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ABSTRACT

Given a large group of cooperative agents, selecting the right coor-
dination or conflict resolution strategy can have a significant impact
on their performance (e.g., speed of convergence). While perfor-
mance models of such coordination or conflict resolution strategies
could aid in selecting the right strategy for a given domain, such
models remain largely uninvestigated in the multiagent literature.
This paper takes a step towards applying the recently emerging dis-
tributed POMDP (partially observable Markov decision process)
frameworks, such as MTDP (Markov team decision process), in
service of creating such performance models. To address issues
of scale-up, we use small-scale models, called building blocks that
represent the local interaction among a small group of agents. We
discuss several ways to combine building blocks for performance
prediction of a larger-scale multiagent system.

We present our approach in the context of DCSPs (distributed
constraint satisfaction problems), where we first show that there is
a large bank of conflict resolution strategies and no strategy dom-
inates all others across different domains. By modeling and com-
bining building blocks, we are able to predict the performance of
five different DCSP strategies for four different domain settings,
for a large-scale multiagent system. Our approach thus points the
way to new tools for strategy analysis and performance modeling
in multiagent systems in general.

1. INTRODUCTION

In many large-scale applications such as distributed sensor net-
works, distributed spacecraft, and disaster response simulations,
collaborative agents must coordinate their plans or actions [5, 8,
12]. While such applications require agents to be collaborative, an
agent’s choice of actions or plans may conflict with its neighboring
agents’ action or plan choices due to limited (shared) resources.
Selecting the right action, plan or resource to resolve conflicts, i.e.,
selecting the right conflict-resolution strategy, can have a signifi-
cant impact on the performance of conflict resolution particularly
in a large-scale multiagent system. For instance, in distributed sen-
sor networks, tracking targets quickly requires that agents control-
ling different sensors adopt the right strategy to resolve conflicts
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involving shared sensors.

Unfortunately, selecting the right conflict resolution strategy is
difficult. First, there are often a wide diversity of strategies avail-
able, and they can lead to significant variations in the rate of conflict
resolution convergence in multiagent systems. For instance, when
distributed agents must resolve conflicts over shared resources such
as shared sensors, they could select a strategy that offers maximum
possible resources to most constrained agents, or that distributes re-
sources equally among all agents requiring such resources, and so
on. Each strategy may create a significant variation in the conflict
resolution convergence rate [5, 12]. Furthermore, faced with cer-
tain types of problem domains, a single agent cannot immediately
determine the appropriate coordination or conflict resolution strat-
egy, because it is typically not just this agent’s actions, but rather
the actions of the entire community that determine the outcome.

Performance modeling of multiagent coordination and conflict
resolution could help predict the right strategy to adopt in a given
domain. Unfortunately, performance modeling has not received
significant attention in mainstream multiagent research commu-
nity; although within subcommunities such as mobile agents, per-
formance modeling has been considerably investigated [14]. For-
tunately, recent research in distributed POMDPs (partially observ-
able Markov decision processes) and MDPs (Markov decision pro-
cesses) has begun to provide key tools to aid multiagent researchers
in modeling the performance of multiagent systems [1, 13, 16]. In
the context of this paper, we will use the MTDP model [13] for
performance modeling, although other models could be used.

There are at least two major problems in applying such distributed
POMDP models. First, while previous work has focused on model-
ing communication strategies within small numbers of agents [13],
we are interested in strategy analysis for large-scale multiagent sys-
tems. Second, techniques to apply such models to performance
analysis of conflict resolution strategies have not been investigated.

We address these limitations in the context of DCSPs (distributed
constraint satisfaction problems), which is a major paradigm of re-
search on conflict resolution [15, 17, 18]. Before addressing the
limitations, we introduce DCSPs and our previous work in which
we have illustrated the presence of multiple conflict resolution strate-
gies and showed that cooperative strategies can improve perfor-
mance in conflict resolution convergence. Our first contribution
in this paper is to illustrate that more strategies exist and that in-
deed no single strategy dominates all others. Since the best strategy
varies over different domains, given a specific domain, selecting the
best strategy is essential to gain maximum efficiency.

Our second key contribution is to illustrate the use of MTDP
to model the performance of different strategies to select the right
strategy. To address the limitations in the MTDP modeling intro-
duced above, we first illustrate how DCSP strategies can be mod-
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eled in MTDP. Next, to address scale-up issues, we introduce small-
scale models called “building blocks” that represent the local inter-
action among a small group of agents. We discuss several ways
to combine building blocks for performance prediction of a larger-
scale multiagent system.

