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Abstract 
While NASA is increasingly interested in multi-platform 
space missions, controlling such platforms via timed 
command sequences -- the current favored operations 
technique -- is unfortunately very difficult, and a key source 
of this complexity involves resolving conflicts to coordinate 
multiple spacecraft plans. We propose distributed constraint 
satisfaction (DCSP) techniques for automated coordination 
and conflict resolution of such multi-spacecraft plans. We 
introduce novel value ordering heuristics in DCSP to 
significantly improve the rate of conflict resolution 
convergence to meet the efficiency needs of multi-
spacecraft missions. In addition, we introduce distributed 
POMDP (partially observable markov decision process) 
based techniques for DCSP convergence analysis, which 
facilitates automated selection of the most appropriate 
DCSP strategy for a given situation, and points the way to a 
new generation of analytical tools for analysis of DCSP and 
multi-agent systems in general. 

Introduction  
The past few years have seen missions with growing 
numbers of probes.  Pathfinder has its rover (Sojourner), 
Cassini has its Huygens lander, and Cluster II has 4 
spacecraft for multi-point magnetosphere plasma 
measurements.  This trend is expected to continue to 
progressively larger fleets.  For example, one proposed 
interferometer mission (Mettler and Milman 1996) would 
have 18 spacecraft flying in formation in order to detect 
earth-sized planets orbiting other stars.  Another proposed 
mission involves 44 to 104 spacecraft to measure global 
phenomena within the Earth’s magnetosphere. To date 
numerous multiple platform missions have been proposed, 
and they can be grouped into 3 families depending on why 
multiple platforms were proposed: 

- Multi-point sensing for improved coverage when 
observing/exploring large areas (like the satellites 
with passive microwave radiometers for the 
Global Precipitation Mission and similar sensors 
on the Global Electrodynamics Mission, 
Leonardo-BRDF, and the Magnetospheric 
Constellation); 

- Building large synthetic aperture sensors with 
many small spatially separated sensors for 

imaging very remote targets (Constellation-X, 
Terrestrial Planet Finder, and TechSat-21); 

- Specialized probes with explicitly separate science 
objectives (like coincident Mars Program missions 
or the AM and PM trains within the Earth 
Observing System). 

Using current operations techniques, controlling each will 
involve either sending a timed sequence to a master 
spacecraft with continuous communications links to its 
multiple slave spacecraft or sending timed sequences to 
each spacecraft.  In both cases, the use of sequence limits a 
mission’s ability to measure phenomena that are hard to 
predict.  Such phenomena include violent weather within 
the atmosphere, rapid changes within the magnetosphere, 
and unexpected anomalies within the spacecraft 
themselves.  Sequence based operations can measure these 
phenomena, but the probability of catching the desired 
measurements while performing a sequence rapidly drops 
as a phenomenon becomes less predictable.  While 
combining onboard data analysis with onboard planning 
and scheduling enables measuring unpredictable 
phenomena by a single spacecraft, multiple spacecraft 
mission have an extra complexity that involves 
coordinating their evolving plans. 
 This paper focuses on DCSP (Distributed Constraint 
Satisfaction Problem) techniques for automated 
coordination and conflict resolution among spacecraft. 
While there are efficient DCSP algorithms available, real-
time and dynamism in multi-spacecraft domains demands 
very fast conflict resolution convergence. We 
introduce several novel value ordering strategies that 
significantly improve the rate of DCSP convergence. 
However, empirical results show that selecting the right 
strategy is critical: very different strategies dominate in 
different domains.  
 To analyze and predict strategy performance, a 
distributed POMDP (Partially Observable Markov 
Decision Process) based model is introduced. A DCSP 
strategy is mapped onto a policy in the model. Thus, we 
evaluate strategies by evaluating policies in this model. 
Initial result shows that this approach can enable agents to 
select the right strategy to apply in a given situation. More 
generally, this result indicates a promising direction for 



performance analysis in DCSP, and potentially other multi-
agent systems. 

Next section describes the multi-spacecraft missions 
followed by a coordination and conflict resolution 
algorithm for such missions. After that, we formalize new 
value ordering strategies in DCSP, and introduce a formal 
model to analyze the performance of the DCSP strategies. 

