Between collaboration and competition: An Initial
Formalization using Distributed POMDPs
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ABSTRACT

This paper presents an initial formalization of teamwork
in multi-agent domains. Although analyses of teamwork
already exist in the literature of multi-agent systems,
almost no work has dealt with the problem of teams
that comprise self-interested agents.

The main contribution of this work is that it concen-
trates specifically on such teams of self interested agents.
Teams of this kind are common in multi-agent systems
as they model the implicit competition between team
members that often arises within a team. Our work
models the internal struggle of agents that are acting
in a team as they try to maximise their individual pay-
off while at the same time acting in a manner that is
beneficial to the entire team. This dilemma of self in-
terest versus team interest is a problem that has been
studied in game and decision making theory, although
no clear-cut solution that applies to agent systems has
been proposed.

Our formalisation is based on the theory of Partially Ob-
servable Markov Decision Processes (POMDPs). In this
work, we reintroduce and extend the Electric Elves (E-
Elves), an application of personal assistant agents that
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displays all the characteristics of competition within a
cooperative setting. Using E-Elves we show how com-
petition arises out of a collaborative scenario and anal-
yse the shortcomings of previous approaches in han-
dling this competition. Finally, we provide some initial
thoughts on how to cope with these problems based on
our previous experience with E-Elves.

1. INTRODUCTION

A large number of recent applications have focused on
enabling software agents (and/or robots) to assist hu-
mans in their organizational activities, such as in offices,
educational institutions, research organizations, busi-
ness organizations[4, 26, 29, 9]. The motivation in these
applications is that agents embedded in human organi-
zations can enable routine organizational coordination,
flexible response to a changing environment or rapid re-
sponse to crises. Initial prototypes of such applications
have already been developed and in some instances de-
ployed, and this area has begun to see a rapid growth.

In these applications, agents must often act on behalf
of individual human users, groups of human users or
even on behalf of critical resources in the organization.
These agents must thus ensure that their user’s goals
are appropriately achieved, and their interests are ap-
propriately protected. Yet, agents within such human
organization must act together jointly in organizational
activities, or else the organizational objectives may be
difficult to attain. For instance, even in simple tasks
such as scheduling or rescheduling meetings for their
users (e.g., see [26]), agents must ensure that their user’s
preferences are honored and yet, these agents coordinate
with each other and reach joint agreements.



The focus of this paper is to take some initial steps
towards a formal computational model of the type of
domain mentioned above. The main characteristic of
agents in these domains is that while they belong to a
team or to the same organization and may have some
joint goals, they also have their own personal goals and
must maximize their own benefits in the context of the
team or organization. There are many models of in-
dividual agents acting in competitive environments and

attempting to maximize their personal benefits [20]. There

are also several models of teamwork of agents that act
together and attempt to maximize the overall benefits of
the team, founded on BDI logics[5, 8], and decision the-
ory[21]. However, almost no work has focused on mod-
elling teams of self-interested agents, although there are
some notable exceptions[27]. In such teams, an agent
needs to balance between its desire that the teamwork
will succeed while, at the same time, protecting its own
(or its user’s) interests.

This paper presents EMTDP (extended multiagent team
decision problem) as a formal computational model for
such teams of self-interested agents. EMTDP is based
on previous models of distributed POMDPs[15], in par-
ticular COM-MTDP[21]. However, there are some ma-
jor novelties in EMTDP. First, unlike the distributed
POMDPs that focus on team activities by modelling a
single joint reward for the team, EMTPD maintains the
joint reward for the team and the individual rewards for
the individual participants in the team. Thus, rewards
occurring from joint activities are both the joint rewards
and the individual rewards.

A further critical novelty in EMTDP is in its solution
concept. In distributed POMDPs, an optimal policy is
one which attempts to maximize the joint value. This
optimal policy is appropriate in pure teamwork situa-
tions where there is only a single joint reward. How-
ever, such an optimal policy could potentially lead to
arbitrarily low individual rewards for a team member,
when constructing teams of self-interested agents. Such
low rewards may provide the individual an incentive to
deviate from the stated policy. Instead, in EMTDP,
the optimal policy must also ensure certain minimum
expected value for individual team members.

To provide a practical illustration of the benefits of the
EMTPD model, we focus on a real-world application
called Electric-FElves[26] (E-Elves). In previously pub-
lished results[26], this application used a fully collabo-
rative model; indeed a single MDP with a single joint
reward was used to model the actions of agents in E-
Elves. We illustrate that this model leads to difficul-
ties precisely because the notion of self-interest within
a team was not (and could not be) appropriately mod-
elled. We illustrate that using EMTPD enables us to
resolve the prior difficulties encountered in the E-Elves
system.

