
Team Formation for Reformation in Multiagent

Domains like RoboCupRescue

Ranjit Nair1, Milind Tambe1;2, and Stacy Marsella2

1 Computer Science Department, University of Southern California
Los Angeles CA 90089, USA

fnair,tambeg@usc.edu
2 University of Southern California's Information Sciences Institute

Marina del Rey, CA 90292, USA
marsella@isi.edu

Abstract. Team formation, i.e., allocating agents to roles within a team
or subteams of a team, and the reorganization of a team upon team mem-
ber failure or arrival of new tasks are critical aspects of teamwork. They
are very important issues in RoboCupRescue where many tasks need
to be done jointly. While empirical comparisons (e.g., in a competition
setting as in RoboCup) are useful, we need a quantitative analysis be-
yond the competition | to understand the strengths and limitations of
di�erent approaches, and their tradeo�s as we scale up the domain or
change domain properties. To this end, we need to provide complexity-
optimality tradeo�s, which have been lacking not only in RoboCup but
in the multiagent �eld in general.
To alleviate these diÆculties, this paper presents R-COM-MTDP, a for-
mal model based on decentralized communicating POMDPs, where agents
explicitly take on and change roles to (re)form teams. R-COM-MTDP
signi�cantly extends an earlier COM-MTDP model, by introducing roles
and local states to better model domains like RoboCupRescue where
agents can take on di�erent roles and each agent has a local state consist-
ing of the objects in its vicinity. R-COM-MTDP tells us where the prob-
lem is highly intractable (NEXP-complete) and where it can be tractable
(P-complete), and thus understand where algorithms may need to trade-
o� optimality and where they could strive for near optimal behaviors.
R-COM-MTDP model could enable comparison of various team forma-
tion and reformation strategies | including the strategies used by our
own teams that came in the top three in 2001 | in the RoboCup Rescue
domain and beyond.

1 Introduction

The utility of the multi-agent team approach for coordination of distributed
agents has been demonstrated in a number of large-scale systems for sensing and
acting like disaster rescue simulation domains, such as RoboCupRescue Simula-
tion Domain [5, 10] and sensor networks for real-time tracking of moving targets
[7]. These domains contain tasks that can be performed only by collaborative



actions of the agents. Incomplete or incorrect knowledge owing to constrained
sensing and uncertainty of the environment further motivate the need for these
agents to explicitly work in teams. A key precursor to teamwork is team forma-
tion, the problem of how best to organize the agents into collaborating teams that
perform the tasks that arise. For instance, in RoboCupRescue, injured civilians
in a burning building may require teaming of two ambulances and three nearby
�re-brigades to extinguish the �re and quickly rescue the civilians. If there are
several such �res and injured civilians, the teams must be carefully formed to
optimize performance.

Our work in team formation focuses on dynamic, multiagent environments,
such as RoboCupRescue Simulation Domain [5, 10] and sensor networks [7]. In
such domains teams must be formed rapidly so tasks are performed within given
deadlines, and teams must be reformed in response to the dynamic appearance
or disappearance of tasks. The problems with the current team formation work
for such dynamic real-time domains are two-fold. First, most team formation
algorithms [12, 4, 2, 3, 7] are static. In order to adapt to the changing environment
the static algorithm would have to be run repeatedly.

Second, much of the work in RoboCupRescue has largely relied on experi-
mental work and the competitions have been very useful in comparing various
algorithms. A complementary technique is theoretical analysis. However, there
has been a lack of theoretical analysis of algorithms, such as their worst-case
complexity. This is especially important in understanding how algorithms work
if domain parameters change, how they will scale up, etc.