Managing Evolving Sensor Networks 
The whole purpose of a typical NASA spacecraft is to 
measure phenomena for answering basic scientific 
questions.  For instance, the AM train (Figure 1) within the 
earth observing system consists of four spacecraft in a 
related orbit to observe the earth with heterogeneous 
collections of sensors.  Each of these satellites was 
launched for different reasons, but combining sensors with 
coincident observations makes the collection of spacecraft 
more capable than the sum of the parts.  In this case the 
formation was not initially planned, but evolved as mission 
designers discovered ways to take advantage of existing 
satellites when developing new ones.  
 On the other hand, missions to study the magnetosphere 
fly a collection of spacecraft for identical reasons.  These 
missions focus on making multi-point measurements in 
order to observe evolving three-dimensional structures 
within the Earth’s magnetosphere.  As an example of this 
class of mission, consider the proposed Magnetospheric 

Multi-Scale flight project. Here five identical spacecraft fly 
in prism formation around an evolving elliptical reference 
orbit.  These spacecraft can make isolated observations, but 
by combining coincident observations, the satellites can 
measure properties of the enclosed space.  For example, 
measurements of local magnetic field vectors at the four 
points defining a tetrahedron determine the average electric 
current through the tetrahedron. 
 Regardless of whether the multi-platform mission 
evolved or was explicitly designed, it can be modeled as a 
sensor network where the communications channels and 
other local properties change due to orbital motion.  In the 
case of the Magnetospheric Multi-Scale mission, the 
spacecraft can communicate with Earth around perigee by 
virtue of being closer to a ground station.  Unfortunately 
orbital effects spread the spacecraft as they get closer to the 
Earth, which implies that communication between 
spacecraft is only available around apogee. 
 To develop an abstract problem that exhibits these 
issues, consider a three dimensional grid of nodes flying 
through the Magnetosphere (Figure 2).  In this problem 
spacecraft can use their sensors for isolated measurements 
or they can take a coordinated measurement to observe a 
property of space between the spacecraft.  In this case, the 
boundary between two space plasma regions passes 
through the grid, and a cluster of four spacecraft jointly 
measures the average current along a patch of the boundary 
as the boundary moves through a tetrahedron.  As 

 
Figure 1: The four co-orbiting spacecraft of the “AM-train” of the Earth Observing System. 
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Figure 2: A multi-spacecraft mission as a sensor network with cooperating planners 



illustrated on the right, we characterize the autonomy 
software in each spacecraft in terms of three modules: a 
manager to oversee the spacecraft by inserting new science 
and maintenance goals; a planner/scheduler to turn goals 
into time-tagged activities; and a robust executive to 
perform these activities. 

Distributed Continual Iterative Repair 
Extending the CASPER continual planning framework 
(Chien et al. 2000, Barrett 2000) to perform continual 
iterative repair within Figure 2’s the planner/scheduler 
modules results in Figure 3’s algorithm where the mission 
manager can insert new goal activities into PLAN.  Line 1 
makes the PROJECTION variable (containing state 
variable profiles) always reflect how the spacecraft’s state 
should evolve as its plan executes, and the sixth line causes 
this execution by passing near-term activities to the 
executive/diagnostician. 
The expected state evolution changes as a plan gets new 
goal activities and the perceived state diverges from 
expectations.  This divergence is caused by unexpected 
exogenous events and activities having unexpected 
outcomes. Since a planning model can only approximate 
the reality experienced during execution, these unexpected 
state changes can always happen.  Thus revising 
PROJECTION can result in detecting flaws in a local plan 
at any moment, and lines 2 through 4 select and apply 
repair methods to fix these flaws.  For instance, a satellite 
observation can take an unexpectedly long time to 
complete.  Depending on the delay, a later observation may 
be impossible due to the target being too far behind the 
satellite when the observation starts.  A repair method 
might fix the flaw by rescheduling the observation at a later 
time. 
 While changes to local activities can remain private to a 
single spacecraft, changes to shared activities must be made 
public, and line 5 communicates these changes.  In general, 
the use of CONSTRAINTS and flaw repair methods can 
implement a number of coordination strategies. To be more 
concrete, suppose that a repair method suggests changing 

