
Composing POMDP-based Building Blocks to Analyze Large-scale Multiagent
Systems

Hyuckchul Jung, Milind Tambe
Computer Science Department, University of Southern California

941 W. 37th Place, Los Angeles, CA 90089-0781, USA�
jungh,tambe � @usc.edu

Abstract

Given a large group of cooperative agents, selecting the right
coordination or conflict resolution strategy can have a sig-
nificant impact on their performance (e.g., speed of conver-
gence). While performance models of such coordination or
conflict resolution strategies could aid in selecting the right
strategy for a given domain, such models remain largely unin-
vestigated in the multiagent literature. This paper takes a step
towards applying the recently emerging distributed POMDP
(partially observable markov decision process) frameworks,
such as the MTDP (markov team decision process) in service
of creating such performance models.
To address issues of scale-up, we use small-scale models,
called building blocks that represent the local interaction
among a small group of agents. We discuss several ways
to combine building blocks for performance prediction of a
larger-scale multiagent system. Our approach is presented in
the context of DCSP (distributed constraint satisfaction prob-
lem), where we are able to predict the performance of five dif-
ferent DCSP strategies in different domain settings by model-
ing and combining building blocks. Our approach points the
way to new tools based on building blocks for performance
analysis in multiagent systems.

Introduction
In many large-scale applications such as distributed sen-
sor nets, distributed spacecraft and disaster response sim-
ulations, collaborative agents must coordinate their actions
or resolve conflicts over shared resources or task assign-
ments (Jung, Tambe, & Kulkarni 2001; Modi et al. 2001;
Jung et al. 2002; Prasad & Lesser 1997). Selecting the
right coordination or conflict resolution strategy can have
a significant impact on performance of such agent commu-
nities. For instance, in distributed sensor nets, tracking tar-
gets quickly requires that agents controlling different sen-
sors adopt the right strategy to resolve conflicts regarding
shared sensors.

Unfortunately, selecting the right coordination strategy is
difficult. First, there are often a wide diversity of strategies
available, and they can lead to significant variations in the
rate of convergence of the multiagent systems. For instance,
when distributed agents must resolve conflicts over shared

Copyright c
�

2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

resources such as shared sensors, they could select among
strategies that offer maximum possible resources to most
constrained agents, or distribute resources equally among
all agents requiring such resources, and so on. Each strat-
egy may create significant variations in the rate of con-
flict resolution convergence(Jung, Tambe, & Kulkarni 2001;
Prasad & Lesser 1997).

Performance modeling of multiagent coordination and
conflict resolution could help predict the right strategy to
adopt in a given domain. Unfortunately, performance mod-
eling has not received significant attention in mainstream
multiagent research community; although within subcom-
munities such as mobile agents, performance modeling has
received significant attention(Rana 2000). Fortunately, re-
cent research in distributed POMDPs (partially observable
markov decision processes) and MDPs has begun to provide
key tools to aid multiagent researchers in modeling the per-
formance of multiagent systems(Pynadath & Tambe 2002;
Bernstein, Zilberstein, & Immerman 2000; Xuan & Lesser
2002). In the context of this paper, we will use the MTDP
(Markov Team Decision Process) model(Pynadath & Tambe
2002) for performance modeling, although other distributed
POMDP models could be used.

There are at least two major problems in applying such
distributed POMDP models. First, while previous work has
focused on modeling communication strategies within very
small numbers of agents(Pynadath & Tambe 2002), we are
interested in strategy performance analysis for a large-scale
multiagent systems. Second, techniques to apply such mod-
els to investigate other types of coordination strategies and
conflict resolution strategies have not been investigated.

We address these limitations in the context of distributed
constraint satisfaction problems, which is a major paradigm
of research on conflict resolution (Yokoo 2001; Silaghi,
Sam-Haroud, & Faltings 2000; Hamadi, Bessière, & Quin-
queton 1998; Zhang & Wittenburg 2002). Our contribution
in this paper is to illustrate the use of MTDP to model the
performance of different DCSP strategies to select the right
strategy. First, we illustrate how DCSP strategies can be
modeled in MTDP. Second, to address scale-up issues in
the MTDP models, we introduce small-scale models called
”building blocks” that represent the local interaction among
a small group of agents. We discuss several ways of building
block composition, and the initial result indicates a promis-

Agent A3

LC2

LC3 LC4

Agent A4

C13 C24

C34

C12

Agent A1

LC1

X1 X2

X3 X4

V1 V2 V3 V4

(a)

Agent A2

(b)
Figure 1: Model of agents in DCSP

ing direction for performance analysis in highly complex
multiagent systems.

