop by slightly more than 10%, and that can be at least partially explained by run
J's previously discussed failures to exploit the communications predictions. Thus one promising
conclusion to be drawn from these results is that Overseer's performance can degrade gracefully,
at a rate comparable to the rate of degradation to Overseer's input.

A second conclusion is that Overseer's performance under observation-loss settings is fairly
invariant. Again, both run E and I, which can be considered normative, show very little (if any)
variance from one trial to the next, despite the change in the selection of observations to be made
unobserved from one trial to the next. Even run J, which is not a representative of the norma-
tive runs, shows little variance with respect to its average accuracy under observation loss. This
result suggests that while there may be a drop in performance with observation loss (as expected),
Overseer performs consistently under varying lossy settings.

6.3 Overseer and Human Monitoring by Overhearing

Another important facet to the evaluation of Overseer examines its performance in comparison
to that of novice and expert monitors of the evacuation application. This evaluation sheds some
light on the di�culty of the monitoring task, and demonstrates that Overseer's performance is

32

Monitoring Teams by Overhearing

0

0.2

0.4

0.6

0.8

1

Run E Run I Run J

A
ve

ra
g

e
A

cc
u

ra
cy

Figure 7: Comparison of average accuracy results with 0% and 10% observation losses.

comparable (sometimes higher, sometimes lower) to human expert performance, and signi�cantly
better than that of novices.

To conduct this evaluation, we examined the same three runs representatives of Overseer's
bounds on performance discussed above (runs E, I, and J). The �rst author of this paper served as
an expert monitor, having as much experience in overhearing in the evacuation application as possible
(and speci�cally in the actual test runs E, I and J)2. We established a group of novice monitors,
made up from �ve subjects who were generally familiar with hierarchical control structures but
unfamiliar with either monitoring by overhearing or with the evacuation application or its component
agents. Each subject was presented with printed books (one for each run) containing the overheard
messages (in human-readable form), the same messages overheard by Overseer under optimal
(lossless) conditions. As reference material, each subject was given a copy of the plan-hierarchy,
team-hierarchy, and the same average duration information available to Overseer (the parameter
� for di�erent leaf plans). For each overheard message, a second line of print indicated the time
passed since overhearing the message, and the subject was asked to write down their best estimate
for the agents' current state (i.e., after the message was overheard and the speci�ed time passed). If
they felt di�erent agents or di�erent sub-teams had di�erent states, they were to specify what each
agent or subteam is doing. We emphasize that the subjects were presented with exactly the same
runs on which Overseer was evaluated.

The actual test process began with a short explanation of the task, with a full explanation of the
plan-hierarchy (including answering any questions the subjects had about the semantics of di�erent
transitions, etc.), and with a short test run which allowed each subject to use the plan-hierarchy
and team hierarchy (but without providing any feedback as to the subject's accuracy). Then, once
all questions had been answered, the subjects were presented with the test books and were given
unlimited time to complete them, in any order (though once started on a book, they were required

2. We have had to settle for one expert since training an expert in this task is very time consuming and requires
much familiarity with the internals of the evacuation application as well as the TEAMCORE architecture.

33

Kaminka, Pynadath, and Tambe

to �nish it). Subjects were not allowed to look forward at the next message before completing their
answer, nor to go back and change their previous answers. They were encouraged to seek assistance
in locating plans (in the plan-hierarchy) consistent with messages, but no information was provided
as to which plan may be correct if two or more plans were consistent. After all subjects �nished with
all runs, the test books were taken together and a score was computed. Each correct prediction was
awarded a 1, incorrect prediction a 0�same standard used in scoring Overseer's accuracy. A non-
speci�c answer (i.e., �it was somewhere in the sub-tree of Fly-Flight-Plan�) was considered to be
an incorrect prediction, as subjects were repeatedly instructed that a speci�c answer was required.

The results of the test are presented in Figure 8. As in previous graphs, the Y-axis denotes
percentage of accurate monitoring hypotheses across all the data-points in a run (22�45, depending
on the run). The X-axis has three categories, for the three di�erent runs. For each run, the left
bar (marked �Novices�) presents the average accuracy achieved by the novice monitors, the middle
bar (marked �Experts�) presents the accuracy achieved by the human expert monitor, and the
�nal bar (�YOYO*�) re-prints the results presented in Figure 5 above. The results show that the
average accuracy of the novices is clearly inferior to that of the expert monitor and to Overseer.
Overseer's performance is above that of the human expert in runs I and J. However, the human
expert does much better than Overseer in run E.