the start time of a shared activity.  After changing the 
activity's startTime variable, the spacecraft has to inform 
other participating spacecraft of the change.  In this way the 
spacecraft can follow an asynchronous weak commitment 
(AWC) (Yokoo and Hirayama 1998) search approach to 
maintaining plan coordination. 
 More precisely, the AWC approach, which is central to 
our architecture for managing shared activities, involves 
agents asynchronously assigning values to their variables 
from domains of possible values, and communicating the 
values to neighboring agents with shared constraints.  Each 
variable has a non-negative integer priority that changes 
dynamically during search.  A variable is consistent if its 
value does not violate any constraints with higher priority 
variables.  A solution is a value assignment in which every 
variable is consistent. 
 To simplify describing the algorithm, suppose that each 
agent has exactly one variable and constraints between 
variables are binary.  When an agent’s variable value is not 
consistent with neighboring variable values, there can be 
two cases: (i) good case where there exists a consistent 
value in the variable’s domain; (ii) nogood case that lacks a 
consistent value.  In the good case with one or more value 
choices available, an agent selects a value that minimizes 
conflicts with lower priority agents – the min-conflict 
heuristic.  On the other hand, in the nogood case, the 
priority of the agent is increased to max+1, where max is 
the highest priority of neighboring agents.  In this 
approach, a bad value selection by a higher agent make 
does not force lower agents to exhaustively search for local 
solutions; nogood situations locally increase a priority to 
make previously higher agents choose new values.  
Furthermore, an increasing agent sends a nogood message 
with its agentView (the values and priorities of neighboring 
agents).  These messages are used to avoid repeating past 
situations where an agent has no consistent values in its 
domain. Extension of AWC to multiple variables per agent 
has been investigated in (Yokoo and Hirayama 1998). 

Given:  a PLAN with multiple local and shared activities 
        a PROJECTION of PLAN into the future 
 a set of CONSTRAINTS on shared activities 
 

1. Revise PROJECTION using the currently perceived state, new goal activities from the mission 
manager, and received changes to shared activities.  

2. Heuristically choose a plan flaw found in PROJECTION. 
3. Heuristically choose a flaw repair method that honors CONSTRAINTS. 
4. Use method to alter CONSTRAINTS, PLAN, and PROJECTION. 
5. Communicate changes to shared activities in PLAN and CONSTRAINTS. 
6. Release relevant near-term activities in PLAN to the executive. 
7. Go to 1. 

 
Figure 3: Distributed continual iterative repair algorithm 



Given:  local variable Xi (with domain Di), whose current value violates either local constraints (LCi) or 

external constraints (Cij) with higher priority neighbors )( high
iN . 

 
Repair method Alter_variable_in_shared_activity  // for a strategy S�αααα-Sββββ  
1. Find a value set ico DD ⊆  whose values remove detected violations with Xi; 
2. If ∅≠coD , signifying that the violations can be resolved locally (good case), 

a. Let Xi = new_cooperative_value(α, Dco); 
3. Else the violations cannot be resolved locally (nogood case) 

a. Record and communicate the conditions for the impasse in CONSTRAINTS;  
b. Let Xi's priority = max of neighbors' priorities + 1 in CONSTRAINTS;  
c. Let Xi = new_cooperative_value(β, Di)   

 
Procedure new_cooperative_value (strategy σ, domain iD⊆∆ ): returns Xi's new value vnew 
1. If σ ≡ basic,  

a. Select ∆∈newv , minimizing number of violated constraints with lower priority agents; 
2. Else (σ∈{high, low, all})  

a. For each value ∆∈v , v's flexibility = ),( σ
ico Nvf ⊕ , where all

iN denotes all neighbors iN ; 

b. Find ∆∈newv  with max flexibility – breaking ties with min-conflict heuristic; 
3. Return vnew;  
 

Figure 4: Flaw repair using AWC framework extended by cooperative strategy and legal value communication  

Conflict Resolution Strategies Based on Value 
Selection Heuristics 

While AWC is one of the most efficient conflict resolution 
protocols, real-time and dynamism in multi-spacecraft 
domains motivate a need for faster conflict resolution 
convergence.  This section introduces novel value ordering 
heuristics for faster convergence.  In particular, AWC relies 
on the min-conflict value ordering heuristic for value 
ordering: given a variable assignment with conflicts, assign 
a value that minimizes the number of conflicts with other 
variable assignments (Minton et al. 1990).  This heuristic is 
used as a baseline conflict resolution strategy that we refer 
to as Sbasic.  Here, Sbasic strategy selects values only based 
on the values of the other agents’ external variables.  
 Legal value communication lets agents consider the 
restrictions that neighboring agents have on their variables’ 
domains.  By considering neighboring agents' local 
constraint induced legal values, an agent can generate a 
more locally cooperative response, i.e., select a value that 
gives more choices to neighbors, potentially leading to 
faster conflict resolution convergence.  For instance, agent 
Ai might have a variable Xi with domain Di.  After applying 
local constraints, Ai discovers that Xi’s revised domain is 