In this paper we take initial steps to attack both these problems. As the tasks
change and members of the team fail, the current team needs to evolve to handle
the changes. In RoboCupRescue [5, 10], each re-organization of the team requires
time (e.g., �re-brigades may need to drive to a new location) and is hence expen-
sive because of the need for quick response. Clearly, the current con�guration of
agents is relevant to how quickly and well they can be re-organized in the future.
Each re-organization of the teams should be such that the resulting team is ef-
fective at performing the existing tasks but also 
exible enough to adapt to new
scenarios quickly. We refer to this reorganization of the team as "Team Forma-
tion for Reformation". In order to solve the \Team Formation for Reformation"
problem, we present R-COM-MTDPs (Roles and Communication in a Markov
Team Decision Process), a formal model based on communicating decentralized
POMDPs, to address the above shortcomings. R-COM-MTDP signi�cantly ex-
tends an earlier model called COM-MTDP [9], by making important additions of
roles and agents' local states, to more closely model current complex multiagent
teams. Thus, R-COM-MTDP provides decentralized optimal policies to take up
and change roles in a team (planning ahead to minimize reorganization costs),
and to execute such roles.

We use the disaster rescue domain to motivate the \Team Formation for
Reformation" problem. We present real world scenarios where such an approach
would be useful and use the RoboCup Rescue Simulation Environment [5, 10] to
explain the working of our model. We show that the generation of optimal poli-



cies in R-COM-MTDPs is NEXP-complete although di�erent communication
and observability conditions signi�cantly reduce such complexity. The nature
of observability and communication in the RoboCupRescue domain makes it
computationally intractable thus motivating the study of optimality-complexity
tradeo�s in approximation algorithms are necessary. R-COM-MTDPs provide a
general tool for analysis of role-taking and role-executing policies in multiagent
teams and for comparison of various approximate approaches. This will allow
us to model the agents we developed for this domain [8] (which �nished third
at RoboCup 2001 and second at Robofesta, 2001) as an R-COM-MTDP and
determine how changes in the agents' behavior could result in an improved per-
formance. It is important that we develop tools in RoboCup that are relevant
beyond RoboCup and contribute to the wider community. This work is aimed
at meeting that objective.

2 Domain and Motivation

The RoboCupRescue Simulation Domain [5, 10], provides an environment where
large-scale earthquakes can be simulated and heterogeneous agents can collabo-
rate in the task of disaster mitigation. Currently, the environment is a simulation
of an earthquake in the Nagata ward in Kobe, Japan. As a result of the quake
many buildings collapse, civilians get trapped, roads get damaged and gas leaks
cause �res which spread to neighboring buildings. There are di�erent kinds of
agents that participate in the task of disaster mitigation viz. �re brigades, am-
bulances, police forces, �re stations, ambulance centers and police stations. In
addition to having a large number of heterogeneous agents, the state of the en-
vironment is rapidly changing { buried civilians die, �res spread to neighboring
buildings, buildings get burnt down, rescue agents run out of stamina, etc. There
is uncertainty in the system on account of incorrect information or information
not reaching agents.

In such a hostile, uncertain and dynamically changing environment teams
need to continually form and reform. We wish to understand the properties
of such team formation and reformation algorithms. For instance, as new �res
start up or �re engines get trapped under buried collapsing buildings, teams
once formed may need to reform. While current algorithms in RoboCup Rescue
for such reformation (and outside) react to such circumstances based solely on
current information, in general, such reactive techniques may not perform well. In
fact, methods that plan ahead taking future tasks and failures into account may
be needed to minimize reformation, given that reformations take time. While
we can perform useful empirical comparisons of current algorithms within the
current competition settings,the �eld needs to analyze the performance of such
algorithms for a wide variety of settings of agent failure rates, new task arrival
rate, reformation costs, domain scale-up, and other factors. Theoretical analysis
can aid in such analysis, providing us techniques to understand general properties
of the algorithms proposed.



We focus in particular on a technique called "Team Formation for Refor-
mation", i.e.., teams formed with lookahead to minimize costs of reformation.
The following real-world scenarios illustrate the need for such team formation
for reformation.

1. A factory B catches �re at night. Since it is known that the factory is empty
no casualties are likely. Without looking ahead at the possible outcomes of
this �re, one would not give too much importance to this �re and might
assign just one or two �re brigades to it. However, if by looking ahead, there
is a high probability that the �re would spread to a nearby hospital, then
more �re brigades and ambulances could be assigned to the factory and
the surrounding area to reduce the response time. Moving �re brigades and
ambulances to this area might leave other areas where new tasks could arise
empty. Thus, other ambulances and �re brigades could be moved to strategic
locations within these areas.

