
Enabling Efficient Conflict Resolution in Multiple Spacecraft Missions
via DCSP

Hyuckchul Jung1, Milind Tambe1, Anthony Barrett2, and Bradley Clement2

1Dept. of Computer Science, University of Southern California
 2Jet Propulsion Laboratory, California Institute of Technology
{jungh, tambe}@usc.edu, {barrett, bclement}@aig.jpl.nasa.gov

Abstract
While NASA is increasingly interested in multi-platform
space missions, controlling such platforms via timed
command sequences -- the current favored operations
technique -- is unfortunately very difficult, and a key source
of this complexity involves resolving conflicts to coordinate
multiple spacecraft plans. We propose distributed constraint
satisfaction (DCSP) techniques for automated coordination
and conflict resolution of such multi-spacecraft plans. We
introduce novel value ordering heuristics in DCSP to
significantly improve the rate of conflict resolution
convergence to meet the efficiency needs of multi-
spacecraft missions. In addition, we introduce distributed
POMDP (partially observable markov decision process)
based techniques for DCSP convergence analysis, which
facilitates automated selection of the most appropriate
DCSP strategy for a given situation, and points the way to a
new generation of analytical tools for analysis of DCSP and
multi-agent systems in general.

Introduction
The past few years have seen missions with growing
numbers of probes. Pathfinder has its rover (Sojourner),
Cassini has its Huygens lander, and Cluster II has 4
spacecraft for multi-point magnetosphere plasma
measurements. This trend is expected to continue to
progressively larger fleets. For example, one proposed
interferometer mission (Mettler and Milman 1996) would
have 18 spacecraft flying in formation in order to detect
earth-sized planets orbiting other stars. Another proposed
mission involves 44 to 104 spacecraft to measure global
phenomena within the Earth’s magnetosphere. To date
numerous multiple platform missions have been proposed,
and they can be grouped into 3 families depending on why
multiple platforms were proposed:

- Multi-point sensing for improved coverage when
observing/exploring large areas (like the satellites
with passive microwave radiometers for the
Global Precipitation Mission and similar sensors
on the Global Electrodynamics Mission,
Leonardo-BRDF, and the Magnetospheric
Constellation);

- Building large synthetic aperture sensors with
many small spatially separated sensors for

imaging very remote targets (Constellation-X,
Terrestrial Planet Finder, and TechSat-21);

- Specialized probes with explicitly separate science
objectives (like coincident Mars Program missions
or the AM and PM trains within the Earth
Observing System).

Using current operations techniques, controlling each will
involve either sending a timed sequence to a master
spacecraft with continuous communications links to its
multiple slave spacecraft or sending timed sequences to
each spacecraft. In both cases, the use of sequence limits a
mission’s ability to measure phenomena that are hard to
predict. Such phenomena include violent weather within
the atmosphere, rapid changes within the magnetosphere,
and unexpected anomalies within the spacecraft
themselves. Sequence based operations can measure these
phenomena, but the probability of catching the desired
measurements while performing a sequence rapidly drops
as a phenomenon becomes less predictable. While
combining onboard data analysis with onboard planning
and scheduling enables measuring unpredictable
phenomena by a single spacecraft, multiple spacecraft
mission have an extra complexity that involves
coordinating their evolving plans.
 This paper focuses on DCSP (Distributed Constraint
Satisfaction Problem) techniques for automated
coordination and conflict resolution among spacecraft.
While there are efficient DCSP algorithms available, real-
time and dynamism in multi-spacecraft domains demands
very fast conflict resolution convergence. We
introduce several novel value ordering strategies that
significantly improve the rate of DCSP convergence.
However, empirical results show that selecting the right
strategy is critical: very different strategies dominate in
different domains.
 To analyze and predict strategy performance, a
distributed POMDP (Partially Observable Markov
Decision Process) based model is introduced. A DCSP
strategy is mapped onto a policy in the model. Thus, we
evaluate strategies by evaluating policies in this model.
Initial result shows that this approach can enable agents to
select the right strategy to apply in a given situation. More
generally, this result indicates a promising direction for

performance analysis in DCSP, and potentially other multi-
agent systems.

Next section describes the multi-spacecraft missions
followed by a coordination and conflict resolution
algorithm for such missions. After that, we formalize new
value ordering strategies in DCSP, and introduce a formal
model to analyze the performance of the DCSP strategies.