DCSP Strategies
DCSP (Distributed Constraint Satisfaction Problem) tech-
niques have been used for coordination and conflict reso-
lution in many multiagent applications such as distributed
sensor network (Modi et al. 2001). In this section, we intro-
duce DCSP and efficient DCSP strategies.

Distributed Constraint Satisfaction Problem
(DCSP)
A Constraint Satisfaction Problem (CSP) is commonly de-
fined by a set of � variables, � =

�����
, ...,

�
	 � , each ele-
ment associated with value domains � � , ..., � 	 respectively,
and a set of � constraints, =

��� �
, ...,

��� � . A solution in
CSP is the value assignment for the variables which satis-
fies all the constraints in . A distributed CSP is a CSP in
which variables and constraints are distributed among multi-
ple agents(Yokoo & Hirayama 1998). Formally, there is a set
of � agents, ��� =

� � � , ..., ����� . Each variable (
���

) belongs
to an agent ��� . There are two types of constraints based on
whether variables in the constraint belong to a single agent
or not:
� For a constraint

���! , if all the variables in
���

belong
to a single agent � � ��� , it is called a local constraint.� For a constraint

� � , if variables in
� �

belong to dif-
ferent agents in ��� , it is called an external constraint.

Figure 1-a illustrates an example of a DCSP: each agent� � (denoted by a big circle) has a local constraint " ��� and
there is an external constraint

� � � between � � and � � . As
illustrated in Figure 1-b, each agent can have multiple vari-
ables. There is no limitation on the number of local/external
constraints for each agent. Solving a DCSP requires that
agents not only satisfy their local constraints, but also com-
municate with other agents to satisfy external constraints.

Asynchronous Weak Commitment Search Algorithm
(AWC): AWC is a sound and complete algorithm which
shows the best performance among the published DSCP al-
gorithms(Yokoo 1995; Yokoo & Hirayama 1998). In the
AWC approach, agents asynchronously assign values to
their variables from available domains, and communicat-
ing the values to neighboring agents. Each variable has a

non-negative integer priority that changes dynamically dur-
ing search. A variable is consistent if its value does not vio-
late any constraints with higher priority variables. A solution
is a value assignment in which every variable is consistent.

For simplification, suppose that each agent has exactly
one variable and constraints between variables are binary.
When the value of a variable is not consistent with the val-
ues of neighboring agents’ variables, there can be two cases:
(i) good case where there exists a consistent value in the vari-
able’s domain; (ii) nogood case where there is no consistent
value in the variable’s domain. In the nogood case, an agent
increases its priority to max+1, where max is the highest pri-
ority of neighboring agents’ variables. This priority increase
makes previously higher agents select new values to satisfy
the constraint with the new higher agent.

DCSP Value Selection Strategies in AWC Framework:
While AWC relies on the min-conflict value selection strat-
egy(Minton et al. 1990) that minimizes the number of con-
flicts with other agents, new novel value selection strate-
gies were introduced based on local cooperativeness(Jung,
Tambe, & Kulkarni 2001) (local cooperativeness measures
how many value choices are given towards neighbors by a
selected value):�$#&%('*) : Each agent selects a new value from its consistent

values maximizing the sum of compatible values with its
lower priority neighbor agents.�$#,+ �.- + : Each agent selects a new value from its consistent
values maximizing the sum of compatible values with its
higher priority neighbor agents.�$#,/ %0% : Each agent selects a new value from its consistent
values maximizing the sum of compatible values with all
neighbor agents.

Note that a value is consistent if the value is compatible
with the values of higher priority agents. In the nogood case,
since an agent increases its priority, every value in its do-
main is consistent. The three strategies above and the origi-
nal min-conflict strategy (henceforth, referred as #213/54 �(6) can
be applied to the good and the nogood case. Therefore, there
are 16 strategy combinations such as # %('*)87 #,+ �9- + (# %.':) is
applied in the good case and #;+ �.- + is applied to the nogood
case). Note that, in the nogood case, the higher and lower
agents are grouped based on the previous priority before the
increase. Since we will consider only strategy combinations,
henceforth, they are referred as strategies for short. While
agents’ strategies can be heterogeneous, for simplification,
we assume that every agent applies the same strategy. Per-
formance evaluation with heterogeneous strategies will be
considered in our future work.