We draw several conclusions from these results. First, the monitoring task Overseer faced in
the evacuation application is not trivial: The novices failed to achieve more than 70% on average
(in their best run), and generally performed signi�cantly worse (by 15% and more) than a human
expert. Second, Overseer's performance in di�erent runs was comparable to that of the human
expert (sometimes better, sometimes worse). However, Overseer's performance tended to follow
the same trend as the novices. In other words, Overseer's accuracy tended to go up and down on
di�erent runs in a similar manner to that of the average novice human monitor, while the expert's
accuracy remained fairly constant across all runs.

0

0.2

0.4

0.6

0.8

1

I J E

Novices

Experts

YOYO*

Figure 8: Accuracy of human novice and expert monitors compared to Overseer.

34

Monitoring Teams by Overhearing

6.4 Evaluating YOYO*'s Trading of Expressivity for Scalability

We examine a key trade-o� between the expressivity and e�ciency involved in the plan-recognition
techniques we have presented. From the accuracy discussion above, it is clear that coherence is a use-
ful heuristic. YOYO* takes an extreme approach, strictly ruling out reasoning about incoherences.
It is impossible for YOYO*, for instance, to represent an incoherence in which two team-members
are in disagreement about the plan executed by the common team. It may thus be impossible for
YOYO* to explicitly represent hypotheses associated with communication losses and delays, which
cause such incoherences. An approach in which each individual is represented separately allows for
such representation, and in this respect is more expressive. However, with a few failure-checks in
place, YOYO* is able to detect many incoherences, as previously discussed.

On the other hand, YOYO* o�ers signi�cant computational scalability with respect to the num-
ber of agents monitored. Analysis of YOYO*'s complexity (in contrast to the array approach) was
already presented in Section 5.2, and we follow it here with empirical evaluation. Figure 9 reports
on the space requirement of YOYO* and the array-based approach in three di�erent domains: the
evacuation domain, where YOYO* has been evaluated and deployed, and two additional domains
in which we have built multi-agent teams�ModSAF (Tambe et al., 1995; Calder, Smith, Courte-
manche, Mar, & Ceranowicz, 1993) and RoboCup (Tambe, Adibi, Al-Onaizan, Erdem, Kaminka,
Marsella, & Muslea, 1999; Marsella, Adibi, Al-Onaizan, Kaminka, Muslea, Tallis, & Tambe, 2001).
YOYO* is currently being evaluated in these domains, and while it has not yet been fully deployed
there, we believe the partial existing implementations are su�cient to provide robust projections of
the space savings achieved in these domains. We believe that such projected savings of implementa-
tion in these two domains could provide a rough guide as to the savings that designers could expect
from deploying YOYO* in additional domains.

For each domain, Figure 9 compares the space requirements of the array-based approach (left
bar) with those of YOYO* (right bar). In addition, the dark-shaded region on top of each bar
shows the space required for representing each additional agent in the two approaches, under the
assumption that no additional plans are added to the plan-hierarchy as more agents are added. As
discussed above, this assumption is favorable to the array-based representation. The �gure shows the
signi�cant space savings achieved by YOYO*. First, in representing the teams in their current size,
YOYO*'s space requirements are signi�cantly smaller. Furthermore, YOYO*'s savings really shine
when we examine the scalability of the two approaches. While the array-based approach requires at
least the amount of space shown in the �gure as darkly-shaded area, YOYO*'s requirements grow
by one node with each additional agent. Its space requirements for representing additional agents
are so small, that they don't show in the �gure.

Earlier, in Section 5.2, we have analyzed YOYO*'s worst case run-time complexity, but argued
that this worst case behavior is very extreme, and cannot be sustained in practice since it involves
continuous communications among all agents, the infeasibility of which provided the motivation
for exploring a plan-recognition approach. As further evidence for the average case, consider the
evacuation application, where agents communicate on average once every 20 state changes. In this
application, agents communicate in parallel in 4 or 5 exchanges (out of dozens), but in all cases but
one, such parallel communications all referred to the same plan, thus still requiring only a single
update in YOYO* (see discussion in Section 5.2). Only once during task execution would 3 agents
(out of 11) be expected to communicate in parallel about di�erent plans, a scenario still di�erent
than YOYO*'s worst case scenario.

The average length of task execution in this domain is approximately 900 time-ticks. The array
approach would update the state of each agent, at each time tick, whether a message would appear
or not. This its average complexity per time-tick is the same as its worst-case, which is at least
O(MN2). For YOYO*, the average complexity would be signi�cantly di�erent: 899 out of 900
time-ticks it would result in an O(M +H) process, and only one time (out of 900) it would be result

35

Kaminka, Pynadath, and Tambe

0

300

600

900

Array YOYO* Array YOYO* Array YOYO*

Evacuation (11 Agents) RoboCup (11 Agents) ModSAF (3 Agents)

N
um

be
r

of
N

od
es

Each
Additional
Agent

Current
Application

Figure 9: Empirical savings in applying YOYO* in the evacuation and other domains.

in a process three times as expensive (updating the state of 3 di�erent agents). The worst case
scenario did not occur at all in any of the di�erent runs.