2. BACKGROUND

DCSP techniques have been used for coordination and conflict
resolution in many multiagent applications such as distributed sen-
sor network [8]. In this section, we introduce the DCSP framework
and efficient DCSP strategies.

2.1 Distributed Constraint Satisfaction Prob-
lems (DCSPs)

A Constraint Satisfaction Problem (CSP) is commonly defined
by a set of n variables, X = {z1, ..., Z»}, each element associ-
ated with value domains Dy, ..., D, respectively, and a set of k
constraints, I' = {C1, ..., Cx }. A solution in CSP is the value as-
signment for the variables which satisfies all the constraints in I'.
A DCSP is a CSP in which variables and constraints are distributed
among multiple agents [17]. Formally, there is a set of m agents,
Ag = {Au, ..., An}. Each variable (z;) belongs to an agent Aj;.
There are two types of constraints based on whether variables in a
constraint belong to a single agent or not:

e For a constraint C, € T, if all the variables in C, belong to
a single agent A; € Ag, it is called a local constraint.

e For a constraint C,. € T, if variables in C, belong to different
agents in Ag, it is called an external constraint.

Figure 1-a illustrates an example of a DCSP: each agent A; (de-
noted by a big circle) has a local constraint LC; and there is an ex-
ternal constraint C;; between A; and A;. As illustrated in Figure
1-b, each agent can have multiple variables. ' There is no limi-
tation on the number of local/external constraints for each agent.
Solving a DCSP requires that agents not only satisfy their local
constraints, but also communicate with other agents to satisfy ex-
ternal constraints. Note that DCSPs are not concerned with speed-
ing up centralized CSPs via parallelization; rather, it assumes that
the problem is originally distributed among agents.

2.2 Asynchronous Weak Commitment (AWC)
Search Algorithm

AWC search algorithm is known to be the best published DCSP
algorithm [17]. In the AWC approach, agents asynchronously as-
sign values to their variables from domains of possible values, and
communicating the values to neighboring agents with shared con-
straints.Each variable has a non-negative integer priority that changes

"For simplification, we assume each agent has only one variable.

dynamically during search. A variable is consistent if its value does
not violate any constraints with higher priority variables. A solution
is a value assignment in which every variable is consistent.

To simplify the description of the algorithm, suppose that each
agent has exactly one variable and the constraints between variables
are binary. When the value of an agent’s variable is not consistent
with the values of its neighboring agents’ variables, there can be
two cases: (i) a good case where there exists a consistent value
in the variable’s domain; (ii) a nogood case that lacks a consistent
value. In the good case with one or more value choices available,
an agent selects a value that minimizes the number of conflicts with
lower priority agents. On the other hand, in the nogood case, an
agent increases its priority to max+1, where max is the highest pri-
ority of its neighboring agents, and selects a new value that min-
imizes the number of conflicts with all of its neighboring agents.
This priority increase makes previously higher agents select new
values. Agents avoid the infinite cycle of selecting non-solution
values by saving the nogood situations.

2.3 Cooperativeness-based Strategies

While AWC is one of the most efficient DCSP algorithms, real-
time and dynamism in multi-agent domains demands very fast con-
flict resolution. Thus, novel strategies were introduced for fast
conflict resolution convergence to a complete solution [5]. While
AWC relies on the min-conflict heuristic [7] that minimizes con-
flicts with other agents, the new strategies enhanced by local con-
straint communication consider how much flexibility (choice of
values) is given towards other agents by a selected value. By con-
sidering neighboring agents’ local constraints, an agent can gen-
erate a more locally cooperative response, potentially leading to
faster conflict resolution convergence.

The concept of local cooperativeness goes beyond merely satis-
fying constraints of neighboring agents to accelerate convergence.
That is, an agent A; cooperates with a neighbor agent A; by select-
ing a value for its variable that not only satisfies the constraint with
Aj, but also maximizes A;’s flexibility (choice of values). Then
Aj; has more choices for a value that satisfies A;’s local constraints
and other external constraints with its neighboring agents, which
can lead to faster convergence. To elaborate this notion of local
cooperativeness, the followings were defined in [5].

o Definition 1: For a value v € D; and a set of agents Nf“®
C N; (a set of neighboring agents), a flexibility function is
defined as f(v, Nf“?) = 3;¢(v, A;) such that A; € NF“®
and c(v, A;) is the number of values of A; that are consistent
with v.

e Definition 2: For a value v of A;, local cooperativeness of v
is defined as f(v, N;). That is, the local cooperativeness of
v measures how much flexibility (choice of values) is given
to all of A;’s neighbors by v.