Experimental Evaluation
To provide the initial evaluation of these strategies, a number
of DCSP experiments were done with an abstract problem
setting. Here, agents (variables) are in a 2D grid configu-
ration (each agent is externally constrained with four neigh-
bors except for the ones on the grid boundary). All agents
share an identical binary constraint by which a value in an
agent is not compatible with a set of values in its neighboring

(a) High flexibility setting

0

50

100

150

200

250

300

350

400

0% 20% 40% 60% 80% 100%

percentage of locally constrained agents

cy
cl

es

Sbasic-Sbasic
Slow-Slow
Slow-Shigh
Shigh-Slow
Shigh-Shigh

(b) Low flexibility setting

0

50

100

150

200

250

300

350

0% 20% 40% 60% 80% 100%

percentage of locally constrained agents

cy
cl

es

Sbasic-Sbasic
Slow-Slow
Slow-Shigh
Shigh-Slow
Shigh-Shigh

Figure 2: Performance prediction in the case of 90% locally
constrained agents

agent. This grid configuration is motivated by the research
on distributed sensor network (Modi et al. 2001) where mul-
tiple agents must collaborate to track targets.

To test the performance of strategies in various problem
settings, we make a variation to the problem setting used in
(Jung, Tambe, & Kulkarni 2001) by modifying the external
constraint: in the new setting, each agent gives less flexi-
bility (choice of values) towards neighboring agents given
a value in its domain. Henceforth, the previous setting in
(Jung, Tambe, & Kulkarni 2001) is referred as high flexibil-
ity setting, and the new setting with less choice of values to
neighbors is referred as low flexibility setting.

Experiments were performed in the two problem settings
(high flexibility setting and low flexibility setting). Other
than this external constraint variation, the parameters for the
experiments remain same. Each data point in the figures was
averaged over 500 test runs. While all the possible strategies
for each flexibility base were tried, for expository purpose,
only five strategies are presented in Figure 2, which does not
change our conclusion. The evaluation followed the method

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51

Cycles

Nu
m

of
co

nfl
ict

s

Strategy1 Strategy2

Figure 3: Convergence rate in DCSP with long-tail distribu-
tion

used in (Yokoo & Hirayama 1998). In particular, perfor-
mance evaluation is measured in terms of cycles consumed
until a solution is found, and the experiments ranged over all
possible strategies. The vertical axis plots the number of cy-
cles and the horizontal axis plots the percentage of locally
constrained agents. Having a local constraint, an agent’s
available domain is reduced. The performance difference
between different strategies are proved to be statistically sig-
nificant by performing < -test.

The experimental results in Figure 2 show that the
value selection strategies described above have a great im-
pact on conflict resolution convergence in solving DCSPs.
Certainly, choosing #;1=/>4 �(6 7 #,1=/>4 �?6 may lead to signifi-
cantly slower convergence rate while appropriately choosing# %.':)@7 # %.'*) or # %.':)A7 #,+ �.- + can lead to significant improve-
ments in convergence. However, there was no universal best
strategy for different problem domains. To gain maximum
efficiency, it would be essential to predict the right strategy
to use in a given domain.

Long tail distribution in Convergence
The key factor in determining the performance of strategies
is in the long tail where only a small number of agents are
in conflicts. Figure 3 shows the number of conflicts at each
cycle for two different strategies. In the beginning of con-
flict resolution, both strategies shows similar performance in
resolving conflicts. However, the difference in performance
appears in the long tail part. While strategy 1 quickly solves
a problem, strategy 2 has a long tail with a small number of
conflicts remaining unresolved. This type of long tail distri-
bution has been also reported in many constraint satisfaction
problems (Gomes et al. 2000).

Performance Analysis
The previous section shows that, given the dynamic nature
of multiagent systems, predicting the right strategy to use
in a given domain is essential to maximize the speedup of

conflict resolution convergence, and the critical factor for
strategy performance is in the long tail part where a small
number of conflicts exist. In this section, we provide a for-
mal model for performance analysis and mapping of DCSP
onto the model, and present the results of performance pre-
diction.