2. EMTDP

This section describes the Extended Multiagent Team
Decision Problem (EMTDP) model. It also provides an
analysis of the model’s ability to represent the impor-
tant aspects of multi-agent teamwork in domains such
as the E-Elves, where cooperation and competition ex-
ist simultaneously. The EMTDP model is an extension
of the Multiagent Team Decision Problem (MTDP)[22].
We first describe MTDP briefly and then introduce the
extension to EMTDP.

21 MTDP

An MTDP is a tuple < S, Aa, P,Q24,Oq, Ba, R >, where
we assume a team « of n agents a1,a2,...,a,. We
explain each term below:

e S is a set of world states, expressed as a cross
product of separate features. In other words, S is
the state of the team’s environment.

e A, is the set of allowed actions for all agents in the
system. {A;},., is a set of domain-level actions
for each agent 1 to perform in the environment
which is known as the agent’s action space. These
actions implicitly define the set of combined (or
team) actions Ay = Hiea A;

e P:SxA,xS —[0,1]is a probability distribution
that governs the effects of domain-level actions.
For each initial state s at time ¢, combined action
a taken at time ¢ and final state s’ at time t+1 we
have Pr(S't! =§'|S" = 5, AL, = @) = P(s,qa,s')

o {Q}ica is a set of observations that each agent
a; can experience of the world. The combined
observation is defined implicitly as Q, = HiEa Q.

e (O, is a joint observation function. Typically O, is
defined as the cross product of each agent’s obser-
vation function: O, = Hiea O; where O; (s, a,w) =

Pr(Q =w|S' =5, A5 = @)

e Each agent a; € a forms a belief state ﬁf € B;
based on its observations seen through time ¢, where
B; circumscribes the set of possible belief states for
the agent. Implicitly, the set of possible combined
belief states is defined as B, = Hiea B;

o A common reward function R for the team is de-
fined as R : Sx Ay = R. The reward function rep-
resents the team’s joint preferences over the states
and the cost of domain-level actions.

A policy for an agent in MTDP is any function 7 : B; —
A; that maps the agent’s belief state to an action or
probability distribution over many actions in its action
space. The objective of MTDP is to find joint policies
(71,72, ....., mn) such that these joint policies provide a
maximum expected reward.



2.2 ExtensontoEMTDP

As noted in section 2.1, the reward function in the
MTDP model is centralized. This is due to the fact
that, in MTDP, all agents are assumed to have the same
preferences. However, this is not always the case and,
in domains such as the E-Elves, it is often necessary to
allow agents to have different preferences.

To describe the agents’ preferences and accurately re-
ward the agents for their actions, the reward function is
transformed into a sum of terms, each of which repre-
sents a specific reward to each of the agents in the team.
Thus there is a joint team reward, but also components
of the joint reward which are individual rewards avail-
able to each team member of the team as a result of the
joint action, denoted as < Rprivy, - - Rpriv, >

The flow of rewards to the agents is as follows: at each
point in time, all agents decide what actions to perform
based on their beliefs at the time. The joint action
that is made up from all the agents’ individual actions
is executed. The system then transitions to the corre-
sponding successor state and all agents receive a joint
reward equally. In addition, the agents each receive a
private reward, where the private terms are calculated
for each agent individually and the corresponding re-
wards are distributed where due. So, for every tran-
sition from one state to another via a joint action, all
agents get the same joint reward from the reward func-
tion. It is only in their private components that the
agents’ rewards differ.

Thus, more than one private terms often coexist in the
extended version of the reward function. However, for
simplicity we assume that the joint reward is a weighted
sum of the private rewards. Thus, we will henceforth use
the function R = W1x Rprivi + W 2% Rprive, where Rprivi
and Rprive are the private terms and W1 and W2 are
weights.

3. THE SOLUTION CONCEPT

In section 2.1, we described the notion of a policy in the
MTDP framework. The same notion is carried across
to the extended model since, again, a policy is simply
a function that prescribes what action an agent should
(potentially probabilistically) undertake based on its be-
lief state. However, our goal in the EMTDP model is to
find one policy 7; per agent such that the expected joint
reward for the team is maximized under the constraint
that, for all policies =;, the expected private reward for
m; is higher than the threshold Vmin. Thus agents at-
tempt to optimize team performance. The manner in
which these policies are found is through the use of a
policy generator. We iteratively generate all possible
policies for the agents. All combinations of these poli-
cies must be evaluated in order to find the set of policies
that satisfy the algorithm’s criteria. We now potentially
have a number of sets of policies for all agents which sat-
isfy the algorithm’s constraint. One of those is selected
at random as the solution to the problem.