2. There are two neighborhoods, one with small wooden houses close together
and the other with houses of more �re resistant material. Both these neigh-
borhoods have a �re in each of them with the �re in the wooden neighborhood
being smaller at this time. Without looking ahead to how these �res might
spread, more �re brigades may be assigned to the larger �re. But the �re in
the wooden neighborhood might soon get larger and may require more �re
brigades. Since we are strapped for resources, the response time to get more
�re brigades from the �rst neighborhood to the second would be long and
possibly critical.

3. There is an unexplored region of the world from which no reports of any
incident have come in. This could be because nothing untoward has happened
in that region or more likely, considering that a major earthquake has just
taken place, that there has been a communication breakdown in that area.
By considering both possibilities, it might be best if police agents take on the
role of exploration to discover new tasks and ambulances and �re brigades
ready themselves to perform the new tasks that may be discovered.

Each of these scenarios demonstrate that looking ahead at what events may
arise in the future is critical to knowing what teams will need to be formed. The
time to form these future teams from the current teams could be greatly reduced
if the current teams were formed keeping this future reformation in mind.

3 From COM-MTDP to R-COM-MTDP

The COM-MTDP model[9] has two main advantages. First, COM-MTDP pro-
vides complexity analysis of team coordination given di�erent communication
assumptions. Even though it does not focus on team formation or reformation
(which are topics of this paper), it serves as a basis for developing a new computa-
tional framework called R-COM-MTDP that provides such an analysis. Second,
COM-MTDP was used to analyze di�erent general team coordination algorithms
based on the joint intentions theory, including the STEAM algorithm, part of



the ISIS teams that participated in RoboCup soccer [11]. COM-MTDP analysis
revealed the types of domains where the team coordination behaved optimally,
and speci�c domains where the algorithm communicated too much or too little
| and the complexity of optimal communication strategies. Such analysis may
in turn provide guidance in developing a new generation of team coordination
algorithms which can intelligently engage in optimality-complexity tradeo�s. We
attempt to do something similar with R-COM-MTDP.

3.1 COM-MTDP

Given a team of sel
ess agents, �, a COM-MTDP [9] is a tuple, hS;A�; ��; P;
�;

O�; B�; Ri. S is a set of world states. A� =
Q

i2� Ai is a set of combined domain-
level actions, where Ai is the set of actions available to agent i. �� =

Q
i2��i

is a set of combined communicative actions, where �i is the set of messages
that agent i can broadcast to the other team members. The e�ects of domain-
level actions obey the speci�ed transition probability function, P (sb; a; se) =
Pr(St+1 = sejSt = sb; A

t
� = a).


� =
Q

i2�
i is a set of combined observations, where 
i is the set of
observations that agent i may receive. The observation function (or information
structure),O�, speci�es a probability distribution over the joint observations that
the agents may make, conditioned on the current state and combined actions of
the agents: O�(s; a; !) = Pr(
t

� = !jSt = s; At�1
� = a). We can de�ne classes

of information structures as in [9]:

Collective Partial Observability: We make no assumptions about the ob-
servability of the world state.

Collective Observability: There is a unique world state for the combined
observations of the team: 8! 2 
, 9s 2 S such that 8s0 6= s, Pr(
t =
!jSt = s0) = 0.

Individual Observability: Each individual's observation uniquely determines
the world state: 8! 2 
i, 9s 2 S such that 8s0 6= s, Pr(
t

i = !jSt = s0) = 0.

In domains that are not individually observable, agent i chooses its actions
and communication based on its belief state, bti 2 Bi, based on the observations
and communication it has received through time t. B� =

Q
i2�Bi is the set

of possible combined belief states. Agent i updates its belief state at time t

when it receives its observation, !ti 2 
i, and when it receives communication
from its teammates, �t

�. We use separate state-estimator functions to update
the belief states in each case: initial belief state, b0i = SE0

i (); pre-communication
belief state, bti�� = SEi��(b

t�1
i��; !

t
i); and post-communication belief state, bti�� =

SEi��(b
t
i�� ; �

t
�).