ii DD ⊆' .  After communicating 'iD , neighboring agents 
can improve their cooperation with Ai.  To elaborate on 
this, we first define our notion of local cooperativeness.  

Definition 1: For agent Ai with value v from domain Di 
assigned to variable Xi and a subset of neighboring 

agents sub
iN ⊆ Ni, the flexibility function ),( sub

ico Nvf ⊕  

is )],([ j
NA

Avc
sub
ij ∈

⊕ , where (i) c(v,Aj) is the number of 

values of Xj that are consistent with v; and (ii) ⊕ is the 
flexibility base, which can be sum, min, max, product, or 
weighted sum. 
Definition 2: For a value v of Xi, local cooperativeness 

of v is defined as ),( ico Nvf ⊕ : the local cooperativeness 
of v measures how much flexibility is given to all Ai’s 
neighbors by v. 
Definition 3: The most locally cooperative value of Xi is 
defined as vmax such that, for any other value vother ∈ Di, 

),( max ico Nvf ⊕  ≥ ),( iotherco Nvf ⊕ .   
 For example, consider a spacecraft data downlink that is 
constrained in relation to downlinks for two neighboring 
spacecraft A1 and A2, where a start time v leaves 7 
consistent start times to A1 and 4 to A2 while another start 
time v′ leaves 5 consistent times for A1 and 5 to A2.  Now, 
assuming that values are ranked based on flexibility, a 
cooperative agent that uses the flexibility base sum will 

prefer v to v′: }),{,( 21 AAvfco
⊕ =11 and 

}),{,( 21 AAvfco ′⊕ =10.  If ⊕ is min however, a cooperative 



agent will rank v′  higher than v: }),{,( 21 AAvfco
⊕  = 4 and 

}),{,( 21 AAvfco ′⊕  = 5.  
 The concept of local cooperativeness goes beyond 
merely satisfying constraints of neighboring agents to 
accelerate convergence.  That is, an agent Ai cooperates 
with a neighbor agent Aj by selecting a value for its variable 
that not only satisfies the constraint with Aj, but also 
maximizes Aj‘s flexibility (choice of values).  If Ai selects 
vmax,, then Aj has more choices for a value that satisfies Aj’s 
local constraints and other external constraints with its 
neighboring agents, which can lead to faster convergence. 
 Given these definitions of local cooperativeness and 
flexibility, we can generalize the AWC algorithm by 
defining three extra cooperation strategies with respect to a 
flexibility base ⊕: 

- Shigh: Each agent Ai selects value v from Vi which 

maximizes )N,v(f high
ico

⊕ , i.e., Ai attempts to give 
maximum flexibility towards its higher priority 
neighbors; 

- Slow: Each agent Ai selects value v from Vi which 
maximizes ),( low

ico Nvf ⊕ , i.e., Ai attempts to give 
maximum flexibility towards its lower priority 
neighbors; and 

- Sall: Each agent Ai selects value v from Vi, which 

maximizes ),( ico Nvf ⊕ , i.e. max flexibility to all 
neighbors. 

 Formalizing our definition of new value ordering 
strategies and couching it in terms of our distributed 
continual planning algorithm results in Figure 4’s plan 
repair method for altering a variable that participates in a 
constraint with another spacecraft.  This repair method’s 
behavior depends on the selected cooperation strategy Sα-
Sβ, where the subscripts are “basic”, “low”, “high”, or 

“all”.  As lines 2 and 3 within the repair method imply, the 
Sα cooperation strategy applies in cases in the previously 
mentioned good case, and the Sβ strategy applies in nogood 
cases.  Since each subscript can vary over 4 different 
choices, there are 16 possible strategies for each flexibility 
base.  Since, henceforth, we will only consider strategy 
combinations, we will refer to them as strategies for short.  
Note that all the strategies are enhanced with legal value 
communication (constraint propagation): indeed, except for 
Sbasic, these strategies cannot be applied without legal 
value communication.  Here, two exemplar strategies are 
listed: 

- Sbasic - Sbasic: This is the original AWC. Min-
conflict heuristic is used for the good and nogood 
case. 

