DISTRIBUTED CONSTRAINT OPTIMIZATION FOR
MULTIAGENT SYSTEMS

by

Pragnesh Jay Modi

A Dissertation Presented to the
FACULTY OF THE GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA
In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

December 2003

Copyright 2003 Pragnesh Jay Modi

Acknowledgements

First and foremost, | thank my advisors, Wei-Min Shen andrdilTambe. They
are exemplary role-models, first-rate mentors and greands. It is difficult to fully
outline all the ways in which each has contributed to my ghoad a scientist. It is
impossible to fully express my gratitude.

Yan Jin, Victor Lesser, Paul Rosenbloom and Makoto Yokooadieh their valu-
able time to serve on my dissertation committee. Makoto Wokms both co-author
and collaborator who played a key role in the developmentisfdissertation. Victor
Lesser was a supportive voice who always knew what to say deeh wo say it. Paul
Rosenbloom was a brilliant constructive critic. Yan Jinpgeel me see my work from
an outsider’s perspective. | sincerely thank them all fefrtime and effort.

| have been fortunate to have had great colleagues over #ne yo have assisted
me in various ways. Paul Scerri, David Pynadath, Hyuckchaly) Ranjit Nair and
the rest of the TEAMCORE research group were all supportieadls. The members

of the Intelligent Systems Division of ISI and Al-Grads aepple | will never forget.

They are responsible for making my graduate school yearshaevéul experience. ISI
is a truly unique and rewarding place to work because of them.
Finally, I thank my parents. They taught me what real lifeieat and gave me the

confidence to pursue this dream.

Contents

Acknowledgements

List Of Tables

List Of Figures

Abstract

1

Introduction
1.1 Objectiveand Approach
1.2 Contributions

Distributed Constraint Optimization Problem

21 Motivation.
2.2 Background: Distributed Constraint Satisfaction

2.3 Specification of DCOP Model
23.1 ScopeofModel

Asynchronous Complete Method for DCOP
3.1 Basicldeas

3.2 AdoptAlgorithm
3.2.1 AlgorithmDetails

3.2.2 Example of Algorithm Execution

3.2.3 Example of Backtrack Thresholds
3.3 Correctnessand Complexity

3.4 Evaluation.
3.41 MeasuringRun-Time
3.5 Algorithmic Variations for Future Work

Vi

Vii

4.1

4.2
4.3

5.1
5.2
5.3

5.4
5.5
5.6
5.7

5.8

Limited Time and Unreliable Communication

Limited Time
4.1.1 Bounded-error Approximation
4.1.2 Experiments

Extensions for Future Work
Unreliable Communication

4.3.1 Algorithm Modifications for Message Loss
4.3.2 Experiments

Modeling Real-world Problems
ApplicationDomain.

Formal Definitions

Properties of Resource Allocation

5.3.1 TaskComplexity
5.3.2 Task Relationship Complexity

Complexity Classes of Resource Allocation
Dynamic Distributed CSP (DyDisCSP)
Mapping SCF Problems into DyDisCSP

5.6.1 Correctness of Mapping!l.

Mapping WCF Problems into DyDisCSP

5.7.1 Correctness of Mapping Il

Mapping OC ProblemsintoDCOP

6 Related Work

6.1

6.2

Related Work in Distributed Constraint Reasoning
6.1.1 Distributed Constraint Satisfaction

6.1.2 Distributed Constraint Optimization
6.1.3 OtherWorkinDCOP

Related Work in Multiagent Systems

7 Conclusion

8 Future Work

Reference List

List Of Tables

4.1 Running time as a percentage of when there is zero loss. 91
4.2 Number of messages processed (rcvd) as a percentagenthdre is
Zeroloss L e 91

5.1 Complexity Classes of Resource Allocations size of task se®, m
= size of operation s&?. Columns represent task complexity and rows
represent inter-task relationship complexity.116
6.1 Characteristics of Distributed Constraint OptlmlaatMethods 139

Vi

List Of Figures

2.1
2.2
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
4.1

4.2

4.3

5.1
5.2

A hardware sensor (left) and schematic of nine sens@giid layout

(right). e 11
Example DCOP graph 12
Loosely connected subcommunities of problem solvers. 21
Two valid tree orderings for the constraint graph infegr2 24
(a) Constraint graph. (b) Communication graph. 25
Procedures for receiving messages in the Adopt algnntbeflnltlons

of termsLB(d), UB(d), LB, andUB are giveninthetext. 35
Procedures in the Adopt algorithm (cont) 36
Example Adopt execution for the DCOP shown in flgure 3 3 40
Example of backtrack thresholds in Adopt e 44

Average number of cycles required to find the optlmaltamll(MaxCSP)
53
Average number of cycles required to find the optimaltsaiu(\Weighted

CSP) . 54
Average number of messages per cycle required to findgtimal
solution. L 57
Run-time required to find the optimal solution on a snglocessor
(MaxCSP) e 57
Run-time calculated from number of cycles requiredd fihe optimal
solution 65
Aternaryconstraint 07
Example Adopt execution for the DCOP shown in figure 2ifh @rror
boundb=4. 79

Average number of cycles required to find a solution)(lefid the av-
erage number of messages exchanged per agent (right) far givor

boundb. 81
Percentage of problem instances where obtained cosawagiven
distance from optimal (18 agents) 81
Graphical depiction of the described methodology. 95

A schematic of four sensornodes. 96

Vii

5.3 Reduction of graph 3-coloring to Resource Allocatiooffems
5.4 N-ary constraint for Mapping il
5.5 Graph of cost function for n-ary constraint for Mappitig!

viii

Abstract

To coordinate effectively, multiple agents must reason@mmunicate about the
interactions between their individual local decisionsstibuted planning, distributed
scheduling, distributed resource allocation and disteidask allocation are some ex-
amples of multiagent problems where such reasoning isnmedjuin order to represent
these types of automated reasoning problems, researchiditdtiagent Systems have
proposed distributed constraints as a key paradigm. Rrev&search in Artificial In-
telligence and Constraint Programming has shown that @nt are a convenient yet
powerful way to represent automated reasoning problems.

This dissertation advances the state-of-the-art in Mydtiet Systems and Constraint
Programming through three key innovations. First, thiselitation introduces a novel
algorithm for Distributed Constraint Optimization Profpie (DCOP). DCOP signifi-
cantly generalizes existing satisfaction-based comgtrapresentations to allow opti-
mization. We presenAdopt the first algorithm for DCOP that allows asynchronous
concurrent execution and is guaranteed to terminate witlylibbally optimal solution.

The key idea is to perform systematic distributed optimdrabased on conservative

solution quality estimates rather than exact knowledgdajaj solution quality. This
method is empirically shown to yield orders of magnitudeesjugps over existing syn-
chronous methods and is shown to be robust to lost messages.

Second, this dissertation introdudesinded-error approximatioas a flexible method
whereby agents can find global solutions that may not be @btout are guaranteed
to be within a given distance from optimal. This method isfulsir time-limited do-
mains because it decreases solution time and communicateshead. Bounded-error
approximation is a significant departure from existing mgdete local methods, which
rely exclusively on local information to obtain a decreassalution time but at the cost
of abandoning all theoretical guarantees on solution tyuali

Third, this dissertation preserdsneralizednapping strategies that allow a signifi-
cant class of distributed resource allocation problem tautematically represented via
distributed constraints. These mapping strategies andicignt because they illustrate
the utility of the distributed constraint representatibhese mapping strategies are use-
ful because they provide multiagent researchers with argemeusable methodology
for understanding, representing and solving their owrridisted resource allocation

problems. Our theoretical results show the correctnedseaftappings.

Chapter 1

Introduction

Designing loosely-coupled agents that coordinate effelstirequires reasoning about
interactions between individual agent decisions. Oftes itecessary that such rea-
soning be done by the agents themselves in a collaborativédoentralized manner.
Satellite constellations [3], disaster rescue [20], hulag@nt organizations [5], intel-
ligent forces [4], distributed and reconfigurable robot8][8nd sensor networks [44]
are some examples of multiagent applications where digtab is inherent in the do-
main and one has little choice in redistributing or centraly decision-making to make
things easier.

In these distributed domains agents must reason abouttéradtions between their
local decisions in order to obtain good global performariéer example, distributed

robots must collaboratively construct the best joint plaat accomplishes system goals.

Or, constellations of satellites performing collaboratsensing missions must sched-
ule their observations to maximize collection of scientifata. Or finally, distributed
sensors must coordinate the allocation of their sensirguress in order to accurately
track multiple targets. In these examples and others, tta ttecisions made by agents
and the interactions between them can have significant@atpdins on the performance
of the multiagent system as a whole.

This dissertation proposes the Distributed Constrainir@péation Problem (DCOP)
framework to model the interactions between local agensaets and support efficient
reasoning while maintaining the requirements of decemtttdbn. Previous research in
Al has shown that constraints are a convenient yet powediyltw represent reasoning
problems [33]. DCOP significantly generalizes existingtmagent research that has fo-
cused primarily on satisfaction-based problems [50] winsdnadequate for problems
where solutions may have degrees of quality or cost. Othétragent researchers have
considered only informal representations of distributeistraint optimization [8] [32]
[43].

This dissertation answers three key questions not cuyrawltiressed in existing
research. First, a key outstanding challenge is how to effilyi coordinate distributed
decision-making while providing theoretical guaranteegjoality of global solution.

While some distributed methods for DCOP do currently existise methods either a)

provide quality guarantees only by requiring sequentiatexion [16], or b) allow con-
current execution but provide no kind of quality guaranteH [This is a problematic
state of affairs because sequential execution can be gtigélp inefficient, while lack
of theoretical guarantees prevents generalization ad@ssins.

Second, how can agents find approximate (suboptimal) soksitvhen time is lim-
ited? Previous approaches have typically abandoned tiwarguarantees in order
to reduce solution time. This is inadequate because, aside éxperimental results
in specific domains, such methods can provide no charaatenzof global solution
quality. In addition, the lack of worst-case bounds on atpar performance is prob-
lematic in domains where unpredicted boundry-cases maypeacéedly arise or costs
of failure are very high, as in space missions [3] and hunaayesit organizations [5].

Finally, given that constraints are a convenient, powekidll-accepted represen-
tation, another key challenge involves designing genaungbgse techniques for rep-
resenting real world problems in the distributed constsaparadigm. While there is
much existing Al research on how to represent centralizetlipms using constraints,
little guidance currently exists on how to represgistributedproblem in the constraint
reasoning framework. Multiagent designers faced with a demain are required to
invest a substantial degree of effort to correctly repretiegir problem. In addition,

the modeling effort is often specific to the application @ming reuse across domains.

1.1 Obijective and Approach

The principal question addressed in this thesis is:
How can distributed agents coordinate their local decision
making to provide theoretical guarantees on global solutio qual-
ity under conditions of limited time, memory and communica-
tion?
We make the following assumptions about communication:

e Agents can receive messages. Agents can send messagesrtagahts if they
know their name.

e Messages are received in the order in which they are senebatany pair of
agents.

e Messages are either dropped or correctly received (or alguitly, corrupted
messages can be detected and dropped).

Our general approach stems from the basic premise that strébdited multiagent
system where time and communication is limited, it is diffi¢a obtain exact knowl-
edge of global solution quality. Thus, the approach takes twadevelop a method
whereby distributed agents can perform systematic digitbsearch based on conser-
vative solution qualityestimatesather than exact knowledge of global solution quality.
In this way, we allow agents to make the best decisions plessith currently available
information. If more information is asynchronously re@sivfrom others and if time
permits, agents can revise their decisions as necessarguBe estimates are ensured
to be conservative, agents are never led astray and guesanigylobal solution quality

are available.

We show that this method of distributed optimization has miper of benefits.
First, it allows concurrent, asynchronous execution wlyiehds significant orders of
magnitude speedups while requiring only polynomial spaceaah agent. Second,
since agents are not entirely dependent on global infoonati make local decisions,
it is robust to message loss. Finally, this method can be tsdohd approximate
(suboptimal) solutions while adhering to user-defined loiswon distance from optimal,
yielding a practical technique for performing principleddeoffs between time and

solution quality.

1.2 Contributions

The thesis makes several contributions to Distributed €aims Optimization for co-

ordination in Multiagent Systems. These contributiondiated below.

e The Adopt algorithm, the first asynchronous complete atgorifor Distributed
Constraint Optimization. In Adopt, agents perform systeodistributed search
based on conservative solution quality estimates in tha fafrlower bounds. By
exploiting the concurrency allowed by lower bound basedcbe@dopt is able to
obtain significant orders of magnitude efficiency gains ®eguential methods.

(Chapter 3)

e While the Adopt algorithm presented in Chapter 3 assumésbtelcommunica-
tion, we demonstrate the proposed method is robust to medssg, (Chapter

4)

e Bounded error approximation for when time is limited. Boedakrror approxi-
mation allows agents to find approximate (suboptimal) swhstwhile adhering
to user-defined bounds on distance from optimal. This meyields a practical
technique for performing principled tradeoffs betweenetiamd solution quality

when time is limited. (Chapter 4)

e A detailed complexity analysis and identification of trdtéasubclasses of dis-
tributed resource allocation. This provides researchéits twols to understand
the complexity of different types of problems and to underdtthe difficulty of

their own resource allocation problems. (Chapter 5)

e General mapping strategies for representing distribigsdurce allocation prob-
lems via distributed constraints. We provide guidance om tworepresent such
problems in our framework by first proposing an abstract rhotl®istributed
Resource Allocation and then converting the model into &illiged constraint
representation using a generalized mapping. This mappinguisable for any
Distributed Resource Allocation Problem that conformshi® given model and

we can show theoretically that the mapping preserves tHaqaro (Chapter 5)

In addition, these contributions taken together providermuahto-end methodology,
(problem complexity analysis, representation via distil constraints, distributed so-
lution method) for solving a significant class of distribditeesource allocation prob-
lems.

We briefly outline the organization of this dissertation. apter 2 proposes the
Distributed Constraint Optimization Problem (DCOP) framek. Chapter 3 presents
the Adopt (Asynchronous Distributed Optimization) algem. Chapter 4 considers
solutions to two practical issues that arise when solvin@Pan real-world multiagent
domains: Limited time and unreliable communication. Ckaptproposes a general
technique for modeling a key class of multiagent problemshicth a set of agents are
required to intelligently assign resources to a set of tasisapter 6 reviews related
work. Finally, Chapter 7 concludes by summarizing resutid eontributions while

Chapter 8 identifies directions for future research.

Chapter 2

Distributed Constraint Optimization Problem

In this chapter, we introduce an example domain that masatir work followed by

a precise formalization of the problem.

2.1 Motivation

Our motivation is the design of collaborative agents thatkwogether to accomplish
global goals. While this problem arises in a wide variety ofréins, one specific
application we will use to illustrate our problem is a distried sensor network domain
[44] that has received significant attention by multiagesstearchers in recent years
[18] [36] [41] [45]. However, we emphasize that the techmigjypresented apply to a
broad range of problems.

A sensor network consists of multiple stationary sensodsmaaltiple moving tar-

gets to be tracked. The goal is to accurately track the ttgetllocating sensors to

targets subject to the following restrictions. Each selsalirectional i.e., the sen-
sor is equipped with three radar heads, each covering 12@eegnd only one radar
head may be active at a time. Figure 2.1 (left) is a picture sér@sor with the three
radar heads shown. An autonomous agent running on-boahdseasor controls the
direction of the sensor. Three different sensors must beatd to a target for it to be
tracked accurately and it is not possible for a sensor t& tramre than one target. Sen-
sors have limited sensing range so they can only be allotategarby targets. Agents
are able to send messages to each other using low-bandadithfrequency commu-
nication. However, communication range is also limitedagents may only communi-
cate with nearby agents. Figure 2.1 (right) shows 9 sens@grid configuration and
4 targets with their associated weights describing tamgrtance. Assuming each
target can only be tracked by the four closest sensors, le& that only two of the
four targets can be tracked. The agents must coordinateldwation of sensors to
targets with the goal of minimizing the sum of the weightshaf ignored targets.
Designing software agents to effectively coordinate iis thbmain is challenging

for a number of reasons. We outline four key issues of conicetims work.

e Inherent distribution. In inherently distributed domains, no single agent has
global control or global view. In the domain described ah@arh agent must
individually decide which target it should track based ocalanformation and

information received through messages from other agentsandther example

in distributed robotics, each robot is autonomous and d@scitd own actions.
Existing approaches to coordination that require a cang@ldecision maker are

not feasible.

Limited communicationCommunication may be limited for a variety of reasons
in different domains. In the sensor domain, communicasdimited due to both
range and bandwidth, so we cannot collect all informatioa single location
where global allocations could in principle be calculata&o, radio-frequency
communication is unreliable and messages may be lost. & ddmains, privacy
restrictions and prohibitive costs on translating infotiminto an exchangable

format impose limits on communication.

Limited time. In the sensor domain, time for determining allocationsnstid
because targets are moving. For a given set of targets ircylart locations,
agents must be able to determine global allocations fasiginto be useful to
track the targets before they have moved too far. In otheraiimsnagents must

act to perform joint tasks or execute joint plans within sayiven time window.

Theoretical guarantees. In order to confidently deploy multiagent systems,
theoretical guarantees on allocation quality are needearistic methods that
may fail on boundry cases and provide no bounds on worstpEréermance are

not sufficient. In the sensor domain, algorithms must be aldearantee that the

10

Grid Configuration:

SOUISORNISY

Tar tl Tar t2

Target 3 Target 4
80

SOBISORERY

Figure 2.1: A hardware sensor (left) and schematic of nimsaes in a grid layout
(right).

most important targets will get sufficient sensors allodatethem regardless of
the particular situation. In multi-spacecraft missionggmsed by researchers at
NASA [3] [19], distributed satellites must collaborate thedule/plan activities
to obtain scientific data. Provable quality guarantees stesy performance are
required since mission failure can result in extraordimapnetary and scientific

losses.

2.2 Background: Distributed Constraint Satisfaction

The Distributed Constraint Satisfaction (DisCSP) paradj§0] has been proposed as
a way to model and reason about the interactions betweernsadfmral decisions. In

DisCSP each agent controls the value of a variable and agamgt coordinate their

11

Neighbors
di

Figure 2.2: Example DCOP graph

= O O

choice of values so that a global objective function is fiatis The global objec-
tive function is modeled as a set of constraints where eaehtag only assumed to
have knowledge of the constraints in which its variable ¥®imed. Every constraint
is required to be propositional, i.e., true or false. In thigted representation, an as-
signment of values to variables must satiafiyconstraints in order to be considered a
solution.

This representation is inadequate for many real-world lerab where solutions
may have degrees of quality or cost. For example, real-wmdtlems are ofteover-
constrainedvhere it is impossible to satisfy all constraints. For thgges of problems
we may wish to obtain solutions thatinimizethe number of unsatisfied constraints.

Next, we present a model that is able to capture this type tiinggation problem.

12

2.3 Specification of DCOP Model

A Distributed Constraint Optimization Problem (DCOP) csisof n variablesV =
{z1, x9, ...z, }, €ach assigned to an agent, where the values of the vareigl¢éaken
from finite, discrete domain®., D-,..., D,,, respectively. Only the agent who is as-
signed a variable has control of its value and knowledgesad@main. The goal is to
choose values for variables such that a given objectivetimmes minimized or max-
imized. The objective function is described as the sum owsataf cost functions, or
valued constraints. The cost functions in DCOP are the goelof constraints from
DisCSP [50] (for convenience, we refer to cost functionsasstraints). They take val-
ues of variables as input and, instead of returning “satisireunsatisfied”, they return
a valuation as a non-negative number. Thus, for each pa@rdbesz;, z;, we may
be given acost functionf;; : D; x D; — N.

Figure 2.2 shows an example constraint graph with four bee&l = {z; , z,,
x3,r4}. Each variable has two values in its domain,= 0, 1. Assume each variable
is assigned to a different agent. In the example, there amecfanstraints with the cost
function as shown. All constraints have the same cost fangéti this example only for
simplicity. In general, each constraint could be very défg. Two agents;, z; are
neighborsif they have a constraint between them. andz; are neighbors because a
constraint exists between them, bytandz, are not neighbors because they have no

constraint.

13

The objective is to find an assignmest of values to variables such that the total
cost, denoted’, is minimized and every variable has a value. Stated fogmat wish
to find A (= A*) such thatF'(.A) is minimized, where the objective functidnis de-

fined as

FA) = > Vfl-j(di,dj) ,where x; « d;,
i@ €
xj«—d;in A

For example, in Figure 2.2 ({(x1,0), (z2,0), (z3,0), (4,0)}) = 4andF ({(xy, 1),
(2,1), (x3,1), (x4,1)}) = 0. In this exampleA* = {(z1,1),(z2, 1), (v3,1), (74,1)}.

Returning to the sensor network domain described in se2tibrwe may cast each
sensor as a variable and the three radar heads as varial®s v&onstraints are derived
from the geographic relationship between sensors. Inquaati, if a sensor activates one
of its radar heads and detects a target, constraints raggamdy agents to activate their
corresponding radar head to help track the detected taligetnearby agent violates
the constraint, e.g. it does not activate the correspongidgr head because it is busy
tracking another target, the agents pay a cost equal to tighinad the untracked target.
We will examine this domain and its representation in the PG@amework in more
detail in Chapter 5.

We are interested primarily in managing interdependeri@éseen different agents’

choices. We will assume each agent is assigned a singlebleaaad use the terms

“agent” and “variable” interchangeably. Since agents domes have complex local

14

problems, this is an assumption to be relaxed in future wifdkoo et al. [52] de-
scribe some methods for dealing with multiple variablesgggnt in DisSCSP and such
methods may also apply to DCOP. We will also assume that ntt are binary,
i.e., are defined over two variables. Note that generatimaid n-ary constraints has
been achieved in the DisCSP case without significant revssio algorithms that were
originally developed for binary constraints. Section 3i&cdsses ways in which the
assumption of single variable per agent and limitation taby constraints may be re-
laxed. We assume that neighbors are able to communicatesages, if received, are
received in the order in which they are sent between any paigents. Messages sent
from different agents to a single agent may be received iroacgr.

The computational complexity of DCOP as defined above is Bifé-hTo see this,
realize that 3-colorability of a graph, which is known to bB#omplete [31], can be
modeled as an instance of DCOP: Assign all graphs nodes togée sagent, model
graph edges as cost functions that return O if colors arereéifit and 1 if colors are the

same, and ask whether a solution of global cost O exists.