Distributed POMDP-based Model
As a formal framework for strategy performance analysis,
we use a distributed POMDP model called MTDP (Multi-
agent Team Decision Process) model (Pynadath & Tambe
2002). The MTDP model has been proposed as a framework
for teamwork analysis. Distributed POMDP-based model
is an appropriate formal framework to model strategy per-
formance in DCSPs since it has distributed agents and the
agentView in DCSPs (other agents’ values, priorities, etc.)
can be modeled as observations. In DCSPs, the exact state
of the system is only partially observable to an agent since
the received information for the agent is limited to its neigh-
boring agents. Therefore, there is strong correspondence be-
tween DCSPs and distributed POMDPs. While we focus on
the MTDP model in this paper, other distributed POMDP
models such as DEC-POMDP (Bernstein, Zilberstein, & Im-
merman 2000) could be used.

Here, we illustrate the actual use of MTDP in analyzing
DCSP performance. MTDP provides a tool for varying key
domain parameters to compare the performance of different
DCSP strategies, and thus select the most appropriate strat-
egy in a given situation. We first briefly introduce the MTDP
model. Refer to (Pynadath & Tambe 2002) for more details.

MTDP model The MTDP model involves a team of
agents operating over a set of world states during a sequence
of discrete instances. At each instant, each agent chooses
an action to perform and the actions are combined to affect
a transition to the next instance’s world state. Borrowing
from distributed POMDPs, the current state is not fully ob-
served/known and transitions to new world states are proba-
bilistic. Each agent makes its own observations to compute
its own beliefs, and the performance of the team is evalu-
ated based on a joint reward function over world states and
combined actions.

More formally, an MTDP for a team of agents, B , is a tu-
ple, C #ED �GF D:H�DJI F DJK F D:L F DNMPO . S is a set of world states.� FRQTS �VU F � � is a set of combined actions where � � is the
set of agent W ’s actions. H controls the effect of agents’ ac-
tions in a dynamic environment: HYX[Z\D:]�DJZ_^?` Q H!abX3#EcVd � QZ�^3e #Ec Q Z\D � c F Q]f` . Mhgi#Tj �kFmlon is a reward func-
tion over states and joint actions. Here, # , � F , H , and M are
the most relevant aspects of the model for this paper: while
belief states L F , Observations I F , and observation functionK F (which defines the probability distribution of possible
observations for an agent W) are key parts of the model, they
are not as relevant here. A policy in the MTDP model maps
individual agents’ belief states to actions; the combination of
individual policies thus forms a joint policy for the MTDP. A
DCSP strategy is mapped onto a policy in the model. Thus,
we compare strategies by evaluating policies in this model.
Our initial results from policy evaluation in this model match

the actual experimental strategy performance results shown
in Figure 2. Thus, the model could potentially form a basis
for predicting strategy performance in a given domain.

Mapping from DCSP to MTDP In a general mapping,
the first question is selecting the right state representation
for the MTDP. One typical state representation could be a
vector whose elements are the values of all the variables in
a DCSP. However, this representation leads to a huge state
space. For instance, if there are 10 variables (agents) and
10 possible values per variable, the number of states is prq

�ts
.

To avoid this combinatorial explosion in state space, we use
an abstract state representation in the MTDP. In particular,
as described in the previous section, each agent can be ab-
stractly characterized as being in a good or nogood state in
the AWC algorithm. We use this abstract characterization in
our MTDP model. Henceforth, the good and nogood state
are denoted by u and v respectively. Here, an initial state
of the MTDP is a state where all the agents are in u state
since, in the AWC, an agent finds no inconsistency for its
initial values until it receives the values of its neighboring
agents. Note that, for simplicity, the case where agents have
no violation is not considered.

In this mapping, the reward function M is considered as
a cost function. The joint reward (cost) is proportional to
the number of agents in the v state. This reward is used for
strategy evaluation based on the fact that the better perform-
ing strategy has less chance of forcing neighboring agents
into the v state than other strategies: as a DCSP strategy
performs worse in a given problem setting, more agents will
be in the v states.

In the AWC algorithm (a base DCSP algorithm in this pa-
per), each agent receives observations only about the states
of its neighboring agents. Initially, we assume that these
observations are perfect (without message loss in communi-
cation). This assumption can be released in a future work
where agents’ communication is not reliable.