As an example of the flexibility function f(v, Nf*®), suppose
agent A; has two neighboring agents A and As, where a value
v leaves 70 consistent values to Ay and 40 to A3z while another
value v’ leaves 50 consistent values for As and 49 to A3. Now,
assuming that values are ranked based on flexibility, an agent will
prefer v to v": f(v,{A2,A3}) = 110 and f(v',{A2, A3}) = 99.
These definitions of flexibility function and local cooperativeness
are applied for the cooperative strategies defined as follows:

® Spasic: Each agent A; selects a value based on min-conflict
heuristics (the original strategy in the AWC algorithm);
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Figure 2: Strategy comparison with cycles

e Shign: Each agent A; attempts to give maximum flexibility
towards its higher priority neighbors by selecting a value v
that maximizes f(v, N/"*");

e Siow: Each agent A; attempts to give maximum flexibility
towards its lower priority neighbors by selecting a value v
that maximizes f(v, N/°%);

e Sgu: Eachagent A; selects a value v that maximizes f (v, N;),
i.e. max flexibility to all neighbors.

These four strategies can be applied to both the good and no-
good cases. In the nogood case, neighboring agents are grouped
into higher and lower agents based on the priorities before the pri-
ority increase described in Section 2.2. (Refer to [5] for detailed in-
formation.) Therefore, there are sixteen strategy combinations for
each flexibility base. Since, we will only consider strategy com-
binations, henceforth, we will refer to them as strategies for short.
Note that all the strategies are enhanced with constraint communi-
cation and propagation. Here, two exemplar strategies are listed:

® Shasic — Sbasic: This is the original AWC strategy. Min-
conflict heuristic is used for the good and nogood cases.

® Siow — Shign: For the good case, an agent is most locally
cooperative towards its lower priority neighbor agents by us-
ing Siow. (Note that the selected value doesn’t violate the
constraints with higher neighbors). On the contrary, for the
nogood situations, an agent attempts to be most locally coop-
erative towards its higher priority neighbors by using Shigs.

2.4 Experimental Evaluation

An initial principled investigation of these strategies can improve
our understanding not only of DCSP strategies, but potentially shed
some light on how cooperative an agent ought to be towards its
neighbors, and with which neighbors. To that end, a number of
DCSP experiments were done with an abstract problem setting.
Here, agents (variables) are in a 2D grid configuration (each agent
is externally constrained with four neighbors except for the ones on
the grid boundary). All agents share an identical binary constraint
by which a value in an agent is not compatible with a set of val-
ues in its neighboring agent. This grid configuration is motivated
by the research on distributed sensor network [8] where multiple
agents must collaborate to track targets. For additional justification
and domains, refer to [5].

In the experiments, the total number of agents was 512 and each
agent has 36 (=6 x 6) values in its domain. In addition to the exter-
nal binary constraint, agents can have a unary local constraint that

restricts legal values into a set of randomly selected values among
its original 36 values. The evaluation followed the method used in
[17]. In particular, performance evaluation is measured in terms
of cycles consumed until a solution is found, and the experiments
ranged over all possible strategies. In Figure 2, for expository pur-
pose, only five strategies are presented, which does not change the
conclusions in [5]. The vertical axis plots the number of cycles
and the horizontal axis plots the percentage of locally constrained
agents. The performance difference between different strategies are
proved to be statistically significant by performing ¢-test.

A key point to note is that choosing the right strategy has signif-
icant impact on convergence. Certainly, choosing Spesic — Sbasic
(the top line in Figure 2) may lead to significantly slower conver-
gence rate while appropriately choosing Siow — Siow O Siow —
Shign can lead to significant improvements in convergence. How-
ever, we may not need to consider all the strategies for selecting the
best since significant performance improvement can be achieved by
Siow — Siow alone.

3. MORE COOPERATIVE STRATEGIES

While novel cooperative strategies in Section 2 improved con-
flict resolution convergence, two questions remain unanswered: (i)
can we apply Siow — Siow for conflict resolution across different
domains?; (ii) in addition to the strategies defined in Section 2, are
there more local cooperativeness based strategies?