Managing Evolving Sensor Networks
The whole purpose of a typical NASA spacecraft is to
measure phenomena for answering basic scientific
questions. For instance, the AM train (Figure 1) within the
earth observing system consists of four spacecraft in a
related orbit to observe the earth with heterogeneous
collections of sensors. Each of these satellites was
launched for different reasons, but combining sensors with
coincident observations makes the collection of spacecraft
more capable than the sum of the parts. In this case the
formation was not initially planned, but evolved as mission
designers discovered ways to take advantage of existing
satellites when developing new ones.
 On the other hand, missions to study the magnetosphere
fly a collection of spacecraft for identical reasons. These
missions focus on making multi-point measurements in
order to observe evolving three-dimensional structures
within the Earth’s magnetosphere. As an example of this
class of mission, consider the proposed Magnetospheric

Multi-Scale flight project. Here five identical spacecraft fly
in prism formation around an evolving elliptical reference
orbit. These spacecraft can make isolated observations, but
by combining coincident observations, the satellites can
measure properties of the enclosed space. For example,
measurements of local magnetic field vectors at the four
points defining a tetrahedron determine the average electric
current through the tetrahedron.
 Regardless of whether the multi-platform mission
evolved or was explicitly designed, it can be modeled as a
sensor network where the communications channels and
other local properties change due to orbital motion. In the
case of the Magnetospheric Multi-Scale mission, the
spacecraft can communicate with Earth around perigee by
virtue of being closer to a ground station. Unfortunately
orbital effects spread the spacecraft as they get closer to the
Earth, which implies that communication between
spacecraft is only available around apogee.
 To develop an abstract problem that exhibits these
issues, consider a three dimensional grid of nodes flying
through the Magnetosphere (Figure 2). In this problem
spacecraft can use their sensors for isolated measurements
or they can take a coordinated measurement to observe a
property of space between the spacecraft. In this case, the
boundary between two space plasma regions passes
through the grid, and a cluster of four spacecraft jointly
measures the average current along a patch of the boundary
as the boundary moves through a tetrahedron. As

Figure 1: The four co-orbiting spacecraft of the “AM-train” of the Earth Observing System.

Executive Executive Executive Executive

Manager Manager Manager Manager

Executive Executive Executive Executive

Manager Manager Manager Manager

Figure 2: A multi-spacecraft mission as a sensor network with cooperating planners

illustrated on the right, we characterize the autonomy
software in each spacecraft in terms of three modules: a
manager to oversee the spacecraft by inserting new science
and maintenance goals; a planner/scheduler to turn goals
into time-tagged activities; and a robust executive to
perform these activities.

Distributed Continual Iterative Repair
Extending the CASPER continual planning framework
(Chien et al. 2000, Barrett 2000) to perform continual
iterative repair within Figure 2’s the planner/scheduler
modules results in Figure 3’s algorithm where the mission
manager can insert new goal activities into PLAN. Line 1
makes the PROJECTION variable (containing state
variable profiles) always reflect how the spacecraft’s state
should evolve as its plan executes, and the sixth line causes
this execution by passing near-term activities to the
executive/diagnostician.
The expected state evolution changes as a plan gets new
goal activities and the perceived state diverges from
expectations. This divergence is caused by unexpected
exogenous events and activities having unexpected
outcomes. Since a planning model can only approximate
the reality experienced during execution, these unexpected
state changes can always happen. Thus revising
PROJECTION can result in detecting flaws in a local plan
at any moment, and lines 2 through 4 select and apply
repair methods to fix these flaws. For instance, a satellite
observation can take an unexpectedly long time to
complete. Depending on the delay, a later observation may
be impossible due to the target being too far behind the
satellite when the observation starts. A repair method
might fix the flaw by rescheduling the observation at a later
time.
 While changes to local activities can remain private to a
single spacecraft, changes to shared activities must be made
public, and line 5 communicates these changes. In general,
the use of CONSTRAINTS and flaw repair methods can
implement a number of coordination strategies. To be more
concrete, suppose that a repair method suggests changing