Finally, the COM-MTDP reward function represents the team's joint utility
(shared by all members) over states, as well as both domain and communicative
actions, R : S � �� � A� ! R. We can express this overall reward as the
sum of two rewards: a domain-action-level reward, RA : S � A� ! R, and a
communication-level reward, R� : S � �� ! R. We can classify COM-MTDP



(and likewise R-COM-MTDP) domains according to the allowed communication
and its reward:

General Communication: no assumptions on �� nor R� .
No Communication: �� = ;.
Free Communication: 8� 2 ��, R�(�) = 0.

Analyzing the extreme cases, like free communication (and others in this pa-
per) helps to understand the computational impact of the extremes. In addition,
we can approximate some real-world domains with such assumptions.

3.2 R-COM-MTDP Extensions to COM-MTDP Model

We de�ne a R-COM-MTDP as an extended tuple, hS;A�; ��; P;
�; O�; B�; R;

PLi. The key extension over the COM-MTDP is the addition of subplans, PL,
and the individual roles associated with those plans.

Extension for Explicit Sub-Plans PL is a set of all possible sub-plans that
� can perform. We express a sub-plan pk 2 PL as a tuple of roles hr1; : : : ; rsi. rjk
represents a role instance of role rj for a plan pk and requires some agent i 2 �

to ful�ll it. Roles enable better modeling of real systems, where each agent's
role restricts its domain-level actions [13]. Agents' domain-level actions are now
distinguished between two types:

Role-Taking actions: �� =
Q

i2� �i is a set of combined role taking actions,
where �i = f�irjkg contains the role-taking actions for agent i. �irjk 2 �i
means that agent i takes on the role rj as part of plan pk. An agent's role
can be uniquely determined from its belief state.

Role-Execution Actions: �irjk is the set of agent i's actions for executing
role rj for plan pk [13]. �i=

S
8rjk

�irjk . This de�nes the set of combined

execution actions ��=
Q

i2� �i.

The distinction between role-taking and role-execution actions (A�=�� [��)
enables us to separate their costs. Within this model, we can represent the
specialized behaviors associated with each role, and also any possible di�erences
among the agents' capabilities for these roles. While �lling a particular role, rjk ,
agent i can perform only those role-execution actions, � 2 �irjk , which may not
contain all of its available actions in �i. Another agent ` may have a di�erent set
of available actions, �`rjk , allowing us to model the di�erent methods by which
agents i and ` may �ll role rjk . These di�erent methods can produce varied
e�ects on the world state (as modeled by the transition probabilities, P ) and
the team's utility (as modeled by the reward function, R�). Thus, the policies
must ensure that agents for each role have the capabilities that bene�t the team
the most.

In R-COM-MTDPs (as in COM-MTDPs), each decision epoch consists of
two stages, a communication stage and an action stage. In each successive epoch,



the agents alternate between role-taking and role-execution epochs. Thus, the
agents are in the role-taking epoch if the time index is divisible by 2, and are in
the role execution epoch otherwise. Although, this sequencing of role-taking and
role-execution epochs restricts di�erent agents from running role-taking and role-
execution actions in the same epoch, it is conceptually simple and synchroniza-
tion is automatically enforced. As with COM-MTDP, the total reward is a sum
of communication and action rewards, but the action reward is further separated
into role-taking action vs. role-execution action: RA(s; a) = R� (s; a)+R�(s; a).
By de�nition, R� (s; �) = 0 for all � 2 ��, and R�(s; �) = 0 for all � 2 ��. We
view the role taking reward as the cost (negative reward) for taking up di�er-
ent roles in di�erent teams. Such costs may represent preparation or training or
traveling time for new members, e.g., if a sensor agent changes its role to join
a new sub-team tracking a new target, there is a few seconds delay in tracking.
However, change of roles may potentially provide signi�cant future rewards.

We can de�ne a role-taking policy, �i� : Bi ! �i for each agent's role-
taking action, a role-execution policy, �i� : Bi ! �i for each agent's role-
execution action, and a communication policy �i� : Bi ! �i for each agent's
communication action. The goal is to come up with joint policies �� , �� and ��
that will maximize the total reward.