2.3.1 Scope of Model

The algorithmic techniques to be described later apply &vgel class of problems be-
yond summation over natural numbers. In fact, we can gdmertal other “aggregation

operators” such as minimization, which takes a set of natunabers and returns the

15

minimium in the set. In fact, our techniques can be applieahipassociative, commu-
tative, monotonic non-decreasing aggregation operatiometeover a totally ordered
set of valuations, with minimum and maximum element. Thésslof optimization
functions is described formally by Schiex, Fargier and &#ré as Valued CSPs [37].
While the DCOP represention presented above is rather geners unable to
model certain optimization functions. For example, we daubt represent functions
that are not monotonic, such as summation over integersewtegyative numbers may
cause a decrease in the value of the optimization functi¢éso,Ahe assumption that the
global cost function can be decomposed into the aggregafibmary cost functions
can be limiting in representing some optimization funcsicalthough we will discuss
ways to deal with this problem in later sections (such asidatibn of representations

and the generalization of our methods to n-ary constraints)

16

Chapter 3

Asynchronous Complete Method for DCOP

In this chapter we outline a novel lower-bound based disteitd search method for
DCOP. The first section outlines the three key features wgedgsour solution, ana-
lyzes why existing methods fail to provide them and deserife basic ideas behind
the new method. The following sections present algorithtaitée theoretical proofs of

completeness and experimental evaluations.

3.1 Basicldeas

DCOP demands techniques that go beyond existing metho@ledarg distributed sat-
isfactory solutions and their simple extensions for optimtion. A DCOP method for
the types of real-world applications previously mentionagst meet three key require-

ments. First, since the problem is inherently distributed,require a method where

17

agents can optimize a global function in a distributed fashising only local com-
munication (communication with neighboring agents). Melhwere all agents must
communicate with a single central agent are unacceptabtmrd, we require a method
that is able to find solutions quickly by allowing agents t@igie asynchronously. A
synchronous method where an agent sits idle while waitingfparticular message
from a particular agent is unacceptable because it is wastire when it could poten-
tially be doing useful work. For example, Figure 3.1 showsugs of loosely connected
agent subcommunities which could potentially executecteiarparallel rather than sit-
ting idle. Finally, provable quality guarantees on systarfgrmance are needed. For
example, mission failure by a satellite constellation periing space exploration can
result in extraordinary monetary and scientific losses.sJ ke require a method that
efficiently finds provably optimal solutions whenever pbssiand also allows princi-
pled solution-quality/computation-time tradeoffs whan is limited.

A solution strategy that is able to provide quality guarasievhile at the same time
meeting the requirements of distributedness and asynghsourrently missing from
the research literature. A well-known method for solving©O&P is the Asynchronous
Backtracking (ABT) algorithm of Yokoo, Durfee, Isida, andiabara [50]. Simple
extensions of ABT for optimization have relied on convegtan optimization problem
into a sequence of satisfaction problems in order to all@wte of a DisCSP algorithm

[17]. This approach has applied only to limited types of mitiation problems (e.g.

18

Hierarchical DisCSPs, Maximal DisCSPs), but has failedgplyato general DCOP
problems, even rather natural ones such as minimizing tiaériamber of constraint
violations (MaxCSP). Other existing algorithms that pd®/guality guarantees for op-
timization problems, such as the Synchronous Branch and@(&ynchBB) algorithm
[16] discussed later, are prohibitively slow since theyuieg|synchronous, sequential
communication. Other fast, asynchronous solutions, sachadants of local search
[16] [53], cannot provide guarantees on the quality of tHatsmns they find.

As we can see from the above, one of the main obstacles fangddCOP is com-
bining quality guarantees with asynchrony. Previous aggiies have failed to provide
guality guarantees in DCOP using a distributed, asynchusnwodel because it is diffi-
cult to ensure a systematic backtrack search when agerdsynehronously changing
their variable values. We argue that the main reason behegktfailures is that pre-
vious approaches insist on backtrackimgy when they conclude, with certainty, that
the current solution will not lead to the optimal solutiororexample, an agent execut-
ing the ABT algorithm concludes with certainty that the ewmtrpartial solution being
explored will not lead to a global satisfactory solution wheer it locally detects an
unsatisfiable constraint. Thus, while agents are able tocisgnously change vari-
able values in ABT, it is only because of the limited repréaton of DisSCSP, where
only one constraint needs to be broken for a candidate saltti be globally incon-

sistent. Extensions of ABT for optimization problems [1 &Vl continued to rely on

19

a satisfaction-based representation and have failed ty &pgeneral DCOP also for
this reason. Similarly, the SynchBB algorithm concludethwertainty that the current
partial solution will not lead to a globally optimal solutievhenever its cost exceeds a
global upper bound. This approach to DCOP fails to be asymgus and parallel be-
cause computing a global upper bound requires that all cosite® constraint network
be accumulated within a single agent before decisions candue.

To alleviate the above difficulties, we preséatopt(Asynchronous Distributed Op-
timization), the first algorithm for DCOP that can find optinsalutions using only
localized asynchronous communication and polynomialspaeach agent. Commu-
nication is local in the sense that an agent does not senchgessto every other agent,
but only to neighboring agents. An assumption, to be reldaienl, is that communica-
tion is reliable.

A key idea behind Adopt is to obtain asynchrony by allowingreagent to change
variable value whenever it detects there isassibilitythat some other solution may
be better than the one currently under investigation. Tédsch strategy allows asyn-
chronous computation because an agent does not need gitdrahation to make its
local decisions — it can go ahead and begin making decisiathsonly local informa-
tion. The three main ideas in Adopt are described next.

Lower-bound Based SearchAdopt performs distributed backtrack search using an

"opportunistic” best-first search strategy, i.e., eachnageeps on choosing the best

20

Figure 3.1: Loosely connected subcommunities of problelress
value based on the current available information. Statfferdntly, each agent always

chooses the variable value with smallest lower bound. Téasch strategy is in con-
trast to previous distributed “branch and bound” type deatgorithms for DCOP (e.g.
SynchBB [16]) that require agents to change value only wlest exceeds a global
upper bound (which proves that the current solution mustibegtimal). Adopt’'s new
search strategy is significant because lower bounds aresudable for asynchronous
search —a lower bound can be computed without necessavitydwaccumulated global
cost information. In Adopt, an initial lower bound is immatily computed based only
on local cost. The lower bound is then iteratively refined a® rost information
is asynchronously received from other agents. Note thadusecthis search strategy
allows agents to abandon partial solutions before they peweed the solution is def-
initely suboptimal, they may be forced to reexplore preslgiwconsidered solutions.
The next idea in Adopt addresses this issue.

Backtrack ThresholdsTo allow agents to efficiently reconstruct a previously ex-
plored solution, which is a frequent action due to Adoptarsh strategy, Adopt uses
the second idea of using a stored lower bound &scktrack threshold This tech-

nique increases efficiency, but requires only polynomiatsgn the worst case, which

21

is much better than the exponential space that would benegjto simply memorize
partial solutions in case they need to be revisited. Thechdsia behind backtrack
thresholds is that if a parent agent knows from previousckeaxperience thab is

a lower bound on cost within one of its subtrees, it shouldrimf the subtree not to
bother searching for a solution whose cost is less thavhen a partial solution is re-
visited. In this way, a parent agent calculates backtracéstiold using a previously
known lower bound and sends the threshold to its childrerenTkhe child uses the
backtrack threshold as atlowanceon solution cost — a child agent will not change its
variable value so long as the cost of the current solutioess than the given backtrack
threshold. Since the backtrack threshold is calculateaigusipreviously known lower
bound, it is ensured to be less than or equal to the cost ofptimal solution. Thus,
we know the optimal solution will not be missed.

To make the backtrack threshold approach work when mulsplecommunities
search in parallel, a parent ageptmust distribute its cost allowance, denotédeshold,
correctly to its multiple children. This is a challengingkéecause the parent does not
remember how cost was accumulated from its children in tis¢ (@ do so would re-
guire exponential space in the worst case). We addressitficsilly in the following
way. If z, chooses variable valuéwhich has a local cost of(d), it subdivides the
remaining allowanceihreshold — 6(d), arbitrarily among its children. However, this

subdivision may be incorrect, and so must be corrected awvex. tLetx; be a child of

22

x,. After some searchy; may discover that its portion ahreshold, denoted(d, x;),

is too low because the lower bound on the cost in its subcorityndenotedb(d, z;),
exceeds(d, x;). When this happens;; unilaterally raises its own allowance and re-
portsib(d, x;) to its parentz,. The parent agent then redistributéseshold among
its children by increasing(d, z;) and decreasing the portions given to the other chil-
dren. Informally, the parent maintains Allocationinvariant (described later) which
states that its local cost plus the sumt@d, x;) over all childrenz; must equal its
backtrack thresholdhreshold and aChildThresholdinvariant , which states that no
child z; should be given allowancéd, x;) less than its lower bountd(d, =;). Using
these invariants (and cost feedback from its children)ptrent continually re-balances
the subdivision of backtrack threshold among its childretil the correct threshold is
given to each child.

Termination DetectionFinally, the third key idea is the use of bound intervals for
tracking the progress towards the optimal solution, thepaviding a built-in termi-
nation detection mechanism. A bound interval consists i adower bound and an
upper bound on the optimal solution cost. When the size obthend interval shrinks
to zero, i.e., the lower bound equals the upper bound, thieofdke optimal solution
has been determined and agents can safely terminate whduat@rsof this cost is
obtained. Most previous distributed search algorithmshaquired a separate termi-

nation detection algorithm. In contrast, the bound intesri@Adopt provide a natural

23

— Parent/Child

(2
(8

(a) (b)

Figure 3.2: Two valid tree orderings for the constraint grapfigure 2.2

termination detection criterion integrated within thealthm. This is a significant
advance because bound intervals can be used to perform dxxenr approximation.
As soon as the bound interval shrinks to a user-specifiedagysats can terminate early
while guaranteeing they have found a solution whose cositismthe given distance
of the optimal solution. This means that agents can find aroappate solution faster

than the optimal one but still provide a theoretical guagardn global solution quality.

3.2 Adopt Algorithm

Tree Ordering. Before executing Adopt, agents are ordered into a Deptt-Bigarch
(DFS) tree. Thus, unlike previous algorithms such as SyBc[iB], Adopt doesot
require a linear ordering on all the agents. A DFS tree ordletefined by directed

parent-childedges. A valid DFS tree requires that the graph formed bynpaigld

24

<3-- THRESHOLD message
-«—VALUE messages

-« - - COST messages

Neighbors
Parent/Child

(b)
Figure 3.3: (a) Constraint graph. (b) Communication graph.

edges is acyclic. A single agent is designated as the rooathmiher agents have a
single parent. Note that an agent may be the parent of mattipldren but no agent
may have multiple parents. We will not describe the detdilhe algorithm for con-
structing this tree order. It has been shown that a validdrder can be constructed
in polynomial-time in a distributed fashion[26]. Yokoo dt §0] describe a method
where a tree order can be constructed under the reasonahblagtson that each agent
has a unique identifier. For our purposes, we will assume #® &dering is done in a
preprocessing step.

The given input DCOP constraint graph places one importstriction on the
space of valid tree orderings. Specifically, we require thate exist no constraint be-

tween two agents in different subtrees of the DFS tree ardeiihe advantage of this

25

restriction is that agents in different subtrees are abketrch for solutions indepen-
dently. However, it is important to understand that thidrietson doesnot limit the
space of input constraint graphs — every constraint graphbeaordered into a valid
DFS tree. As an example consider a linear (total) orderingre/imo agent has more
than one single child. This is a valid tree ordering for anyegiconstraint graph be-
cause there are no branches in the tree. Thus, there cansiod @onstraint between
agents in different subtrees.

For a given input DCOP constraint graph, there may be mang trale orderings.
Figure 3.2 shows two possible DFS tree orderings for thetcaing graph in Figure
2.2. In Figure 3.2.ay, is the root,z; is the parent of:,, andz, is the parent of both
x3 andx4. Note that constraints are allowed between an agent andfarsyamcestors
or descendents (there is a constraint betweeand x3). In Figure 3.2.b shows an
alternative tree ordering where the agents are orderediearlorder.

In this work, we do not address how distributed agents caonsdthe “best” tree
ordering, although it is an important issue deserving ergtudy. Researchers in cen-
tralized CSP have developed sophisticated heuristicdimoging good variable orders
in backtrack style search[34]. A example includes the FHesk Principle which states
that variables with smaller domain sizes should be insagedifirst. The corresponding
heuristic in our distributed situation would recommend tgents with smaller domain

sizes to be higher in the tree. Another dimension to consutien comparing two tree

26

orders is tree depth, i.e., the length of the longest path fimot to leaf. Our intuition
is that a tree with smaller depth is better because infoonasi able to flow up the tree
faster. For example, we should expect that Figure 3.2.arenhe tree depth is 3, is a
better tree order than Figure 3.2.b, where the tree depthliki4 intuition may become
more obvious to the reader after the Adopt algorithm is e@rpld

Finally for simplicity, we will also assume that every parand child are neighbors
(a constraint exists between them). However, this is noabrestriction since we may
always add a “dummy” zero-cost constraint between two agehb are chosen to be
parent/child but are not neighbors in the input constraiapQ.

Algorithm Overview.Once the DFS tree is constructed, each agenbncurrently

executes the following algorithm.

e Initialize the lower bound for each value ip; to zero. Assign a random value to
your variabler;.

e Send your current value af, to each neighbor lower in the DFS tree.

e When receive the value of a neighlgr for each valueD; evaluate the constraint
betweenz; andz;. Add the cost of the constraint to the lower bound for each of
your values. If the lower bound for the current value is higtian the lower
bound for some other valug switch value tai.

e Send the lower bound for your value with least lower boundaworyparent in the
DFS tree. Attach the variable value of the parent under wtiichlower bound
was computed as a “context”.

e When receive a lower bound from your child attached with yealue d, add
the reported lower bound to the lower bound #orlf the lower bound for your
current value is higher than the lower bound for some othieleyawitch to value
with least lower bound.

27

e When a higher neighbor changes variable value, re-ireéahe lower bound for
each value inD; to zero.

e Continue sending and receiving messages and changing\adudictated above
until the followingtermination conditionis true: The lower bound. B for one
valued is also an upper bound, and the lower bound for all other gakibigher
thanL B. Note that when this condition is truls the globally optimal value for
x; until and unless a higher neighbor changes value.

Once the above termination condition is true at the root agle@ root sends a TER-
MINATE message to its children and terminates itself. Afemeiving a TERMINATE
message, an agent knows that all of its higher neighbors tea@nated. Once the
termination condition is true at non-root agentand it has received a TERMINATE
message from its parent; will send TERMINATE messages down to its children. In
this way, TERMINATE messages are recursively sent downrde until the termina-

tion condition is true at all agents and all agents have tesed.

3.2.1 Algorithm Details

The communication in Adopt is shown in Figure 3.3.b. The athm begins by all
agents choosing their variable values concurrently. Yéeigalues are sent down con-
straint edges via VALUE messages — an aggesends VALUE messages only to neigh-
bors lower in the DFS tree and receives VALUE messages ooty freighbors higher
in the DFS tree. A second type of message, a THRESHOLD mesiagent only

from parent to child. A THRESHOLD message contains a singhalver representing

28

a backtrack threshold, initially zero. Upon receipt of apge of message, an agent i)
calculates cost and possibly changes variable value amaydifies its backtrack thresh-
old, ii) sends VALUE messages to its lower neighbors and THRELD messages to
its children and iii) sends a third type of message, a COSTsaggs to its parent. A
COST message is sent only from child to parent. A COST messagdromz; to its
parent contains the cost calculated:aplus any costs reported tg from its children.
To summarize the communication, variable value assignsn®a_UE messages) are
sent down the DFS tree while cost feedback (COST messages)late back up the
DFS tree. It may be useful to view COST messages as a gertiainf NOGOOD
message from DisCSP algorithms. THRESHOLD messages are@en the tree to
reduce redundant search.

Procedures from Adopt are shown in Figure 3.4 and 3;5epresents the agent’s

local variable and/; represents its current value.

¢ Definition 1: A contextis a partial solution of the form(z;,d;), (zx.dx)...}. A
variable can appear in a context no more than once. Two csrdescompatible
if they do not disagree on any variable assignméht:rentContext is a context

which holdsz;’s view of the assignments of higher neighbors.

A COST message contains three fieldsatext, b andub. Thecontext field of a
COST message sent framto its parentr; containse;’s CurrentContext. This field

is necessary because calculated costs are dependent aalubs of higher variables,

29

SO an agent must attach the context under which costs weralat&d to every COST
message. This is similar to treontext attachmennhechanism in ABT [50]. When
x; receives a COST message from child andd is the value ofz; in the context
field, thenz; storesib indexed byd and z; asib(d,z;) (line 32). Similarly, theub
field is stored asub(d, x;) and thecontezt field is stored agontext(d, x;) (line 33-
34). Before any COST messages are received or whenevextohezome incompat-
ible, i.e.,CurrentContext becomes incompatible wittbntezt(d, x;), thenlb(d, z;) is
(re)initialized to zero andb(d, z;) is (re)initialized to a maximum value: f (line 3-4,
18-19, 29-30).

x; calculates cost as local cost plus any cost feedback ret&iom its children.
Procedures for calculation of cost are not shown in FigutéGt are implicitly given by
procedure calls, such &8 andUB, defined next. Théocal costat z;, for a particular
value choiced; € D;, is the sum of costs from constraints betwegrand higher

neighbors:

o Definition 2: 6(d;) = >_(,, 4)ecurrentcontest Jii(di, ;) is thelocal costat z;,

whenz; chooses!;.

For example, in Figure 3.3.a, suppasegeceived messages thgtandzx, currently
have assigned the value 0. Theyis CurrentContext would be{(z1,0), (z2,0)}. If

x3 chooses 0 for itself, it would incur a cost of 1 frofins(0,0) (its constraint with

30

x1) and a cost of 1 frony, 5(0,0) (its constraint withrs). Soz;’s local cost,d(0) =
1+1=2.
Whenz; receives a COST message, it adldg, ;) to its local cost(d) to calculate

alower bound for valuel, denoted. B(d).

e Definition 3: Vd € D;, LB(d) = 6(d) + >_, ccniaren 10(d, 71) is alower bound

for the subtree rooted at, whenx; choosesl.

Similarly, z; addsub(d, x;) to its local cost(d) to calculate arupper bound for

valued, denoted’ B(d).

e Definition 4: Vd € D;,UB(d) = 6(d) + >, ccniaren ©0(d; 71) is aupper bound

for the subtree rooted at, whenz; chooses.

The lower bound for variabler;, denotedL B, is the minimum lower bound over

all value choices for;.

e Definition 5: LB = mingep, LB(d) is alower boundfor the subtree rooted at

Z;.

Similarly the upper bound for variable:;, denotedU B, is the minimum upper

bound over all value choices far.

e Definition 6: UB = mingep, UB(d) is anupper boundor the subtree rooted at

Ti.

31

x; sendsL B andU B to its parent as th#® andub fields of a COST message (line
52). (Realize thaL. B need not correspond t9's current value, i.e.L B need not equal
LB(d;)). Intuitively, LB = k indicates that it is not possible for the sum of the local
costs at each agent in the subtree rooted; @ be less thark, given that all higher
agents have chosen the valuegiarrentContext. Similarly, UB = k indicates that
the optimal cost in the subtree rootedzatwill be no greater thark, given that all
higher agents have chosen the value€'inrrentContext. Note that ifz; is a leaf
agent, it does not receive COST message®,(8d = LB(d) = UB(d) for all value
choicesd € D, and thus,L B is always equal t&/ B in every COST message. df is
not a leaf but has not yet received any COST messages fromilidsen, U B is equal
to maximum valuen f and LB is the minimum local cosi(d) over all value choices
d e D,.

x;'s backtrack threshold is stored in thiereshold variable, initialized to zero (line
1). Its value is updated in three ways. First, its value cainbeeased whenevaer;
determines that the cost of the optimal solution within itbtsee must be greater than
the current value ofhreshold. Second, ifr; determines that the cost of the optimal
solution within its subtree must necessarily be less tharctinrent value ofhreshold,
it decreaseshreshold. These two updates are performed by compatingshold to
LB andU B (lines 53-56, figure 3.5). The updating@freshold is summarized by the

following invariant.

32

e Thresholdinvariant: LB < threshold < UB. The threshold on cost for the
subtree rooted at; cannot be less than its lower bound or greater than its upper

bound.

A parent is also able to set a childkreshold value by sending ita THRESHOLD
message. This is the third way in which an agemt’seshold value is updated. The
reason for this is that in some cases, the parent is able évndiee a bound on the
optimal cost of a solution within an agent’s subtree, butagent itself may not know
this bound. The THRESHOLD message is a way for the parentftonmthe agent
about this bound.

A parent agent is able to correctly set theeshold value of its children by allocat-
ing its ownthreshold value to its children according to the following two equaso
Let ¢(d, x;) denote the threshold on cost allocated by parerto child z;, given z;

chooses valué. Then, the values d{d, x;) are subject to the following two invariants.

e Allocationlnvariant: Forcurrentvalué; € D;, threshold =d(d;) + ., conigren
t(d;, ;). The threshold on cost far; must equal the local cost of choosidglus

the sum of the thresholds allocatedités children.

e ChildThresholdinvariant: Vd € D;,Vz; € Children, lb(d,z;) < t(d,x;) <
ub(d, x;). The threshold allocated to chilgl by parentr; cannot be less than the

lower bound or greater than the upper bound reported, by ;.

33

By adhering to these invariants, an agent is able to use itstbwshold to deter-
mine bounds on the cost of the optimal solution within itddi@ins’ subtrees.

Thethreshold value is used to determine when to change variable value.n¥Whe
everL B(d;) exceedshreshold, x; changes its variable value to one with smaller lower
bound (line 40-41). (Such a value necessarily exists sittoerewise Thresholdinvari-
ant would be violated.) Note that cannot prove that its current value is definitely
suboptimal because it is possible thateshold is less than the cost of the optimal so-
lution. However, it changes value to one with smaller costnay — thereby realizing

the best-first search strategy previously described.

3.2.2 Example of Algorithm Execution

Figure 3.6 shows an example of algorithm execution for thedPGhown in figure
3.3. Line numbers mentioned in the description refer to 8g8.4 and 3.5. This ex-
ample is meant to illustrate the search process and the egeltd VALUE and COST
messages. COST messages are labelled in the figures as [|[Bj8ntContext]. For
simplicity, not every message sent by every agent is showipatticular, THRESH-
OLD messages are omitted from the description. (A later gtamwill illustrate how
backtrack thresholds are handled.)