- Slow – Shigh: For the good case, an agent is most 
locally cooperative towards its lower priority 
neighbor agents by using Slow (the selected value 
doesn't violate the constraints with higher 
neighbors). On the contrary, for the nogood 
situations, an agent attempts to be most locally 
cooperative towards its higher priority neighbors 
by using Shigh. 

Empirical Strategy Comparisons 
To provide an initial principled evaluation of these 
strategies, a number of DCSP experiments were done with 
an abstract problem setting. Here, agents (variables) are in 
a 2D grid configuration (each agent is externally 
constrained with four neighbors except for the ones on the 
grid boundary). All agents share an identical binary 
constraint by which a value in an agent is not compatible 
with a set of values in its neighboring agent: a value is 
represented as a coordinate in a 2D grid, and the constraint 
between agents is that the Euclidian distance between two 
values (coordinates) must be greater than a threshold. In the 

Figure 5: Empirical comparison of strategy performance
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experiments, the total number of agents was 512 and each 
agent has 36(=6×6) values in its domain. In addition to the 
external binary constraint, agents can have a unary local 
constraint that restricts legal values into a set of randomly 
selected values among its original 36 values.   
 Our experiments followed the method used in (Yokoo 
and Hirayama 1998). In particular, evaluations were 
performed by measuring Performance evaluation is 
measured in terms of cycles consumed until a solution is 
found.  Sum was used for flexibility base (⊕), and the 
experiments ranged over all possible strategies with this 
flexibility base.  In Figure 5, for expository purpose, only 
five strategies are presented, which does not change the 
conclusions in our work.  Each data point in the Figure was 
averaged over 500 test runs.  The vertical axis plots the 
number of cycles and the horizontal axis plots the 
percentage of locally constrained agents. Each locally 
constrained agent has a local constraint that restricts 
available values into randomly selected values. Thus, for 
example, local constraint ratio 0.1 means that 10 percent of 
the agents have a local constraint described above. 
 The results above show that our new value ordering 
strategies improved conflict resolution performance. Yet, 
surprisingly, the most locally cooperative strategy Sall-Sall 
was not the best one. Another key point to note is that 
choosing the right strategy has significant impact on 
performance. Certainly, choosing Slow-Slow or Slow-Shigh 
instead of Sbasic-Sbasic can lead to significant performance 
improvement, in particular when a large portion of agents 
are locally constrained. Furthermore, there exists no single 
dominant strategy for different problem settings. 

Predicting DCSP Resolution Strategy 
Performance 

While the previous section shows that different strategies 
can lead to significant speedups over the original "basic-
basic" strategy in AWC, we observe that different 
strategies dominate in different domains and at different 
local constraint ratios. Indeed, while "Slow-Slow" is the best 
in one domain, "Sall-Shigh" is a more preferable strategy in 
another domain. Given the variable nature of multi-
spacecraft domains, predicting the right strategy to use in a 
given domain is essential to gain maximum efficiency.  
 As a formal framework for strategy performance 
analysis, we have used a MTDP, Multiagent Team 
Decision Process, model (Pynadath and Tambe 2002). 
MTDP is based on distributed POMDPs and has been 
proposed as a framework for analysis.  Here we illustrate 
its actual use in analyzing DCSP performance. MTDP 
provides a tool for varying key domain parameters to 
compare the performance of different DCSP value ordering 
strategies, and thus select the most appropriate strategy in a 
given situation. We first briefly introduce the MTDP 
model. Refer to (Pynadath and Tambe 2002) for more 
details. 

 The MTDP model involves a team of agents operating 
over a set of world states during a sequence of discrete 
instances.  At each instant each agent chooses an action to 
perform and the actions are combined to affect a transition 
to the next instance's world state.  Borrowing from 
distributed POMDPs, the current state is not fully 
observed/known and transitions to new world states are 
probabilistic.  Each agent makes its own observations to 
compute its own beliefs, and the performance of the team 
is evaluated based on a joint reward function over world 
states and combined actions. 