7. Related Work

Aiello et al. (Aiello et al., 2001) present several bene�ts to overhearing agent conversations. They
suggest that the overhearer may infer the intent of the agents engaged in conversations, and o�er
speci�c suggestions for improving the agents' performance. For instance, overhearing a conversation
between two agents about a keyword search on the web, the overhearer may suggest alternative
keywords to conduct the same search. This work is closely related to our research on Overseer,
and indeed points out several potential additional bene�ts of overhearing technology. However, in
contrast to our work, Aiello et al. do not address the problem of intent- or plan-recognition. They
do not present algorithms for inferring plans, nor for disambiguating recognized plans.

Overseer di�ers from most previous work on plan-recognition in being focused on monitoring
multiple agents, not a single agent. While previous work in multi-agent plan recognition has either
focused on exploiting explicit teamwork reasoning (e.g., Tambe, 1996), or explicitly reasoning about
uncertainty when recognizing multi-agent plans (e.g., Devaney & Ram, 1998; Intille & Bobick, 1999),
a key novelty in Overseer is that it e�ectively blends these two threads together. We provide a
detailed discussion below.

Like Overseer, RESCteam (Tambe, 1996) reasons explicitly about team intentions for inferring
team plans from observations, similarly to Overseer's use of the coherence heuristic. RESCteam
uses coherence to restrict the space requirements of the plan-library used, similarly to YOYO*.
However, Overseer uses a more advanced teamwork model (e.g., it can predict failure states and
recovery actions), uses knowledge about procedures used by a team (i.e., communication decisions),
and also explicitly reasons about uncertainty and time, allowing it to answer queries related to the
likelihood of current and future team plans (issues not addressed in RESCteam). Indeed, RESCteam
does not explicitly represent ordering constraints between plans, and does not address scarce obser-
vations: It assumes that observations are available that account for possible changes in the state of
each of the observed agents.

36

Monitoring Teams by Overhearing

Work such as (Devaney & Ram, 1998; Intille & Bobick, 1999) focuses on explicitly addressing
uncertainty in plan recognition in multi-agent contexts, but does not exploit explicit notions of
teamwork. Devaney and Ram (1998) use pattern matching to recognize team-tactics in military
operations. Their approach relies on team-plan libraries, veri�ed by domain experts, and that
combines the team- and plan-hierarchies; the organizational knowledge is not explicitly represented
in their technique. Similarly, Intille and Bobick (1999) rely entirely on coordination constraints
among agents to recognize team-tactics in football, and in this sense use a socially-attentive technique
that prefers hypotheses in which agents are maintaining their roles. Intille and Bobick's work use
a single structure for each di�erent recognized recognized tactic. Both investigations use position
trace data of the monitored human teams.

Our work di�ers from (Devaney & Ram, 1998; Intille & Bobick, 1999) in several ways. First,
these previous investigations have been applied in settings where observations are continuously
available about each monitored agent. In contrast, Overseer is targeted towards overhearing,
where limited observations are available, both in time, and in the number of agents actually observed.
Overseer introduces a number of novel techniques (such as the communications predictions) which
are useful in such settings. A second important di�erence is the underlying representation used in
reasoning. We introduce a novel representation particularly suited for monitoring by overhearing,
while Intille and Bobick rely on standard belief networks, constructed in a particular way to support
reasoning about spatial/temporal coordination. Finally, the explicit use we make of teamwork
and organizational structure (the team-hierarchy) enables YOYO* in principle to reason about
coordination and teamwork failures, where the previous monitoring techniques would fail to recognize
the team's actions (Intille & Bobick, 1999).

Huber (1996) reports on the use of probabilistic plan recognition in service of observation-based
coordination in the Net-trek domain, and shows that agents using plan recognition for coordination
outperform agents using communications for coordination. Huber takes coordination to be cooper-
ative actions on the part of the self- interested agents, e.g., joining an agent in attacking a common
enemy. Huber's work does not exploit any knowledge of relationships between the agents to limit
the computation or increase the accuracy. Huber's system does allow for some uncertainty caused
by missing observations, but in contrast to our work, does not introduce specialized mechanisms
(such as ours) to explicitly address these.

Plan Recognition Bayesian Networks (PRBNs) (Charniak & Goldman, 1993) provide a very
general model for plan events, evidence, and inference. However, a PRBN is a static Bayesian
network, so it must include nodes for all plans and observations throughout the execution of the
plans. Therefore, instead of representing only the events of a single time step (as in the DBNs
described in Section 3.1), it must include nodes over all time steps. Therefore, forN agents, executing
a plan hierarchy of size M , over a �nite time horizon of T steps, the number of nodes in the network
will be O(TNM2). Inference will have a space/time complexity exponential in the number of nodes,

O(2TNM
2

), which is prohibitive over the lengths of execution found in our example domains (e.g.,
T = 900).