the start time of a shared activity. After changing the
activity's startTime variable, the spacecraft has to inform
other participating spacecraft of the change. In this way the
spacecraft can follow an asynchronous weak commitment
(AWC) (Yokoo and Hirayama 1998) search approach to
maintaining plan coordination.
 More precisely, the AWC approach, which is central to
our architecture for managing shared activities, involves
agents asynchronously assigning values to their variables
from domains of possible values, and communicating the
values to neighboring agents with shared constraints. Each
variable has a non-negative integer priority that changes
dynamically during search. A variable is consistent if its
value does not violate any constraints with higher priority
variables. A solution is a value assignment in which every
variable is consistent.
 To simplify describing the algorithm, suppose that each
agent has exactly one variable and constraints between
variables are binary. When an agent’s variable value is not
consistent with neighboring variable values, there can be
two cases: (i) good case where there exists a consistent
value in the variable’s domain; (ii) nogood case that lacks a
consistent value. In the good case with one or more value
choices available, an agent selects a value that minimizes
conflicts with lower priority agents – the min-conflict
heuristic. On the other hand, in the nogood case, the
priority of the agent is increased to max+1, where max is
the highest priority of neighboring agents. In this
approach, a bad value selection by a higher agent make
does not force lower agents to exhaustively search for local
solutions; nogood situations locally increase a priority to
make previously higher agents choose new values.
Furthermore, an increasing agent sends a nogood message
with its agentView (the values and priorities of neighboring
agents). These messages are used to avoid repeating past
situations where an agent has no consistent values in its
domain. Extension of AWC to multiple variables per agent
has been investigated in (Yokoo and Hirayama 1998).

Given: a PLAN with multiple local and shared activities
 a PROJECTION of PLAN into the future
 a set of CONSTRAINTS on shared activities

1. Revise PROJECTION using the currently perceived state, new goal activities from the mission
manager, and received changes to shared activities.

2. Heuristically choose a plan flaw found in PROJECTION.
3. Heuristically choose a flaw repair method that honors CONSTRAINTS.
4. Use method to alter CONSTRAINTS, PLAN, and PROJECTION.
5. Communicate changes to shared activities in PLAN and CONSTRAINTS.
6. Release relevant near-term activities in PLAN to the executive.
7. Go to 1.

Figure 3: Distributed continual iterative repair algorithm

Given: local variable Xi (with domain Di), whose current value violates either local constraints (LCi) or

external constraints (Cij) with higher priority neighbors)(high
iN .

Repair method Alter_variable_in_shared_activity // for a strategy S�αααα-Sββββ
1. Find a value set ico DD ⊆ whose values remove detected violations with Xi;
2. If ∅≠coD , signifying that the violations can be resolved locally (good case),

a. Let Xi = new_cooperative_value(α, Dco);
3. Else the violations cannot be resolved locally (nogood case)

a. Record and communicate the conditions for the impasse in CONSTRAINTS;
b. Let Xi's priority = max of neighbors' priorities + 1 in CONSTRAINTS;
c. Let Xi = new_cooperative_value(β, Di)

Procedure new_cooperative_value (strategy σ, domain iD⊆∆): returns Xi's new value vnew
1. If σ ≡ basic,

a. Select ∆∈newv , minimizing number of violated constraints with lower priority agents;
2. Else (σ∈{high, low, all})

a. For each value ∆∈v , v's flexibility =),(σ
ico Nvf ⊕ , where all

iN denotes all neighbors iN ;

b. Find ∆∈newv with max flexibility – breaking ties with min-conflict heuristic;
3. Return vnew;

Figure 4: Flaw repair using AWC framework extended by cooperative strategy and legal value communication

Conflict Resolution Strategies Based on Value
Selection Heuristics

While AWC is one of the most efficient conflict resolution
protocols, real-time and dynamism in multi-spacecraft
domains motivate a need for faster conflict resolution
convergence. This section introduces novel value ordering
heuristics for faster convergence. In particular, AWC relies
on the min-conflict value ordering heuristic for value
ordering: given a variable assignment with conflicts, assign
a value that minimizes the number of conflicts with other
variable assignments (Minton et al. 1990). This heuristic is
used as a baseline conflict resolution strategy that we refer
to as Sbasic. Here, Sbasic strategy selects values only based
on the values of the other agents’ external variables.
 Legal value communication lets agents consider the
restrictions that neighboring agents have on their variables’
domains. By considering neighboring agents' local
constraint induced legal values, an agent can generate a
more locally cooperative response, i.e., select a value that
gives more choices to neighbors, potentially leading to
faster conflict resolution convergence. For instance, agent
Ai might have a variable Xi with domain Di. After applying
local constraints, Ai discovers that Xi’s revised domain is

ii DD ⊆' . After communicating 'iD , neighboring agents
can improve their cooperation with Ai. To elaborate on
this, we first define our notion of local cooperativeness.