Here, #&%('*) , # + �9- + , # / %0% , and �wW=� 7yx>z �;{&|VW x < in DCSPs
are mapped onto the actions for agents in the MTDP model.
A DCSP strategy such as # %.':)m7 #,+ �9- + is akin to a policy
in MTDP: #&%('*) in the good state and # + �9- + in the nogood
state. The state transition in the MTDP model is controlled
by an agent’s own action as well as its neighboring agents’
actions. The transition probabilities can be derived from the
simulation on DCSPs.

Building Block While the abstract representation in the
mapping above can reduce the problem space, for a large-
scale multiagent system, if we were to model belief states of
each agent regarding the state of the entire system, the prob-
lem space would be enormous even with the abstract repre-
sentation. For instance, the number of states in the MTDP
for the system with 512 agents would be }\~

�t�
: each agent

can be either u or v . To further reduce the combinato-
rial explosion, we use small-scale models, called building
blocks. Each building block represents the local situation
among five agents in the 2D grid configuration.

In the problem domains for the experiments shown in Fig-
ure 2, each agent’s local situation depends on whether it has
a unary local constraint or not: each agents can be either

C C

C

C

C C C

C

C

U C

C

C

UC

(a) (b) (c)

C

C

C

C U C

C

UU

U

C

C

C

U

U

(d) (e) (f)

Figure 4: Building block

constrained (a portion of its original domain values are not
allowed) under a local constraint (

�
) or unconstrained (�).

Figure 4 illustrates some exemplar building blocks for the
domain used in the experiments. For instance, Figure 4-
a represents a local situation where all the five agents are
constrained (

�
) while Figure 4-b represents a local situation

where an agent in the left side is unconstrained (�) but the
other four agents are locally constrained (

�
).

Note that, when the percentage of locally constrained
agents is high, most of building blocks would be the one
shown in Figure 4-a and a small portion of building blocks
would be like the one shown in Figure 4-b, 4-c, or 4-d. As
the percentage of locally constrained agents decreases, more
building blocks include unconstrained agents (�) as shown
in Figure 4-e and 4-f.

In each building block, as shown in the Figure 5, a mid-
dle agent (���) is surrounded by the other four neighboring
agents (� � , � � , ��� , � ~). Thus, the state of a building block
can be represented as a tuple of local states C Z � , Z � , Z � , Z � ,Z ~ O (e.g., C�u , u , u , u , u O if all the five agents are in
good (u) state). There are totally 32 states in a building
block of the MTDP model (e.g., C�u , u , u , u , u O , C�u , u ,u , u , v O , C�u , u , u , v , u O , etc), and the initial state of
a building block is C�u , u , u , u , u O . Here, agents’ value
selection actions will cause a transition from one state to an-
other. For instance, if agents are in a state C�u , u , u , u , u O
(Figure 5-a) and all the agents choose the action #i+ �.- + , there
is a certain transition probability that the next state will beC�u , u , v , u , u O (Figure 5-b) when only the third agent
is forced into a nogood (v) state. However, the agents may
also transition to C�u , u , u , v , u O (Figure 5-c) if only the
fourth agent enters into v state.

One may argue that these small-scale models are not suf-
ficient for the performance analysis of the whole system
since they represent only local situations. However, as seen
in Figure 3, the key factor in determining the performance
of strategies is in the long tail where only a small number
of agents are in conflicts. Therefore, the performance of
strategies are strongly related to the local situation where
a conflict may or may not be resolved depending on the lo-

A2(G)

A1(G)

A3(G) A4(G)

A5(G)

G

GG

G

N G G N

G

G

(a) (b) (c)

Figure 5: States in a building block

cal agents’ actions. That is, without using a model for the
whole system, small scale models for local interaction can
be sufficient for performance analysis. Furthermore, while
this simple model may appear limiting at first glance, it has
already shown promising results presented below.