In this section, to address these two questions, first, we provide
more possible DCSP strategies based on the local cooperativeness.
Second, experimental results in different types of domains are pre-
sented. The results show that there is no single dominant strategy
(like Sjow — Siow) across all domains.

3.1 New Basis for Cooperativeness

While the novel value ordering strategies (proposed in [5]) im-
proved the performance in conflict resolution, the definition of the
flexibility function using summation (¥) may not be the most ap-
propriate way to compute the local cooperativeness.

o Example: suppose we are given two neighboring agents A1
and A, where a value v leaves 99 consistent values to A1
and 1 to A, while another value v’ leaves 50 consistent val-
ues for A; and 49 to As. Now, according to the cooperative-
ness definition in Section 2.3, an agent will prefer v to v’
f(v,{A1, A2}) =100 and f(v',{A1, A2}) = 99. However,
leaving one value choice to As by the value v can have high
chances of conflicts for As in the future.

Here, we extend the flexibility function to accommodate differ-
ent types of possible local cooperativeness:

o Definition 3: For a value v € D; and a set of agents Nf*® C
N;, flexibility function is defined as £ (v, Nf*?) = ®(c(v, A;
where (i) A; € N§“®; (ii) c(v, A;) is the number of values
of Aj; that are consistent with v; and (iii) &, referred to as a
flexibility base, can be sum, min, maz, product, etc.

With this new definition, for the above example, if @ is set to
min instead of sum, an agent will rank v’ higher than v: f™" (v,
{A1, A2}) =1 and f™" (o', {A:1, A2}) = 49. We can apply these
extended definitions of the flexibility function to the cooperative
strategies defined in [5]. That is, the cooperative strategies defini-
tions hold with the only change in the flexibility function.

)

)
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Figure 3: Strategy comparison in high flexibility setting with
min as a flexibility base

3.2 New Experimental Evaluation

To provide the evaluation of these extended strategies, a number
of DCSP experiments were done with the problem setting used in
[5]. Here, to test the performance of strategies in various problem
settings, we make a variation in the problem setting by modify-
ing the external constraint: in a new setting, each agent gives less
flexibility (choice of values) towards its neighboring agents given
a value in its domain. Henceforth, the previous setting is referred
as a high flexibility setting, and the new setting with less choice of
values to neighbors is referred as a low flexibility setting.

Experiments were performed in the two problem settings (the
high flexibility setting and the low flexibility setting), and both sum
and min were used as a flexibility base (). Other than this exter-
nal constraint variation, the parameters for the experiments remain
same. Each data point in the figures was averaged over 500 test
runs. While all the possible strategies for each flexibility base were
tried, for expository purpose, only five strategies are presented in
Figure 3 and 4, which does not change our conclusion.

Figure 3 shows the case where men is used as a flexibility base
in the high flexibility setting. Here, note that Siow — Shigh shows
much worse performance than Spasic — Spasic in some cases. Over-
all, in this domain, strategies with men as a flexibility base do not
improve performance over the strategies with sum as a flexibility
base. Figure 4 shows the case where sum is used as a flexibility
base, but the problem instances are generated in the low flexibil-
ity setting. Note that the experimental results shown in Figure 2
were also based on sum as a flexibility base but they were from
the high flexibility setting. The significant difference between the
high flexibility setting (Figure 2) and the low flexibility setting (Fig-
ure 4) is that Sjow — Siow 1s not the overall dominant strategy in the
low flexibility setting. Furthermore, Siow — Shign (that performed
well in the high flexibility setting) showed worse performance than
the original AWC strategy Shasic — Sbasic, in particular when the
percentage of locally constrained agents is low.

These experimental results show that different flexibility bases
also have an impact on performance. For instance, choosing min
as a flexibility base (&) instead of sum may degrade performance
for some cooperative strategies. Furthermore, these results clearly
show that choosing the right strategy given a domain has a signif-
icant impact on convergence. Certainly, when 80% of agents are
locally constrained, Siow — Siow and Siow — Shign showed the
same performance in the high flexibility setting (Figure 2). How-
ever, in the low flexibility setting (Figure 4), Siow — Shign showed
10 fold speedup over Siow — Siow-

Here, to check the statistical significance of the performance dif-
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Figure 5: Long-tail convergence example with 90 % locally con-
strained agents in the problem setting for Figure 4

ference, two-tailed t-test was done for each pair of strategies at each
percentage of locally constrained agents. The null hypothesis for
each pair of strategies that there was no difference between the two
strategies in average cycles was rejected, i.e., the difference is sig-
nificant, with p-value < 0.01 for each case.