Definition 1: For agent Ai with value v from domain Di
assigned to variable Xi and a subset of neighboring

agents sub
iN ⊆ Ni, the flexibility function),(sub

ico Nvf ⊕

is)],([j
NA

Avc
sub
ij ∈

⊕ , where (i) c(v,Aj) is the number of

values of Xj that are consistent with v; and (ii) ⊕ is the
flexibility base, which can be sum, min, max, product, or
weighted sum.
Definition 2: For a value v of Xi, local cooperativeness

of v is defined as),(ico Nvf ⊕ : the local cooperativeness
of v measures how much flexibility is given to all Ai’s
neighbors by v.
Definition 3: The most locally cooperative value of Xi is
defined as vmax such that, for any other value vother ∈ Di,

),(max ico Nvf ⊕ ≥),(iotherco Nvf ⊕ .
 For example, consider a spacecraft data downlink that is
constrained in relation to downlinks for two neighboring
spacecraft A1 and A2, where a start time v leaves 7
consistent start times to A1 and 4 to A2 while another start
time v′ leaves 5 consistent times for A1 and 5 to A2. Now,
assuming that values are ranked based on flexibility, a
cooperative agent that uses the flexibility base sum will

prefer v to v′: }),{,(21 AAvfco
⊕ =11 and

}),{,(21 AAvfco ′⊕ =10. If ⊕ is min however, a cooperative

agent will rank v′ higher than v: }),{,(21 AAvfco
⊕ = 4 and

}),{,(21 AAvfco ′⊕ = 5.
 The concept of local cooperativeness goes beyond
merely satisfying constraints of neighboring agents to
accelerate convergence. That is, an agent Ai cooperates
with a neighbor agent Aj by selecting a value for its variable
that not only satisfies the constraint with Aj, but also
maximizes Aj‘s flexibility (choice of values). If Ai selects
vmax,, then Aj has more choices for a value that satisfies Aj’s
local constraints and other external constraints with its
neighboring agents, which can lead to faster convergence.
 Given these definitions of local cooperativeness and
flexibility, we can generalize the AWC algorithm by
defining three extra cooperation strategies with respect to a
flexibility base ⊕:

- Shigh: Each agent Ai selects value v from Vi which

maximizes)N,v(f high
ico

⊕ , i.e., Ai attempts to give
maximum flexibility towards its higher priority
neighbors;

- Slow: Each agent Ai selects value v from Vi which
maximizes),(low

ico Nvf ⊕ , i.e., Ai attempts to give
maximum flexibility towards its lower priority
neighbors; and

- Sall: Each agent Ai selects value v from Vi, which

maximizes),(ico Nvf ⊕ , i.e. max flexibility to all
neighbors.

 Formalizing our definition of new value ordering
strategies and couching it in terms of our distributed
continual planning algorithm results in Figure 4’s plan
repair method for altering a variable that participates in a
constraint with another spacecraft. This repair method’s
behavior depends on the selected cooperation strategy Sα-
Sβ, where the subscripts are “basic”, “low”, “high”, or

“all”. As lines 2 and 3 within the repair method imply, the
Sα cooperation strategy applies in cases in the previously
mentioned good case, and the Sβ strategy applies in nogood
cases. Since each subscript can vary over 4 different
choices, there are 16 possible strategies for each flexibility
base. Since, henceforth, we will only consider strategy
combinations, we will refer to them as strategies for short.
Note that all the strategies are enhanced with legal value
communication (constraint propagation): indeed, except for
Sbasic, these strategies cannot be applied without legal
value communication. Here, two exemplar strategies are
listed:

- Sbasic - Sbasic: This is the original AWC. Min-
conflict heuristic is used for the good and nogood
case.

- Slow – Shigh: For the good case, an agent is most
locally cooperative towards its lower priority
neighbor agents by using Slow (the selected value
doesn't violate the constraints with higher
neighbors). On the contrary, for the nogood
situations, an agent attempts to be most locally
cooperative towards its higher priority neighbors
by using Shigh.