Extension for Explicit Local States: Si In considering distinct roles within
a team, it is useful to consider distinct subspaces of S relevant for each individual
agent. If we consider the world state to be made up of orthogonal features (i.e.,
S = �1��2�� � ���n), then we can identify the subset of features that agent i
may observe.We denote this subset as its local state, Si = �ki1��ki2�� � ���kimi

.
By de�nition, the observation that agent i receives is independent of any features
not covered by Si: Pr(


t
i = !jSt = h�1; �2; : : : ; �ni ; At�1

� = a) = Pr(
t
i = !jSti =


�ki1 ; : : : ; �kimi

�
; At�1

� = a).

4 Applying R-COM-MTDP in RoboCupRescue

The notation described above can be applied easily to the RoboCup Rescue
domain as follows:

1. � consists of three types of agents: ambulances, police forces, �re brigades.
2. Injured civilians, buildings on �re and blocked roads can be grouped together

to form tasks. The designer can choose how to form tasks, e.g. the world could
be broken into �xed regions and all �res, hurt civilians and blocked roads
within a region comprise a task. We specify sub-plans for each task type.
These plans consist of roles that can be ful�lled by agents whose capabilities
match those of the role.

3. We specify sub-plans, PL, for each task type. Each sub-plan, p 2 PL com-
prises of a number of roles that need to be ful�lled by agents whose capa-
bilities match those of the role in order to accomplish a task. For example,
the task of rescuing a civilian from a burning building can be accomplished



by a plan where �re-brigades �rst extinguish the �re, then ambulances free
the buried civilian and one ambulance takes the civilian to a hospital. Each
task can have multiple plans which represent multiple ways of achieving the
task.

4. Each agent receives observations about the objects within its visible range.
But there may be parts of the world that are not observable because there are
no agents there. Thus, RoboCupRescue is a collectively partially observable
domain. Therefore each agent, needs to maintain a belief state of what it
believes the true world state is.

5. The reward function, R can be chosen to consider the capabilities of the
agents to perform particular roles, e.g., police agents may be more adept at
performing the \search" role than ambulances and �re-brigades. This would
be re
ected in a higher value for choosing a police agent to take on the
\search" role than an ambulance or a �re-brigade. In addition, the reward
function takes into consideration the number of civilians rescued, the number
of �res put out and the health of agents.

The R-COM-MTDP model works as follows: Initially, the global world state
is S0, where each agent i 2 � has local state S0i and belief state b0i = SE0

i () and
no role. Each agent i receives an observation, !0i , according to probability dis-
tribution O�(S

0;null; !0) (there are no actions yet) and updates its belief state,
b0i�� = SEi��(b

0
i ; !

0
i ) to incorporate this new evidence. In RoboCupRescue, each

agent receives the complete world state before the earthquake as its �rst observa-
tion. Each agent then decides on what to broadcast based on its communication
policy, �i� , and updates its belief state according to b0i�� = SEi��(b

0
i�� ; �

0
�).

Each agent, based on its belief state then executes the role-taking action accord-
ing to its role-taking policy, �i� . Thus, some police agents may decide on per-
forming the \search role", while others may decide to \clear roads", �re-brigades
decide on which �res \to put out". By the central assumption of teamwork, all of
the agents receive the same joint reward, R0 = R(S0; �0

�; A
0
�). The world then

moves into a new state, S1, according to the distribution, P (S0; A0
�). Each agent

then receives the next observation about its new local state based on its position
and its visual range and updates its belief state using b1i�� = SEi��(b

0
i��; !

1
i ).

This is followed by another communication action resulting in the belief state,
b1i�� = SEi��(b

1
i�� ; �

1
�). The agent then decides on a role-execution action based

on its policy �i�. It then receives new observations about its local state and the
cycle of observation, communication, role-taking action, observation, communi-
cation and role-execution action continues.

5 Complexity of R-COM-MTDPs

R-COM-MTDP supports a range of complexity analysis for generating optimal
policies under di�erent communication and observability conditions.