To conclude, no single strategy dominates in different domains.
As shown above, the best strategy in a domain could produce 10
times worse performance than others in another domain. Thus, to
gain maximum efficiency in conflict resolution, it is essential to
predict the right strategy in a given domain.

3.3 Long tail distribution in Convergence

The key factor in determining the performance of strategies is in
the long tail where only a small number of agents are in conflicts.
Figure 5 shows the number of conflicts at each cycle for two differ-
ent strategies, Siow — Shigh and Seasic — Sbasic. In the beginning
of conflict resolution, both strategies show similar performance in
resolving conflicts. However, the performance difference appears
in the long tail part. While Siow — Shign quickly solves a given
problem, Spasic — Sbasic has a long tail with a small number of
conflicts remaining unresolved. This type of long tail distribution
has been also reported in many constraint satisfaction problems [4].

4. PERFORMANCE ANALYSIS

Section 3 shows that, given the dynamic nature of multiagent
systems, predicting the right strategy to use in a given domain is



essential to maximize the speedup of conflict resolution conver-
gence, and the critical factor for strategy performance is in the long
tail part where a small number of conflicts exist. Here, we provide
formal models for performance analysis and the mapping of DCSP
onto the models, and present the results of performance prediction.

4.1 Distributed POMDP-based Model

As aformal framework for strategy performance analysis, we use
a distributed POMDP model called MTDP (Multiagent Team De-
cision Process) model [13]. The MTDP model has been proposed
as a framework for teamwork analysis. Distributed POMDP-based
model is an appropriate formal framework to model strategy perfor-
mance in DCSPs since it has distributed agents and the agentView
in DCSPs (other agents’ values, priorities, etc.) can be modeled
as observations. In DCSPs, the exact state of the system is only
partially observable to an agent since the received information for
the agent is limited to its neighboring agents. Therefore, there is
strong correspondence between DCSPs and distributed POMDPs.
While we focus on the MTDP model in this paper, other distributed
POMDP models such as DEC-POMDP [1] could be used.

Here, we illustrate the actual use of the MTDP model in analyz-
ing DCSP strategy performance. The MTDP model provides a tool
for varying key domain parameters to compare the performance
of different DCSP strategies, and thus select the most appropriate
strategy in a given situation. We first briefly introduce the MTDP
model. Refer to [13] for more details.

4.1.1 MTDP model

The MTDP model involves a team of agents operating over a set
of world states during a sequence of discrete instances. At each
instant, each agent chooses an action to perform and the actions are
combined to affect a transition to the next instance’s world state.
Borrowing from distributed POMDPs, the current state is not fully
observed/known and transitions to new world states are probabilis-
tic. Each agent makes its own observations to compute its own
beliefs, and the performance of the team is evaluated based on a
joint reward function over world states and combined actions.

More formally, an MTDP for a team of agents, «, is a tuple,
< S,A4, P,Q%,04,Bs, R >. Sis aset of world states. A, =
II ica A; is a set of combined actions where A; is the set of agent
i’s actions. P controls the effect of agents’ actions in a dynamic en-
vironment: P(s,a,s’) = Pr(S'*t = §'|S" = 5, A, = a). Qq is
a set of combined observations. Observation function, O, specifies
a probability distribution over the observations of an agents team c.
Belief state By, is derived from the observations. R : S X Ao, — R
is a reward function over states and joint actions. A policy in the
MTDP model maps individual agents’ belief states to actions. A
DCSP strategy is mapped onto a policy in the model. Thus, we
compare strategies by evaluating policies in this model. Our ini-
tial results from policy evaluation in this model match the actual
experimental strategy performance results shown before. Thus, the
model could potentially form a basis for predicting strategy perfor-
mance in a given domain.