Empirical Strategy Comparisons
To provide an initial principled evaluation of these
strategies, a number of DCSP experiments were done with
an abstract problem setting. Here, agents (variables) are in
a 2D grid configuration (each agent is externally
constrained with four neighbors except for the ones on the
grid boundary). All agents share an identical binary
constraint by which a value in an agent is not compatible
with a set of values in its neighboring agent: a value is
represented as a coordinate in a 2D grid, and the constraint
between agents is that the Euclidian distance between two
values (coordinates) must be greater than a threshold. In the

Figure 5: Empirical comparison of strategy performance

0

50

100

150

200

250

300

350

400

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

percentage of locally constrained agents

cy
cl

es
Sbasic-Sbasic

Slow-Slow

Slow-Shigh

Shigh-Shigh

Sall-Sall

experiments, the total number of agents was 512 and each
agent has 36(=6×6) values in its domain. In addition to the
external binary constraint, agents can have a unary local
constraint that restricts legal values into a set of randomly
selected values among its original 36 values.
 Our experiments followed the method used in (Yokoo
and Hirayama 1998). In particular, evaluations were
performed by measuring Performance evaluation is
measured in terms of cycles consumed until a solution is
found. Sum was used for flexibility base (⊕), and the
experiments ranged over all possible strategies with this
flexibility base. In Figure 5, for expository purpose, only
five strategies are presented, which does not change the
conclusions in our work. Each data point in the Figure was
averaged over 500 test runs. The vertical axis plots the
number of cycles and the horizontal axis plots the
percentage of locally constrained agents. Each locally
constrained agent has a local constraint that restricts
available values into randomly selected values. Thus, for
example, local constraint ratio 0.1 means that 10 percent of
the agents have a local constraint described above.
 The results above show that our new value ordering
strategies improved conflict resolution performance. Yet,
surprisingly, the most locally cooperative strategy Sall-Sall
was not the best one. Another key point to note is that
choosing the right strategy has significant impact on
performance. Certainly, choosing Slow-Slow or Slow-Shigh
instead of Sbasic-Sbasic can lead to significant performance
improvement, in particular when a large portion of agents
are locally constrained. Furthermore, there exists no single
dominant strategy for different problem settings.

Predicting DCSP Resolution Strategy
Performance

While the previous section shows that different strategies
can lead to significant speedups over the original "basic-
basic" strategy in AWC, we observe that different
strategies dominate in different domains and at different
local constraint ratios. Indeed, while "Slow-Slow" is the best
in one domain, "Sall-Shigh" is a more preferable strategy in
another domain. Given the variable nature of multi-
spacecraft domains, predicting the right strategy to use in a
given domain is essential to gain maximum efficiency.
 As a formal framework for strategy performance
analysis, we have used a MTDP, Multiagent Team
Decision Process, model (Pynadath and Tambe 2002).
MTDP is based on distributed POMDPs and has been
proposed as a framework for analysis. Here we illustrate
its actual use in analyzing DCSP performance. MTDP
provides a tool for varying key domain parameters to
compare the performance of different DCSP value ordering
strategies, and thus select the most appropriate strategy in a
given situation. We first briefly introduce the MTDP
model. Refer to (Pynadath and Tambe 2002) for more
details.

 The MTDP model involves a team of agents operating
over a set of world states during a sequence of discrete
instances. At each instant each agent chooses an action to
perform and the actions are combined to affect a transition
to the next instance's world state. Borrowing from
distributed POMDPs, the current state is not fully
observed/known and transitions to new world states are
probabilistic. Each agent makes its own observations to
compute its own beliefs, and the performance of the team
is evaluated based on a joint reward function over world
states and combined actions.

More formally, a MTDP model for a team of agents, α,
is a tuple, 〈S, Aα, P, Ωα, Oα, Bα, R〉. S is a set of world
states. Aα = ∏ ∈αi iA is a set of combined actions where

Ai is the set of agent i’s actions. P controls the effect of
agents’ actions in a dynamic environment:

)aA,sS|sSPr()s,a,s(P ttt ==′==′ +
α

1
R: S × Aα → ℜ is a reward function over states and joint
actions. Here, S, Aα, P, and R are the most relevant aspects
of the model for this paper: while belief states Bα,
Observations Oα, and observation function (which defines
the probability distribution of possible observations for an
agent i) are key parts of the model, they are not as relevant
here and will not be discussed.
 A policy in MTDP maps individual agents’ belief states
to actions; the combination of individual policies thus
forms a joint policy for the MTDP. A DCSP strategy is
mapped onto a policy in the model. Thus, we compare
strategies by evaluating policies in this model. Our initial
results from policy evaluation in this model match the
actual experimental strategy comparisons shown in Figure
5. Thus, the model could potentially form a basis for
predicting strategy performance in novel domains.