All agents begin by concurrently choosing a value for thairable (line 5). For

this example, let us assume they all choose valuEach agent sends its value to all

34

(31) if context compatible

initialize with CurrentContext:

(1) threshold «— 0; CurrentContext — {} (32) Ib(d, zy) «— 1b

(2) forall d € D;,z; € Children do (33) ub(d, xg) < ub

(3) Ib(d, z;) « 0; t(d, ;) < 0 (34) context(d, zy) < context

4) ub(d, x;) < Inf; context(d,z;) — {}; (35) maintainChildThresholdInvariant
enddo (36) maintainThresholdlnvariant ;

(5) d; « dthat minimized.B(d) endif

(6) backTrack (37) backTrack

when received(THRESHOLD,, t, context)

(7) if context compatible withCurrentContext:
(8) threshold «—t

(9) maintainThresholdInvariant

(10) backTrack; endif

when received(TERMINATE , context)
(11) record TERMINATE received from parent

(12) CurrentContext < context
(13) backTrack

when received(VALUE , (z;,d;))

(14) if TERMINATE not received from parent:
(15) add ¢;,d;) to CurrentContext

(16) forall d € D;,z; € Children do

a7 if context(d,x;) incompatible withCurrentContext:
(18) Ib(d, x;) < 0; t(d,x;) < 0
(19) ub(d, x;) < Inf; context(d, z;) — {}; endif, enddo

(20) maintainThresholdInvariant
(21) backTrack; endif

when received(COST, xi, context, lb, ub)

(22) d < value ofz; in context

(23) remove £;,d) from context

(24) if TERMINATE not received from parent:

(25) forall (z;,d;) € context andx; is not my neighbodo

(26) add ¢;,d;) to CurrentContext;enddo

(27) forall d' € D;,xz; € Children do

(28) if context(d',x;) incompatible withCurrentContext:

(29) Ib(d',x;) < 0; t(d',x;) — 0

(30) ub(d', ;) — Inf; context(d',x;) — {};endif,enddgendif

Figure 3.4: Procedures for receiving messages in the Adgptithm. Definitions of
termsLB(d), UB(d), LB, andUB are given in the text.

35

procedure backTrack

(38) if threshold == UB:

(39) d; < d that minimizedUB(d)

(40) elseif LB(d;) > threshold:

(42) d; «— d that minimized_B(d);endif
(42) SEND WALUE, (z;, d;))

(43) to each lower priority neighbor
(44) maintainAllocationInvariant

(45) if threshold == UB:

(46) if TERMINATE received from parent

47 orx; IS root:

(48) SEND TERMINATE ,

(49) CurrentContext U {(z;,d;)})

(50) to each child

(51) Terminate executiorendif;endif

(52) SEND COST, z;, CurrentContext, LB ,UB)
to parent

procedure maintainThresholdInvariant
(53) if threshold < LB

(54) threshold < LB ; endif

(55) if threshold > UB

(56) threshold < UB; endif

%note: procedure assumes Thresholdinvariant is satisfied

procedure maintainAllocationinvariant

(57) while threshold > 6(d;) + 3 ., ccnitaren t(di, 1) dO

(58) chooser; € Children whereub(d;, x;) > t(d;, z;)

(59) increment(d;, x;); enddo

(60) while threshold < 6(d;) + 3 ., ccnitaren t(di, x1) dO

(61) chooser; € Children wheret(d;, z;) > Ib(d;, x;)

(62) decrement(d;, x;); enddo

(63) SEND THRESHOLD, t(d;, x;), CurrentContext)
to each childy;

procedure maintainChildThresholdInvariant
(64) forall d € D;,z; € Children do

(65) while 1b(d, ;) > t(d,z;) do

(66) increment(d, x;); enddo;endo
(67) forall d € D;,z; € Children do

(68) while ¢(d, ;) > ub(d, z;) do

(69) decrement(d, x;); enddo;enddo

Figure 3.5: Procedures in the Adopt algorithm (cont)

36

lower priority neighbors (figure 3.6.a). Since the algaritls asynchronous, there are
many possible execution paths from here — we describe orsgyp@execution path.

xo Will receive z;'s VALUE message. In line 15, it will record this value int it
CurrentContext. In line 21, it will enter thebackTrack procedure.z, computes
LB(0) = 6(0) +{b(0,23) +1b(0,24) =14+0+0=1andLB(1) = §(1) +Ib(1, x3) +
Ib(l,z4) =2+ 0+ 0 = 2. SinceLB(0) < LB(1), we haveLB = LB(0) = 1. x
will also computd/ B(0) = 6(0) + ub(0, x3) +ub(0,z4) = 1+ Inf + Inf = Inf and
UB(1) = 6(1) + ub(1,z3) + ub(l,24) = 2+ Inf + Inf = Inf. Thus,UB = Inf.
In line 38, threshold is compared td/B. threshold was set to 1 (in order to be
equal toLB) in the maintainAllocationinvariant procedure call fromd 20. Since
threshold = 1is notequall B = Inf, the test fails. The testin line 40 also fails since
LB(0) = 1is not greater thathreshold = 1. Thus,z, will stick with its current value
xo = 0. Inline 52,z, sends the corresponding COST messags {digure 3.6.b).

Concurrently withz,’s execution,zs will go through a similar executionzs will
evaluate its constraints with higher agents and compué)) = 6(0) = f13(0,0) +
f23(0,0) = 1+ 1 = 2. A change of value ta; = 1 would incur a cost oL B(1) =
d(1) = f13(0,1) + f23(0,1) = 2 + 2 = 4, so instead:3 will stick with z3 = 0. =3 will
send a COST message WillB = U B = 2, with associated conteX{z;,0), (x2,0)},

to its parentr,. x4, executes similarly (figure 3.6.b).

37

Next, z; receivesry’s COST message. In line 31; will test the received context
{(z1,0)} againstCurrentContext for compatibility. Sincer,’s CurrentContext is
empty, the test will pass. (Note that the root never receWdsUE messages, so its
CurrentContext is always empty.) The received costs will be stored in lin2s33
asib(0,z5) = 1 andub(0,z5) = Inf. Inline 37, execution enters theckTrack
procedurex; computesLB(1) = §(1) + Ib(1,22) =0+ 0 = 0andLB(0) = §(0) +
1b(0,29) =0+ 1= 1. SinceLB(1) < LB(0), we haveLB = LB(1) = 0. Similarly,
UB = Inf. Sincethreshold = 0 is notequall B = Inf, the test in line 38 fails. The
test in line 40 succeeds ang will choose its valuel that minimizes. B(d). Thus,z;
switches value ta; = 1. It will again send VALUE messages to its linked descendents
(figure 3.6.c).

Next, let us assume that the COST messages sentitofigure 3.6.b are delayed.
Instead,x, receivesr,’s VALUE message from figure 3.6.c. In line 15, will update
its CurrentContext to {(xy,1)}. For brevity, the remaining portion of this procedure
is not described.

Next, z, finally receives the COST message sent to it frgnm figure 3.6.b.z5 will
test the received context agaidstrrentContext and find that they are incompatible
because one contaifis,, 0) while the other containgry, 1) (line 31). Thus, the costs
in that COST message will not be stored due to the contexigehdiowever, the COST

message from, will be stored in lines 32-33 d$(0, z3) = 1 andub(0, z3) = 1. Inline

38

37, x5 then proceeds to theackTrack procedure where it will choose its best value.
The best value is now, = 1 sinceLB(1) = 6(1) + 1b(1,23) + Ib(1,24) =0+ 0+ 0
and LB(0) = §(0) + 1b(0,z3) + 1b(0,24) = 2+ 0+ 1 = 3. Figure 3.6.d shows the
change in both, andz; values after receiving,’'s VALUE message from figure 3.6.c.
o andzxs send the new COST messages with the new context whete 1. x, also
sends VALUE messages 1@ andx, informing them of its new value.

Next, figure 3.6.e shows the new COST message that is sem} by =, after
receiving the COST messages sent frognand z, in figure 3.6.d. Notice that,
computesLB as LB(1) = o6(1) + b(1,23) + Ib(1,z4) = 0+ 0+ 0 andUB as
UB(1) = 6(1) + ub(1,23) + ub(l,z4) = 0+ 2+ 1 = 3. Figure 3.6.e also shows
the new COST message sentdyyafter receivinge,’s new value ofr; = 1. Similarly,
x4 Will change variable value and send a COST message With= 0 andU B = 0.

In this way, we see the agents have ultimately settled ongtimal configuration with
all values equal to 1 (total cost = 0).

Finally in figure 3.6.fz, receives the COST messages from figure 3.6.e, computes
a new bound interval.B = 0, U B = 0 and sends this information tq. Upon receipt
of this messagey; will computeUB = UB(0) = §(0) + ub(0,22) = 0+ 0 = 0.
Note thatz,’s threshold value is also equal to zerohreshold was initialized to zero
in line 1 and can only be increased if i) a THRESHOLD messagedsived (line 8),

or b) the ThresholdInvariant is violated (line 54, figure)3.5he root never receives

39

-+—VALUE messages
-« - - COST messages
Parent/Child

A[l,lnf,x1=0]
1

Figure 3.6: Example Adopt execution for the DCOP shown inrgk13

THRESHOLD messages, so case (i) never occurred. Sifisd.B was never greater
than zero in this exampleéhreshold could never have been less thai, so case (ii)
never occurred. Thushreshold was never increased and remains equal to zero. So,
we have the testireshold == UB in line 45 evaluate to true. In line 48, it will send a
TERMINATE message ta,, and thens; will terminate in line 51.x, will receive the
TERMINATE message in line 11, evaluatlereshold == UB(= 0) to be true in line

45 and then terminate in line 51. The other agents will teat@n a similar manner.

40

3.2.3 Example of Backtrack Thresholds

We illustrate how backtrack thresholds are computed, @widanhd balanced between
children. The key difficulty is due to context changes. Anrdgmly stores cost infor-
mation for the current context. When the context changesstibred cost information
must be deleted (in order to maintain polynomial space).dfewvious context is later
returned to, the agent no longer has the previous contestaldd cost information
available. However, the agent had reported the total sunostsdo its parent, who
has that information stored. So, although the precise mmdébion about how the costs
were accumulated from the children is lost, the total sunvaslable from the parent.
It is precisly this sum that the parent sends to the agenheid HRESHOLD message.
The child then heuristically re-subdivides, or allocatia threshold among its own
children. Since this allocation may be incorrect, it therreats for over-estimates over
time as cost feedback is (re)received from the children.

Figure 3.7 shows a portion of a DFS tree. The constraints arehmown. Line
numbers mentioned in the description refer to figure 3.4 anddi3.5.x, has parent
x4, Which is the root, and two children, andz,. For simplicity, assumé, = {d,}
andi(d,) = 1, i.e,z, has only one value in its domain and this value has a local cost
of 1.

Supposer, receives COST messages containing lower bounds of 4 anarbitgo

two children (figure 3.7.a). The costs reported:toare stored a#h(d,, z;) = 4 and

41

Ib(d,, z;) = 6 (line 32) and associated context@stext(d,, ;) = context(d,, z;) =
{(z4,d,)}. LB is computed adB = LB(d,) = 6(d,) + Ib(d,,z;) + Ib(d,,z;) =
1+4+6 = 11. In figure 3.7.b, the corresponding COST message is sentrémpa
z,. After the COST message is sent, suppose a context changes ate, through the
receipt of a VALUE message, = d. In line 18-19,r, will resetib(d,, x;), (b(d,, x;),
t(d,, z;) andt(d,, z;) to zero.

Next, z, receives the information sent by. x, will setb(d,, z,) = 11 (line 32),
and enter thenaintainChildThresholdInvariant procedure (line 35). Let us assume
thatt(d,, z,) is still zero from initialization. Then, the test in line 6Gcceeds since
Ib(d,, z,) = 11 > t(d,,z,) = 0 andz, detects that the ChildThresholdInvariant is
being violated. In order to correct this, increase$(d,, x,) to 11 in line 66.

Next, in figure 3.7.cg, revisits the valuel, and sends the corresponding VALUE
message, = d,. Note that this solution context has already been explor¢e past,
but z, has retained no information about it. However, the pargrtas retained the
sum of the costs, sg, sends the THRESHOLD message with,, z,,) = 11.

Next, z, receives the THRESHOLD message. In line 8, the value is dtioréne
threshold variable. Execution proceeds to thackTrack procedure wherenain-
tainAllocationinvariant is invoked in line 44. Notice that the test in line 57roin-
tainAllocationinvariant evaluates to true sine¢éreshold = 11 > §(d,) + t(d,, ;) +

t(dy,x;) =140+ 0. Thus, in lines 57-5%, increases the thresholds for its children

42

until the invariant is satisfied. Suppose that the splitds, z;) = 10 andt(d,, z;) = 0.
This is an arbitrary subdivision that satisfies the Allogatnvariant — there are many
other values ot (d,, ;) andt(d,, z;) that could be used. In line 63, these values are
sent via a THRESHOLD message (figure 3.7.d).

By giving z; a threshold of 10y, risks sub-optimality by overestimating the thresh-
old in that subtree. This is because the best known lowerdwun’'s subtree was only
4. We now show how this arbitrary allocation of threshold barcorrected over time.
Agents continue execution until, in figure 3.728,receives a COST message from its
right child z; indicating that the lower bound in that subtree isi6.is guaranteed to
send such a message because there can be no solution inlttieesaf cost less than
6, as evidenced by the COST message previously sent byfigure 3.7.azx, will set
Ib(d,, x;) = 6 (line 32) and enter thMaintainChildThresholdinvariant procedure in
line 35. Note that the test in line 65 will succeed sitg@,, z;) = 6 > t(d,,x;) =5
and the ChildThresholdInvariant is being violated. In erdecorrect thisg, increases
t(dy, x;) to 6 in line 66. Execution returns to line 35 and continuesre #4, where
themaintainAllocationinvariant is invoked. The test in line 60 of this procedure will
succeed sincéhreshold = 11 < 6(dy) + t(d,, x;) + t(dy,z;) = 1 +104+6 = 17
and so the AllocationInvariant is being violated. In linds&, =, lowerst(d,, z;) to
4 to satisfy the invariant. In line 63;, sends the new (correct) threshold values to its

children (figure 3.7.1).

43

Parent/Child
xq=dq’ ‘\ xg=dg e \.\‘\.t(dq, Xp) =

[6 Inf, (xq=dg,xp=dp)]
“t(dp,x) = 0 -

N ydpl) = 47

/\/@@ g

©)))

t(dp,xi) = 10 t(dp,xr) =

Figure 3.7: Example of backtrack thresholds in Adopt

In this way, a parent agent continually rebalances the llotdggiven to its indepen-

dent subtrees in order to avoid overestimating the costch sabtree while allowing

more efficient search.

3.3 Correctness and Complexity

In order to show that Adopt is correct and complete, we mustt $inow that the lower

bounds and upper bounds computed at each agent are alwagstcdmhus, Theorem

1 shows that the lower boundB computed by an agent iever greatethan the cost

of the optimal solution within its subtree, and the upperrmbl B is never lesghan

44

the cost of the optimal solution within its subtree. The probTheorem 1 relies on
the following observation: it;; chooses some valuk then the cost of the best solution
possible in the subtree rootediatis equal to (a) the local cost at for valued plus(b)
the cost of the optimal solution in the subtrees rooted ‘atchildren given that:; has
chosen value. Therefore, the optimal solution in the subtree rooted, as obtained
if and only if z; chooses a value that minimizes this total cost. To statetygsrvation
formally, we need to define the following term: t°T'(z;, context) denote the cost of
the optimal solution in the subtree rootedrgtgiven that higher priority variables have
values incontext. For example, ifc; is a leaf, therO PT'(z;, context) = mingep, 0(d),
i.e., the cost of the optimal solution in the subtree rootea eaf (which is a single-
node tree consisting of only the leaf) is the value that mingw the local cost at the
leaf. We now state Property 1.

Property 1: Vz; € V,
OPT (z;, CurrentContext) «f mingep, 6(d)+
> wrccniiaren OPT (1, CurrentContext U (x4, d))

The proof of Theorem 1 proceeds by induction. The base c#lea/fofrom the fact
LB =OPT(z; ,CurrentContext) = UB is always true at a leaf agent. The inductive

hypothesis assumes thaf3 (U B) sent byz; to its parent is never greater (less) than

45

the cost of the optimal solution in the subtree rooted;aflhe proof also relies on the

fact that costs are reported to only one parent so there isuablé counting of costs.

Theorem 1 Vz,; € V,

LB < OPT(x;,CurrentContext) < UB

Proof: By induction on agent ordering, leaf to root.

Base Case lz; is a leaf. Since; has no children, the equations fbB andU B (see
Definition 4 and 5 in section 3.2.1) simplify 108 = mingep, 6(d) = UB. Property 1
simplifies toO PT'(z;, CurrentContext) = mingep, 6(d) for the same reason. So we
concludeL B = mingep, 6(d) = OPT (z;, CurrentContext) = UB. Done.

Base Case lIEvery child ofz; is a leaf. We will show. B < O PT'(x;, CurrentContext).
The proof forO PT(x;, CurrentContext) < UB is analogous.

Since all childrery; are leaves, we know from Base Case | héd, =) < OPT(z;,
CurrentContext U (x;,d)). Furthermore, each chilgf sends COST messages only to
x;, SO costs are not double-counted. We substiutd(z;, CurrentContext U(x;, d))

for [b(d, z;) into the definition ofL B to get the following:

LB = mindeDi (S(d) + leeChildren lb(d, l’l) S

mingep, 6(d) + 3, coniaren OPT (w1, CurrentContext U (4, d))

46

Now we can simply substitute Property 1 into the above to get

LB < OPT(x;, CurrentContext)

and we are done.

Inductive Hypothesisvd € D;,Vx; € Children,

Ib(d, ;) < OPT(x;, CurrentContext U (x;,d)) < ub(d, x;)

The proof of the general case is identical to that of Base Gasgcept we assume
Ib(d, z;) < OPT(x;, CurrentContext U (x;,d)) from the Inductive Hypothesis, rather
than from the assumption thatis a leaf.™

Next, we must show that Adopt will eventually terminate. At® termination
condition is shown in line 45 of Figure 3.4, namely the cowditthreshold = UB
must hold, and ifz; is not the root a TERMINATE message must also be received
from the parent. In Theorem 2, we show that if therrentContext is fixed, then
threshold = U B will eventually occur. The proof follows from the fact thajents
continually receive cost reportsB andU B from their children and pass costs up to
their parent. Theorem 1 showed thaB has an upper bound aridB has a lower

bound, sa.B must eventually stop increasing ablid3 must eventually stop decreasing.

47

The ThresholdInvariant forceareshold to stay betweed B andU B until ultimately

threshold = U B occurs.

Theorem 2 Vz; € V, if CurrentContext is fixed, therthreshold = U B will eventu-

ally occur.

Proof: By induction on agent priorities, leaf to root.

Base Case:z; is a leaf. LB = UB is always true at; because it is a leaf. Every
agent maintains the ThresholdInvaridi® < threshold < UB. Sothreshold = UB
must always be true at a leaf.

Inductive Hypothesis:If CurrentContext is fixed andz; fixes its variable value
to d;, thenVx;, € Children, threshold = U B will eventually occur atr; and it will
report an upper bounab via a COST message, wheré = ¢(d;, x;).

AssumeCurrentContext is fixed. To apply the Inductive Hypothesis, we must
show thatr; will eventually fix its variable value. To see this, note thathanges its
variable value only wherl.B(d;) increases. By Theorem LB is always less than
the cost of the optimal solutior. B cannot increase forever and somust eventually
stop changing its variable value. We can now apply the Indei¢iypothesis which
says that when; fixes its value, each child will eventually report an uppeutud
ub = t(d;, x;). This means(d;, ;) = ub(d;, z;) will eventually be true at;. We can

substitute (d;, x;) for ub(d;, ;) into the definition ofU B to get the following:

48

UB < UB(d) " 5(d) + S, conaren ublds, 20
= 0(di) + D conitaren t(dis T1)

Using the Allocationinvarianthreshold = 6(d;) + 3, coniaren t(di, 1), We SUb-
stitutethreshold into the above to geV B < threshold. The right-hand side of the
Thresholdinvariant stateéreshold < UB. So we have botlV B < threshold and
threshold < UB. Sothreshold = UB must be true and the Theorem is proven.

Note that the algorithm behaves differently depending oetiwrx;’s threshold
is set below or above the cost of the optimal solutionzhlfeshold is less than the
cost of the optimal solution, then whdnB increases abov&ireshold, x; will raise
threshold until ultimately, LB = threshold = UB occurs. On the other hand, if
threshold is greater than the cost of the optimal solution, then wbiéh decreases
belowthreshold, z; will lower threshold sothreshold = U B occurs. In the second
case,L B may remain less thali B at termination since some variable values may not
be re-explored.

Theorem 2 is sufficent to show algorithm termination becdliseoot has an fixed
(empty)CurrentContext and will therefore terminate whehreshold = U B occurs.
Before it terminates, it sends a TERMINATE message to itklofm informing them of

its final value (line 48). It is clear to see that when a TERMI¥AMessage is received

49

from the parent, an agent knows that its current contextrwillonger change since all
higher agents have already terminated.

From Theorem 1, if the conditiothreshold = U B occurs atr;, then there exists
at least one solution within the subtree rooted:atvhose cost is less than or equal
threshold. From Theorem 2, the conditighreshold = U B necessarily occurs. Next,
Theorem 3 shows that the final valuetaf-eshold is equal to the cost of the optimal

solution.

Theorem 3 Vz; € V, x;'sfinalthreshold value is equal t@® PT(x;, CurrentContext).

Proof: By induction on agent priorities, root to leaf.

Base Casezx; is the root. The root terminates when its (findly-eshold value is
equalUB. LB = threshold is always true at the root becauge-eshold is initialized
to zero and is increased ds3 increases. The root does not receive THRESHOLD
messages so this is the only widy-eshold changes. We concludeB = threshold =
U B is true when the root terminates. This means the root’s finalshold value is the
cost of a global optimal solution.

Inductive Hypothesisietz, denoter;’s parent.x,’s final threshold value is equal
to OPT (x,, CurrentContext).