Building Block Composition for Performance Analysis
While the building blocks are the basis for performance
analysis, we need to deal with multiple building blocks that
can exist in a given domain. Different building blocks have
an impact on conflict resolution convergence depending on
which actions are selected by the agents in the building
block. It is expected that the the local interaction in a sin-
gle building block does not determine the performance of
strategies but the interactions which occurs between build-
ing blocks have a great impact on the performance of strate-
gies. Here, we propose four methods of combining building
blocks to evaluate MTDP policies (to which DCSP strategies
are mapped on) as follows:
� Single block: for a given domain, a single building block

is selected. The selected block has the highest probability
of producing nogood (v) case within the building block.
The performance of strategies are evaluated based on the
value of an initial state of the building block (C�u , u , u ,u , u O) given a policy: the lower initial state value, the
better policy (strategy).� Simple sum: for a given domain which has multiple
building blocks, we compute the value of initial state for
each building block. Performance evaluation of a policy
is based on the summation of the initial states’ values.� Weighted sum: given multiple building blocks, for each
building block, we compute the ratio of the building block
in the domain and the value of its initial state. Perfor-
mance evaluation of a policy is based on the weighted
sum of the initial states’ values where the weight is the
ratio of a building block.� Interaction: a sequence of building blocks is considered
since the performance difference comes from the long tail
part (shown in Figure 3), and their interaction is taken
into account: an agent may force its neighboring agents to
enter into nogood (v) state given an action under a policy
to evaluate. For instance, the initial state of a building
block is affected by the state of its neighboring blocks.

For the interaction method, we don’t have arbitrary de-
grees of freedom: for different domains, there can be com-
monalities in building blocks. That is, for common building

blocks, the same transition probabilities within a building
block are applied. As we change from the first method (sin-
gle block) to the fourth method (interaction), we gradually
increase the complexity of composition. The accuracy of
performance prediction of these methods are presented in
the next section.

Here, note that the focus of our building block composi-
tion is not on computing the optimal policy but it remains
on matching the long-tailed phenomenon shown in Figure
3. Thus, our interactions essentially imply that neighboring
blocks affect each other in terms of the values of the policies
being evaluated, but we are not computing optimal policies
that cross building block boundaries. More details will be
available in our forthcoming paper in AAMAS 03(Jung &
Tambe 2003).

Performance Prediction
To check whether the MTDP based model can effectively
predict the performance of strategies, the performance eval-
uation results from the MTDP model (based on the four
composition methods described above) are compared with
the real experimental results presented in the previous sec-
tion. Among the possible strategies defined in the back-
ground section, we focus on the following strategies that
were selected for expository purpose: # %.':)�7 # %.'*) , # %.':)�7#,+ �.- + , #;+ �.- + 7 # %.':) , #,+ �.- + 7 #;+ �.- + , and #,1=/>4 �?6 7 #,1=/>4 �(6 .

The Figure 6-(a) (top) shows the experimental results in
the case where 90% agents are locally constrained, and the
Figure 6-(b) (bottom) shows the performance evaluation of
the case from the MTDP model using the interaction com-
position method. In the performance evaluation, the lower
value means the better performance (indicating less number
of cycles will be taken until a solution is found). Figure 6-(a)
and (b) show that the performance prediction results match
to the real experimental results in the problem setting con-
sidered here: the patterns of column graphs in the Figure
6-(a) and (b) correspond to each other. That is, the strate-
gies (#&%.':) 7 # + �9- + and # + �.- + 7 # + �9- +) that showed better
performance in the experiments are expected to perform bet-
ter than the others according to the performance prediction.
Here, the current goal of performance prediction is mainly to
predict the best performing strategy, not to predict the mag-
nitude of speedup difference among the given strategies.

Here, a question remains to be answered for whether the
other building block composition methods can provide the
same power of performance prediction as the interaction
method does? Figure 7 shows the performance prediction re-
sults with different composition methods for the same prob-
lem domain used in Figure 6. The rightmost part is for the
interaction method shown in Figure 6-(b). It is shown that
the result from the single block method does not match at
all. While the simple sum or weighted sum method provides
a little improvement over the single block, they are far from
matching to the real experimental results shown in Figure 6-
(a). That is, the composition method taking the interaction
between building blocks into account shows the best perfor-
mance prediction results.