Mapping DCSP onto MTDP
In a general mapping, the first question is selecting the
right state representation for the MTDP. One typical state
representation could be a vector whose elements are the
values of all the variables in a DCSP. However, this
representation leads to a huge state space. For instance, if
there are 10 variables (agents) and 10 possible values per
variable, the number of states is 1010. To avoid this
combinatorial explosion in state space, we use an abstract
state representation in the MTDP. In particular, as
described in the previous section, each agent can be

A1(G)

A2(G) A3(G) A4(G)

A5(G)

(a)

G

G N G

G

(b)

G

G G N

G

(c)

Figure 6: Agent state representation

abstractly characterized as being in a good or a nogood
state in the enhanced AWC. We use this abstract
characterization in our MTDP model. To further reduce the
combinatorial explosion, our MTDP state currently models
a five-agent system (A1, A2, A3, A4, A5) which represent
a local configuration in a 2D grid setting for the above
experiments where a middle agent (A3) is surrounded by
the other four neighboring agents. Each agent can be in
either good (G) or nogood (N) state (Figure 6). For
simplicity, the case where agents have no violation is not
considered.
 Thus, an individual MTDP state 's' is the tuple of local
states <s1, s2, s3, s4, s5> (e.g., <G, G, G, G, G> if all the five
agents are in good case). Thus, there are totally 32 states in
the MTDP model, e.g., <G, G, G, G, G>, <G, G, G, G, N>,
<G, G, G, N, G>, etc). Here, <G, G, G, G, G> is an initial
state since, in AWC, an agent finds no inconsistency for its
initial values until it receives the values of its neighboring
agents. Agents' value selection actions will cause a

transition from one state to another. For instance, if agents
are in a state <G, G, G, G, G> (Figure 6-a) and all the
agents choose the action "Shigh", there is a certain transition
probability that the next state will be <G, G, N, G, G>
(Figure 6-b) as only the third agent is forced into a
"nogood" or "N" state. However, the agents may also
transition to <G, G, G, N, G> (Figure 6-c) as only the
fourth agent may enter the "N" state. While this simple
model may appear limiting at first glance, it has already
shown promising results --- and we do not expect to need
significantly more complex MTDP models for DCSP
performance analysis (at least for the types of domains
under consideration here).
 Agents’ value selection actions taken in DCSP control
the state transition in MTDP. A DCSP value selection
strategy such as “Sbasic-Sbasic” provides a function to select a
particular value in a given problem state, i.e., a value
selection strategy is akin to a policy in the MTDP. In the
enhanced AWC, agents’ local information is
communicated. This communicated information can be
modeled as observations in MTDP. Here, note that we do
not try to find an optimal policy. Instead, we try to evaluate
the utility of a given policy (i.e., a strategy as “Slow-Slow”).

More details on the Initial model and analytical
results
Our initial model is based on the five agents state
representation described above. Given a state and an
action, state transition is derived by combining the local
state changes of individual agents. The local state change
for an agent is governed by the agent’s local state and the
states and actions of its neighboring agents. Now, the state
transition probability is defined as a product of the
probabilities of local state changes as follows.

- ∏ ′=′
=

5

1i
i)a,s|sPr()s,a,s(P where s′ = 〈s1′, s2′, s3′, s4′, s5′〉

denotes the next state after state s = 〈s1, s2, s3, s4, s5〉 with
an action ‘a’.

 Note that the probabilities for individual agents’ local
state changes are derived from the simulation with 512
agents, not from a simple experiment with only five agents.
Rewards are specified for each state in MTDP: the state
with a nogood (N) has a positive value (a cost) and the
initial state 〈G, G, G, G, G〉’s value is zero.
 Performance analysis is based on the fact that the best
performing strategy has less chance of forcing agents into
the nogood case than other strategies. Since the state with
‘N’ has a cost (which is proportional to the number of N’s),
as a DCSP strategy performs worse in a given problem
setting, the value of an initial state for its corresponding
policy will increase since its successive states have more
N’s. That is, in comparing two policies, the policy with a
smaller initial state value is better than the other with a
larger value. Here, the value of an initial state is computed
with an iterative policy evaluation method.