The reason for the Vi,in constraint on the private reward
is that the agents in EMTDP have different preferences.
This means that, if after a policy search, each agent is
given a policy to follow that is optimal for the team, it
is likely that some of the agents will get a significantly
lower private reward than others due to differences aris-
ing from their private reward terms i.e. differences due
to their preferences over the possible outcomes.

The fact that the agents have different preferences may
mean that, in some cases, there simply isn’t a solution
that is optimal for all the agents simultaneously. With
the added constraint, optimality is relaxed so that the
agents can reach a consensus after policy generation
with the guarantee of minimum private reward. The
philosophy behind the constraint is that it is beneficial
for the agents to agree to a course of action that guar-
antees them a minimum private reward even if other
agents accumulate higher private rewards. The bias in
the agents’ decision making is towards agreeing since the
agents are in a team, although they also have interests
of their own. The need for this constraint never materi-
alized in the original MTDP framework since there was
only one central reward function whose optimal point
was optimal for all agents simultaneously.

Imagine, for example, the situation where there are two
possible sets of policies that are accepted by all agents,
namely the set (71,72, ... ,7s) and the set (p1, p2,... , pn).
More specifically, let us assume that agent ¢ prefers out-
come 7 and agent j prefers outcome p. By preference we
mean that, although both sets of policies are acceptable
since their 13, and 7;, component’s satisfy agents : and j
respectively (i.e. provide expected reward higher than
Vinin ), individually policy 7; yields higher private re-
ward for agent 1 whereas policy p; yields higher private
reward for agent 3. The problem of selecting one of the
two sets of policies is resolved by the agents’ agreement
that a policy is acceptable as long as it yields reward
higher than the threshold Viin. So, random choice be-
tween the two policy sets is satisfactory for both agents.

It is critical to note that in the domains of interest,
agents do not benefit from unilaterally deviating from
the policy provided, if the policy is based on the con-
straints mentioned above. In particular, in these do-
mains, the actions are fundamentally joint actions to-
wards joint goals, and thus, an agent cannot perform
such actions alone. For instance, the next section dis-
cusses the example of a meeting; here, an agent cannot
meet along by itself, and thus deviating from the pro-
vided policy — as long its interests are protected to a
certain minimum level — is not to the agent’s benefit.

4. EXPERIMENTAL RESULTS

This section presents our experimental results and a hy-
pothesis aimed at validating the claims made in the
previous section. The E-Elves system introduced ear-
lier was used as a testbed for evaluating the E-MTDP
model. Rather than constructing a new toy example,
the goal here was to use a previously published, real-



world system as a testbed for EMTDP. We first describe
the E-Elves domain more extensively and then proceed
to the experimental results. Our claim is that the ab-
sence of models such as the E-MTDP cause difficulties
in creating E-Elves like systems and thus such problems

can be mitigated via E-MTDP.

4.1 Modeling ElvesMDP asan EMTDP

The Electric Elves (E-Elves) was a project at USC/ISI
to deploy an agent organization in support of the daily
activities of a human organization [23, 3]. Teams of
software agents can aid organizations in accomplishing
these tasks, facilitating coherent functioning and rapid,
flexible response to crises. In the E-Elves system, each
user’s personal assistant agent acts on behalf of the user
in the agent team. These agents are called prozies. The
proxy can perform several tasks for its user. For ex-
ample, if a user is delayed to a meeting, the proxy can
reschedule the meeting, informing other proxies, who in
turn inform their users. If there is a research presenta-
tion slot open, the proxy may respond to the invitation
to present on behalf of its user. The proxy can also order
its user’s meals and track the user’s location, posting it
on a Web page. The proxies communicate with their
users using wireless devices, such as personal digital as-
sistants (PALM VIIs) and WAP-enabled mobile phones,

and via user workstations.