4.1.2 Mapping from DCSP to MTDP

In a general mapping, the first question is selecting the right state
representation for the MTDP. One typical state representation could
be a vector of the values for all the variables in a DCSP. However,
this representation leads to a huge state space. For instance, if there
are 10 variables (agents) and 10 possible values per variable, the
number of states is 10*°. To avoid this combinatorial explosion in
state space, we use an abstract state representation in the MTDP
model. In particular, as described in the previous section, each
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Figure 6: Building block

agent can be abstractly characterized as being in a good or nogood
state in the AWC algorithm. We use this abstract characterization
in our MTDP model. Henceforth, the good state and the nogood
state are denoted by G and N respectively. Here, an initial state
of the MTDP is a state where all the agents are in G state since, in
the AWC, an agent finds no inconsistency for its initial values until
it receives the values of its neighboring agents. Note that, for sim-
plicity, the case where agents have no violation is not considered.

In this mapping, the reward function R is considered as a cost
function. The joint reward (cost) is proportional to the number
of agents in the N state. This reward is used for strategy evalu-
ation based on the fact that the better performing strategy has less
chance of forcing neighboring agents into the N state than other
strategies: as a DCSP strategy performs worse in a given problem
setting, more agents will be in the IV states.

In the AWC algorithm (a base DCSP algorithm in this paper),
each agent receives observations only about the states of its neigh-
boring agents and its current state as well. Thus, the world is not
individually observable, but rather it is collectively observable (in
the terminology of Pynadath and Tambe [13]), and hence the map-
ping does not directly reduce to an MDP. Initially, we assume that
these observations are perfect (without message loss in communi-
cation). This assumption can be relaxed in our future work with
unreliable communication.

Here, Siow, Shigh, Sait, and Spasic in DCSPs are mapped onto
the actions for agents in the MTDP model. A DCSP strategy pro-
vides a local policy for each agent in the MTDP model, e.g., the
Siow — Shign strategy implies that each agent selects action Sjoq
when its local state is good, and action Shign When its local state is
nogood. The state transition in the MTDP model is controlled by an
agent’s own action as well as its neighboring agents’ actions. The
transition probabilities can be derived from the DCSP simulation.

4.1.3 Building Block

While the abstract representation in the mapping above can re-
duce the problem space, for a large-scale multiagent system, if we
were to model belief states of each agent regarding the state of the
entire system, the problem space would be enormous even with the
abstract representation. For instance, the number of states in the
MTDP model for the system with 512 agents would be 2°!2: each
agent can be either G or N. To further reduce the combinatorial
explosion, we use small-scale models, called building blocks. Each
building block represents the local situation among five agents in
the 2D grid configuration.

In the problem domains for the experiments shown in Section
2.4 and 3.2, each agent’s local situation depends on whether it has a
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unary local constraint or not: each agents can be either constrained
(a portion of its original domain values are not allowed) under a
local constraint (C') or unconstrained (U). Figure 6 illustrates some
exemplar building blocks for the domain used in the experiments.
For instance, Figure 6-a represents a local situation where all the
five agents are constrained (C) while Figure 6-b represents a local
situation where an agent in the left side is unconstrained (U) but
the other four agents are locally constrained (C).

Note that, when the percentage of locally constrained agents is
high, most of building blocks would be the one shown in Figure
6-a and a small portion of building blocks would be like the ones
shown in Figure 6-b, 6-c, and 6-d. As the percentage of locally
constrained agents decreases, more building blocks include uncon-
strained agents (U) as shown in Figure 6-e and 6-f.

In each building block, as shown in Figure 7, a middle agent
(A3) is surrounded by the other four neighboring agents (A1, A,
Ay, As). Thus, the state of a building block can be represented
as a tuple of local states <si, s2, S3, 84, S5> (e.g., <G, G, G,
G, G> if all the five agents are in the good (G) state). There are
totally 32 states in a building block of the MTDP model (e.g., <G,
G,G,G,G><G,G, G, G, N>, <G, G,G, N, G>, etc), and
the initial state of a building block is <G, G, G, G, G>. Here,
agents’ actions will cause a transition from one state to another.
For instance, if agents are in a state <G, G, G, G, G> (Figure
7-a) and all the agents choose the action Shgp, there is a certain
transition probability that the next state will be <G, G, N, G, G>
(Figure 7-b) when only the third agent is forced into a nogood (IN)
state. However, the agents may also transition to <G, G, G, N,
G> (Figure 7-c) if only the fourth agent enters into the IV state.

One may argue that these small-scale models are not sufficient
for the performance analysis of the whole system since they rep-
resent only local situations. However, as seen in Figure 5, the key
factor in determining the performance of strategies is in the long
tail where only a small number of agents are in conflicts. There-
fore, the performance of strategies are strongly related to the local
situation where a conflict may or may not be resolved depending
on the local agents’ actions. That is, without using a model for
the whole system, small scale models for local interaction can be
sufficient for performance analysis. Furthermore, while this sim-
ple model may appear limiting at first glance, it has already shown
promising results presented below.