We proceed by contradiction. Suppaosés final threshold is an overestimate. By
the inductive hypothesis,,’s final threshold is not an overestimate. It follows from the

Allocationlnvariant that if the final threshold given 19 (by z,) is too high,z, must

50

have given some other child (a sibling ©f), sayz;, a final threshold that is too low
(See Figure 3.7). Let denotez,’s current value. Since;’s threshold is too low, it
will be unable to find a solution under the given threshold aiitithus increase its
own threshold. It will reportb to z,, wherelb > t(d, z;). Using Adopt’s invariants,
we can conclude thahreshold = U B cannot be true at,, soz, cannot have already
terminated. By the ChildThresholdinvariant, will increasex;’s threshold so that
Ib(d,z;) < t(d,z;). Eventually,lb(d,x;) will reach an upper bound and(d, z;) =
t(d, x;) = ub(d, z;) will hold. This contradicts the statement thats final threshold
is too low. By contradictiong;’s final threshold value cannot be too low ang final
threshold cannot be too highl

The worst-case time complexity of Adopt is exponential ie tlumber of vari-
ablesn, since constraint optimization is known to be NP-hard. Ttedwrine the
worst-case space complexity at each agent, note that an ageeeds to maintain
a CurrentContext which is at most sizer, and anib(d, ;) andub(d, z;) for each
domain value and child, which is at mdsD; | xn. Thecontezt(d, x;) field can re-
quire n? space in the worst case. Thus, we can say the worst-case apapéexity
of Adopt is polynomial in the number of variables However, it can be reduced to
linear at the potential cost of efficiency. Sineatext(d, ;) is always compatible with
CurrentContext, CurrentContext can be used in the place of eaemtext(d, x;),

thereby giving a space complexity pD; | xn. This can be inefficient since an agent

51

must reset allb(d, z;) andub(d, z;) wheneverCurrentContext changes, instead of

only whencontext(d, x;) changes.

3.4 Evaluation

As in previous experimental set-ups[17], we experimentistriduted graph coloring
with 3 colors. One node is assigned to one agent who is redgperier choosing its
color. Cost of solution is measured by the total number ofatén constraints. We will
experiment with graphs of varyinignk density— a graph with link densityl hasdn
links, wheren is the number of nodes in the graph. For statistical signfieaeach dat-
apoint representing number of cycles is the average ovearfom problem instances.
The randomly generated instances were not explicitly madbe toverconstrained, but
note that link density 3 is beyond phase transition, so ramiggenerated graphs with
this link density are almost always overconstrained. Tke-structured DFS prior-
ity ordering for Adopt was formed in a preprocessing step.cdmpare Adopt’s per-
formance with algorithms that require a chain (linear) ptyoordering, a depth-first
traversal of Adopt’s DFS tree was used.

As in [17], we measure “time to solution” in terms of synchoos cycles. One
cycleis defined as all agents receiving all incoming messages emdirgy all outgo-

ing messages simultaneously. Other evaluation metrids asi¢wall clock” time are

52

GraphColor, Link Density 2 GraphColor, Link Density 3

Avg Cycles

5000 w w w S‘ hBB w 80000 : Sf T .
2888 , ync] 70000 | e 1
3500 | Adopt —*— | o 60000 |
3000 5 0000 r
2500 | & 40000 f
] g o0
1000 |] 20000 |
500 | 10000 ¢
0 M 0 . w w w
5 10 15 20 25 30 35 40 8 10 12 14 16 18 20 22 24 26
Num Agents Num Agents

Figure 3.8: Average number of cycles required to find thenogtisolution (MaxCSP)

very sensitive to variations in computation speeds at iffeagents or communica-
tion delays between agents. These factors are often ugpabtii and we would like
to control for them when performing systematic experimenithe synchronous cy-
cle metric allows repeatable experiments and controlledparisons between different
asynchronous algorithms because it is not sensitive terdiff computation speeds at
different agents or fluctuations in message delivery time.

We present the empirical results from experiments usinggethifferent algorithms
for DCOP — Synchronous Branch and Bound (SynchBB), Syndusiterative Deep-
ening (SynchiD) and Adopt. We illustrate that Adopt outperis SynchBB[16], a dis-
tributed version of branch and bound search and the only kradgorithm for DCOP
that provides optimality guarantees. In addition, by cormgpwith SynchlID we show

that the speed-up comes from two sources: a) Adopt’s noaetBetrategy, which uses

53

GraphColorWeighted, Link Density 3

60000
50000 r
40000 r
30000 r
20000 r
10000 r

0

SynchBB ——

Adopt —x—

Avg Cycles

10 12 14 16 18 20 22 24 26
Num Agents

Figure 3.9: Average number of cycles required to find thenogkisolution (Weighted
CSP)

lower bounds instead of upper bounds to do backtrackingbatite asynchrony of the
algorithm, which enables concurrency.

SynchlID is an algorithm we have constructed in order to tedlze causes of speed-
ups obtained by Adopt. SynchID simulates iterative deemgsiearch[21] in a dis-
tributed environment. SynchiID’s search strategy is simaAdopt since both algo-
rithms iteratively increase lower bounds and use the lowenids to do backtracking.
However, the difference is that SynchlD maintains a singbda lower bound and
agents are required to execute sequentially and synchsbnathile in Adopt, each
agent maintains its own lower bound and agents are able tutxeoncurrently and

asynchronously. In SynchlID, the agents are ordered intoeatichain. (A depth-first

54

traversal of Adopt's DFS tree was used in our experimentse) Aighest priority agent
chooses a value for its variable first and initializes a glddaer bound to zero. The
next agent in the chain attempts to extend this solutionaidiie cost remains under the
lower bound. If an agent finds that it cannot extend the smhutb that the cost is less
than the lower bound, a backtrack message is sent back updire ©nce the highest
priority agent receives a backtrack message, it increagggobal lower bound and the
process repeats. In this way, agents synchronously searthef optimal solution by
backtracking whenever the cost exceeds a global lower bound

Figure 3.8 shows how SynchBB, SynchlID and Adopt scale up wiifeasing num-
ber of agents on graph coloring problems. The results inrEi@u8 (left) show that
Adopt significantly outperforms both SynchBB and SynchlDgoaph coloring prob-
lems of link density 2. The speed-up of Adopt over SynchBB(08-1old at 14 agents.
The speed-up of Adopt over SynchliD is 7-fold at 25 agents afadidBat 40 agents. The
speedups due to search strategy are significant for thisggnotlass, as exhibited by
the difference in scale-up between SynchBB and SynchIDd¢tti@n, the figure also
show the speedup due exclusively to the asynchrony of th@talgorithm. This is ex-
hibited by the difference between SynchID and Adopt, whiciply a similar search
strategy, but differ in amount of asynchrony. In SynchIDlyoone agent executes at
a time so it has no asynchrony, whereas Adopt exploits asgnghwhen possible by

allowing agents to choose variable values in parallel. immsary, we conclude that

55

Adopt is significantly more effective than SynchBB on spa@estraint graphs and the
speed-up is due to both its search strategy and its exptwitat asynchronous process-
ing. Adopt is able to find optimal solutions very efficientlyrflarge problems of 40
agents.

Figure 3.8 (right) shows the same experiment as above, bdefwser graphs, with
link density 3. We see that Adopt still outperforms SynchBBreund 10-fold at 14
agents and at least 18-fold at 18 agents (experiments weneneged after 2100000 cy-
cles). The speed-up between Adopt and SynchlD, i.e, thelspe€eue to concurrency,
is 2.06 at 16 agents, 2.22 at 18 agents and 2.37 at 25 agemadlyHrigure 3.9 shows
results from a weighted version of graph coloring where eamtstraint is randomly
assigned a weight between 1 and 10. Cost of solution is medss the sum of the
weights of the violated constraints. We see similiar ressoift the more general problem
with weighted constraints.

Figure 3.10 shows the average total number of messagesysalttthe agents per
cycle of execution. As the number of agents is increaseduhnger of messages sent
per cycle increases only linearly. This is in contrast to @abicast mechanism where
we would expect an exponential increase. In Adopt, an agenhwnicates with only

neighboring agents and not with all other agents.

56

GraphColor

80
70 ¢
60 r
50 |
40
30
20
10 ¢

Link density 2 —!—/-

Msgs per cycle

5 10 15 20 25 30 35 40
Num Agents

Figure 3.10: Average number of messages per cycle requiridd the optimal solu-
tion.

GraphColor, Link Density 2

2000 w w w w
1800 SynChBB —t
1600
1400 |
1200
1000
800
600
400
200 |

Adopt

Avg Time (sec)

Num Agents

Figure 3.11: Run-time required to find the optimal solutian @ single processor
(MaxCSP)

57

3.4.1 Measuring Run-Time

In this section, we address a potential criticism of the abexperimental results by
presenting additional evidence that Adopt, under certsgsuptions about communi-
cation infrastructure, outperforms the competing aldgponi in terms of actual run-time.
While the experimental results presented in the previousmseare encouraging,
they leave open one important question. In the previousseate have presented ex-
perimental results demonstrating that Adopt requires fayeles than the competing
algorithms SynchBB and SynchlID. This result is importaritibis open to the poten-
tial criticism that measuring cycles does not measure ime-tirectly, which is the
real evaluation metric of concern. By “run-time” we mean #wtual wall clock time
from beginning to end of the algorithm execution. The chighaern is that there is
no guarantee that the actual run-time of an Adopt cycle (e/hgents process multiple
messages per cycle and do constraint checks every cyclgliisagéent to the run-time
of a SynchBB or SynchID cycle (where one agent processes ammymessage per
cycle and may or may not perform any constraint checks in agoycle). These dif-
ferences suggest that each cycle in Adopt takes more timegtheh cycle in SynchBB
or SynchiID. The question to be answered is: Given that Adopsemes fewer cycles

than the other algorithms but those cycles may take more time

e does Adopt really outperform the competing algorithms imgeof actual run-

time?

58

In this section, we attempt to answer the above question. égioned previously,
it is problematic to measure the run-time of an asynchromoygpéementation directly
because such results are very sensitive to the particuf@eriexental set-up, under-
lying communication infrastructure properties, and otvemiables. These factors are
often unpredictable and vary significantly across domaifiserefore we investigate
our question in two alternative ways. First, we simply meaghe run-time of the
algorithm in our single-processor simulated distributeglementation ignoring com-
munication costs and the potential for speedups due tolelsal. The run-time on
single-processer puts a parallel algorithm like Adopt is @ignificant disadvantage.
However, if Adopt outperforms other algorithms under thisadvantage, it provides
evidence that Adopt will also outperform them in a truly diaiited setting.

Figure 3.11 shows the result of wall-clock cpu-time for exéwy the algorithms on
a single-processor simulated distributed implementatibren with the disadvantage,
Adopt easily outperforms SynchBB. The run-time of Adoptheat equal to SynchliD.
This is consistent since both algorithms use the same ssamategy (lower-bound
based search) and differ only in the amount of parallelisne dAh guess that when
Adopt is executed on a fully distributed system, it will hakgain additional speedups
to outperform SynchiD.

As a second method to address our question, we use an aalamgtidel to convert

synchronous cycles to actual run-time that takes into atcbath computation time

59

and communication time. In the rest of this section, we preges model and apply
it to our experimental results from the previous section. dMeclude that when com-
munication time dominates computation time and the comoatioin infrastructure is
able to transmit multiple messages in parallel, an asymdus® algorithm that termi-
nates with fewer cycles will be faster in terms of run-timartta synchronous algorithm
that consumes greater cycles. In other words, synchronalsscis a valid metric for
estimating run-time under those assumptions. Howevesnifraunication latencies are
low, i.e., on the same scale as computation, then the cothmacamputation time per
cycle becomes the dominating factor.

We now present an analytical model that allows us to caleulat-time from data
collected from synchronous cycle experiments. We first dedfie following terms:

1) Z(z;) : number of incoming messages processea jer cycle

2) s : computation time to receive one incoming msg

3) C(x;) : number of constraint checks by per cycle

4) ¢t : computation time to do one constraint check

5) O(x;) : number of outgoing messages senthyer cycle

6) u : computation time to send one outgoing msg

7) L(n) : time required for the communication infrastructure to smait » msgs

simultaneously

60

Note that the definitions df, C, and© have assumed that an agent processes the
same number of messages each cycle, performs the same mofnacbestraint checks
on each cycle, and sends the same number of messages eacfocyatl least an up-
per bound on these numbers can be determined). This is trualfthe algorithms
under consideration. The values9ft andu are determined by the experimental set-
up (efficiency of implementation, programming languagecpssor speed, operating
system, other CPU load on a shared machine, etc..) and magelaeross different
experimental set-ups. The value bfis determined by properties of the underlying
communication network. For a given number of messages, we dssumed. is con-
stant (or an average can be determined). Finally, we assumandu are algorithm
independent. On the other hafldC, andO are very much dependent on the algorithm
but are independent of experimental set-up.

In each cycle, all agents concurrently process all theionmag messages, do con-
straint checks and send all their outgoing messages. Talkctonputation time for an
algorithm whose execution has been measured in terms ofisymaus cycles, denoted

total cycles, is given by the following equation.

total computation time = total cycles X max(s X T(x;) +txC(x;) +ux Ox;))
T, €EAG

(3.1)

61

In a sequential algorithm, exactly one agent executes ih egcle and all other
agents are idle. The executing agent processes exactiywooming message, may or
may not perform a constraint check, and sends exactly onsagesSo for a sequential
algorithm, we havé€ (z;) = O(z;) = 1 andC(x;) > 0 for the executing agent;, and
I(z;) = O(z;) = 0andC(z;) = 0 for all other idle agents;. LetC denote the number
of constraint checks by the unique agent who executes eatd dyhus equation (3.1)

for a sequential algorithm simplifies to

total computation time = total cycles X (s +t x C + u) (3.2)

The communication time per cycle is determined by the nuroberessages trans-
mitted each cycle. The total communication time consumedrbyalgorithm whose
execution has been measured in terms of synchronous cgajsgein by the following

equation.

total communication time = total cycles x L(Z O(zy)) (3.3)
x;€EAg

Note that we can simplify equation 3.3 for the case of a setiplesdgorithm where

Z:piEAg O('Tl) =L
Finally, the total run-time is given by the sum of total cortgiion time and total

communication time over all cycles.

62

total runtime = total computation time + total communication time (3.4)

This completes the analytical model. This model will alloswta convert our empir-
ical results from the previous section into calculated tinmes. We need to only plug
in empirically measured values for the terms 1-7. The restisfsection presents our
results.

In our measurements we found the following. The time to pseaane incoming
message is about equal to the time required to send an ogtgwssage, i.e; = .
Also, this time is about two orders of magnitude slower thHanttme required to do a
constraint check, i.es,= u = 100¢. For each algorithm and each problem class, values
for Z, C, andO were either empirically measured or a rough upper bound w@d.u

Next, we make an important assumption on the underlying comation infras-
tructure. Concurrent algorithms are most suitable for camication infrastructures
that allow multiple messages to be transmitted in paralltdiaut significant degrada-
tion in overall throughput. For communication networks vehthis assumption does
not hold, i.e. each message must be transferred sequgrttiallvalue of a concurrent
algorithm (in terms of efficiency) may be signficantly reddiceThus, we make the

following assumption:

63

e Assumption: L(n) = L, whereL is constant fom less than some reasonable

number.

For example, agent Al sending messages to A2 should notdeegoanmunication
among two other agents A3 and A4. Examples include commtioicanfrastructure
that has multiple parallel channels or the Internet whezewo pairs of agents (A1,A2)
and (A3,A4) are on different subnets. Radio-frequency comication where (A1,A2)
are spatially separated from (A3,A4) also has these priegert

We will calculate run-time for varying values @f. In particular we consider four
cases: a) when the time required to communicate per cycietee byZ, is on the
same order of magnitude as the time required to do a conistiaétk, denoted by,
i.e., L = t, b) whenL is one order of magnitude slower, i.é.,= 10¢, ¢) whenL is
two orders of magnitude slower, i.€.,= 100t and finally, d) when. is three orders of
magnitude slower, i.el, = 1000t.

Figure 3.12 shows the calculated run-times using the exyerial data from Figure
3.8. Graphs are shown for varying values/ofWe can see that when communication
time is about equal to computation time, the= ¢ case, Adopt does not outperform
SynchID. However ag begins to outweigh, we see that Adopt begins to do better. In
the L = 1000¢ case, we see that the graph looks similar to Figure 3.8. Weaaciude
from our analysis that when communication time significaotitweighs computation

time, the cycles metric is an accurate substitute for roreti

64

L=t L =10t

800000 T T T T T T 1e+06 T T T T T T
SynchiID —— # SynchiID ——
800000 - T
, 600000 - 1 °
£ / £
< S 600000 | g
@ @
- 400000 - o
2 2
© ©
2 £ 400000
o o
8 8
200000 -
200000
0 ! 0 n
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Num Agents Num Agents
L = 100t L = 1000t
1.2e+06 T T 5e+06 T T T T T T
SynchiD —— SynchlID ——
1e+06 - 4e+06 -
i i
£ 800000 | £
< S 3e+06 [
@ @
- 600000 °
L L
g T 2e+06 |-
o
£ 400000 | 2
o o
/ 1e+06 -
200000 - H_/ |
0 ‘ ‘ ‘ ‘ ‘ 0 U i ‘ ‘ ‘ ‘
5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Num Agents Num Agents

Figure 3.12: Run-time calculated from number of cycles neglto find the optimal
solution

3.5 Algorithmic Variations for Future Work

Adopt is one example within a space of algorithms that maydsegmed that exploits
our key idea of using lower bounds to perform distributedroj#ation. In this section,
we explore possible algorithmic modifications to Adopt e&ve detailed exploration

of these issues for future work.

65

Memory UsageWe consider how Adopt can be modified to obtain efficiency gjain
at the expense of the polynomial-space bound at each agefdolpt, each agent main-
tains a single&'urrentContext as a partial solution and all stored costs are conditioned
on the variable values specified in that context. When comieanges occur, agents
delete all stored costs. This is necessary to maintain thgpmial-space bound.
However, in some cases worst-case exponential-spacereatprits are tolerable ei-
ther because sufficient memory is available or the worst-easufficiently unlikely
to occur. In such cases, we may allow agents to store morecthapartial solution
at a time. Agents should not delete all stored costs wheregbnhanges and instead
agents should maintain multiple contexts and their assatieosts. In this way, if a
previously explored context should become current agagtawariable value changes
at higher agents, then the stored costs will be readily alvkslinstead of having to be
recomputed. Preliminary experiments (not reported hesgg Ishown this technique
can dramatically decrease solution time.

Reducing CommunicationVe consider how Adopt can be modified to reduce the
number of messages communicated. In Adopt, an agent alvesags SYALUE and
COST messages every time it receives a message from angiat; aegardless of
whether its variable value or costs have changed. As a cameseq, an agent often
sends a message that is identical to a message that it séetimitnediately prior cy-

cle. Although this is seemingly wasteful, itis a sufficiergchanism to ensure liveness.

66

However, if other mechanisms are employed to ensure ligerieen it may be possi-
ble to reduce the number of messages dramaticaByiefly, an agent can deterimine
whether a message should be sent by simply checking whethessage it is about to
send is identical to the message it sent in the immediatédy pycle. The message is
sent if and only if the message is different from the previons. Thus, an agent only
sends a message if it has new information to communicate.

Sending COST messages to non-parent ancestéesconsider how Adopt can be
modified to allow COST messages to be sent to multiple anceisistead of only to the
parent. To see how such reporting may decrease solution ¢omsider the following
scenario. Suppose. is the root agent and it has a constraint with neighbowho
is very low in the tree, i.e., the length pfis large, wherep is the path fromz, to
x; obtained by traversing only parent-child edges in the tnekering. If z,. initially
chooses a bad variable value that causes a large cost onrtbieatot shared with;,
we would likex,. to be informed of this cost as soon as possible so that it mplpex
other value choices. In Adopi; will send a COST message only to its immediate
parent and not ta,.. The parent will then pass the cost up to its parent and so on up
the tree. This method of passing costs up the tree is suffitbeansure completeness,

however, the drawback in this case is that since the lengthi®farge, it will take a

1An alternative mechanism for ensuring liveness throughuiesof timeouts is described in Section
4.3.1.

67

long time forz, to be informed of the cost incurred by. Thus, it may take a long time
beforez, will abandon its bad choice resulting in wasted search.

To resolve this problem, we may allow an agent to report cosctly to all its
neighbors higher in the tree. The key difficulty is that wharagent receives multiple
COST messages it cannot safely sum the lower bounds in thessages to compute a
new lower bound as in Definition 3 of Section 3.2.1 becausdkgscounting of costs
may occur. Such double-counting will violate our compleshguarantee. We can
resolve this difficulty by attaching a list of agent namesverg COST message (in
addition to the information already in the COST messagek)s IIst of names corre-
sponds to those agents whose local costs were used to cothputest information in
that message. A receiving agent can use this list to determiren two COST mes-
sages contain overlapping costs.

More precisely, a leaf agent attaches its own name to eve§TQ@essage it sends.
When an agent receives a COST message, it appends its owrtm#redist contained
in that message and attaches the new list to every COST necdéssands. When an
agent receives multiple COST messages, the lower boundiveeldn those messages
are summed if and only if the attached list of agent names ajeimt. If they are
not disjoint, the information in the message with the biggstris used and the other

message is discarded. Although we do not yet have a proadstirathod is complete, it

68

seems like a promising approach for improving the Adopt@digo while maintaining
completeness.

Extension to n-ary constraint®dopt can be easily extended to operate on DCOP
where constraints are defined over more than two variableppd&e we are given a
DCOP that contains a ternary constrafi)t, : D; x D; x D, — N defined over 3
variablesz;, z;, z, as shown in Figure 3.13. The tree ordering procedure missiren
thatz;, z; andz;, lie on a single path from root to leaf (they may not be in difer
subtrees since all three are considered neighbors). Seippasdz; are ancestors of
x. With binary constraints, the ancestor would send a VALUEsage to the descen-
dent. With our ternary constraint, boify andz; will send VALUE messages to.
x, then evaluates the ternary constraint and sends COST nesssagk up the tree as
normal. The way in which the COST message is received an@épsed by an ancestor
is unchanged. Thus, we deal with an n-ary constraint by asgigesponsiblity for its
evaluation to the lowest agent involved in the constraitie dnly difference between
evaluation of an n-ary constraint and a binary one is thatdiwest agent must wait
to receive all ancestors’ VALUE messages before evaludtiegconstraint. For this
reason operating on problems with n-ary constraints masedse concurrency and ef-
ficiency of the Adopt algorithm. However this seems unavoieaue to the inherent

complexity of n-ary constraints.