More formally, a MTDP model for a team of agents, α, 
is a tuple, 〈S, Aα, P, Ωα, Oα, Bα, R〉. S is a set of world 
states. Aα = ∏ ∈αi iA is a set of combined actions where 

Ai is the set of agent i’s actions. P controls the effect of 
agents’ actions in a dynamic environment: 

)aA,sS|sSPr()s,a,s(P ttt ==′==′ +
α

1  
R: S × Aα → ℜ is a reward function over states and joint 
actions. Here, S, Aα, P, and R are the most relevant aspects 
of the model for this paper: while belief states Bα, 
Observations Oα, and observation function (which defines 
the probability distribution of possible observations for an 
agent i) are key parts of the model, they are not as relevant 
here and will not be discussed. 
 A policy in MTDP maps individual agents’ belief states 
to actions; the combination of individual policies thus 
forms a joint policy for the MTDP. A DCSP strategy is 
mapped onto a policy in the model. Thus, we compare 
strategies by evaluating policies in this model. Our initial 
results from policy evaluation in this model match the 
actual experimental strategy comparisons shown in Figure 
5. Thus, the model could potentially form a basis for 
predicting strategy performance in novel domains. 

Mapping DCSP onto MTDP 
In a general mapping, the first question is selecting the 
right state representation for the MTDP. One typical state 
representation could be a vector whose elements are the 
values of all the variables in a DCSP. However, this 
representation leads to a huge state space. For instance, if 
there are 10 variables (agents) and 10 possible values per 
variable, the number of states is 1010. To avoid this 
combinatorial explosion in state space, we use an abstract 
state representation in the MTDP. In particular, as 
described in the previous section, each agent can be 
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Figure 6: Agent state representation 



abstractly characterized as being in a good or a nogood 
state in the enhanced AWC. We use this abstract 
characterization in our MTDP model. To further reduce the 
combinatorial explosion, our MTDP state currently models 
a five-agent system  (A1, A2, A3, A4, A5) which represent 
a local configuration in a 2D grid setting for the above 
experiments where a middle agent (A3) is surrounded by 
the other four neighboring agents. Each agent can be in 
either good (G) or nogood (N) state (Figure 6). For 
simplicity, the case where agents have no violation is not 
considered. 
 Thus, an individual MTDP state 's' is the tuple of local 
states <s1, s2, s3, s4, s5> (e.g., <G, G, G, G, G> if all the five 
agents are in good case). Thus, there are totally 32 states in 
the MTDP model, e.g., <G, G, G, G, G>, <G, G, G, G, N>, 
<G, G, G, N, G>, etc). Here, <G, G, G, G, G> is an initial 
state since, in AWC, an agent finds no inconsistency for its 
initial values until it receives the values of its neighboring 
agents. Agents' value selection actions will cause a 

transition from one state to another. For instance, if agents 
are in a state <G, G, G, G, G> (Figure 6-a) and all the 
agents choose the action "Shigh", there is a certain transition 
probability that the next state will be <G, G, N, G, G> 
(Figure 6-b) as only the third agent is forced into a 
"nogood" or "N" state. However, the agents may also 
transition to <G, G, G, N, G> (Figure 6-c) as only the 
fourth agent may enter the "N" state. While this simple 
model may appear limiting at first glance, it has already 
shown promising results --- and we do not expect to need 
significantly more complex MTDP models for DCSP 
performance analysis (at least for the types of domains 
under consideration here). 
 Agents’ value selection actions taken in DCSP control 
the state transition in MTDP. A DCSP value selection 
strategy such as “Sbasic-Sbasic” provides a function to select a 
particular value in a given problem state, i.e., a value 
selection strategy is akin to a policy in the MTDP.  In the 
enhanced AWC, agents’ local information is 
communicated. This communicated information can be 
modeled as observations in MTDP. Here, note that we do 
not try to find an optimal policy. Instead, we try to evaluate 
the utility of a given policy (i.e., a strategy as “Slow-Slow”).   

More details on the Initial model and analytical 
results 
Our initial model is based on the five agents state 
representation described above. Given a state and an 
action, state transition is derived by combining the local 
state changes of individual agents. The local state change 
for an agent is governed by the agent’s local state and the 
states and actions of its neighboring agents. Now, the state 
transition probability is defined as a product of the 
probabilities of local state changes as follows. 