We focus here on the task of rescheduling meetings. The
original E-Elves system used a single agent MDP to
model the actions of an individual agent in the team.
The actions available to the agent include delaying the
meeting, cancelling the meeting, asking the user for in-
put, suggesting to the team that the meeting go ahead
without the user and so forth. Asking for user input
is critical in E-Elves, as the proxy agents are taking
actions on behalf of the users and must consult with
them; yet time constraints from the rest of the team
may prohibit an agent from asking for user input so
that sometimes autonomous actions are taken instead.
The rest of the agent team typically follows the rec-
ommendations made by this single-agent MDP say in
delaying the meeting (although there is a simple filter-
ing process to determine if the recommendations should
be followed or not by the team — we will ignore these
cases for now).

Thus, in many instances, the single agent’s MDP could
be viewed as a team MDP, modelling joint actions, joint
rewards and joint states. The original joint reward func-
tion of the MDP is discussed below [26]. We later illus-
trate how this single reward function can be subdivided

to model an EMTDP.

R(s,a) = Z Engiziéon(tzme(s)) :
entity€ E\{A}
entity-response
=1 fi(MeetingDelay)
=2 f2(late, h)
+Asra(value of meeting without user)
+Airuser (user’s individual value to «)
+Xs f3(a)
(1)

We proceed to explain the terms present in the above
joint reward function and provide their classification
into privatel and private2 terms. Here privatel refers
to one agent’s individual reward. While private2 refers
to the other individual’s reward, where the second indi-
vidual is the other team member, i.e., the other meeting
attendee in the case of E-Elves. Since the other meet-
ing attendee may actually be more than one individual,
we refer to this term as private2. (However, as before,
the joint reward seen above is a weighted sum of the
private! and private2 rewards). The first component
captures the value of getting a response from a decision
making entity other than the agent itself, i.e. this is the
reward that a proxy agent obtains when it asks a user
for input and actually obtains a response from the user.
Only one entity responds to the request and the reward
is associated with the agent that receives that response.
Hence this term is a private! reward term.

The fi1 function reflects the inherent value of attend-
ing the meeting as the team originally expected. This
deters the agent from making any costly coordination
changes (meeting delays) unless they can gain some in-
direct value from doing so. This term is a private2
reward since it is a penalty to the other team member
(the other team member was able to meet on time, but
now must delay the meeting).

The f> function corresponds to the cost of making the
meeting attendees wait. By definition it includes the
cost of other team members and can be classified as
private2 .

The component r, models the inherent value of the joint
activity, 1.e., the meeting. It represents the value of the
meeting,if it takes place, but the user does not attend.
This component can be classified as a private2 term
because it invloves the other team members (excluding
the user). The value r,ser models the user’s individual
value to «. This represents the value added to the meet-
ing by the user and is classified as private! part of the
reward. The f; function accounts for additional costs
of tranfer of control actions. Since communication is
between the agent and the user it accounts for private?
part of the reward.

4.2 Preliminary experiments
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Figure 1: Electric elves evaluation

As we pointed out earlier, one of the challenges of the E-
FElves system is taking the decision of whether to ask the
user or not. In this experiment the value of the meeting
without the user (i.e ro) is varied and the number of
asks has been obtained, as shown in Figure 1.

We have chosen to plot the number of asks against the
value of the meeting We can see from the plot that, as
the joint activity weight varies from -10 to -6 the number
of asks start increasing. The plot reaches a peak at -4
and again starts decreasing till it reaches zero at 3.

The reason for the shape of the curve is that when the
value of the meeting is set to too low value, the agent
tries to minimize communication costs associated with
giving a quality decision about the user’s view. There-
fore, it tries to make autonomous decisions. On the
other hand when the value of the meeting is set at a high
value the agent cannot afford the uncertainty, in the user
providing response in time and hence tries to take de-
cisions autonomously. Only in the intermediate regions
the agent tries to ask the user. In the first instance, the
agent doesn’t want to bother the user with a decision
about a relatively unimportant meeting whereas, in the
second instance, the agent cannot afford to ask the user
because the cost of potentially not getting a response in
time is too high.

Though this looks reasonable logically, the behaviour
of the agent would look very counter-intuitive to the
user. In particular when the meeting becomes impor-
tant the user is not even asked his opinion before the
agent replies to the team. This was one of the biggest
problems that was faced by the E-Elves system when it
was put to practical use. In most of the situations the
user would like to be asked a certain number of times
before any important decision is made.