Theorem 1. We can reduce a COM-MTDP to an equivalent R-COM-MTDP.



Proof. Given a COM-MTDP, hS;A�; ��; P;
�; O�; B�; Ri, we can generate an
equivalent R-COM-MTDP, hS;A0

�; ��; P
0; 
�; O�; B�; R

0i. Within the R-COM-
MTDP actions, A0

�, we de�ne �� = fnullg and �� = A�. In other words, all
of the original COM-MTDP actions become role-execution actions in the R-
COM-MTDP, where we add a single role-taking action that has no e�ect (i.e.,
P 0(s;null; s) = 1). The new reward function borrows the same role-execution and
communication-level components: R0

�(s; a) = RA(s; a) and R0
�(s; �). We also

add the new role-taking component: R0
� (s;null) = 0. Thus, the only role-taking

policy possible for this R-COM-MTDP is �0i� (b) = null, and any role-execution
and communication policies (�0� and �0� , respectively) will have an identical
expected reward as the identical domain-level and communication policies (�A
and �� , respectively) in the original COM-MTDP. ut

Theorem 2. We can reduce a R-COM-MTDP to an equivalent COM-MTDP.3

Proof. Given a R-COM-MTDP, hS;A�; ��; P;
�; O�; B�; R;PLi, we can gen-
erate an equivalent COM-MTDP, hS0; A�; ��; P

0; 
�; O�; B�; R
0i. The COM-

MTDP state space, S0, includes all of the features, �i, in the original R-COM-
MTDP state space, S = �1�� � ���n, as well as an additional feature, �phase =

ftaking; executingg. This new feature indicates whether the current state cor-
responds to a role-taking or -executing stage of the R-COM-MTDP. The new
transition probability function, P 0, augments the original function with an al-
ternating behavior for this new feature: P 0(h�1b; : : : ; �nb; takingi ; �; h�1e; : : : ; �ne;
executingi) = P (h�1b; : : : ; �nbi ; �; h�1e; : : : ; �nei) and P 0(h�1b; : : : ; �nb; executingi ;
�; h�1e; : : : ; �ne; takingi) = P (h�1b; : : : ; �nbi ; �; h�1e; : : : ; �nei). Within the COM-
MTDP, we restrict the actions that agents can take in each stage by assign-
ing illegal actions an excessively negative reward (denoted �rmax): 8� 2 ��,
R0
A(h�1b; : : : ; �nb; executingi ; �) = �rmax and 8� 2 ��, R

0
A(h�1b; : : : ; �nb; takingi ;

�) = �rmax. Thus, for a COM-MTDP domain-level policy, �0A, we can extract
role-taking and -executing policies, �� and ��, respectively, that generate iden-
tical behavior in the R-COM-MTDP when used in conjunction with identical
communication-level policies, �� = �0� . ut

Thus, the problem of �nding optimal policies for R-COM-MTDPs has the
same complexity as the problem of �nding optimal policies for COM-MTDPs.
Table 1 shows the computational complexity results for various classes of R-
COM-MTDP domains, where the results for individual, collective, and collective
partial observability follow from COM-MTDPs [9] (Proof of COM-MTDP results
are available at http://www.isi.edu/teamcore/COM-MTDP/ ). In the individual
observability and collective observability under free communication cases, each
agent knows exactly what the global state is. The P-Complete result is from a
reduction from and to MDPs. The collectively partial observable case with free
communication can be treated as a single agent POMDP, where the actions cor-
respond to the joint actions of the R-COM-MTDP. The reduction from and to a
single agent POMDP gives the PSPACE-Complete result. In the general case, by

3 The proof of this theorem was contributed by Dr. David Pynadath



Ind. Obs. Coll. Obs. Coll. Part. Obs.

No Comm. P-Comp. NEXP-Comp. NEXP-Comp.

Gen. Comm. P-Comp. NEXP-Comp. NEXP-Comp.

Free Comm. P-Comp. P-Comp. PSPACE-Comp.
Table 1. Computational complexity of R-COM-MTDPs.

a reduction from and to decentralized POMDPs, the worst-case computational
complexity of �nding the optimal policy is NEXP-Complete.