The representation used by YOYO* is related to existing approaches to the modeling of stochastic
processes, in particular those used for probabilistic plan recognition. The representation we present
perhaps most closely resembles Hidden Markov Models (HMMs) (Rabiner, 1989), used for plan-
recognition in (Han & Veloso, 1999). One could, in theory, represent the plan state of a team of
agents within the unconstrained state space of an HMM. However, the HMM state space would have
to represent all possible combinations of the individual plan states of the agents, so the size of the
HMM state space would be exponential in the number of agents and plans. Thus, the standard
algorithms for HMM inference would not be able to exploit the structure of the plan and team
hierarchies, nor the particular forms of evidence (as described in Section 3.2), in the way that we
do in YOYO*. Generalized versions of the HMM model (Ghahramani & Jordan, 1997; Jordan,
Ghahramani, & Saul, 1997) could more compactly represent the same state space as in YOYO*,
but exact inference is intractable for these models. These models have more e�cient algorithms for

37

Kaminka, Pynadath, and Tambe

approximate inference, but these would have di�culty with the determinism present in our planning
models.

Pynadath and Wellman report on the Probabilistic State-Dependent Grammar (PSDG) model
(2000) that avoids the full complexity of DBN inference by making simplifying assumptions appro-
priate for plan recognition. However, while PSDG can incorporate broader classes of inference than
YOYO*, it is intended for single-agent plan recognition, and does not support concurrency in a
general enough fashion for multi-agent plan recognition.

Goldman, Geib and Miller (1999) develop a conceptual model for Bayesian plan recognition which
does include, as one of its key novelties, the ability to infer the plans of a single agent from lack of
observation of its action. However, Goldman et al. deal with a di�erent issue altogether than the
one our communications predictions address. Their framework looks at a sequence of observations,
in which an observation may be missing, but observations of actions following it appear. Their
framework then allows inference that plans that should have given rise to the missing observation
can be ruled out as recognition hypotheses. In contrast, our approach uses the communications
predictions to make inference of plan-steps that did not yet occur. Overseer probabilistically
expects the predictions to come true, and does not infer additional information from a missing
(predicted) observation that is followed by another. In addition, our approach is fully implemented
and deployed in multi-agent settings, rather than single agent.

A complementary line of work (in the context of the TEAMCORE architecture) has focused on
intended plan-recognition for monitoring, where team-members may adapt their communications
such that monitoring is made easier (Tambe et al., 2000). This work (i) reduced, but did not
eliminate uncertainty, and (ii) did not present any methods to address uncertainty, as we do here,
However, it presents an interesting future direction for Overseer's development.

8. Summary and Future Work

This paper introduced monitoring by overhearing, a technique that will be increasingly important
with the growing need to monitor agent systems, particularly distributed or deployed. We pre-
sented Overseer, a system for monitoring teams by overhearing the routine communications team-
members exchange as part of the execution of their joint tasks. Monitoring by overhearing, while
being a plan-recognition task, presents characteristic challenges not previously addressed. These
include the scarcity of observations compared to the rate of change in agent's state, and the fact
that agents are not individually observable, as the observations are essentially of multi-agent ac-
tions. In addition to these, familiar challenges such as demanding response times and maintaining
performance in face of a scale-up in the number of monitored agents, are also present.

To address these challenges, Overseer employs a number of novel techniques, which exploit
knowledge of the relationships between the agents to alleviate uncertainty and increase e�ciency
of monitoring: (i) An e�cient probabilistic algorithm for plan-recognition, particularly suited for
monitoring communications; (ii) YOYO*, an approach for e�cient maintenance of recognition of
coherent hypotheses; and (iii) use of social structures and procedures, e.g., team coherence and
communications to maintain coherence, to alleviate uncertainty. To demonstrate the generality of
these techniques, we have discussed the potential use of these techniques with representations other
than a plan-hierarchy, in particular DBNs (Kjærul�, 1992).

We provided an in-depth empirical evaluation of these techniques in one of the domains in
which Overseer is applied. The evaluation carefully examines the contribution of each technique
to the overall recognition success, and demonstrates that these techniques work best together, as
they complement relative weaknesses of each other. The paper also presented an evaluation of
the scalability of YOYO*, and its performance under conditions of observation loss. Finally, we
presented a comparison of Overseer's performance with that of human expert and novice monitors,
and demonstrated that Overseer performance is comparable to that of human experts, despite the
di�culty of the monitoring task.