The problem arises because the original Elves focused
on only maximizing the team’s joint reward, and did
not focus on the self-interest of each team member, e.g.,
the user. Thus, this problem is mitigated to a great
extent due to the EMTDP model. One of the main fea-
tures of the EMTDP model is that it ensures certain
minimum expected reward for individual team mem-

# of asks as a function of joint activity weight
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Figure 2: Electric elves evaluation

bers. The main reason why the agent takes decisions
autonomously is that it gives undue importance to the
rest of the team members (the ”private2” terms unnec-
essarily carry much higher weight). By making the in-
dividual important to the agent, the agent is now forced
to ask users opinion also.

The reward function in the EMTDP framework is of the
form reward = v * privatel + 6 * private2, where, v and
4 are constants between 0 and 1. The policy generator
satisfies the constraint that expected reward is maxi-
mized while it always maintains a value above a certain
threshhold. This ensures that the number of asks cannot
fall below a certain minimum number making the sys-
tem more predictable and dependable. The important
issue would be setting the threshhold which depends on
the user’s choice. Figure 2 shows the effect of main-
taining such a threshhold. (Please note that we have
not fully implemented the algorithm mentioned in Sec-
tion 3; instead we have simulated its results by changing
internal parameters).

From the above arguments we conclude that the EMTDP
model is novel because it has provision for maintaining
two conflicting rewards. It further ensures that the user
has the flexibility to tune the agent according to his
tastes as seen in the new E-Elves system.

5. RELATED WORK

Some of the problems that arise in environments such as
the E-Elves can be modelled, using game theory tech-
niques, as coordination games. A coordination game is a
game in which there is at least one outcome which both
agents prefer over other outcomes. The problem arise
when there are several outcomes that are preferred by all
parties over others; however, the agents have conflicting
preferences among these preferred outcomes. For ex-
ample, consider a situation of two users of the E-Elves
application who need to set up a meeting. They need to
choose a meeting time on Tuesday or Wednesday. One
user prefers meeting on Tuesday and the second prefers
meeting on Wednesday. However, both prefer to meet
in any of these days rather than to cancel the meet-
ing. Thus, both choosing Tuesday is an equilibrium but



also both choosing Wednesday is an equilibrium. The
problem is which of these equilibria will be chosen.

Equilibrium selection theories have been developed for
such games which can discriminate between Nash equi-
libria (e.g., [10, 12, 6]). A significant amount of work
has been performed on the evolution of equilibria in co-
ordination games that are played repeatedly within a
population (e.g. [32, 31, 13, 2, 7, 14].) However, there is
no acceptable solution for one shot games or for complex
situations as occur in the E-Elves domain.

The tension between an individual and a group has
been studied in the economics and game-theory liter-
ature also in the context of an agent that subcontract
a task to a group of self-interested agents (e.g. [17, 18,
16]). The problem of the contracting agent is to pro-
vide the contracted agents with an incentive to make a
costly effort that will contribute to the success of the
task even when the contracting agent can observe only
the final outcome of the agents’ activity but can’t ob-
serve each of the agents’ personal effort (e.g. [11, 24,
1]). In such situations, the well known free rider prob-
lem arises: each of the agents would like the others to
work hard, and would like to minimize its own effort.
The solution is based on the design of complex con-
tracts that are offered by the contracting agent. That
is, there is a central manager that plays an important
role in this setting. We consider situations where such
central agent is not available.

As mentioned above, vast array of work has been per-
formed on competitive multi-agent systems or on co-
operative multi-agent systems. In some models, it is
assumed that the competitive agents will cooperate but
usually no formal motivation is given for their coopera-
tion.

We will demonstrate the problems of such approaches in
looking closely, as an example, at the technically inter-
esting paper of Vickrey and Koller [30]. They consider
the problem of collaboratively finding a stable strat-
egy profile in situations involving multiple interacting
agents. Their main example is the following. Suppose a
road is being built from north to south through undevel-
oped land and 2n agents have purchased plots of land
along the road the agents wi,...,w, on the west side
and the agents e1,...,e, on the east side. Each agent
needs to choose what to build on his land; a factory,
a shopping mall, or a residential complex. His utility
depends on what he builds and on what is built north,
south, and across the road from his land. All of the
decisions are made simultaneously. The agents in this
example are not cooperative; each tries to maximize its
own expected utility.