Table 1 shows us that the task of �nding the optimal policy is extremely hard,
in general. However, reducing the cost of communication so it can be treated as
if it were free has a potentially big payo� in complexity reduction. As can be
seen from table 1, when communication changes from no communication to free
communication, in collectively partially observable domains, the computational
complexity changes from NEXP-Complete to PSPACE-Complete. In collectively
observable domains, like the sensor domain, the computational savings are even
greater, from NEXP-Complete to P-Complete. This emphasizes the importance
of communication in reducing the worst case complexity. Table 1 suggests that
if we were designers of a domain, we would increase the observability of the
domain so as to reduce the computational complexity. However, in using existing
domains, we don't have this freedom. The following section describes how R-
COM-MTDPs could be useful in combating the computational complexity of
\Team Formation for Reformation" in RoboCupRescue.

6 Analysis of RoboCupRescue

In RoboCupRescue, agents receive visual information of only the region in its
surroundings. Thus no agent has complete knowledge of the global state of the
world. Therefore the RoboCupRescue domain is in general Collectively Partially
Observable. The number of communication messages that each agent can send
or receive is restricted and in addition, communication takes up network band-
width and so we cannot assume a communication policy where the agents com-
municate everything they see. Hence, RoboCupRescue comes under the General
Communication case. Thus, the computational complexity of �nding the opti-
mal communication, role-taking and role-execution policies in RoboCupRescue
is NEXP-Complete (see Table 1).

However the observability conditions are in our control| because we can
devise agents that can try to provide collective observability. Thus what our
results provide is guidance on \How to Design Teams" in Rescue, and what
types of tradeo�s may be necessary based on the types of teams. What our results
show is stunning { if we do collective observability and free communication then
the complexity of our planning drops substantially. Now, as we know, this is not
going to be possible | we can only approximate collective obesrvability and free



communication. However, we could then treat our result as an approximation {
the resulting policy would be near-optimal but may be not optimal.

But, one of the biggest problems with developing agents for RoboCupRescue
is not being able to compare di�erent strategies easily. Owing to external fac-
tors like the packet loss and non-determinism internal to the simulation, a large
number of simulations would be necessary to determine for certain if one strat-
egy dominates another. However, just as in COM-MTDPs[9], where di�erent
approximate strategies for communication were analysed, RoboCupRescue can
be modeled as an R-COM-MTDP. We could then treat alternative strategies as
alternative policies and evaluate these. This would be very useful in making im-
provements to existing agents as well. For example, we could evaluate the policies
speci�ed by our agents[8], and evaluate their performance in the RoboCupRes-
cue R-COM-MTDP. This would allow us to make changes to this policy and
determine relatively quickly if this change resulted in an improvement. Such
kind of incremental improvements could greatly improve the performance of our
agents which �nished in third place in RoboCup 2001 at Seattle and in second
place in Robofesta 2001.

7 Summary and Related Work

This work addresses two shortcomings of the current work in team formation
for dynamic multiagent domains: i) most algorithms are static in the sense that
they don't anticipate for changes that will be required in the con�guration of
the teams, ii) complexity analysis of the problem is lacking. We addressed the
�rst shortcoming by presenting R-COM-MTDP, a formal model based on de-
centralized communicating POMDPs, to determine the team con�guration that
takes into account how the team will have to be restructured in the future.
R-COM-MTDP enables a rigorous analysis of complexity-optimality tradeo�s
in team formation and reorganization approaches. The second shortcoming was
addressed by presenting an analysis of the worst-case computational complexity
of team formation and reformation under various types of communication.

While there are related multiagent models based on MDPs, they have focused
on coordination after team formation on a subset of domain types we consider,
and they do not address team formation and reformation. For instance, the decen-
tralized partially observable Markov decision process (DEC-POMDP) [1] model
focuses on generating decentralized policies in collectively partially observable
domains with no communication; while the Xuan-Lesser model [14] focuses only
on a subset of collectively observable environments.