(a) 90% locally constrained agents

0

10

20

30

40

50

60

Slow-Slow Slow-Shigh Shigh-Shigh

strategy

st
ra

te
gy

 e
va

lu
at

io
n

(b) 50% locally constrained agents

0
20
40
60
80

100
120
140

Slow-Slow Slow-Shigh Shigh-Shigh

strategy

st
ra

te
gy

 e
va

lu
at

io
n

Figure 7: Strategy (policy) evaluation in two
different problem settings: analytical results with
the MTDP model match to the real experimental
results (in Figure 5).

 Figure 7 shows the evaluation (the value of initial states
in the MTDP-based model) of three different strategies
(Slow-Slow, Slow-Shigh, Shigh-Shigh) in two different problem
settings. Empirical results of strategy performance in the
previous section (Figure 5) show that, when 90% of all the
agents are constrained, the performance of the strategies
varies: while Slow-Shigh was the best, Slow-Slow and Shigh-Shigh
performed worse. Figure 7-a shows that the analytical
results with the MTDP model match to the real
experimental results at 90%: that is, the ordering of strategy
(policy) performance in Figure 7-a is same with the
empirical performance ordering in Figure 5. Figure 7-b
shows the analytical results when 50% agents are locally
constrained. Here, the analytical results also match to the
empirical results in terms of performance ordering. Note
that the transition probabilities for the actions in this 50%
case are different from the ones used for the 90% case
(Figure 7-a). Here, Slow-Slow (not Slow-Shigh) was the winning
strategy.
 This result illustrates that MTDP-based model can be
used to predict the right strategy to apply in a given
situation (possibly with less computation overhead). That
is, given a new domain, agents can analyze different
strategies with the simple MTDP-based model and select
the right strategy for the new domain without running a
significant number of problem instances for each strategy
to evaluate. Furthermore, this approach will enable agents
to flexibly adapt their strategies to changing circumstances.
More generally, this result indicates a promising direction
for performance analysis in DCSP, and potentially other
multiagent systems

Conclusion
While NASA is increasingly interested in multi-platform
space missions, a key source of complexity in such
missions is coordination and conflict resolution of multiple
spacecraft plans. We proposed distributed constraint
satisfaction (DCSP) techniques for automated coordination
and conflict resolution of such multi-spacecraft plans. We
introduced novel value ordering heuristics in DCSP to
significantly improve the rate of conflict resolution
convergence to meet the efficiency needs of multi-
spacecraft missions. In addition, we introduced MTDP
(Multiagent Team Decision Process) based techniques for
DCSP convergence analysis, which facilitates automated
selection of the most appropriate DCSP strategy for a given
situation. While we focused on DCSP performance
analysis, our approach could be applied to performance
modeling and analysis for multiagent systems in general.
 In this work we report on how to make an MTDP-based
model given a grid of agents. It turns out that there are
other topologies that motivate other structures. So far
initial work for other topologies is promising, but more
needs to be done. Also, generalizing to more complex
variable types with ranges of continuous values are needed
to appropriately represent spacecraft planning domains.

While this explodes the possible value assignments in a
DCSP problem, there are ways to circumvent the problem
of policy selection by generating discrete abstractions,
computing the transition probabilities in the MTDP-based
model, analyzing the MTDP policies, and finally using the
result to guide strategy selection in the continuous
problem. While this approach makes intuitive sense, more
work is needed for value assignment. Finding the most (or
least) constraining variable assignment gets difficult as the
number of possible assignments explodes.

References
E. Mettler and M. Milman, Space Interferometer
Constellation: Formation Maneuvering and Control
Architecture, SPIE Denver ’96 Symposium.
S. Chien, R. Knight, A. Stechert, R. Sherwood, and G.
Rabideau, Using Iterative Repair to Improve
Responsiveness of Planning and Scheduling, International
Conference on Artificial Intelligence Planning and
Scheduling, 2000.
A. Barrett, From Rovers to Orbiters: Continuous Task
Distribution Based Coordination, NASA Intl. Workshop
on Planning and Scheduling for Space, 2000.
M. Yokoo and K. Hirayama, Distributed Constraint
Satisfaction Algorithm for Complex Local Problems,
International Conference on Multi-Agent Systems, 1998.
D. Pynadath and M. Tambe, Multiagent teamwork:
Analyzing key teamwork theories and models, International
Joint Conference on Autonomous Agents and Multiagent
Systems Conference, 2002.
S. Minton, M.D. Johnson, A. Philips, and P. Laird, Solving
Large-scale Constraint Satisfaction and Scheduling
Problems Using a Heuristic Repair Method, National
Conference on Artificial Intelligence, 1990