The special property of the above game is that it is
an example of a graphical game. It assumes that each
agent’s reward function depends on the actions of a sub-
set of the agents rather than on all other agents’ actions.
They use this property when searching for an equilib-

rium. In particular, they focus on the idea of exploiting
the locality of interaction between agents, using graphi-
cal games as an explicit representation of this structure.
They provide two algorithms that exploit this structure
to support solution algorithms that are both compu-
tationally efficient and utilize distributed collaborative
computation that respects the “lines of communication”
between the agents. However, it is not clear why the
agents will collaborate. Their agents are competitive.
It is clear that once an equilibrium is identified and all
the agents agree to follow their identified equilibrium
strategies, there is no incentive to each of them to de-
viate. However, since each of the agents may prefer a
different equilibrium, it is not clear why they will not
deviate during the search for the strategy, instead of
following the proposed search algorithm.

Grosz et al. [28] considered the problem of teams of self-
interested agents. They focused on intention reconcilia-
tion in a team context. That is, the agents need to rec-
oncile their intentions to do team-related actions with
other, conflicting, but more beneficial, intentions. This
problem was studied empirically using the SPIRE sim-
ulation. They assumed that a centralized agent makes
the initial task allocation, while we look for a theory
that will enable a team of self-interested agents to agree
upon task allocation and to make any other decisions
that are needed for their joint activity.

Gmytrasiewicz[25] proposes a novel formulation for dis-
tributed POMDPs, where instead of a centralized plan-
ner, there are separate agents planning their own opti-
mal policies for their own POMDPs individually. While
this is a very interesting advance, the concept of optimal
policies is not fully elaborated. In particular, precisely
how would or should different agents pick their optimal
policies without negotiations with other agents is un-
clear. Finally, Nair et al[19] use the concept of a Nash
equilibrium to speed up the search for an optimal policy
in MTDP. However, they focus on a single joint reward
rather than the individual rewards that are also consid-

ered in EMTDP.

6. DISCUSSION

In the original electric elves domain the policy gener-
ation was done in a distributed fashion. There was a
centralized creation of joint rewards based on general
rules. By dividing the reward into privatel( which is t
he personal reward ) and private2( the team reward ) in
the E-MTDP the agents had the flexibility to set their
threshholds. However, in our implementation we held
the threshholds fixed for all the agents. We would like
our model to handle the case where each individual can
specify its own threshholds. There is however a serious
problem with the individuals setting their threshholds.
It can happen that in such a free to set threshhold sce-
nario the agents can start setting their threshholds high.
This leads to the free rider problem where agents try to
preserve their pe rsonal interests at the cost of team.

One issue that was raised by readers is that there is no



need for a separate individual and joint reward, since a
joint reward with appropriately adjusted weights could
be used to solve an equivalent problem.In other words,
EMTDP could be subsumed by MTDP.However we tend
to argue a bit differently. Let us consider a simple ex-
ample as follows:
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In the table above, the tuple (value 1, value 2) say (4,4)
refers to the private reward of agent 1 and private re-
ward of agent 2. Therefore in the perspective of agent 1,
value 1 equals privatel and value 2 equals private2 and
for agent 2, value 1 equals private2 and value 2 equals
privatel.

In this example if the threshhold was 5, there is no possi-
ble solution. However, maximizing the reward function
would have to choose one of them as them as a solution.
This shows that our method is inherently different from
just adjusting the weights of different terms and maxi-
mize the reward function. Suppose the threshhold is 3.
In this case selecting (4,4) is the best move according to
the E-MTDP policy. There is no way in which weights
can be adjusted so as to select (4,4) in the reward max-
imaization method.

The other advantage of such a division is the added
understandability, modifiability and explainability. In-
stead of dealing with each and every individual term
in the reward function such a split is a very clean ap-
proach of fine tuning behaviour of the system. There is
a clearly defined part of the reward that the user can ad-
just without bothering about details of the actual terms
in the reward function.

7. CONCLUSIONS

This paper presents an initial formalization of multia-
gent teamwork, where multiple agents each may have
some self interest which they must protect, while simul-
taneously aiming to attain the team goal. Such team-
work is critical in newly emerging domains where agents
are embedded in human organizations, and must protect
the interests of the human users while also acting in a
team.

Our initial attempt has yielded the formulation of EMTDP,

where agents have both a team reward and individ-
ual rewards; EMTDP is an extension to a distributed
POMDP framework called MTDP. We introduce a cri-
teria for selecting policies in EMTDP.

Finally, we experiment with Electric Elves (E-Elves),
an existing application with published results. We illus-
trate that by using a single joint team reward, this ap-
plication may suffer from unpredictability in agents’ be-
haviors. If instead, this application was modeled as an
EMTDP, some of these difficulties could be addressed.

These initial results illustrate the potential benefits of

EMTDP for realistic future applications.
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