Modi et al.[7] provide an initial complexity analysis of distributed sensor team
formation, their analysis is limited to static environments (no reorganizations)
| in fact, illustrating the need for R-COM-MTDP type analysis tools. Our
complexity analysis illustrate where the problem is tractable and where it is
not. Thus, telling us where algorithms could strive for optimality and where
they should not. We intend to use the R-COM-MTDP model to compare the
various team formation approaches for RoboCupRescue which were used by our



agents in RoboCup-2001 and Robofesta 2001, where our agents �nished in third
place and second place respectively. It is important that tools be developed in
RoboCup that step beyond RoboCup and contribute to the wider community.
This work is a step in that direction.

8 Acknowledgment

We would like to thank David Pynadath for his discussions on extending the
COM-MTDP model to R-COM-MTDP and Takayuki Ito for his invaluable con-
tribution to the development of our Rescue agents, and the Intel Corporation
for their generous gift that made this research possible.

References

1. Bernstein, D. S., Zilberstein, S., Immerman, N.: The Complexity of Decentralized
Control of MDPs. Proceedings of the Sixteenth Conference on Uncertainty in Arti�-
cial Intelligence (2000)

2. Fatima, S. S., Wooldridge, M.: Adaptive Task and Resource Allocation in Multi-
agent Systems. Proceedings of the Fifth International Conference on Autonomous
Agents (2001)

3. Horling, B., Benyo, B., Lesser, V.: Using Self-Diagnosis to Adapt Organizational
Structures. Proceedings of the Fifth International Conference on Autonomous Agents
(2001)

4. Hunsberger, L., Grosz, B.: A Combinatorial Auction for Collaborative Planning.
Proceedings of the Fourth International Conference on Multiagent Systems (2000)

5. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjoh, A.,
Shimada, S.: RoboCupRescue: Search and Rescue for Large Scale Disasters as a
Domain for Multi-agent Research. Proceedings of IEEE International Conference on
Systems, Man and Cybernetics (1999)

6. Marsella, S., Adibi, J., Alonaizon, Y., Kaminka, G., Muslea, I., Tambe, M.: On being
a teammate: Experiences acquired in the design of robocup teams. Proceedings of
the Third International Conference on Autonomous Agents(1999)

7. Modi, P. J., Jung, H., Tambe, M., Shen, W.-M., Kulkarni, S.: A Dynamic Dis-
tributed Constraint Satisfaction Approach to Resource Allocation. Proceedings of
Seventh International Conference on Principles and Practice of Constraint Program-
ming (2001)

8. Nair,R., Ito, T., Tambe, M., Marsella, S.: Task Allocation in the Rescue Simulation
Domain. RoboCup-2001: The Fifth Robot World Cup Games and Conferences, Eds.
Coradeschi, S., Tadokoro, S., Andreas Birk, Springer-Verlag (2001)

9. Pynadath, D., Tambe, M.: Multiagent Teamwork: Analyzing the Optimality Com-
plexity of Key Theories and Models. Proceedings of First International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (2002)

10. Tadokoro, S., Kitano, H., Tomoichi, T., Noda, I., Matsubara, H., Shinjoh, A.,
Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayama, M., Nobe, J., Shi-
mada, S.: The RoboCup-Rescue: An International Cooperative Research Project of
Robotics and AI for the Disaster Mitigation Problem. Proceedings of SPIE 14th An-
nual International Symposium on Aerospace/Defense Sensing, Simulation, and Con-
trols (AeroSense), Conference on Unmanned Ground Vehicle Technology II (2000)



11. Tambe, M.: Towards Flexible Teamwork. Journal of Arti�cial Intelligence Research,
7, 83-124 (1997)

12. Tidhar, G., Rao, A. S., Sonenberg, E.: Guided Team Selection. Proceedings of the
Second International Conference on Multi-Agent Systems (1996)

13. Wooldridge, M., Jennings, N., Kinny, D.: A Methodology for Agent Oriented Anal-
ysis and Design. Proceedings of the Third International Conference on Autonomous
Agents (1999)

14. Xuan, P., Lesser, V., Zilberstein, S.: Communication Decisions in Multiagent Co-
operation. Proceedings of the Fifth International Conference on Autonomous Agents
(2001)