38

Monitoring Teams by Overhearing

Several opportunities for future research directions arise from the experimental results. First, the
use of rote-learning to predict when messages will be observed (provided as feasibility demonstration),
proved e�ective for normative runs. However, the simple mechanism was damaging when rare
patterns of communications arose, as some of the experiments have shown. In-depth exploration of
the role of learning is therefore one of the directions we hope to pursue in the future. In addition,
learning mechanisms that can derive plan-hierarchy and team-hierarchy structures from records of
conversations are also of much interest.

Acknowledgements

This paper is based in part on an Agents-2001 paper by the same authors (Kaminka, Pynadath,
& Tambe, 2001). We thank Yves Lespérance, Victor Lesser, George Bekey, Je� Rickel, and Dan
O'Leary for useful comments, and Manuela Veloso for her enthusiastic support of this project at
Carnegie Mellon University. Oshra Kaminka deserves special thanks for her help in analyzing and
processing the data. This research was supported by DARPA awards F30602-98-2-0108, F30602-98-
2-0135, and F30602-00-2-0549, managed by the Air Force Research Labs/Rome site.

References

Aiello, M., Busetta, P., Dona, A., & Sera�ni, L. (2001). Ontological overhearing. In Intelligent
Agents VIII, Proceedings of the international workshop on Agents, Theories, Architectures,
and Languages (ATAL-2001).

Barber, K. S., & Martin, C. E. (2001). Dynamic reorganization of decision-making groups. In
Proceedings of the Fifth International Conference on Autonomous Agents (Agents-01), pp.
513�520. ACM Press.

Calder, R. B., Smith, J. E., Courtemanche, A. J., Mar, J. M. F., & Ceranowicz, A. Z. (1993).
Modsaf behavior simulation and control. In Proceedings of the Third Conference on Computer
Generated Forces and Behavioral Reresentation Orlando, Florida. Institute for Simulation and
Training, University of Central Florida.

Charniak, E., & Goldman, R. P. (1993). A Bayesian model of plan recognition. Arti�cial Intelligence,
64 (1), 53�79.

Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman, J., Smith, I., Chen, L., & Clow, J.
(1997). Quickset: Multimodal interaction for distributed applications. In Proceedings of the
Fifth Annual International Multimodal Conference (Multimedia '97), pp. 31�40.

Cohen, P. R., & Levesque, H. J. (1990). Rational interaction as the basis for communication. In
Cohen, P. R., Morgan, J., & Pollack, M. E. (Eds.), Intentions in Communication, Systems
Development Foundation Benchmark Series, chap. 12, pp. 221�255. MIT Press.

Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Nous, 35.

Decker, K. (1995). Environment Centered Analysis and Design of Coordination Mechanisms. Ph.D.
thesis, Department of Computer Science, University of Massachusetts, Amherst.

Devaney, M., & Ram, A. (1998). Needles in a haystack: Plan recognition in large spatial domains
involving multiple agents. In Proceedings of the Fifteenth National Conference on Arti�cial
Intelligence (AAAI-98), pp. 942�947 Madison, WI.

Dunin-Keplicz, B., & Verbrugge, R. (2001). The role of dialogue in collective problem solving. In
Proceedings of �fth International Symposium on the Logical Formalization of Commonsense
Reasoning (Commonsense 2001), pp. 89�104.

39

Kaminka, Pynadath, and Tambe

Finin, T., Labrou, Y., & May�eld (1997). KQML as an agent communication language. In Bradshaw,
J. (Ed.), Software Agents. MIT Press.

Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden Markov models. Machine Learning, 29,
245�275.

Goldman, R. P., Geib, C. W., & Miller, C. A. (1999). A new model of plan recognition. In Proceedings
of the Conference on Uncertainty in Arti�cial Intelligence (UAI-1999) Stockholm, Sweden.

Grosz, B. (1996). Collaborating systems. AI Magazine, 17 (2).

Grosz, B. J., & Kraus, S. (1999). The evolution of SharedPlans. In Wooldridge, M., & Rao, A.
(Eds.), Foundations and Theories of Rational Agency, pp. 227�262.

Grosz, B. J., & Kraus, S. (1996). Collaborative plans for complex group actions. Arti�cial Intelli-
gence, 86, 269�358.

Han, K., & Veloso, M. (1999). Automated robot behavior recognition applied to robotic soccer. In
Proceedings of the IJCAI-99 Workshop on Team Behavior and Plan-Recognition. Also appears
in Proceedings of the 9th International Symposium of Robotics Research (ISSR-99).

Horling, B., Benyo, B., & Lesser, V. (2001). Using self-diagnosis to adapt organizational structures.
In Proceedings of the Fifth International Conference on Autonomous Agents (Agents-01), pp.
529�536.

Huber, M. J. (1996). Plan-Based Plan Recognition Models for the E�ective Coordination of Agents
Through Observation. Ph.D. thesis, University of Michigan.