4.1.4 Building Block Composition

While the building blocks are the basis for performance anal-
ysis, we need to deal with multiple building blocks that can ex-
ist in a given domain. Each building block has a different impact
on conflict resolution convergence. It is expected that the local
interaction in a single building block does not totally determine
the performance of strategies, but the interactions between build-
ing blocks have a great impact on the strategy performance. Here,
we propose four methods of building block composition to evaluate
MTDP policies (mapping of DCSP strategies) as follows:

o Single block: for a given domain, a single building block is
selected. The selected block has the highest probability of
producing the nogood (IN) cases within the building block.
The performance of a strategy is evaluated based on the value
of an initial state of the building block (<G, G, G, G, G>)
given its mapped policy: As the initial state value gets lower,
the policy (strategy) is better.

e Simple sum: for a given domain which has multiple building
blocks, we compute the value of each building block’s initial
state. Performance evaluation of a policy is based on the
summation of the initial states’ values of the multiple build-
ing blocks in the domain.

o Weighted sum: given multiple building blocks, for each build-
ing block, we compute the ratio of the building block in the
domain and the value of its initial state. Performance evalua-
tion of a policy is based on the weighted sum of initial states’
values where the weight is the ratio of each building block.

e Interaction: a sequence of building blocks is considered
since the performance difference comes from the long tail
part (shown in Figure 5), and their interaction is taken into
account: an agent may force its neighboring agents to enter
into the nogood (IN) state given an action under a policy to
evaluate. For instance, two blocks, Figure 6-(b) and Figure
6-(c), may interact side by side, so that the rightmost C' agent
of Figure 6-(b) interacts with the leftmost C' agent of Figure
6-(c). Here, with the interaction between these two building
blocks, the state of the rightmost C' agent of Figure 6-(b) and
its policy influence the probability that the initial local state
of the leftmost C' agent of Figure 6-(c) starts in the IV state.
Without such interaction, it would always start in the G state.

For the interaction method, we don’t have arbitrary degrees of
freedom: for different domains, there can be commonalities in build-
ing blocks. That is, for common building blocks, the same transi-
tion probabilities within a building block are applied. As we change
from the first method (single block) to the fourth method (interac-
tion), we gradually increase the complexity of composition. The
accuracy of the performance prediction with those methods is pre-
sented in the next section.

Here, note that the focus of our building block composition is
not on computing the optimal policy, but it remains on matching
the long-tailed phenomenon shown in Figure 5. Thus, our interac-
tions essentially imply that neighboring blocks affect each other in
terms of the values of the policies being evaluated, but we are not
computing optimal policies that cross building block boundaries.

4.2 Performance Prediction

To check whether the MTDP based model can effectively pre-
dict the performance of strategies, performance analysis is done
(based on the four methods of building block composition in Sec-
tion 4.1.4), and the performance evaluation results from the MTDP
model are compared with the real experimental results presented in
the previous sections. While there can be various problem domains,
in this initial investigation, we focus on two special cases where the
percentages of locally constrained agents are 90% and 50% respec-
tively (either most of agents are locally constrained or half of agents
are locally constrained). > These two cases are considered for both
the high flexibility setting and the low flexibility setting. Among the
possible strategies defined in Section 3.1, we focus on the strategies
with sum as a flexibility base that were selected in Section 2 for

There is no significant performance difference in the 0% case.



(a) experimental results

3
%100*
50
04 m . e

Slow-Shigh ~ Shigh-Slow  Shigh-Shigh Sbasic-Sbasic

Slow-Slow

strategy

(b) performance prediction

3

3

2,

2,

1,

HEE R
0 . . .