69

-«—VALUE messages
-« -- COST messages

—'— Ternary Constrair

Figure 3.13: A ternary constraint

Extension to multiple variables per ageftur assumption of one variable per agent
can be problematic in domains where agents have complekdobaroblems that are
more appropriately modeled using multiple variables. Wiiroeitwo simple methods
that exist for dealing with this problem and point out thamwbacks. These methods
are also described by Yokoo et al [52] in the context of Distréd Constraint Satisfac-
tion. We then propose a third method which may be more etfethian either of these
two simple methods.

First, it is always possible to convert a constraint reasgproblem involving mul-
tiple variables into a problem with only one variable by digiina new variable whose
domain is the cross product of the domains of each of ther@igiariables. This
method can in principle be used to convert an agent’s compteat subproblem into
a subproblem with only one variable. This would allow Adaptie applied without
any modifications. Second, another method is to create phauitirtual agents within a

single real agent and assign one local variable to eachaVafyent. Each virtual agent

70

then operates as an independent Adopt agent. In principile ntethod also allows
Adopt to be applied without any modifications.

While the above methods work in principle they may have s$icgmt problems in
practice. In the first method, the domain size of the new Wgiavill be exponential
in the number of variables in the original problem. Exhaudyi searching over all the
domain values for the new variable can be prohibitively egdge. On the other hand,
the virtual agent approach is inefficient since it does ke tdvantage of the fact that
the virtual agents within a single real agent have direcéssto each others memory.

A key choice to be made in dealing with multiple variables ggent is whether to
form the (DFS tree) ordering over the problem variables @rdlie agents. The first
method described above (in which a local subproblem is atesténto a single vari-
able) forms the ordering over the agents. The second methach(ch virtual agents
are employed) forms the ordering over the problem variablesming the ordering
over agents is criticised by Yokoo et al. [52] (in the contekDisCSP) because an
agent must perform an exhaustive search over its subprdidéore it is able to send a
NOGOOD message. If a higher agent makes a bad choice, the &m&at must do a
lot of work before it can inform the higher agent of the badicho Thus, the authors
propose an algorithm which chooses to order over problemablas.

However Yokoo’s criticism of ordering over agents does il in our case of

DCOP. The reason is that an agent need not do an exhaustinah smeer its local

71

subproblem in order to compute a lower bound for its subgmbl Therefore, it can
send feedback to higher agents in the form of a lower boundd8Tmessages without
doing exhaustive search. We propose forming the orderieg the agents, but avoid
converting the local subproblem into a single variable.tdad, each agent searches
over its local subproblem of multiple variables using a caited lower-bound based
optimization method, e.g., IDA* search [33]. IDA* is a suita method for use in
Adopt with multiple variables per agent because it allowsigent to compute a lower
bound for its subproblem without exhaustively searching entire subproblem. In
Adopt, an agent could use IDA* to compute a lower bound fositisproblem quickly
and send a COST message immediately to its parent withoundéy exhaustively
search its entire subproblem first. A key open question is th@ragent should order
its local variables before employing IDA*. A rational stegly may be to place higher
in the local ordering those variables that have constrarttshigher priority agents. In
conclusion, we believe this is a promising approach foridgakith multiple variables
per agent in Adopt. However, how these approaches may gctuaitk in practice is

an empirical question which requires further investigatio

72

Chapter 4

Limited Time and Unreliable Communication

In this chapter we extend the method presented in the precioapter to deal with two

practical issues that arise in real-world domains: Limtted and unreliable communi-
cation. The first section describes our approach for redusztution time and presents
empirical results demonstrating the ability to perforrmpipled tradeoffs between so-

lution time and quality. The second section demonstratesstness to message loss.

4.1 Limited Time

In this section we consider how agents can perform diseiboptimization when suf-
ficient time to find the optimal solution is not available. 3l significant because in
many time-critical domains there exist hard or stéiadlinesbefore which decisions
must be made. These deadlines restrict the amount of timtaleafor problem-

solving so that it becomes infeasible to determine the agdtsolution. This problem is

73

important because it is known that DCOP is NP-hard, so timaired to find optimal
solutions cannot be done efficiently in the worst-case.

Previous approaches to this problem have typically abagdi@ystematic global
search in favor of incomplete local methods that rely exeilg on local information.
This approach is effective in reducing solution time in mdoynains but the reduction
is accomplished by abandoning all theoretical guarantaesotution quality. Instead
of theoretical guarantees, empirical evaluations on agsacgy limited number of do-
mains are used to demonstrate algorithm effectiveness. afiproach has a three sig-
nificant drawbacks. First, the reliance on solely empir@alluation makes it difficult
to predict the effectiveness of a given method in new unseearaihs. Little can be said
about solution quality or solving time when the method is$fated to new problems.
Second, incomplete local methods cannot guarantee opsiohations no matter how
much time is allowed. Even in situations where more time alable, an incomplete
local method is unable to take advantage of this additionmed to guarantee better so-
lution quality. Finally, agents cannot know the global dyadf the solutions they have
obtained. This prevents agents from performing any kindeasoning about how or
whether they should terminate or continue searching faebsblutions.

We present a more flexible method calleounded error approximatiowhereby

agents can find global solutions that may not be optimal utéthin a given distance

74

from optimal. This method decreases solution time for ajagilbn in time limited do-
mains. Bounded error approximation is similar to incompletarch in that approxi-
mate suboptimal solutions are found fast, but is differemtifincomplete search in that

theoretical guarantees on global solution quality aréastdilable.

4.1.1 Bounded-error Approximation

We consider the situation where the user provides Adoptavitbrror bound, which is
interpreted to mean that any solution whose cost is witloifthe optimal is acceptable.
More formally, we wish to find any solutiofi where costf) < cost(optimal solution)
+ b. For example in overconstrained graph coloring, if theroptisolution requires
violating 3 constraints) = 5 indicates that 8 violated constraints is an acceptable
solution. Note that this measure allows a user to specify@m Bound without a priori
knowledge of the cost of the optimal solution.

The key difficulty is that the cost of the optimal solution iskmown in advance so
it is hard to know if the cost of an obtained solution is withie user-defined bound.
We solve this problem in Adopt by using the best known lowerrzbas arestimateof
the cost of the optimal solution. Then, the agents search émmplete solution whose
cost isb over the best known lower bound. If such a solution is founckm be returned

as a solution within the given error bound.

75

More formally, Adopt can be guaranteed to find a global sofutvithin bound of
the optimal by allowing the root’s backtrack threshold t@@stimate by. The root

agent uses to modify its ThresholdInvariant as follows:

e ThresholdInvariant For Root (Bounded Error): min(LB+b,UB) = threshold.
The root agent always setBreshold to b over the currently best known lower

boundL B, unless the upper bourddB is known to be less thahB + b.

Let us revisit the example shown in figure 2.2. We will re-ekeche algorithm,
but in this case the user has given Adopt an error bduad4. Instead of initializing
threshold to zero, the root agent; will initialize threshold to b. Note thatLB is
zero upon initialization an@/ B is In f upon initialization. Thusyin(LB +b,UB) =
min(4, Inf) = 4 and the thresholdInvariant above requitggo setthreshold = 4.
In addition, the Allocationinvariant requires to sett(0,z2) = 4 since the invariant
requires thathreshold = 4 = 6(0) + ¢(0, z2) = 0 + (0, z2) hold.

In figure 4.1.a, all agents again begin by concurrently cimgpgalue0 for their
variable and sending VALUE messages to linked descendbngsldition,z; sends a
THRESHOLD message to,. Upon receipt of this message; setsthreshold = 4
(line 8).

Each agent computdsB andU B and sends a COST message to its parent (figure
4.1.b). This was described previously in section 3.2.2 dmva in figure 3.6.b. The

execution path is the same here.

76

Next, x; receivesr,’s COST message. As before, the received costs will be stored
in lines 32-33 adb(0,z2) = 1 andub(0,z2) = Inf. In line 37, execution enters
the backTrack procedure.x; computesL.B(1) = 6(1) + Ib(1,25) = 0+ 0 = 0
and LB(0) = §(0) + Ib(0,z2) = 04+ 1 = 1. SinceLB(1) < LB(0), we have
LB = LB(1) = 0. UB(0) andUB(1) are computed aénf, soUB = Inf. Since
threshold = 4 is not equall B = Inf, the testin line 38 fails. So far, the execution is
exactly as before. Now however, the test in line 40 fails bee&a B(d;) = LB(0) =1
is not greater thamhreshold = 4. Thus,z; will not switch valueto z; = 1 and will
instead keep its current value .of = 0.

Next, z, receives the COST messages sent frgrandz,. The received costs will
be stored in lines 32-33 &80, z3) = 2, ub(0, xz3) = 2, [b(0,z4) = 1, andub(0, z4) =
1. Inline 37, execution enters thackTrack procedurex, computed.B(0) = §(0) +
b(0,z3) + 1b(0,24) = 1 +2+1 = 4andLB(1) = 6(1) + Ib(1, z5) + Ib(1,24) =
24040 = 2. Thus,LB = LB(1) = 2. Similarly, z, computed/B(0) = §(0) +
ub(0,23) + ub(0,z4) =1+ 2+ 1 =4andUB(1) = §(1) + ub(1, z3) + ub(l,z4) =
2+ Inf+ Inf = Inf. Thus,UB = UB(0) = 4. Sincethreshold = UB = 4, the
test in line 38 succeeds. Howeves, will not switch value since its current value is the
one that minimize$/ B(d). Note that the equivalent test in line 45 succeeds, but the

test in line 46 fails since, has not yet received a TERMINATE message from So,

77

x9 does not terminate. Instead, execution proceeds to linel&2ena COST message
is sent tar;. This is depicted in figure 4.1.c.
Next,z, receivesey’s COST message. The received costs will be storét(@sr,) =

2 and ub(0,z5) = 4. x; now computesLB(1) = 6(1) + Ib(1,22) = 04+ 0+ 0

and LB(0) = 6(0) + 1b(0,22) = 0+ 2 = 2. Similarly, z; computesU B(1)
(1) +ub(l,z3) =04 Inf = Inf andUB(0) = §(0) + ub(0, z2) = 044 = 4. Thus,
UB = UB(0) = 4. So, now we have the tefireshold == UB in line 45 evaluate to
true, sincehreshold = UB = 4. Sincex; is the root, the test in line 47 succeeds and
21 will terminate with valuer; = 0. 1t will send a TERMINATE message to, and the
other agents will terminate in a similar manner.

In this way, we see the agents have ultimately settled on &gueation with all
values equal to 0, with a total cost of 4. Since the optimalitsmh has cost 0, the
obtained solution is indeed within the given error bound ef 4. The solution was
found faster because less of the solution space was exploredrticular, note that;
never had to explore solutions with = 1.

Theorems 1 and 2 still hold with the bounded-error modifarato the Threshold-
Invariant. Also, agents still terminate wheélreshold value is equall B. The root’s
final threshold value is the cost of a global solution within the given erroubd. Us-

ing this error bound, Adopt is able to find a solution fasteartlif searching for the

78

<3--- THRESHOLD messages
-«.—\VALUE messages

-« - - COST messages
Parent/Child

(a) (b) (c)

Figure 4.1: Example Adopt execution for the DCOP shown inrBg2.2, with error
boundb = 4.

optimal solution, thereby providing a method to trade-affinputation time for solu-
tion quality. This trade-off is principled because a théicet quality guarantee on the

obtained solution is still available.

4.1.2 Experiments

We evaluate the effect on time to solution (as measured Hggyand the total number
of messages exchanged, as a function of error béumé&igure 4.2. Error bountl= 0
indicates a search for the optimal solution. Figure 4.2)(Efows that increasing the
error bound significantly decreases the number of cycleslatien. At 18 agents,
Adopt finds a solution that is guaranteed to be within a dstasf 5 from the optimal

in under 200 cycles, a 30-fold decrease from the number désyequired to find the

79

optimal solution. Similarly, figure 4.2 (right) shows thhgttotal number of messages
exchanged per agent decreases significanthissicreased.

We evalute the effect on cost of obtained solution as a fanadf error bound.
Figure 4.3 shows the cost of the obtained solution for theesaroblems in Figure 4.2.
(Data for problems instances of 18 agents is shown, but fudtsdfor the other problem
instances are similar.) The x-axis shows the “distance foptimal” (cost of obtained
solution minus cost of optimal solution for a particular lpleim instance) and the y-axis
shows the percentage of 25 random problem instances whegh of the obtained
solution was at the given distance from optimal. For exaimble two bars labeled
“b = 3” show that wherb is set to 3, Adopt finds the optimal solution for 90 percent
of the examples and a solution whose cost is at a distancerofrithe optimal for the
remaining 10 percent of the examples. The graph shows thet gases is the cost of
the obtained solution beyond the allowed bound, validadungtheoretical results. The
graph also shows that the cost of the obtained solutionsfaae much better than the
given bound, in some cases even optimal.

The above results support our claim that varybrig an effective method for doing
principled tradeoffs between time-to-solution and qyatit obtained solution. These
results are significant because, in contrast to incompksech methods, Adopt pro-
vides the ability to find solutions faster when time is linditbut without giving up

theoretical guarantees on solution quality.

80

GraphColor, Link Density 3 GraphColor, Link Density 3

Avg Cycles

16000 \
s b=0
& 12000 t
@
o
«» 8000 b=3-
(@]
(]
=
< 4000 b=4-
o
= N K i? =5
0 F—m——
8 10 12 14 16 18 20
Num Agents Num Agents

Figure 4.2: Average number of cycles required to find a sotufieft) and the average
number of messages exchanged per agent (right) for giventssundb.

GraphColor, Link Density 3
(18 agents)

90

N ™

Q Ii

g. !

S 60 |Y]
o]

L T3}

Y= I

(@] o)

€ 30t o [< 1

8 Lo I 11

o g1 ee o)

)

T, &
Zero One Two

Distance from Optimal Solution

Figure 4.3: Percentage of problem instances where obtaosdvas at a given distance
from optimal (18 agents)

81

4.2 Extensions for Future Work

In our view, the bounded-error approximation techniques@néed above represents a
novel method for performing optimization under limited &énGiven that the algorithm
parameteb provides agents with the ability to effectively trade spwdolution qual-
ity, it is natural to begin thinking about ways in which onenaase this ability. We
believe this opens up a wide array of possiblities for futuoek in distributed reason-
ing algorithms. We briefly discuss two interesting avenues.

Anytime AlgorithmsWhen time is limited, agents could potentially $etery high
initially to quickly find a greedy solution. After terminat the search, if more time
for problem solving is available, they could iterativelycdease the error boundin
attempts to find better solutions. In this way, Adopt can elus ananytimefashion,
where at any time during algorithm execution, a candidaletism with some upper
bound on cost is available.

Meta-level Reasonin§uppose agents know that they have 20 seconds to find a so-
lution to a given DCOP. How should they set thparameter to ensure with some suf-
ficient probability that a solution will be found in 20 seca®dOne approach is to use
meta-level reasoning where agents use performance prafiesdict for a given prob-
lem, or class of problems, how long problem-solving is expeto take at a given error

bound. Hansen and Zilberstein [15] present some methodofog this in centralized

82

algorithms. They present a general framework for metallewetrol of anytime algo-

rithms [15]. This framework allows a meta-level controlieiobtain the highest quality
solution when taking into account the time necessary to fintheir techniques could
be adapted to the distributed case using Adopt and boundedapproximation as

tools.

4.3 Unreliable Communication

In this section we consider how agents can perform diseiboptimization when mes-
sage delivery is unreliable, i.e. messages may be droppestirtey work in DCR algo-
rithms typically assume that communication is perfect.sdgsumption is problematic
because unreliable communication is a common feature oy meat-world multiagent
domains. Limited bandwidth, interference, loss of linesafht are some reasons why
communication can fail. We introduce a novel method for idgalvith message loss in
the context of a particular DCR algorithm named Adopt. Theillea in our approach
is to let the DCR algorithm inform the lower error-correctigoftware layer which key
messages are important and which can be lost without signifgroblems. This allows
the algorithm to flexibly and robustly deal with message .Id8ssults show that with
a few modifications, Adopt can be guaranteed to terminate thi¢ optimal solution
even in the presence of message loss and that time to sotlggmades gracefully as

message loss probability increases.

83

In order to provide strong guarantees on the correctness@ngleteness of DCR
algorithms, algorithm designers have typically made tH®#Wong two assumptions

about the communication infrastructure on which the disted algorithm operates:

¢ Reliable Delay in delivering a message is finite, i.e., every messageis even-

tually received.

e Atomic Order is preserved in transmissions between any pair oftage

We consider how we can relax the reliability assumption aithgiving up key
algorithm properties such as the guarantee of terminatitimavcorrect solution. We
assume a simple form of unreliable communication: the comaation infrastructure
has an unknowtoss probabilityr< 1, where a message is dropped (not delivered) with
probabilityr. In our experiments we will assumés constant over time, but this is not
strictly necessary. Investigation for relaxation of thenaitc assumption is an issue for
future work.

A common method for dealing with unreliable channels in camivation net-
works is to implement an error correction layer in softwdrattcan ensure reliable
message delivery even when the communication infrastreigtself is inherently un-
reliable. This is typically done through an acknowledgn@wotocol where ACK mes-
sages are used to verify that a message has been receivethbenaf such protocols

have been developed in the field of computer networking, tbst mopular of which is

84

TCP [42]. Unfortunately, recent research provides evidehat TCP is infeasible in
many types of communication networks important for appiores in multiagent sys-
tems, such as wireless and ad-hoc networks [2] [30].

Simply relying on a lower layer error-correction mechantsransure reliable deliv-
ery is an inadequate approach for dealing with unreliabteraanication infrastructure
when developing multiagent algorithms. First, it can digantly increase the number
of messages that must be communicated since every messagbemacknowledged.
Second, a sender cannot send any messages to a giver-agetitthe ACK for a pre-
viously sent message is received frapfor fear of the violating the atomic assumption
mentioned earlier. The time cost in waiting for ACKs can @elgrperformance and re-
duce the efficiency of the higher-level DCR algorithm. Thiticis method is unable
to take advantage of the fact that it may be okay for some rgesda be lost without
large negative effects on the higher-level DCR algorithm.

We propose a novel approach to dealing with message lossdgbrithms. We
assume the availability of an asynchronous DCR algorithdreglower error-correction
software layer. Instead of relying exclusively on the eworrection layer, we advo-
cate giving the DCR algorithm itself the control to decideisthmessages must be
communicated reliably and which can be lost. The idea ishigatquiring only key
messages be communicated reliably while allowing othersages to be lost, we can

design DCR algorithms that are more flexible and robust tcsamgsloss.

85

We show how this idea can be implemented within the context®fAdopt algo-
rithm and the benefits that are derived. With a few modificetjave show that Adopt
is still guaranteed to terminate with the optimal solutieereif communication is un-
reliable. Experimental results show that Adopt’s perfancedegrades gracefully with
message loss. We also present results that suggest tifiatadifiintroducing message
loss even when communication is reliable could be a way toedse the amount of
work agents need to do to find the optimal solution. Indeeglipus work by Fernan-
dez et al. has shown that artificially introducing commutiaradelay in DCR can have

beneficial effects on the performance of DCR algorithms.

4.3.1 Algorithm Modifications for Message Loss

Since Adopt is completely asynchronous, we hypothesizaneill suited for operating
under unreliable communication infrastructure. In paific, agents are able to process
messages no matter when they are received and are insensitive order in which
messages are received (provided the messages come fremeifagents). This is in
contrast to synchronous algorithms which require mesdadasreceived and sentin a
particular order. For example in synchronous algorithnthsas Synchronous Branch
and Bound [16], if a message is lost no progress can be madehaitmessage is

successfully retransmitted.

86

While asynchrony is a key advantage, the major difficultyt Héses is the danger
of deadlock. Deadlock can occur for two reasons: the los®UE/COST messages,
or the loss of TERMINATE message. We consider each caseaeparlf VALUE or
COST messages are lost, we could have a deadlock situatibragents waiting for
each other to communicate. For example, consider two agerdadz,. z; sends a
VALUE message ta,. x5 evaluates and sends backitpa COST message. Suppose
this message gets lost. At this poimt,is now waiting for a COST message fram),
while z, is waiting for another VALUE message fram. Thus, the loss of one message
has resulted in the agents getting deadlocked.

We can overcome deadlock problems arising from loss of VAldud COST mes-
sages due to another key novelty of the Adopt algorithm: Adduilt-in termination
detection. The termination condition allows an agent tallyadetermine whether the
algorithm has terminated. If no messages are received fertaic amount of time and
an agent’s termination condition is not true, then that agan conclude that a dead-
lock may have occurred due to message loss. The agent carefeard VALUE and
COST messages to its neighbors in order to trigger the otjeerta and break the dead-
lock. This method requires the implementation of a timeoathanism at each agent.
The value of the timeout can be set according to the averagelietween successive
messages. This solution is more flexible and efficient thanalternative approach

of dealing with message loss at a lower error-correctiobwsok layer. Instead, the

87

algorithm intelligently determines when messages neea@ tefent by using the local
termination condition as a guide. This method is also stateih the sense that an agent
does not need to remember the last message it sent in casmd ieaeeded. The agent
can simply send out its current value and current cost whesreetimeout occurs.
Another reason deadlock can occur is if a TERMINATE messadest. Agents
terminate execution in response to the TERMINATE messaggived from their par-
ents. If that message gets lost, an agent has no knowledgthé¢heest of the agents
have come to a stop. The TERMINATE messages are essentidltrdbuted snap-
shot mechanism [6] whereby the agents determine that thiertation condition is true
at all the other agents. Unfortunately, distributed snapalgorithms require reliable
communication. Thus, Adopt requires that TERMINATE messabe sent reliably.
This is can be done through an acknowledgment protocol wiach TERMINATE
message sent must be acknowledged by the recipient by miisgaio the sender with
an ACK message. The sender will resend its message if an AQKtiseceived after
certain amount of time. The sender continues to resendam#CK is eventually re-
ceived. Since' < 1, the TERMINATE message and the ACK will eventually (in the
limit) go through. Since TERMINATE messages only need to m@municated once
between parent and child, the overhead for this is not vergregeand is certainly less

than requiring every message to be communicated reliably.

88

With these modifications it can be ensured that Adopt willewuelly terminate with
the optimal solution, regardless of the amount of netwostuwibance, so long as the
probability of a message being lost is less than 1. To seeAttiapt will eventually
terminate, realize the deadlock detection timeout willueaghat an agent; will not
sit waiting forever for a message that may not come when itstewnination condition
is not true. Insteady; will continue sending messages to its children until a reply
received. Thus, each child will eventually reportitpa lower bound that is also an
upper bound. When this occurs;’s termination condition will finally be true and it

can terminate.