Huber, M. J., & Hadley, T. (1997). Multiple roles, multiple teams, dynamic environment: Au-
tonomous netrek agents. In Johnson, W. L. (Ed.), Proceedings of the First International Con-
ference on Autonomous Agents (Agents-97), pp. 332�339 Marina del Rey, CA. ACM Press.

Intille, S. S., & Bobick, A. F. (1999). A framework for recognizing multi-agent action from visual
evidence. In Proceedings of the Sixteenth National Conference on Arti�cial Intelligence (AAAI-
99), pp. 518�525. AAAI Press.

Jennings, N. R. (1993). Commitments and conventions: the foundations of coordination in multi-
agent systems. Knowledge Engineering Review, 8 (3), 223�250.

Jennings, N. R. (1995). Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Arti�cial Intelligence, 75 (2), 195�240.

Jordan, M. I., Ghahramani, Z., & Saul, L. K. (1997). Hidden Markov decision trees. In Mozer, M. C.,
Jordan, M. I., & Petsche, T. (Eds.), Advances in Neural Information Processing Systems,
Vol. 9, p. 501. The MIT Press.

Kaminka, G. A., Pynadath, D. V., & Tambe, M. (2001). Monitoring deployed agent teams. In
Proceedings of the Fifth International Conference on Autonomous Agents (Agents-01).

Kaminka, G. A., & Tambe, M. (2000). Robust multi-agent teams via socially-attentive monitoring.
Journal of Arti�cial Intelligence Research, 12, 105�147.

Kinny, D., Ljungberg, M., Rao, A., Sonenberg, E., Tidhar, G., & Werner, E. (1992). Planned team
activity. In Castelfranchi, C., & Werner, E. (Eds.), Arti�cial Social Systems, Lecture notes in
AI 830, pp. 227�256. Springer Verlag, New York.

40

Monitoring Teams by Overhearing

Kjærul�, U. (1992). A computational scheme for reasoning in dynamic probabilistic networks. In
Proceedings of the Conference on Uncertainty in Arti�cial Intelligence (UAI-1992), pp. 121�
129 San Mateo, CA. Morgan Kaufmann.

Knoblock, C. A., Minton, S., Ambite, J. L., Ashish, N., Modi, P. J., Muslea, I., Philpot, A. G., &
Tejada, S. (1998). Modeling Web sources for information integration. In Proceedings of the
Fifteenth National Conference on Arti�cial Intelligence (AAAI-98).

Kumar, S., & Cohen, P. R. (2000). Towards a fault-tolerant multi-agent system architecture. In
Proceedings of the Fourth International Conference on Autonomous Agents (Agents-00), pp.
459�466 Barcelona, Spain. ACM Press.

Kumar, S., Cohen, P. R., & Levesque, H. J. (2000). The adaptive agent architecture: Achieving fault-
tolerance using persistent broker teams. In Proceedings of the Fourth International Conference
on Multiagent Systems (ICMAS-00), pp. 159�166 Boston, MA. IEEE Computer Society.

Lenser, S., Bruce, J., & Veloso, M. (2001). Cmpack: A complete software system for autonomous
legged soccer robots. In Proceedings of the Fifth International Conference on Autonomous
Agents (Agents-01), pp. 204�211. ACM Press.

Lesh, N., Rich, C., & Sidner, C. L. (1999). Using plan recognition in human-computer collaboration.
In Proceedings of the Seventh International Conference on User Modelling (UM-99) Ban�,
Canada.

Levesque, H. J., Cohen, P. R., & Nunes, J. H. T. (1990). On acting together. In Proceedings of the
Eigth National Conference on Arti�cial Intelligence (AAAI-90)Menlo-Park, CA. AAAI Press.

Marsella, C. S., Adibi, J., Al-Onaizan, Y., Kaminka, G. A., Muslea, I., Tallis, M., & Tambe, M.
(2001). On being a teammate: Experiences acquired in the design of robocup teams. Journal
of Autonomous Agents and Multi-Agent Systems, 4 (1�2).

Martin, D. L., Cheyer, A. J., & Moran, D. B. (1999). The open agent architecture: A framework
for building distributed software systems. Applied Arti�cial Intelligence, 13 (1-2), 92�128.

Ndumu, D. T., Nwana, H. S., Lee, L. C., & Collis, J. C. (1999). Visualizing and debugging distributed
multi-agent systems. In Proceedings of the Third International Conference on Autonomous
Agents (Agents-99). ACM Press.

Payne, T. R., Sycara, K., Lewis, M., Lenox, T. L., & Hahn, S. (2000). Varying the user interac-
tion within multi-agent systems. In Proceedings of the Fourth International Conference on
Autonomous Agents (Agents-00), pp. 412�418.