Figure 8 also shows the performance analysis results in
a different domain using the interaction method of building

(a) experimental results

0

50

100

150

200

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Sbasic-Sbasic

strategy

cy
cl

es
(b) performance prediction

0
1
1
2
2
3
3
4
4
5

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Sbasic-Sbasic

strategy

ev
al

ua
tio

n

Figure 6: Performance prediction in the low flexibility set-
ting with 90% locally constrained agents

block composition. Note that the composition methods other
than the interaction method does not provide matching re-
sults. Here, while the performance prediction results do not
perfectly match to the experimental results, certainly the per-
formance analysis can distinguish better performing strate-
gies from worse performing strategies. This result illustrates
that the MTDP model can be used to predict the right strat-
egy to apply in a given situation (possibly with less computa-
tion overhead). That is, given a new domain, agents can an-
alyze different strategies with the simple MTDP model, and
select the right strategy for the new domain without running
a significant number of problem instances for each strategy
to evaluate. Furthermore, this approach will enable agents
to flexibly adapt their strategies to changing circumstances.

This result indicates a promising direction for perfor-
mance analysis in DCSP, and potentially other multia-
gent systems. More generally, the formal model of build-
ing blocks and the building block composition methods in
this paper begin to provide domain independent techniques
which enable automatic abstraction of system modules and
bottom up module composition methods for performance
analysis in highly complex multiagent systems.

0

2

4

6

8

10

12

Single block Simple sum Weighted sum Interaction

Composition method

ev
al

ua
tio

n

Slow-Slow
Slow-Shigh
Shigh-Slow
Shigh-Shigh
Sbasic-Sbasic

Figure 7: Comparison of composition methods

Related Work and Conclusion
In terms of related work, significant work in multiagent
learning is focused on learning to select the right coordi-
nation strategy(Prasad & Lesser 1997; Excelente-Toledo &
Jennings 2002). While this goal is related to our goal of
choosing the right strategy, one key difference is that the
learning work focuses on enabling each agent to select a
strategy. Instead, our focus is on a complementary goal of
trying to predict the overall performance of the entire mul-
tiagent system assuming homogeneous conflict resolution
strategies.

In centralized CSPs, performance prediction for different
heuristics has been investigated. However, their method is
based on the estimation of nodes to expand for search(Lob-
jois & Lemaitre 1998). However, this approach is not ap-
plicable to DCSP since multiple agents simultaneously in-
vestigate search space. Theoretic investigations of heuristic
performance were also done in centralized CSPs (Minton et
al. 1990; Musick & Russell 1992). However, no theoreti-
cal investigation has been done for performance prediction
in DCSPs.

While there are related works in composition methods
of subproblem solutions in MDPs(Dean & Lin 1995; Parr
1998; Hauskrecht et al. 1998; Guestrin, Koller, & Parr 2001)
and in POMDPs(Pineau, Roy, & Thrun 2001), little have
been investigated in distributed POMDPs which our perfor-
mance models are based on. Furthermore, we are really in-
terested in applying these composition techniques for per-
formance modeling, not computing an optimal policy. For
instance, our techniques are heavily influenced by the need
to capture the long-tailed phenomena in conflict resolution.

To conclude, in this paper, the recently emerging dis-
tributed POMDP frameworks such as the MTDP model were
used to create a model for the performance analysis of co-
ordination or conflict resolution strategies. To address is-
sues of scale-up, we used small-scale models, called build-
ing blocks that represent the local interaction among a small
group of agents. We discussed several ways to combine
the building blocks for the performance prediction of larger-

(a) experimental results

0
50

100
150
200
250
300
350
400

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Sbasic-Sbasic

strategy

cy
cl

es
(b) performance prediction

0

2

4

6

8

10

Slow-Slow Slow-Shigh Shigh-Slow Shigh-Shigh Sbasic-Sbasic

strategy

ev
al

ua
tio

n

Figure 8: Performance prediction in the high flexibility set-
ting with 90% locally constrained agents

scale multiagent systems.
These approaches were presented in the context of DC-

SPs (Distributed Constraint Satisfaction Problems), where
we first showed that there is a large bank of conflict reso-
lution strategies and no strategy dominates all others across
different domains. By modeling and combining the building
blocks, we were able to predict the performance of DCSP
strategies for different domain settings, for a large-scale
multiagent system. Thus, our approach points the way to
new tools for the strategy analysis and performance model-
ing in large scale multiagent systems.

Acknowledgement
The research in this paper was funded by NASA Jet Propul-
sion Laboratory subcontract “Continual Coherent Team
Planning”. We thank Tony Barrett for valuable discussions
and input.