4.3.2 Experiments

We experiment on distributed graph 3-coloringdne node is assigned to one agent
who is responsible for its color. Global cost of solution isasured by the total number
of violated constraints. We experiment with graphs of lieksiity 3 — a graph with link
densityd hasdn links, wheren is the number of nodes in the graph. We average over
6 randomly generated problems for each problem size andgrablem was run three
times for each loss probability, for a total of 18 runs forledatapoint. Each agent runs

in a separate thread and time to solution is measured as @k We use a uniform

1 thank Syed Muhammed Ali and Rishi Goel for their assistamite these experiments

89

timeout value of 10 seconds. We ensured consistent sysehbktween runs and each
run produced an optimal solution.

Table 4.1 shows the relative change in running time as a p&rge of the running
time when communication is perfeet £ 0). We see that as loss probabilityncreases
from 0% to 10%, the running time increases very little — on83%6 for 10 agents and
4.66% for 12 agents. At loss probablity of 20%, we begin toraeee severe effects on
running time — 20.95% for 10 agents and 19.31% for 12 ageihts d&ta provides initial
evidence that Adopt’s performance degrades gracefullyessage loss rate increases.

In addition to solution time, we would also like to know if tlagents are doing
more or less work when messages are being lost as compardwtocemmunication
is perfect. One measure of “work” is the total number of mgesarocessed. Table 4.2
shows the relative change in the total number of messagesgsed as a percentage of
the number of messages processed when communicationéspaife see that agents
process fewer messages as message loss rate increasesd-8dess for 12 agents at
20% loss. These results show that agents are able to obtalates of optimal quality
but by processing fewer messages as compared to the penfiectunication case. This
suggests that artificially introducing message loss evearveommunication is reliable
could be a way to decrease the amount of work agents need tfdwltthe optimal

solution. In fact, recent work by Fernandez et al. has shtanartificially introducing

90

Table 4.2: Number of messages processed (rcvd) as a pageasitarhen there is zero

Table 4.1: Running time as a percentage of when there is @asso |

Loss ratef) | 8 Agents| 10 Agents| 12 Agents
0% 100.00%| 100.00% | 100.00%
2% 99.61% | 98.84% | 100.17%
5% 103.94%| 100.40% | 100.01%
10% 110.78%| 105.88% | 104.66%
20% 128.93%| 120.95% | 119.31%

loss
Loss ratef) | 8 Agents| 10 Agents| 12 Agents
0% 100.00%| 100.00% | 100.00%
2% 98.80% | 98.01% | 98.36%
5% 98.44% | 96.47% | 95.27%
10% 98.63% | 95.04% | 93.02%
20% 97.58% | 92.24% | 92.59%

communication delay in DCR can have beneficial effects orp#réormance of DCR
algorithms [11]. This is something we will explore in futuskerk.

To summarize, we found that while sending acknowledgenfen&very message
was excessive and too expensive, and sending none waspadldethe right tradeoff
was to allow the DCR algorithm to control which key message=irto be sent reliably.
We showed that this method allows an asynchronous algorithinlerate message
loss and still terminate with the globally optimal solutioBmpirical results showed
that time-to-solution increased gradually as messagerhissis increased which is
a desireable property in a DCR algorithm. We also found thhahts need to process
fewer messages to find the optimal solution when messagebearagt, which suggests

that an active loss mechanism may improve algorithm perdoica.

91

Chapter 5

Modeling Real-world Problems

In this chapter, we illustrate that the Distributed ConstrReasoning (DCR) paradigm
can be used to represent and solve an important class oftidisl Resource Alloca-
tion problem. We develop an abstract formalization of thetiibuted Resource Al-
location problem that allows detailed complexity analysisl general mappings into
the DCR representation. Previous work in modeling DisteduResource Allocation
has lacked a systematic formalization of the problem anchamgésolution strategy. In
particular, formalizations that allow detailed complgdanalysis and general mappings
into DCR are missing.

Figure 5.1 depicts the overall methodology. First, we psgpan abstract formal-
ization of Distributed Resource Allocation (shown as boj {hat is able to capture
both the distributed and dynamic nature of the problem. Thsract formalization

is significant because it allows us to understand the contplek different types of

92

Distributed Resource Allocation problems and allows &bl problem subclasses to
be identified. Next, we develop generalized mappings int&k[Ighown as box (b)).
In particular, we will consider two specific DCR represeiotas: DCOP which was
previously defined in chapter 2 and DyDisCSP which is defindtiis chapter. DCOP
can represent optimization problems but cannot represgrandic problems. On the
other hand, DyDisCSP is able to represent dynamic problerteaxpense of limit-
ing to a satisfaction-based representation. The Adoptriéihgo can be used to solve
DCOPs while the LD-AWC algorithm presented in this chapger lbe used to solve Dy-
DisCSPs. Unfortunately sound and complete algorithmsyoacdhic optimization are
currently unavailable. Thus, we will present mappings bith DCOP and DyDisCSP,
each concerned with different aspects of the problem (opaition and dynamics).
The general mapping strategies are significant becauseetiayle existing DCR
technologies to be brought to bear directly onto the distetl resource allocation
problem. In particular with these mappings, we can use D@Rrahms like Adopt
and LD-AWC in particular to automatically solve distribdteesource allocation prob-
lems. In addition, they allow future algorithmic advance<iCR to also be directly
applied to the distributed resource allocation problenhaut significant re-modeling
effort. Thus, our formalism and generalized mappings mayide researchers with

tools for both representing and solving their resourcecation problem using DCR.

93

In section 5.1, we will describe the details of the distrdzlisensor network problem
as a concrete example of the Distributed Resource Allocgiroblem. This domain
is then used to illustrate the formal definitions in sectia®d Wwhich formalize our ab-
stract model of Distributed Resource Allocation. Progsrtand complexity classes
are defined in section 5.3 and 5.4. In section 5.5, we defin®jmamic Distributed
Constraint Satisfaction Problem (DyDisCSP) and the LD-A@Igorithm for solving
DyDisCSP. Sections 5.6 and 5.7 define our mappings of DiggtbResource Alloca-

tion into DyDisCSP. Section 5.8 defines our mapping into DCOP

5.1 Application Domain

Our distributed sensor network problem introduced preslipis used to illustrate the
difficulties described above and to also illustrate our falimation of Distributed Re-
source Allocation that is described later. The domain cigf multiple stationary
sensors, each controlled by an independent agent, andstangeing through their
sensing range. Figure 2.1 shows the hardware. Each serspripped with a Doppler
radar with three sector heads. Each sector head covers gig8edeand only one sector
can be active at a time. While all of the sensor agents musisehto activate their
sector heads to track the targets, there are some key diffgin such tracking.

The first difficulty is that the domain is inherently distribd. In order for a target

to be tracked accurately, at least three agents must codibd hey must concurrently

94

Resource Allocation Problem
(Agents, Operations, Tasks) (@)

(b)] Generalized
Mappings

(c)

DCR Representation
(DyDCSP, DCOP)

DCR Algorithms (d)
(LD-AWC, Adopt)

Resource Allocation
Problem Solved

Figure 5.1: Graphical depiction of the described methoghplo

95

Agent’Al Agent A2

Sector Number

Figure 5.2: A schematic of four sensor nodes.

activate their sectors so the target is sensed by at least twerlapping sectors. For
example, in Figure 5.2, if an agent Al detects target 1 ireit$as O, it must inform two
of its neighboring agents, A2 and A4 for example, so that tetivate their respective
sectors that overlap with Al’s sector 0.

The second difficulty with accurate tracking is that whengerd is informed about
a target, it may face ambiguity in which sector to activatecliEsensor can detect only
the distance and speed of a target, so an agent that deteutget ¢an only inform
another agent about the general area of where a target mayubeannot tell other
agents specifically which sector they must activate. Fomgye, suppose there is only
target 1 in Figure 5.2 and agent Al detects that a target septen its sector 0. Al
can tell A2 that a target is somewhere in the region of itssdgtbut it cannot tell A2
which sector to activate because A2 has two sectors (se@nod B) that overlap with

Al’s sector 0. In order to resolve this ambiguity, A2 may becéal to first activate

96

its sector 1, detect no target, then try its sector 2. Thusyading the correct sector
requires a collaboration between Al and A2. Al informs A2 ghtarget exists in some
ambiguous region and A2 then resolves the remaining antligithe significance here
is that no single agent can determine the correct allocatiafi sectors to targets.

The third difficulty is that resource contention may occurewlmultiple targets
must be tracked simultaneously. For instance, in Figure®l2eeds to decide whether
to track target 1 or target 2 and it cannot do both since it nctiyate only one sector at
a time. A4 should choose to track target 2 since there is nerathy for target 2 to be
tracked. A4 is “critical” for tracking target 2. In generdktermining whether an agent
is “critical” for a particular target requires non-locafammation about targets out of
an agent’s immediate sensing range. In this example, nateatget 1 and 2 are tasks
that conflict with one another. Targets that are spatiabyediit do not conflict with each
other and thus can easily be tracked without resource coboreThus, as we will see,
the relationship among tasks will affect the difficulty oétbverall resource allocation
problem.

Finally, the situation is dynamic because targets moveutjindhe sensing range.
Even after agents find a configuration that is accuratelkingcall targets, they may
have to reconfigure themselves as targets move over time.

The above application illustrates the difficulty of resauadlocation among dis-

tributed agents in a dynamic environment. Lack of a fornmalisr dynamic distributed

97

resource allocation problem can lead to ad-hoc methoddwdaionot be easily reused.
Instead, our adoption of a formal model allows our probleihigsisolution to be stated
in a more general way, possibly increasing our solutionsswiaess. More importantly,
a formal treatment of the problem also allows us to studyotm@exity and provide
other researchers with some insights into the difficultyheit own resource allocation
problems. Finally, a formal model allows us to provide guéeas of soundness and
completeness of our results. The next section presentsoomaf model of resource

allocation.

5.2 Formal Definitions

A Distributed Resource Allocation Problem consists of 1¢tas agents that can each
perform some set of operations, and 2) a set of tasks to beletedp In order to be
completed, a task requires some subset of agents to peréstaircoperations. We can
define a task by the operations that agents must perform gr eodcomplete it. The
problem is to find an allocation of agents to tasks such th&asks are performed. In
this way, we view the agents as the resources to be allocates problem is formal-

ized next.

e Definition 1: A Distributed Resource Allocation Problem is a structutdg, (2,

©> where

98

- Ag={A;, Ay, ..., A, } is a set of agents.

- 0={0,0;, ..., 0., ..., O} is a set of operations, where operatiof)
denotes the p‘th operation of age#ft. An operation can either succeed or

fail. Let Op(A;) denote the set of operations 4f.

-0 ={N,T,,..,T,} is a set of tasks, where each taske O is a set of
sets{t, 1o, ..., t,} and eacht; € T'is a set of operations. Eachis called a

minimal set

Intuitively, the minimal sets of a task specify the alteivtwvays (sets of opera-
tions) to perform the task. We assume that tasks are eitiniarped or not performed.
We do not model varying degrees of task performance. Taskpeaformed by exe-
cuting all the operations in one of its minimal sets. No marel¢ss) operations are
needed. Thus, we require that each minimatsef a given taskl’ is “minimal” in the
sense that no other minimal sethis a subset of,. Beyond the minimal resources
required for a task, we do not model more complex task featsueh as task duration,
task difficulty, task performance cost, etc. although wearbat these are features that
are important in many domains and deserve attention.

We assume operations {mp(A;) aremutually exclusivén the sense that an agent
can only perform one operation at a time. This is an assumgkiat holds in our

domain of distributed sensor networks and in many other dasndlowever, in order

99

to capture domains where agents are able to perform muti#eations and do many
tasks at once, this assumption must be relaxed in future.work

A solutionto a resource allocation problem is to choose a minimal seeéch
present task such that the chosen minimal sets do not confieesay that two minimal
sets of two different tasksonflictif they each contain an operation belonging to the
same agent. Since we assume that an agent can only perforaperaion at a time,
it is not possible for all the operations in two conflictingmmnal sets to be executed
simultaneously. In general when there are too many taske@trehough agents, it may
not be possible to choose non-conflicting minimal sets fergpresent task. In such
cases, we wish the agents to allocate resources only to teeimportant tasks. More
formally, we wish to findO,,; C O.y.ent,» SUCh that< Ag, €2, O,,; > has a solution
and| ©,, |is maximized. In other words, we must solve the optimizapooblem
where we wish to choose a subset of the tasks so that the maxmmnber of tasks are
completed.

To illustrate this formalism in the distributed sensor netkvdomain, we cast each
sensor as an agent and activating one of its (three) sect@nrs @peration. We will use
O} to denote the operation of agesf activating sector p. For example, in Figure 5.2,
we have four agents, sdg = { A, Ay, A3, A4}. Each agent can perform one of three

operations, s& = {0},01, 01,02,0%, 02, 03,03, 03, 03,01, O3 }. To specify the

100

subset of operations belonging to a particular agentAsawe useOp(A4;) = { 0,01,
Ol }.

We distinguish between tasks that @aresentandnot presentPresent tasks require
resources, while tasks that are not present do not requoeirees. Tasks change from
being present to not present and vice versa over tilhédefined above) corresponds
to the set of all tasks, present or not. We @5g,.....; (C O) to denote the set of tasks
that are currently present. We call a resource allocatioblpmstatic if O, cn: 1S
constant over time andynamicotherwise. In our distributed sensor network example,
since targets come and go, the problem is a dynamic one. Wetdoadel resource
allocation problems where the resources may be dynamigcyitere agents may come
and go).

Returning to our example, we now define our task&eWe define a separate task
for each region of overlap of sectors where a target may piatirbe present. In other
words, tasks correspond to spatially segmented regiongamies The existence of an
actual target in a particular segmented region corresptmdspresent task. Regions
of overlap that do not currently contain a target are tasks do not currently need
to be performed. Associated with each region is the set ofabipas that can sense
that space, i.e., the sensor sectors that cover it. In that®n illustrated in Figure
5.2, we have two targets shown. We define our current tasls$et,a..... = {11, T>}.

In the figure, there are many other regions of overlap for Wwitasks are defined, but

101

we omit description of the full se® for simplicity. Task7; requires any three of the
four possible agents to activate their corresponding sestowve define a minimal set
corresponding to all th¢;) combinations. Thusl; = {{O}, 03, O3}, {03, O}, O},
{0}, O, O}, {0}, O3, O1}}. Note that the subscript of the operation denotes the
number of the sector the agent must activate. In the exarntgs&, 7, can only be
tracked by two sectors, sb = {{03, O3} }.

For each task, we usgé(7}) to denote the union over all the minimal setsIof
and for each operation, we ugg0;) to denote the set of tasks for which O; can
contribute, that is, those tasks that inclddein Y (7;.). For instanceY (11) = {Og, 03,

03, 01} andT'(03) = { T, Ty} in the example above.

The setO.,,..: IS determined by the environment and not necessarily imatelgi
known to all the agents. It also changes over time. A key dilfyas how the agents can
come to know which tasks are currently present. We will disdinis question shortly
after the following two definitions. We assume that when agnagxecute®ne of its
operations, the operation either succeeds or fails depgrmh the presence or absence

of tasks in the environment at the time the operation is eeecu

e Definition 2: Let O;', €) be an operation executed By. If 37, € O,,,ren: SUCh
thatO}, € T(T}), thenO;, succeedslf O} has no corresponding task @ cn,

the operatiorails.

102

In our example, if agenti; executes operatiof| (activates sector 1) andff; €
Ocurrent (target 1 is present), then will succeed (@, will detect a target), otherwise
it will fail. Note that our notion of operation failure cosponds to a sensor signal
indicating the absence of a task, not actual hardware &ildardware failure or sensor
noise is an issue not modeled. However, an actual systemusirig this formalism
has been able to incorporate techniques for dealing witkenand failure by using a
two-layered architecture, where a lower layer of the im@atation deals with these
issues[36].

We say a task is (being)erformedwhen all the operations in some minimal set

succeed. More formally,

e Definition 3: VT, € ©, T, is performediff there exists a minimal set. € T,
such that all the operations tn succeed. A task that is not present cannot be

performed, or equivalently, a task that is performed mushbleided iNO..,,.ren:-

The intuition is that as long as the task is present, it cad §ould) be performed.
When it is no longer present, it cannot (and need not) be padd. This is different
from the notion of agents working on a task until it is “conmtp@#’. In our formalism,
agents have no control over task duration.

For example, task> is performed (targefs is tracked) if A; executes operation

O3 and A4 executes operatio;. The task continues to be performed as long as

103

those operations are being executed and the task is presetiie target remains in the
specified region of space.

To summarize our formalism and terminology:

e Tasks argresentor not presentas determined by the environment.

e Operations ar@xecutedoy the agents and executed operatisusceedr fail

depending on the presence or absence of corresponding tasks

e Tasks argerformedwhen all the operations in some minimal set succeed.

As mentioned above, a key difficulty is how the agents can ctmmaow which
tasks are currently present. In our model, agents execaiedperations to not only
perform existing tasks, but also to detect when new tasks bagpeared and when
existing tasks disappear. Thus, agents must continuaélyl@ave problem solving and
operator execution.

If a new task appears and an agent executes its operaticopéhation will succeed
and signal to the agent that some task is present. It may wmessarily know exactly
which task is present, since there may be multiple tasks focmthe same operation
may succeed. Aside from this difficulty (which we will addses our solution method-
ology), another tricky issue is ensuring that every new teidkeventually be detected
by some agent, i.e., some agent will execute its operatidatect it. We must avoid sit-

uations where all agents are busy doing other tasks or sigepid ignoring new tasks.

104

This can be done in various ways depending on the particalarath. In the sensor
domain, we require agents to “scan” for targets by actigatiiferent sectors when
they are currently not involved in tracking any target. Thoisr model relies on the

following assumption which ensures that no present task goaoticed by everyone.

¢ Notification assumption

— (i) If task T;. is present, then at least one agent executes an operation for
VT, € ©,if T, € Ocyrrent, thend O}; € Y(7,) such that); is executed (and

sinceT,. is present(); succeeds).

— i) VI, (# T)) € Ocurrent, O) & YT(T).

(ii) states that the notifying operaticﬂﬁ; (from (i)) must not be part of any other
present task. This only implies that the success of operatjowill uniquely identify
the task7, among all present tasks, but not necessarily among all, (®g present)
tasks. Thus, the difficulty of global task ambiguity remaifi$is assumption is only
needed to prevent two present tasks from being detecteddoggemt through the exe-
cution of a single operation, in which case the agent mustehone of them, leaving
the other task undetected by anyone. In distributed seretaonks, hardware restric-
tions preclude the possibility of two targets being deteédig a single sector, so this

assumption is naturally satisfied.

105

This concludes our model. In later sections, we will map Distributed Resource
Allocation model into a Dynamic Distributed Constraint iS&tction Problem. We
will show how these mappings and associated algorithms eamsbd to address the
problems of distribution, task dynamics, resource corenand global task ambiguity

that arise within our model.

5.3 Properties of Resource Allocation

We now state some definitions that will allow us to categoazgven resource allo-
cation problem and analyze its difficulty. In particular, watice some properties of
task and inter-task relationships. We choose to identi&séhproperties because, as
we will see, they have a bearing on the computation complietithe overall resource
allocation problem. Definitions 4 through 7 are used to dbedhe complexity of a
given task in a given problem, i.e., the definitions relatprmperties of anndividual
task Next, definitions 8 through 10 are used to describe the cexitglof inter-task

relationships, i.e., the definitions relate to the intecas between aet of tasks

5.3.1 Task Complexity

For our purposes, we consider a particular notion of taskptexity, namely, the ex-

pressiveness allowed by the minimal set representatiorts most general form (the

106

Unrestricted class defined below), one can express a vadatyinimal sets. How-
ever, for certain problem classes, we can limit the minirsétlrepresentation to reduce
computational complexity. We now define some of these typesablem classes.

One class of resource allocation problems have the progeatyeach task requires
any k agents from a pool ofi (n > k) available agents. That is, the task contains a
minimal set for each of théﬁ) combinations. The following definition formalizes this

notion.

e Definition 4: V T, € ©, T, istask-(})-exactiff T, has exactly(,") minimal sets

of sizek,, wheren =| Y(7,) | andk,(< n) depends off,.

For example, the task; (corresponding to target 1 in Figure 5.2) is ta(@(—exact
because it has exactly}) minimal sets of sizé: = 3, wheren = 4 =| Y(1}) |. The
following definition defines the class of resource allogapooblems where every task

is task{})-exact.

e Definition 5 (Z) -exactdenotes the class of resource allocation problemdg,

Q,© > suchthat 7,. € ©, T, is task{:r)-exact.

We find it useful to define a special case(@)-exact resource allocation problems,
namely those whek = n. Intuitively, all agents are required so each task contains

only a single minimal set.

107

e Definition 6: (Z)-exactdenotes the class of resource allocation problemg,

Q, ©> such that/ T, € ©, T, is task{;)-exact, where:, = k, =| T(T) |.
For example, the task, (corresponding to target 2 in Figure 5.2) is ta@k—exaet.

e Definition 7: Unrestricted denotes the class of resource allocation problems

<Ag, 2, ©> with no restrictions on tasks.

Note that(")-exactc (7})-exactC Unrestricted.

5.3.2 Task Relationship Complexity

The following definitions refer to relations between task&e define two types of
conflict-freeto denote resource allocation problems that have solytarejuivalently,

problems where all tasks can be performed concurrently.

e Definition 8: A resource allocation problem is call&trongly Conflict Free
(SCF)if for all T,,, T, € Ouyrrent andV A; € Ag, | Op(4A;) NY(T}) | + |
Op(A;) NY(Ty) |< 1, i.e., no two tasks have in common an operation from the

same agent.

The SCF condition implies that we can choose any minimal sebbthe given
alternatives for a task and be guaranteed that it will leaa $olution where all tasks

are performed, i.e., no backtracking is ever required todisdlution.

108

e Definition 9: A resource allocation problem is call&fleakly Conflict Free
(WCF) if there exists some choice of minimal set for every presask such

that all the chosen minimal sets are non-conflicting.

The WCF condition is much weaker that the SCF condition sihoaly requires
that there exists some solution. However, a significant arthofisearch may be re-

quired to find it. Finally, we define problems that may not hamg solution.

e Definition 10: A resource allocation problem that cannot be assumed to®E W
is called(possibly) over-constrained (OC) In OC problems, all tasks may not
necessarily be able to be performed concurrently becagseinees are insuffi-

cient.