Pechoucek, M., Marik, V., & Stepankova, O. (2000). Role of acquaintance models in an agent-based
production planning. In Klusch, M., & Kerschberg, L. (Eds.), Proceedings of Cooperative
Information Agents (CIA-2000): the Fourth International Workshop, No. 1860 in LNAI, pp.
179�190. Springer Verlag.

Pechoucek, M., Marik, V., & Stepankova, O. (2001). Towards reducing communication tra�c in
multi-agent systems. Journal of Applied System Studies.

Pynadath, D. V., & Wellman, M. P. (2000). Probabilistic state-dependent grammars for plan recog-
nition. In Proceedings of the Conference on Uncertainty in Arti�cial Intelligence (UAI-2000),
pp. 507�514.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected applications in speech
recognition. Proceedings of the IEEE, 77 (2), 257�286.

41

Kaminka, Pynadath, and Tambe

Reed, C. (1998). Dialogue frames in agent communications. In Proceedings of the Third International
Conference on Multiagent Systems (ICMAS-98), pp. 246�253.

Rich, C., & Sidner, C. L. (1997). COLLAGEN: When agents collaborate with people. In Johnson,
W. L. (Ed.), Proceedings of the First International Conference on Autonomous Agents (Agents-
97), pp. 284�291 Marina del Rey, CA. ACM Press.

Tambe, M. (1996). Tracking dynamic team activity. In Proceedings of the National Conference on
Arti�cial Intelligence (AAAI).

Tambe, M. (1997). Towards �exible teamwork. Journal of Arti�cial Intelligence Research, 7, 83�124.

Tambe, M., Adibi, J., Al-Onaizan, Y., Erdem, A., Kaminka, G. A., Marsella, S. C., & Muslea,
I. (1999). Building agent teams using an explicit teamwork model and learning. Arti�cial
Intelligence, 111 (1), 215�239.

Tambe, M., Johnson, W. L., Jones, R., Koss, F., Laird, J. E., Rosenbloom, P. S., & Schwamb, K.
(1995). Intelligent agents for interactive simulation environments. AI Magazine, 16 (1).

Tambe, M., Pynadath, D. V., Chauvat, N., Das, A., & Kaminka, G. A. (2000). Adaptive agent
integration architectures for heterogeneous team members. In Proceedings of the Fourth Inter-
national Conference on Multiagent Systems (ICMAS-00), pp. 301�308 Boston, MA.

Tidhar, G. (1993a). Team oriented programming: Preliminary report. Tech. rep. 41, Australian
Arti�cial Intelligence Institute, Melbourne, Australia.

Tidhar, G. (1993b). Team oriented programming: Social structures. Tech. rep. 47, Australian
Arti�cial Intelligence Institute, Melbourne, Australia.

Vercouter, L., Beaune, P., & Sayettat, C. (2000). Towards open distributed information systems by
the way of a multi-agent conception framework. InWorking Notes of the AAAI-2000 Workshop
on Agent-Oriented Information Systems (AOIS-2000), pp. 29�38.

Appendix A. Additional algorithms and proofs

This appendix contains the pseudo-code for all algorithms described in the paper, for which pseudo-
code was not provided in the body of the text itself. These include the modi�cations to the propa-
gation procedures necessary for propagation within YOYO*. In addition, we provide a proof that
the number of coherent hypotheses for N agents is linear in the size of the plan-library M .

A.1 The Number of Incoherent and Coherent Hypotheses

LetMi be the monitoring plan-library for agent i; 1 � i � N . When monitoring agent i, a monitoring
system reasons about monitoring hypotheses in Mi. In other words, we can view Mi as the �nite
set of all possible plans agent i may be executing. Given a query as to the agent's current state
by the monitoring system, the plan-recognition algorithm picks some ki speci�c members of Mi as
hypotheses as to the current state of the agent�call these sets of hypotheses mi where jmij = ki.

To construct an overall team hypothesis, the monitoring system must combine the individual
hypotheses to form a hypothesis for the team's state. For each agent i, the monitoring system chooses
one individual hypothesis hi 2 mi. The combination of these forms the team state hypothesis. If
there is no uncertainty about the state of any of the agent, i.e., ki = 1 for all i, then one team
hypothesis exists. However, if uncertainty exists about the state agents, then clearly, the process of
selecting individual hypotheses becomes combinatorial in nature, as all possible combinations of all
individual hypotheses are possible in principle.