- ∏ ′=′
=

5

1i
i )a,s|sPr()s,a,s(P  where s′ = 〈s1′, s2′, s3′, s4′, s5′〉 

denotes the next state after state s = 〈s1, s2, s3, s4, s5〉 with 
an action ‘a’. 

 Note that the probabilities for individual agents’ local 
state changes are derived from the simulation with 512 
agents, not from a simple experiment with only five agents. 
Rewards are specified for each state in MTDP: the state 
with a nogood (N) has a positive value (a cost) and the 
initial state 〈G, G, G, G, G〉’s value is zero.  
 Performance analysis is based on the fact that the best 
performing strategy has less chance of forcing agents into 
the nogood case than other strategies. Since the state with 
‘N’ has a cost (which is proportional to the number of N’s), 
as a DCSP strategy performs worse in a given problem 
setting, the value of an initial state for its corresponding 
policy will increase since its successive states have more 
N’s. That is, in comparing two policies, the policy with a 
smaller initial state value is better than the other with a 
larger value. Here, the value of an initial state is computed 
with an iterative policy evaluation method.   

(a) 90% locally constrained agents
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Figure 7: Strategy (policy) evaluation in two 
different problem settings: analytical results with 
the MTDP model match to the real experimental 
results (in Figure 5). 



 Figure 7 shows the evaluation (the value of initial states 
in the MTDP-based model) of three different strategies 
(Slow-Slow, Slow-Shigh, Shigh-Shigh) in two different problem 
settings. Empirical results of strategy performance in the 
previous section (Figure 5) show that, when 90% of all the 
agents are constrained, the performance of the strategies 
varies: while Slow-Shigh was the best, Slow-Slow and Shigh-Shigh 
performed worse. Figure 7-a shows that the analytical 
results with the MTDP model match to the real 
experimental results at 90%: that is, the ordering of strategy 
(policy) performance in Figure 7-a is same with the 
empirical performance ordering in Figure 5. Figure 7-b 
shows the analytical results when 50% agents are locally 
constrained. Here, the analytical results also match to the 
empirical results in terms of performance ordering. Note 
that the transition probabilities for the actions in this 50% 
case are different from the ones used for the 90% case 
(Figure 7-a). Here, Slow-Slow (not Slow-Shigh) was the winning 
strategy.   
 This result illustrates that MTDP-based model can be 
used to predict the right strategy to apply in a given 
situation (possibly with less computation overhead). That 
is, given a new domain, agents can analyze different 
strategies with the simple MTDP-based model and select 
the right strategy for the new domain without running a 
significant number of problem instances for each strategy 
to evaluate. Furthermore, this approach will enable agents 
to flexibly adapt their strategies to changing circumstances. 
More generally, this result indicates a promising direction 
for performance analysis in DCSP, and potentially other 
multiagent systems 

Conclusion 
While NASA is increasingly interested in multi-platform 
space missions, a key source of complexity in such 
missions is coordination and conflict resolution of multiple 
spacecraft plans. We proposed distributed constraint 
satisfaction (DCSP) techniques for automated coordination 
and conflict resolution of such multi-spacecraft plans. We 
introduced novel value ordering heuristics in DCSP to 
significantly improve the rate of conflict resolution 
convergence to meet the efficiency needs of multi-
spacecraft missions. In addition, we introduced MTDP 
(Multiagent Team Decision Process) based techniques for 
DCSP convergence analysis, which facilitates automated 
selection of the most appropriate DCSP strategy for a given 
situation. While we focused on DCSP performance 
analysis, our approach could be applied to performance 
modeling and analysis for multiagent systems in general. 
 In this work we report on how to make an MTDP-based 
model given a grid of agents.  It turns out that there are 
other topologies that motivate other structures.  So far 
initial work for other topologies is promising, but more 
needs to be done.  Also, generalizing to more complex 
variable types with ranges of continuous values are needed 
to appropriately represent spacecraft planning domains.  

While this explodes the possible value assignments in a 
DCSP problem, there are ways to circumvent the problem 
of policy selection by generating discrete abstractions, 
computing the transition probabilities in the MTDP-based 
model, analyzing the MTDP policies, and finally using the 
result to guide strategy selection in the continuous 
problem.  While this approach makes intuitive sense, more 
work is needed for value assignment.  Finding the most (or 
least) constraining variable assignment gets difficult as the 
number of possible assignments explodes. 
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