Note that SCFk- WCF c OC.

5.4 Complexity Classes of Resource Allocation

Given the above properties, we can define 9 subclasses deprstaccording to their
task complexity and inter-task relationship complexitﬁFSand(Z)-exact, SCF and
(7)-exact, SCF and unrestricted, WCF afig-exact, WCF and};)-exact, WCF and
unrestricted, OC an(l’)-exact, OC and})-exact, OC and unrestricted.

Table 5.1 summarizes our complexity results for the subelasf resource alloca-

tion problems just defined. The columns of the table, fromttopottom, represent

109

increasingly complex tasks. The rows of the table, fromtlefight, represent increas-
ingly complex inter-task relationships. We refer the readg29] for detailed proofs.
Although our formalism and mappings addresses dynamid¢mody our complex-
ity analysis here deals with a static problem. A dynamic ues® allocation problem
can be cast as solving a sequence of static problems, so enstypeoblem is at least
as hard as a static one. Furthermore, all our complexityiteeate based on a cen-
tralized problem solver. In terms of computational comiftigxa distributed problem
can always be solved by centralizing all the information.wideer, we note that this
model of complexity ignores issues such as communicatistsccommunication de-

lays, message loss, limited communication range/bandetith

Theorem 4 Unrestricted SCF resource allocation problems can be sbiagime lin-

ear in the number of tasks

Proof: Greedily choose any minimal set for each task. They are gtegd not to

conflict by the Strongly Conflict Free condition.

Theorem 5 (Z) -exact WCF resource allocation problems can be solved ie tinear

in the number of tasks.
Proof: Greedily choose the single minimal set for each task.
Theorem 6 (Z) -exact WCF resource allocation problems can be solved ie fialy-

nomial in the number of tasks and operations.

110

Proof: We can convert a give(nZ)-exact resource allocation problem to a network-
flow problem, which is known to be polynomial time solvablé&]3We first construct

a tripartite graph from a given resource allocation probérd then convert the graph
into a network-flow problem.

Let<Ag, Q2, ©> be an(Z) -exact problem. Construct a tripartite graph as follows:
e Create three empty sets of vertices, U, V, and W and an empey et E.

e For each task, € ©, add a vertex, to U.

e For each agent; € Ag, add a vertex; to V.

e For each agent;, for each operatioﬁ); € Op(4;), add avertexU;', to W.

o Foreach agent;, for each operatio®; € Op(4;), add an edge between vertices

Vi, w; to E.

e For each task;, for each operatio®; € T(7,), add an edge between vertices

u,, w), to E.

We convert this tripartite graph into a network-flow graphtte following way.
Add two new vertices, a supersourgeand supersink. Connects to all vertices in V
and assign a max-flow of 1. For all edges among V, W, and U, assigax-flow of 1.
Now, connect to all vertices in U and for each edge,.(t), assign a max-flow of,.

We now have a network flow graph with an upper limit on ﬂov\E(:)fg:'1 k;.

111

We show that the resource allocation problem has a solutenmdi only if the max-
flow is equal toy"\"! k..

= Let a solution to the resource allocation problem be givea will now construct
a flow equal toZLi'l k;. This means, for each edge between vertein U andt¢, we
must assign a flow of,.. It is required that the in-flow ta, equalk,. Since each edge
between W and U has capacity 1, we must chagseertices from W that have an
edge intou, and fill them to capacity. L€T, be the task corresponding to vertex
andt, € T, be the minimal set chosen in the given solution. We will assiglow
of 1 to all edges;, u,) such thatw! corresponds to the operati@}j that is required
in t,.. There are exactly, of these. Furthermore, since no operation is required for
two different tasks, when we assign flows through verticdd,iwe will never choose
w! again. For vertexv] such that the edgeuf, u,) is filled to its capacity, assign a
flow of 1 to the edge«(, w;',). Here, when a flow is assigned through a vent%x no
other flow is assigned throughi, € Op(4;) (p # q) because all operations @p(A;)
are mutually exclusive. Therefore;’'s outflow cannot be greater than 1. Finally, the
assignment of flows from to V is straightforward. Thus, we will always have a valid
flow (inflow=outflow). Since all edges from U toare filled to capacity, the max-flow
is equal toy_?! ;.

< Assume we have a max-flow equal EL(’Z‘I k;. Then for each vertex, in U,

there arek, incoming edges filled to capacity 1. By construction, theoefertices in

112

W matched tau, corresponds to a minimal set if). We choose this minimal set for
the solution to the resource allocation problem. For each sdge ¢, u,), w;', has an
in-capacity of 1, so every other edge outzq;f must be empty. That is, no operation is
required by multiple tasks. Furthermore, since outgoing tlsoroughv; is 1, no more
than one operation i®p(A;) is required. Therefore, we will not have any conflicts

between minimal sets in our solution.

Theorem 7 Determining whether an unrestricted resource allocatiariyem is Weakly

Conflict Free is NP-Complete.

Proof: We reduce from 3 coloring problem. For reduction, let anteaiby instance
of 3-color with colorscy, ¢s, ¢3, verticesV and edges”, be given. We construct the

resource allocation problem as follows:

e For each vertex € V, add atask’, to ©.
e For each tas, € ©, for each color;, add a minimal sef’ to 7.

e For each edge;,v; € E, for each color;, add an operatadg:, to €2 and add

Vi,

this operator to minimal set§: andt:.

e Assign each operator to a unique agépt;. in Ag.
©Yj

Figure 5.3 illustrates the mapping from a 3 node graph to aures allocation
problem. With the mapping above, we can show that the 3-gutislem has a solution

if and only if the constructed resource allocation problsrweakly conflict free.

113

= Assume the 3-color problem has a solution. Then there eaistdoring such
that no adjacent vertices have the same color.L.@ndv; be two arbitrary vertices
that are colored, andc;. Then we can choosg: andtf}j as minimal sets for tasks,,
and7,,, respectively. We need to show that the WCF condition hokts/een these
two tasks for all agents. We will show it for one agent and traopfor all agents is
identical. LetOgx, ~be an operator . By construction{ Og, } = OP(A05§,1,7,L)-
So we haveg tgF N OP(AOE?,UM) | = 1. Then, the WCF condition is violated just in
caseOyk, isin b This is only possible if m=j and k=I. But m=j means that the@tw
vertices we picked are adjacent and k=I means they are cblbeesame color, which
cannot be a solution to the 3-color problem. So the probliencase is ruled out and
the resource allocation problem is WCF.

< Assume our constructed resource allocation problem is We* andi; be
WCF minimal sets for tasks,, and7,,. Then we can colos; andwv; with colorsc, and
c; respectively. The only case where there could be a probléhngds v;) is in £ and
k=l. Assume this is the case. Then, by construction, theistsean operato®;: , that
isintg+. But this operator is also iﬂj}; (= tf}j), which violates WCF. So the problematic
case is ruled out and we have a valid 3-coloring.

In OC problems sufficient resources may not be available toptete all present

tasks. Instead, we may wish to fitl,; C O...rent, SUCh that< Ag, 2, ©,,> has a

solution and ©,,, | is maximized. In other words, we wish to choose a subset of the

114

tasks so that the maximum number of tasks are completed. dvVestmplexity of this

problem to be NP-Complete.
Theorem 8 The OC Distributed Resource Allocation problem is NP-Catgpl

Proof: We show that a special case is NP-Complete, namely, asswe@dblem is
(")-exact. If we are given a subset &f we can determine if the RAP is solvable in
linear time (by Theorem 5). So the problem is in NP. To show finoblem is NP-hard,
we will reduce from the INDEPENDENT-SET problem [31]. INDERDENT-SET
is defined as: LeG = (V, E') be an undirected graph, and IetC V. The set/ is
independenif wheneveri, j € I then there is no edge betweeand;. The goal is to
find the largest independent set in gragh

The reduction from INDEPENDENT-SET is as follows. For eacke, we create
a taskT; with exactly one minimal set. For each edgg, € F, we create an operation
0, ; and add it to the minimal set df; and 7. Finally, create one agent for each
operation. We can see that two tasks conflict if and only ifrthedes inG have an
edge between them. LétC V be is a solution to the INDEPENDENT-SET. L@t
be the set of tasks corresponding to the nodes. imhere is no edge between any
i,j € I, so there cannot be any operation in common betWéamd7; in ©,,. Thus,
O, IS the solution to the resource allocation problem. Thensavdirection is similar.

O

115

Color ={R, G, B}
T= {02 Qi s b Qe Qius -
{QF.2 Qiusll

To= {1 v2h {Qivah {Qf v
To= {{Q5 vah {Qzvah { Qs va}

Figure 5.3: Reduction of graph 3-coloring to Resource Adtan Problems

Table 5.1: Complexity Classes of Resource Allocatior,size of task se®, m = size
of operation sef). Columns represent task complexity and rows representtisubé
relationship complexity.

SCF WCF ocC
(7)-exact | O(n) O(n) NP-Complete]
(7)-exact | O(n) | O((n +m)®) | NP-Complete

unrestricted O(n) | NP-Complete NP-Complete

5.5 Dynamic Distributed CSP (DyDisCSP)

In order to solve resource allocation problems capturedusyfarmalized model, we
will use distributed constraint satisfaction techniquEse following section defines the
notion of a Dynamic Distributed Constraint Satisfactioo®em (DyDisCSP). Exist-
ing approaches to distributed constraint satisfactidrsfadrt for our purposes because
they cannot capture the dynamic aspects of the problem. nardic problems, a so-
lution to the resource allocation problem at one time mayberobsolete when the
underlying tasks have changed. This means that once amvolstobtained, the agents
must continuously monitor it for changes and must have a waxpress such changes

in the problem. This section presents DyDisCSP in order tivess this shortcoming,

116

DisCSP assumes that the set of constraints are fixed in aglvaiis assumption
is problematic when we attempt to apply DisCSP to domaingevtiee environment is
unknown and changes over time. For example, in distribigeda@ networks, agents do
not know where the targets will appear and how they will mdvas makes it difficult
to specify the DisCSP constraints in advance. Rather, wredagents to sense the
environment and then activate or deactivate constrairgsri#ing on the result of the
sensing action. We formalize this idea next.

We take the definition of DiSCSP one step further by definingdyic DCSP (Dy-
DisCSP). A DyDisCSP is a DisCSP where constraints are atldade dynamic, i.e.,
agents are able to add or remove constraints from the pradétenrding to changes in

the environment. More formally,

e Definition 11: A dynamicconstraint is given by a tuple (P, C), where P is a
arbitrary predicate that is evaluated to true or false byganasensing its envi-

ronment and C is a familiar constraint from DisCSP.

When P is true, C must be satisfied in any DyDisCSP solutionreWhis false, it is
okay for C to be violated. An important consequence of dyieddisCSP is that agents
no longer terminate when they reach a stable state. Theyeouashue to monitor P,
waiting to see if it changes. If its value changes, they mayeogiired to search for
a new solution. Note that a solution when P is true is also atisol when P is false,

so the deletion of a constraint does not require any extrgpotation. However, the

117

converse does not hold. When a constraint is added to thdepnolagents may be
forced to compute a new solution. In this work, we only needddress a restricted
form of DyDisCSP where onljocal constraintsare allowed to be dynamic. We will
see that this is sufficient to model the types of problems \werderested in. Next, we
discuss how we can solve such restricted DyDisCSPs throggh@e modification to
an existing DisCSP algorithm.

Asynchronous Weak Commitment (AWC) [52] is a sound and cetephlgorithm
for solving DisCSPs. An agent with local variable, chooses a value, for A; and
sends this value to agents with whom it has external comssrait then waits for and
responds to messages. When the agent receives a variameAak v;) from another
agent, this value is stored in an AgentView. Therefore, armiew is a set of pairs
{(4;,v;), (Ag, v), ...}. Intuitively, the AgentView stores the current value of Honal
variables. A subset of an AgentView is a “NoGood” if an agearrot find a value for
its local variable that satisfies all constraints. For exi@mnan agent with variabld;
may find that the sef(A4;,v;), (Ax, v)} is a NoGood because, given these values for
A; and Ay, it cannot find a value for; that satisfies all of its constraints. This means
that these value assignments cannot be part of any soldtidhis case, the agent will
request that the others change their variable value andehsies a solution continues.
To guarantee completeness, a discovered NoGood is stotbeisihat assignment is

not considered in the future.

118

The most straightforward way to attempt to deal with dynamis DisCSP is to
consider AWC as a subroutine that is invoked anew everytiroenstraint is added.
Unfortunately, in domains such as ours, where the probledymamic but does not
change drastically, starting from scratch may be prolvblyi inefficient. Another op-
tion, and the one that we adopt, is for agents to continue twnputation even as
local constraints change asynchronously. The potentaddipm with this approach is
that when constraints are removed, a stored NoGood may noaniee part of a so-
lution. We solve this problem by requiring agents to stordrtbwn variable values
as part of non-empty NoGoods. For example, if an agent witlabke A; finds that
a valuev; does not satisfy all constraints given the AgentVié,, v,), (Ax, vi)},
it will store the set{(A4;,v;), (4;,v,), (Ax, vx)} as a NoGood. With this modifica-
tion to AWC, NoGoods remain “no good” even as local consteghange. Let us
call this modified algorithm Locally-Dynamic AWC (LD-AWC)a the modified No-
Goods “LD-NoGoods” in order to distinguish them from thegimal AWC NoGoods.
The following lemma establishes the soundness and completeof LD-AWC.

Lemma I: LD-AWC is sound and complete.

The soundness of LD-AWC follows from the soundness of AWG Ebmpleteness
of AWC is guaranteed by the recording of NoGoods. A NoGoodchlty represents a
set of assignments that leads to a contradiction. We neeubie that this invariant is

maintained in LD-NoGoods. An LD-NoGood is a superset of soime-empty AWC

119

NoGood and since every superset of an AWC NoGood is ho goedpntariant is true
when a LD-NoGood is first recorded. The only problem that iesi& the possibility
that an LD-NoGood may later become good due to the dynamidocaf constraints.
A LD-NoGood contains a specific value of the local variablet ils no good but never
contains a local variable exclusively. Therefore, it @iz holds information about
external constraints only. Since external constraintshateallowed to be dynamic in
LD-AWC, LD-NoGoods remain valid even in the face of dynanocdl constraints.

Thus the completeness of LD-AWC is guaranteed.

5.6 Mapping SCF Problems into DyDisCSP

We now describe a solution to the SCF subclass of resourceasitbn problems, de-
fined in Definition 8 of Section 5.2, by mapping onto DyDisC®.choose DyDisCSP
instead of DCOP for two reasons: DyDisCSP is able to repteshgmamic problems
and the SCF condition guarantees that a satisfactory enletists so optimization is
not necessary. Our goal is to provide a general mapping, adha@ping I, that allows
any dynamic unrestricted SCF resource allocation probdeme imodeled as DyDisCSP
by applying this mapping.

Mapping | is motivated by the following idea. The goal in D@QISP is for agents
to choose values for their variables so all constraints atisfeed. Similarly, the goal

in resource allocation is for the agents to choose opematorall tasks are performed.

120

Therefore, in our first attempt we map agents to variablesogedations of agents to
values of variables. For example, if an ageithas three operations it can perform,
{03, 05, 04}, then the variable corresponding to this agent will haveehralues in
its domain. However, this simple mapping attempt fails dughe dynamic nature of
the problem; operations of an agent may not always succdeztefore, we define two
values for every operation, one for success and the othdaifare. In our example,
this would result in six values for each variablg {O'yes,OLyes,0iyes,0ino,O4no,
Oino}.

It turns out that even this mapping is inadequate due to amtlgigcAmbiguity arises
when an operation can be required for multiple tasks but only task is actually
present. To resolve ambiguity, we desire agents to be abtettonly communicate
about which operation to perform, but also to communicatevuich task they intend
the operation. For example in Figure 5.2, Agent A3 is requie activate the same
sector for both targets 1 and 2. We want A3 to be able to digigigbetween the two
targets when it communicates with A2, so that A2 will be allecttivate its correct
respective sector. For each of the values defined so far, Welefine new values
corresponding to each task that an operation may serve.

Mapping I: Given a Resource Allocation Problefyly, 2, ©), the corresponding

DyDisCSP is defined over a setwofvariables.

121

o A={Ay, As,..., A, }, one variable for eacH; € Ag. We will use the notation!;

to interchangeably refer to an agent or its variable.
The domain of each variable is given by:

o VA; € Ag, DomA) = |J O;xT(O})x{yes,ng.

0LeN

In this way, we have a value for every combination of operstian agent can
perform, a task for which this operation is required, andtivbethe operation succeeds
or fails. For example in Figure 5.2, Agent A3 has one openafgector 0) with two
possible tasks (target 1 and 2). Although the figure doeshmt $argets in sector 1
and sector 2 of agent A3, let us assume that targets may athyearfor this example.
Thus, let taski’; be defined as a target in A3’s sector 1 and let tAske defined as a
target in A3's sector 2. This means A3 would have 8 valuessiddmain:{O3T;yes,
O3Tino, O3 Tyyes, 03 Tyno, 03T3yes,0313n0,03T,yes,03T,no }.

A word about notation¥ O, € Q, the set of values D) xT'(O})x{yes} will be
abbreviated by the terr@;’,*yes and the assignment; = O;’,*yes denotes thatlv €
O:*yes such thatd; = v. Intuitively, the notation is used when an agent detects tha
an operation is succeeding, but it is not known which tasleiadpperformed. This is
analogous to the situation in the distributed sensor nétdlomain where an agent may
detect a target in a sector, but does not know its exact mtafinally, when a variable

A; is assigned a value, the corresponding agent executesriesgonding operation.

122

Next, we must constrain agents to assign “yes” values t@bbes only when an
operation has succeeded. However, in dynamic problemsparation may succeed
at some time and fail at another time since tasks are dyndynadded and removed
from the current set of tasks to be performed. Thus, evenghiris constrained by the

following dynamiclocal constraints (as defined in Section 5.5).

e Dynamic Local Constraint 1 (LC1): VT, € ©, VO, € Y(T,),
LC1(A;) = (P, C), where Predicate P succeeds.

Constraint CA; = O} *yes

e Dynamic Local Constraint 2 (LC2): VT, € ©, YO, € T(T}),
LC2(A;) = (P, C), where Predicate P%, does not succeed.

Constraint C:A; # O} *yes

The truth value of P is not known in advance. Agents must erdbeir operations,
and based on the result, locally determine if C needs to lisfisdt In dynamic prob-
lems, where the set of current tasks is changing over tineeytith value of P will also
change over time, and hence the corresponding DyDisCSme&elll to be continually
monitored and resolved as necessatry.

We now define the External Constraint (EC) between variabfesvo different

agents. EC is a normal static constraint and must alwaystisficd.

e External Constraint: VT, € ©, V0], € T(T), VA; € A,

123

EC(A;, 4)): (1) A; = O} T,yes, and
Vvt € T,, 0, € t,,3q O] € t,.

= A; =0JT,yes

The EC constraint requires some explanation. It says that detects a task, then
other agents in minimal set must also help with the task. In particular, Condition (1)
states that an agen, is executing a successful operatiof for task7,.. Condition (2)
quantifies the other agents whose operations are also eedioirZ,. If A; is one of
those agents, |ng is an operation that can help perfoffjy the consequent requires
A; to choose operatio®). Note that every pair of variables; and A; have an EC
constraint between them. H; is not required fofZ;., condition (2) is false and EC is

trivially satisfied.

5.6.1 Correctness of Mapping |

We now show that Mapping | can be used to model a given SCF mes@liocation

problem as a DyDisCSP. Theorem 9 states that our DyDisCS&yalhas a solution.
This means the constraints as defined above are not ingemtséstd thus, it is always
possible to solve the resulting DyDisCSP. Theorem 10 thatesthat if agents reach
a solution, all tasks are (being) performed. Note that theverse of the Theorem 10

does not hold, i.e. it is possible for agents to be perfornaithtpsksbeforea solution

124

to the DyDisCSP is reached. This is due to the fact that wHenuakent tasks are being
performed, agents whose operations are not necessaryefouthent tasks could still

be violating some constraints.

Theorem 9 Given an unrestricted SCF Resource Allocation Prob{ety,©2,0), © current

C O, a solution always exists for the DyDisCSP obtained from pviagp I.

Proof: We proceed by presenting a solution to any given DyDisCSBleno obtained
from Mapping I.

Let B = {A; € A | 3T, € Ocurrent, 30, € T(T,)}. B contains precisely those
agents who have an operation that can contribute to somentuask. We will first
assign values to variables 8, then assign values to variables that are noBinlf
A; € B, we assignd; = O;TTyes, whereT, € O.yrren: @and Oj, € Y(T,). We know
suchT, andO; exist by the definition of3. If A; ¢ B, we may choose ang;T,no €
Domain(4;) and assigmM; = O;Trno.

To show that this assignment is a solution, we first show thaatisfies the EC
constraint. We arbitrarily choose two variable,and A;, and show that EC{;, A,)

is satisfied. We proceed by cases. UetA; € A be given.

e case 1:A; ¢ B SinceA; = O;Trno, condition (1) of EC constraint is false and

thus EC is trivially satisfied.

125

e case 2:A; € B, A; ¢ B A; = O}T,yes in our solution. Let, € T,, O} € t,.
We know thatl, € O.yrent @and sinced; ¢ B, we conclude that/ﬂ()g € t,.

Condition (2) of the EC constraint is false and thus EC igdty satisfied.

e case 3:4; € B,A; € B A; = O}T.yes andA; = O}Tyes in our solution.
Lett, € T,, Oj, € t.. T, andT, must be strongly conflict free since both are in
Ocurrent- If Ts # T, then AO! € Q, OJ € t,. Condition (2) of EC{,;,4;) is
false and thus EC is trivially satisfied.If = T, then EC is satisfied sincé; is

helping A; performT,.

Next, we show that our assignment satisfies the LC consttaifitd; € B then
A = O;Tryes, and LC1, regardless of the truth value of P, is clearly notated.
Furthermore, it is the case th@f, succeeds, sincg, is present. Then the predicate P
of LC2 is not true and thus LC2 is not presentAlf ¢ B and A; = O;Trno, it is the
case thaO; is executed and, by definition, does not succeed. Then, dtigate P of
LC1 is not satisfied and thus LC1 is not present. LC2, regasdbé the truth value of
P, is clearly not violated. Thus, the LC constraints aresfiatl by all variables. We can
conclude that all constraints are satisfied and our valugrasent is a solution to the

DyDisCSP.O

Theorem 10 Given an unrestricted SCF Resource Allocation Prob{etn,(2,0), © current
C © and the DyDisCSP obtained from Mapping I, if an assignmengabies to vari-

ables in the DyDisCSP is a solution, then all task®if,......; are performed.