42

Monitoring Teams by Overhearing

Let us consider how many coherent hypotheses exist. If we restrict ourselves to coherent hy-
potheses, then the selection of individual hypotheses for each agent are constrained such that the
selections are in agreement�the same individual hypothesis is selected for each agent. Given a
selection of an individual state hypothesis h1 2 m1 for the �rst agent, we must choose h2 2 m2 for
the second agent, h3 2 m3 for the third agent, etc., such that h1 = h2 = h3 = ::: = hN . Since
there are not more than k1 � jM1j individual state hypotheses for the �rst agent, it follows that the
number of coherent team-state hypotheses is bounded by jM1j, i.e., the size of the plan library for
the agents. In fact, the number of coherent hypotheses is bounded by minki �since only members
of mminki can be matched with members of the other individual hypothesis sets, m. In contrast, by
de�nition, all other team-state hypotheses are incoherent. There will be k1�k2�k3� :::�kN�(min ki)
of these hypotheses.

A.2 YOYO* Propagation Algorithms (Section 5.1)

The algorithms presented in this section support those presented in the main text of the paper,
and are provided here for completeness. Some of them may contain a step which iterates over all
teams that can take an outgoing transition (e.g., line 1 of algorithm 6, or line 13 of algorithm 7).
This step requires some further clari�cation: When iterating over all outgoing teams that meet the
condition, the algorithm consults the team-hierarchy to carry out the iteration only for the topmost
teams (in terms of the team-hierarchy) that meet the condition. For instance, in our application
domain, the team TASK-FORCE has (among others) two subteams TRANSPORTS and ESCORTS.
If a transition is allowed to be taken by TRANSPORTS only, then an iteration �over all teams that
are allowed to take the transition� will not consider either ESCORTS or TASK-FORCE. However,
if the transition allows TASK-FORCE, then the iteration step will take place only once�it will
be executed once for the team TASK-FORCE, which is the parent team for TRANSPORTS and
ESCORTS.

Algorithm 6 Team-Propagate-Down(plan Y , probability �, beliefs, b, plans M)

1: for all teams T who are allowed to take an outgoing hierarchical-decomposition transition from Y do

2: CT fc j c 2M; c �rst child of Y; c is to be taken by team Tg
3: �0 �= j CT j
4: for all plans c 2 CT do

5: bt+1(Y;:block) bt+1(Y;:block) + �0

6: Team-Propagate-Down(c; �0; b;M)

Algorithm 8 below may require some clari�cations. First, it is important to note that the plans Y
(line 1) are traversed in pre-order�parents before children. The scaling calculation depends on the
parent having the scaled probability. Second, the iteration over sub-plans Y essentially captures all
plans in the subtree rooted in the parent plan P , except for those in the subtree rooted by P 's child
X , which already has been adjusted by YOYO* prior to the call to this algorithm. In fact, the use of
X 's team T to scale only other plans makes sure that any of X 's siblings, that are alternatives to X
for the team T , do not get scaled. This is correct because this procedure is called when incorporating
evidence for X (rather than any of its siblings).

Appendix B. Experimental material

The plan and team-hierarchy for the evacuation application, as well as a few sample logs containing
overheard messages, will be provided as part of an online appendix.

43

Kaminka, Pynadath, and Tambe

Algorithm 7 Team-Propagate-Forward(team-hierarchy H , beliefs b, plans M)

1: for all plans X 2M do

2: bt+1(X;:block) 0:0
3: bt+1(X; block) 0:0
4: outx 0:0
5: �x 0:0
6: for all plans X 2M in post-order do {children in temporal order before parents}
7: if X is a leaf then
8: outx bt(X;:block)(1� e��x) {calculate probability of X terminating at time t}
9: else {X is a parent}
10: outx is known { because post-order guarantees all children set it in line 21}
11: for all temporal outgoing transitions Tx!y from X do

12: �x �x + (1� �xy)�xy
13: for all teams E who are allowed to take a temporal outgoing transition do

14: if �x > 0 then {some transition can be taken}
15: for all temporal outgoing transitions Tx!y from X to be taken by E do

16: � outx(1� �xy)�xy
17: if Tx!y leads to a successor plan Y then

18: bt+1(Y;:block) bt+1(Y;:block) + �
19: Team-Propagate-Down(Y; �; b;M)
20: else {Tx!y is a terminating transition}
21: outparent(x) outparent(x) + (1� �xy)�xy {parent's outgoing probability is its children's}
22: bt+1(X; block) bt+1(X; block) + outx � �x
23: bt+1(X;:block) bt+1(X;:block)� outx

Algorithm 8 Scale(parent plan P , team T , child plan X , beliefs b)

1: for all subplans Y of P , where team(Y) 6= T , in pre-order do

2: bt+1(Y;:block) bt+1(Y;:block)+
bt(Y;:block)

bt(parent(Y);:block)
bt+1(parent(Y);:block)

3: bt+1(Y; block) bt+1(Y; block)+
bt(Y;block)

bt(parent(Y);:block)
bt+1(parent(Y);:block)

44