References
Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The complexity of decentralized control of mdps. In Pro-

ceedings of the International Conference on Uncertainty in
Artificial Intelligence.
Dean, T., and Lin, S. 1995. Decomposition techniques
for planning in stochastic domains. In Proceedings of the
International Joint Conference on Artificial Intelligence.
Excelente-Toledo, C., and Jennings, N. 2002. Learning
to select a coordination mechanism. In Proceedings of the
International Joint Conference on Autonomous Agents and
Multiagent Systems.
Gomes, C.; Selman, B.; Crato, N.; and Kautz, H. 2000.
Heavy-tailed phenomenon in satisfiability and constraint
satisfaction problems. Journal of Automated Reasoning 24.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Multiagent
planning with factored MDPs. In Proceedings of the Ad-
vances in Neural Information Processing Systems (NIPS).
Hamadi, Y.; Bessière, C.; and Quinqueton, J. 1998. Back-
tracking in distributed constraint networks. In Proceedings
of the Thirteenth European Conference on Artificial Intel-
ligence.
Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T.;
and Boutilier, C. 1998. Hierarchical solution of Markov
decision processes using macro-actions. In Proceedings of
the International Conference on Uncertainty in Artificial
Intelligence.
Jung, H., and Tambe, M. 2003. Performance models
for large scale multiagent systems: Using pomdp building
blocks. In Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems (to
appear).
Jung, H.; Tambe, M.; Barrett, A.; and Clement, B. 2002.
Enabling efficient conflict resolution in multiple spacecraft
mission via dcsp. In Proceedings of the NASA Planning
and Scheduling Workshop.
Jung, H.; Tambe, M.; and Kulkarni, S. 2001. Argumenta-
tion as distributed constraint satisfaction: Applications and
results. In Proceedings of the International Conference on
Autonomous Agents.
Lobjois, L., and Lemaitre, M. 1998. Branch and bound al-
gorithm selection by performance prediction. In Proceed-
ings of the Seventeenth National Conference on Artificial
Intelligence.
Minton, S.; Johnston, M. D.; Philips, A.; and Laird,
P. 1990. Solving large-scale constraint satisfaction and
scheduling problems using a heuristic repair method. In
Proceedings of the National Conference on Artificial Intel-
ligence.
Modi, P.; Jung, H.; Tambe, M.; Shen, W.; and Kulkarni,
S. 2001. A dynamic distributed constraint satisfaction ap-
proach to resource allocation. In Proceedings of the In-
ternational Conference on Principles and Practice of Con-
straint Programming.
Musick, R., and Russell, S. 1992. How long it will take?
In Proceedings of the National Conference on Artificial In-
telligence.
Parr, R. 1998. Flexibile decomposition algorithms for
weakly coupled Markov decision problems. In Proceed-

ings of the International Conference on Uncertainty in Ar-
tificial Intelligence.
Pineau, J.; Roy, N.; and Thrun, S. 2001. A hierarchical
approach to POMDP planning and execution. In Proceed-
ings of the ICML Workshop on Hierarchy and Memory in
Reinforcement Learning.
Prasad, N., and Lesser, V. 1997. The use of meta-level
information in learning situation-specific coordination. In
Proceedings of the International Joint Conference on Arti-
ficial Intelligence.
Pynadath, D., and Tambe, M. 2002. The communicative
multiagent team decision problem: analyzing teamwork
theories and models. Journal of Artificial Intelligence Re-
search.
Rana, O. 2000. Performance management of mobile agent
systems. In Proceedings of the International Conference
on Autonomous Agents.
Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. V. 2000.
Asynchronous search with aggregations. In Proceedings of
the Seventeenth National Conference on Artificial Intelli-
gence.
Xuan, P., and Lesser, V. 2002. Multi-agent policies: from
centralized ones to decentralized ones. In Proceedings of
the International Conference on Autonomous Agents.
Yokoo, M., and Hirayama, K. 1998. Distributed constraint
satisfaction algorithm for complex local problems. In Pro-
ceedings of the International Conference on Multi-Agent
Systems.
Yokoo, M. 1995. Asynchronous weak-commitment search
for solving distributed constraint satisfaction problems. In
Proceedings of the International Conference on Principles
and Practice of Constraint Programming.
Yokoo, M. 2001. Distributed Constraint Satisfac-
tion:Foundation of Cooperation in Multi-agent Systems.
Springer.
Zhang, W., and Wittenburg, L. 2002. Distributed breakout
revisited. In Proceedings of the National Conference on
Artificial Intelligence.