Slow-Shigh Shigh-Slow Shigh-Shigh  Sbasic-Sbasic

evaluation

Slow-Slow

strategy

Figure 8: Performance prediction in low flexibility setting with
90% locally constrained agents

expository purpose: Siow — Siow, Siow — Shighs Shigh — Siows
Shigh — Shigh, and Sbasic — Sbasic-

Figure 8 shows the results when 90% agents are locally con-
strained in the low flexibility setting. Figure 8-(a) (top) shows the
experimental results in the case and Figure 8-(b) (bottom) shows
the performance evaluation from the MTDP model using the in-
teraction composition method. In the performance evaluation, the
lower value means the better performance (indicating that less num-
ber of cycles will be taken until a solution is found). Figure 8-(a)
and (b) show that the performance prediction results match to the
real experimental results in the problem setting considered here:
the patterns of column graphs in Figure 8-(a) and (b) correspond to
each other. That is, the strategies that showed better performance
in the experiments (Siow — Shigh and Shigh — Shign) are expected
to perform better than the others according to the performance pre-
diction. Here, the current goal of performance prediction is mainly
to predict the best performing strategy not to predict the magnitude
of speedup difference among the given strategies.

Here, a question remains to be answered for whether the other
composition method of building blocks can provide the same power
of performance prediction as the interaction method does. Figure
9 shows the performance prediction results with different composi-
tion methods for the same problem domain used in Figure 8. The
rightmost part is for the interaction method shown in Figure 8-(b).
It is shown that the result from the single block method does not
match at all. While the simple sum or weighted sum method pro-
vides a little improvement over the single block method, they are
far from matching to the real experimental results (Figure 8-(a)).

E Slow-Slow
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B Shigh-Shigh
B Sbasic-Sbasic

evaluation

Single block  Simple sum Weighted sum Interaction

Composition method
Figure 9: Comparison of composition methods

That is, the composition method that considers the interaction be-
tween building blocks shows the best prediction results. Note that
5 building blocks were combined in each prediction (except for
the single block method where only one selected block was used),
while ensuring that the ratio of U (unconstrained) and C' (locally
constrained) agents were what was required for each domain.

Figure 10 also shows the performance prediction results in differ-
ent domains using the interaction method of building block compo-
sition. Here, the performance analysis distinguishes better perform-
ing strategies from worse performing strategies, and this difference
is statistically significant. The correlation coefficient between the
speedup in cycles and the difference in performance evaluations
was 0.83. Furthermore, the hypothesis that there is no such corre-
lation was rejected with p-value of 0.0001.

This result illustrates that the MTDP model can be used to pre-
dict the right strategy to apply in a given situation (possibly with
less computation overhead). That is, given a new domain, agents
can analyze different strategies with the simple MTDP model and
select the right strategy for the new domain without running a sig-
nificant number of problem instances for each strategy. Further-
more, this approach will enable agents to flexibly adapt their strate-
gies to changing circumstances. More generally, this result indi-
cates a promising direction for performance analysis in DCSPs, and
potentially other multiagent systems.

S. RELATED WORK AND CONCLUSION

Significant works in multiagent learning are focused on learning
to select the right coordination strategy [12, 3]. While this goal is
related to our goal of choosing the right strategy, one key difference
is that the learning work focuses on enabling each agent to select
a strategy. Instead, our focus is on a complementary goal of trying
to predict the overall performance of the entire multiagent system
assuming homogeneous conflict resolution strategies.

In centralized CSPs, the performance prediction for different
heuristics has been investigated. However, their methods are based
on the estimation of nodes to expand for search[6]. However, this
approach is not applicable to DCSPs since multiple agents simulta-
neously investigate their search space. Theoretic investigations of
heuristic performance were also done in centralized CSPs [7, 9].
However, no theoretical investigation has been done for the perfor-
mance prediction in DCSPs.

While there are related works in composition methods of sub-
problem solutions in MDPs[2, 10] and in POMDPs[11], we are
really interested in applying these composition techniques for per-
formance modeling, not computing an optimal policy. For instance,
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our techniques are heavily influenced by the need to capture the
long-tailed phenomena in conflict resolution.

To conclude, in this paper, the recently emerging distributed POMDP

frameworks such as MTDP were used to create performance mod-
els for conflict resolution strategies in multiagent systems. To ad-
dress issues of scale-up, we used small-scale models, called build-
ing blocks that represent the local interaction among a small group
of agents. We discussed several ways to combine building blocks
for the performance prediction of larger-scale multiagent systems.
These approaches were presented in the context of DCSPs (dis-
tributed constraint satisfaction problems), where we first showed
that there is a large bank of conflict resolution strategies and no
strategy dominates all others across different domains. By mod-
eling and combining building blocks, we were able to predict the
performance of five different DCSP strategies for four different do-
main settings, for a large-scale multiagent system. Thus, our ap-
proach points the way to new tools for the strategy analysis and
performance modeling in multiagent systems in general.
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