126

Proof: Let a solution to the DyDisCSP be given. We want to show thatiagks in
Ocurrent are performed. We proceed by choosing a taske O, eni. SiNce our
choice is arbitrary and tasks are strongly conflict free,efean show that it is indeed
performed, we can conclude that all member®gf.,.,.; are performed.

Let 7. € O..rent D given. By theNotification Assumption, some operatiod)?,
required byT, will be executed. However, the corresponding agéntwill be unsure
as to which task it is performing whe@;’, succeeds. This is due to the fact tht[ﬁ;t
may be required for many different tasks. It may choose g thsk T(O;’,), and LC1
requires it to assign the valug/ T.yes. We will show that4; could not have chosen
incorrectly since we are in a solution state. The EC congtraill then require that
all other agentsl;, whose operations are required firalso execute those operations
and assigml; = O’T,yes. We are in a solution state, so LC2 cannot be present for
Thus,Og succeeds. Since all operations requiredfpsucceed?’ is performed. By
definition, T, € O...rens- But sSince we already know th@t and7, have an operation
in common, the Strongly Conflict Free condition requires tha= T,.. Therefore,T,

is indeed performedl

127

5.7 Mapping WCF Problems into DyDisCSP

This section begins with a discussion of the difficulty inngsMapping | for solving
WCF problems. This leads to the introduction of a second nmgpMapping I, which
is able to map WCF problems into DyDisCSP.

Our first mapping has allowed us to solve SCF resource aitotptoblems. How-
ever, when we attempt to solve WCF resource allocation problwith this mapping,
it fails because the DyDisCSP becomes overconstraineds i$hdue to the fact that
Mapping | requires all agents who can possibly help perfortasé to do so. If only
three out of four agents are required for a task, Mapping I still require all four
agents to perform the task. In some sense, this results imexaltocation of resources
to some tasks. This is not a problem when all tasks are indigmeras in the SCF
case. However, in the WCF case, this overallocation mayeledler tasks without
sufficient resources to be performed. One way to solve thiblpm is to modify the
constraints in the mapping to allow agents to reason abatiarships among tasks.
However, this requires adding n-any ¢ 2) external constraints to the mapping. This
is problematic in a distributed situation because therenarefficient algorithms for
non-binary distributed CSPs. Existing methods requireaextlinary amounts of inter-
agent communication. Instead, we create a new mapping leyéixig mapping | to
n-ary constraints, then taking its dual representatiorthéndual representation, vari-

ables correspond to tasks and values correspond to operaticis allows all n-ary

128

constraints to beocal within an agent and all external constraints are reduceduale
ity constraints. Restricting n-ary constraints to be laedher than external is more
efficient because it reduces the amount of communicatiodetebetween agents. This
new mapping, Mapping Il, allocates only minimal resourcesach task, allowing
WCF problems to be solved. Mapping Il is described next ardgm correct. Here,
each agent has a variable for each task in which its opesasianincluded.

Mapping II: Given a Resource Allocation Problefdg, €2, ©), the corresponding

DyDisCSP is defined as follows:

e Variables: VT, @,VO}, € Y(T,), create a DyDisCSP variablg ; and assign

it to agentA;.

e Domain: For each variabld’. ;, create a value,; for each minimal set irY;,
plus a “NP” value (not present). The NP value allows agents/tidd assigning

resources to tasks that are not present and thus do not nbegtrformed.

In this way, we have a variable for each task and a copy of each gariable
is assigned to each agent that has an operation for that EEmkexample in Figure
5.2, Agent Al has one variablé; ;, Agent A2 has one variabl&, ,, Agent A3 has
two variablesT; ;3 andT; 3, one for each task it can perform, and Agent A4 has two
variablesT; 4 and7; 4. The domain of eacld; ; variable has five values, one for each

of the four minimal sets as described in Section 5.2, plud\fRealue.

129

Next, we must constrain agents to assign non-NP values tabkes only when
an operation has succeeded, which indicates the preserthe obrresponding task.
However, in dynamic problems, an operation may succeedraé gome and fail at
another time since tasks are dynamically added and remawadthe current set of
tasks to be performed. Thus, every variable is constraiyeithd following dynamic
local constraints.

e Dynamic Local (Non-Binary) Constraint (LC1):

VA; € Ag, VO; € Op(A;), letB={1T,, | Oj, € T, }. Then let the constraint be
defined as a non-binary constraint over the variables in BlasAfs:
Predicate PO}, succeeds
Constraint C37,;, € BT, ; # NP.
e Dynamic Local Constraint (LC2): VT, € O, VO; € Y(T}), letthe constraint be
defined oril}.; as follows:
Predicate PO, does not succeed
Constraint CT,.; = NP.

We now define the constraint that defines a valid allocatioresburces and the

external constraints that require agents to agree on aplantiallocation.

e Static Local Constraint (LC3): V1,.;, T, if T,.; = t,; andTy,; = t,, thent,;

andt,; cannot conflict. NP does not conflict with any value.

130

e External Constraint (EC): Vi, j,r 1,.; = T, ;.

For example, if Agent A4 assigrig 4 = {O}, O3, O3}, then LC3 says it cannot
assign a minimal set to its other variatdlg,, that contains any operation of either
Agent Al, A2 or A4. Sincel; 4 has only one minimal se{,03, O3} which contains
Agent A4, the only compatible value is NP. Note that if Tarfy@ind 2 are both present
simultaneously as shown in Figure 5.2, the situation is amestrained since the NP

value will be prohibited by LC1.

5.7.1 Correctness of Mapping Il

We will now prove that Mapping Il can be used to represent angrgWCF Resource
Allocation Problem as a DyDisCSP. As in Mapping |, the TheorEl shows that our
DyDisCSP always has a solution, and the Theorem 12 showsfthgents reach a

solution, all current tasks are performed.

Theorem 11 Given a WCF Resource Allocation Problgdg,©2,0), O.urrent € O,

there exists a solution to DyDisCSP obtained from Mapping Il

Proof: For all variables corresponding to tasks that are not pteses can assign
the value “NP”. This value satisfies all constraints excepgsibly LC1. But the P
condition must be false since the task is not present, so la@fat be violated. We are

guaranteed that there is a choice of non-conflicting minsetd for the remaining tasks

131

(by the WCF condition). We can assign the values correspgrtdithese minimal sets
to those tasks and be assured that LC3 is satisfied. Sincari@ble corresponding to a
particular task get assigned the same value, the externsiraint is satisfied. We have

a solution to the DyDisCSRP.

Theorem 12 Given a WCF Resource Allocation Problémg,©2,0), ©..rrent € © and
the DyDisCSP obtained from Mapping Il, if an assignment ddiesito variables in the

DyDisCSP is a solution, then all tasks@.,,,.....; are performed.

Proof: Let a solution to the DyDisCSP be given. We want to show thiatiagks in
O.urrent are performed. We proceed by contradiction. Let O.,.....: be atask that is
not performed in the given solution state. Condition (i)lregMotification Assumption
says some operatiaft}, required byT,. will be executed and (by definition) succeed.
LC1 requires the corresponding ageht to assign a minimal set to some task which
requiresO;. There may be many choices of tasks that reqOifeSupposed; chooses
ataskl}. A; assigns a minimal set, say, to the variablel; ;. The EC constraint will
then require that all other agems, who have a local copy df; calledT ;, to assign
Ts; = ts. In addition, if A; has an operatio@g in the minimal set,, it will execute
that operation. Also, we know that; is not already doing some other operation since
ts cannot conflict with any other chosen minimal set (by LC3).

We now have two cases. In case 1, supphse T,. Condition (ii) of theNotifi-

cation Assumptionstates thaf, is the only task that both requirézf) and is actually

132

present. Thus], cannot be present. By definition, T, is not present, it cannot be
performed. If it cannot be performed, there cannot existr@inmal set of7, where all
operations succeed (def of “performed”). Therefore, someration int, must fail.
Let OJ be an operation of agent; that fails. SinceA; has assigned valug ; = t,
LC2 is violated byA;. This contradicts the fact we are in a solution state. Case 1 i
not possible. This leaves case 2 whéte= T,.. Then, all operations in, succeed and
T, is performed. We assuméd was not performed, so by contradiction, all tasks in

Ocurrent MUSt be performeda

5.8 Mapping OC Problems into DCOP

In the previous sections we were able to represent dynaraldgams only by limiting
ourselves to SCF and WCF problems. In this section we con€i@eproblems where
we must deal with an optimization problem. Since effectiigributed constraint opti-
mization algorithms for dynamic problems do not currenidise we are forced to limit
ourselves to static problems.

We assume we are givenveeight functionw: 7 — N that quantifies the cost
of not completing a task. The goal is for the agents to firilf,a,,. C 7 such that

2 et

T \ Zgnore-

w(T) is minimized and there are enough agents to complete al tiask

gnore

133

We informally outline the mapping of OC problems into DCOFMiW we do not
formally prove its correctness, this mapping is presentathiwn to illustrate the ver-
satility of the constraint representation in its abilityrtadel optimization-based dis-
tributed resource allocation problems. Mapping lll cotsen overconstrained dis-
tributed resource allocation problem into a DCOP therelynahg an algorithm such
as Adopt to be used to solve such problems.

Mapping Ill: Given a static Resource Allocation Problémyg, 2, ©), the corre-

sponding DCOP is defined over a setofariables.

o A={Ay, As,...,A,}, one variable for eacH; € Ag.

The domain of each variable is given by:

e VA, € Ag, Dom(A;) = set of operations!; could possibly execute.

The above is similar to Mapping | except thigies, no} values are not needed.
This is because we no longer need to deal with ambiguity svedave assumed a
static problem. This also means that our constraints withéic. We define an n-ary
constraint for each task. For each taSkwe define an n-ary constraint over all the
agents/variables who could possibly contribute ddihg The constraint is aalued
constraint whose cost function is shown in Figure 5.4. Seppee have task T1 from
Figure 5.2. If the maximum number of agents (all four agertsA®,A3,A4) choose to

perform the operations for T1, then the agents pay zero co$teon-ary constraint that

134

Minimal Set of T1 = {Al, A2, A3, A4}

N-ary constraint for T1:

Al A2 A3 A4 |Cost

TI TI TI Ti| o
TI TI TI T2| w(Tly4
TI TI T2 T2| w(TDR2

Tl T3 T2 T2| w(Tl)

Figure 5.4: N-ary constraint for Mapping Il

Cost function of N-ary constraint
1 T T

0.8 |

Cost

04

0.2 |

O 1 1
1 2 3 4

Num agents allocated to T1

Figure 5.5: Graph of cost function for n-ary constraint foapyping Il

corresponds to T1. This is shown in first row of the cost tablEigure 5.4. If one of
the agents decides not to allocate itself to T1 and insteagbdee other task, the cost
on this constraint is increased to 1/4 the weight of the t&bks is shown in the second
row of the cost table. Similar for the third row. Finally, ihe fourth row, only one
agent allocated to the task. This is considered worthledsrenagents pay the full cost

for not performing this task. Figure 5.5 is a graphical deprcof this cost function.

135

One potential problem with Mapping lll is that it requireseats to solve DCR
problems containing n-ary constraints which can be expensiowever, similar to the
technique used to change from Mapping | and Il, we can comMagping Il into its

dual representation which has only binary constraints.

136

Chapter 6

Related Work

6.1 Related Work in Distributed Constraint Reasoning

This section discusses related work in distributed comdtraasoning for multiagent
domains. Section 6.1.1 provides an discussion of work amiloliged constraint satis-
faction relevant to DCOP, while section 6.1.2 provides agroiew of various existing

approaches to DCOP.

6.1.1 Distributed Constraint Satisfaction

Yokoo, Hirayama and others have studied the DisCSP probietapth and a family of
sound and complete algorithms for solving these types dflpros in a decentralized

manner exist [50]. This has been an important advance anideokey insights that

137

influence the work presented here. However, existing disteid search methods for
DisCSP do not generalize easily to DCOP.

Armstrong and Durfee [1] investigate the effect of agenbity orderings on effi-
ciency in DisCSP. They show that variable ordering heuwsstiom CSP can be reused
as priority orderings in DisCSP and that dynamic reordeisrajso a useful technique.
These results could potentially be generalized and appiedCOP. Silaghi, Sam-
Haroud and Faltings [40] present an alternative repregentaf DisCSP in which
constraints are assigned to agents while variables aregbatween agents. This ap-
proach allows the distributed constraint paradigm to bdiegjn distributed domains
where constraints cannot be shared, perhaps for privaspmsabut variables may be
assigned to multiple agents. Representing DCOP in this Braamn interesting direc-

tion of future work.

6.1.2 Distributed Constraint Optimization

Table 6.1 outlines the state of the art in existing apprositheDCOP. Methods are
parameterized by communication model (asynchronous @hsgnous), completeness
(guaranteed optimal solutions for DCOP), and “distribntesk”. We assume that a
method is not distributed if all agents are required to comigate directly with a single

agent irrespective of the underlying constraint netwottke ihdividual approaches are

discussed further below.

138

Table 6.1: Characteristics of Distributed Constraint @yiation Methods

Method Asynch?| Optimal? | Dist?
Satisfaction-Based Search[24][17]
Local [16][12]

Synchronous Search [16]

Greedy Repair [22]

Asynchronous Best-First Search (Adop

<|zlz|<|z
<|z|<|z|z
<|z|<|<| <

—

)

Satisfaction-based method$his method leverages existing DisCSP search algo-

rithms to solve special classes of DCOP, e.g. overconsiaidisCSP. In overcon-
strained DisCSP, the goal is to optimize a global objectivection by relaxing con-

straints since no completely satisfactory solution may dssible. The approach typi-
cally relies on converting the DCOP into a sequence of satigfn problems in order
to allow the use of a DisCSP algorithm. This can be done bgtitexly removing con-

straints from the problem until a satisfactory solutionasrid. However, a drawback
of this approach is that agents need to repeatedly syna&tmremove constraints (al-
though the satisfaction-based search component may berasyious). Hirayama and
Yokoo [17] show that this approach can find optimal solutitorsa limited subclass

of optimization problems, namely overconstrained DisCSR/ich solutions can be
structured into hierarchical classes. Liu and Sycara [2d$@nt another similar itera-
tive relaxation method, Anchor&Ascend, for heuristic ®ain a job-shop scheduling
problem. These satisfaction-based methods fail to gaemertd the DCOP defined
in this work since agents are not able to asynchronouslyméte which constraints

should be relaxed to obtain the optimal solution.

139

Local Methodsln this approach, agents are oblivious to non-local cosdssanply
attempt to minimize costs with respect to neighboring ageviethods such as random
value change or dynamic priority ordering may be used foajgisig) local minima. In
this method, no guarantees on solution quality are availatéen if given unlimited
execution time. Furthermore, agents cannot know the guaiithe solution they have
obtained. Examples of this approach include the Iteratistributed Breakout (IDB)
algorithm[16]. This algorithm utilizes the Satifactiora8ed approach described above,
and sois limited in the type of DCOP it can address. In padiclDB is applicable to a
particular class of DCOP in which agents wish to minimizertteximum cost incurred
at any agent. This type of criterion function has the spemiaperty that some agent
can always locally determine the global cost of the currehttson without knowledge
of the cost incurred at other agents. For this class of DCDB,i$ empirically shown
to find good solutions quickly but cannot guarantee optityali

Fitzpatrick and Meertens [12] present a simple distribteghastic algorithm for
minimizing the number of conflicts in an overconstrainedpyraoloring problem.
Agents change variable value with some fixed probability rideo to avoid concur-
rent moves. No method for escaping local minimum is used. algerithm is shown
empirically to quickly reduce the number of conflicts in largparse graphs, even in
the face of noisy/lossy communication. It is unknown hovs gpproach would work

in general since the quality of local minima can be arbitygyoor.

140

Synchronous Searchlhis approach can be characterized as simulating a central-

ized search method in a distributed environment by imposymghronous, sequential
execution on the agents. It is seemingly straightforwarsinulate centralized search
algorithms in this manner. An example includes SynchBB ¢Byonous Branch and
Bound) [16]. While this approach yields an optimal disttdmialgorithm, the imposi-

tion of synchronous, sequential execution can be a signifib@awback.

Greedy RepailLemaitre and Verfaille [22] describe an incomplete methmdblv-
ing general constraint optimization problems. They adsltes problem of distributed
variables by requiring a leader agent to collect global detmation. Agents then per-
form a greedy repair search where only one agent is alloweldadnge variable value at
atime. Since all agents must communicate with a single feagnt, the approach may

not apply in situations where agents may only communicatie m@ighboring agents.

6.1.3 Other Work in DCOP

R. Dechter, A. Dechter, and Pearl [9] present a theoretitalyais of the constraint op-
timization problem establishing complexity results imterof the structure of the con-
straint graph and global optimization function. In additithey outline an approach for
distributed search for the optimal solution based on dyngmugramming, although no
algorithm or empirical results are given. They do not deahwisynchronous changes

to global state or timeliness of solution.

141

Parunaket al [32] describe the application of distributed constraintimzation
to the design of systems that require interdependent soipaoents to be assembled
in a manufacturing domain. The domain illustrates the umidifficulties of interde-
pendencies between sub-problems in distributed probldwingoand illustrates the
applicability of the distributed constraint represertati Frei and Faltings [13] focus
on modelling bandwidth resource allocation as a CSP. Aljhatey do not deal with
distributed systems, they show how the use of abstractmmtgues in the constraint

modelling of real problems results in tractable formulatio

6.2 Related Work in Multiagent Systems

A variety of researchers have focused on formalizing resmatlocation as a central-
ized CSP[13]. In addition, the Dynamic Constraint SatiséacProblem has been stud-
ied in the centralized case by [38]. In centralized CSPgtieeno distribution or ambi-
guity during the problem solving process. However, thetiaat the resource allocation
problem is inherently distributed in many domains meansdh@iguity must be dealt
with. We also categorize different resource allocatiorbpgms and provide detailed
complexity results.

Distributed sensor networks have gained significant attemt recent years. Sen-
sor hardware nodes are becoming more sophisticated andaabigport increasing

levels of both computation and communication. This tremdiurn, has lead to the

142

consideration of the Distributed Al (DAI) and the Multiaggrerspective for address-
ing technical problems in distributed sensor networks [23] [18] [36] [41] [45].
Mailler and Lesser [28] propose the SPAM protocol for mstage mediated nego-
tiation. In multi-stage negotiation, a quick solution isufm in the first stage and
if remaining time is available, a second stage attempts finer¢he solution to im-
prove global quality. The negotiation is mediated by midtimanagers who negotiate
amongst themselves on behalf of the sensor agents. SPAMdtabeen generalized
to more abstract DisCSP domains [27]. Soh and Tsatsoullslgkcribe a case-based
reasoning approach where agents choose different negotstategies depending on
environmental circumstances in order to collaborativedgk moving targets. Vincent
et al. [45] and Horling et al. [18] bring existing multi-ageiechnologies, such as
the TAEMS modelling language [10] and the Design-to-Cigtgrlan scheduler [46],
to bear on the distributed sensor network problem. Theseoapbes report positive
results in customizing and applying existing DAI technaésgto the specific problem
of coordination in distributed sensor networks.

There is significant research in the area of distributeduesoallocation. For
instance, Liu and Sycara [25] address resource allocatidghe distributed job-shop
scheduling problem. The solution technique presented &xtemsion of local dispatch
scheduling — the extension allows agents to use non-loéainration to make their

local decisions. Schedules are shown to improve usingeblsique. Chia et al’s [7]

143

work on job-shop scheduling for airport ground service dcites is another example of
distributed resource allocation. The authors are abledoae schedule inefficiencies
by allowing agents to communicate heuristic domain spetifarmation about their
local jobs. Finally, the Distributed Vehicle Monitoring Sibed (DVMT) of Lesser et
al. [23] is well known in distributed Al as a domain for digtuted problem solving. A
set of problem-solving nodes must cooperate and integrstiebdited sensing data to
accurately track a moving vehicle. This domain is inhegsedistributed and exhibits
both dynamics and ambiguity. To summarize, while previooskwn distributed re-
source allocation has been effective for particular pnobtiomains, a formalization
of the general problem which allows tractable subclassée talentified, is yet to be
developed.

A recent approach to distributed resource allocation tlaat feceived significant
attention is that of market-based systems, or multi-agecti@s[49]. We view these
approaches as complementary to a distributed constrgapteach. Indeed, Sandholm
and Suri [35] discuss the need for non-price attributes apticit constraints in con-
juction with market protocols. Briefly, price-based seamthniques coordinate a set
of agents by allowing them to buy and sell goods in order toimeee local utility. This
approach has been used effectively to structure distisbsgarch in many multi-agent
domains including multi-commodity flows [49], multi-agetatsk allocation [47] and

even distributed propositional satisfiability [48].

144

One of the main features of market-based systems is thatsag@mmunicate only
in terms of prices. The price of a good is a compact way to ioithticonvey to an agent
non-local information about the global utility of obtaigisome good. This is a key
advantage in open systems where agents cannot be trustedvetpthe market-based
approach may be unnecessarily restrictive in many colkth@ multiagent domains.
In collaborative domains, agents may be able to reach gtgiahal solutions faster by
exchanging more information beyond prices. However, theketébased approach in
collaborative multi-robot scenarios has been invest@jbhieGerkey and Mataric [14].
In conclusion, much research remains to be done to compdrecertrast market-based
systems and distributed constraints as competing tecbiesidor distributed resource

allocation.

145

Chapter 7

Conclusion

Motivated by the need to design collaborative agents tleaahle to reason about how
their decisions interact with each other and with a globakctive, this dissertation
makes several contributions to the field of Multiagent SysteWe review these con-

tributions next.

e We have presented the Adopt algorithm for Distributed Caiist Optimization
(Chapter 3). In Adopt, agents execute in a completely deakrgd manner and
communicate asynchronously and locally. The algorithnrev@n to terminate
with the globally optimal solution. Empirical results in @rdchmark domain
show that Adopt achieves significant orders of magnitudeieffcy gains over
competing methods. Additionally, we show that the algoniik robust to loss of

messagdes.

146

The above benefits are derived from our general idea thatistrébdited environ-
ment agents should perform optimization based on consesvatlution quality
estimates. By communicating conservative estimates asgnously, we allow
agents to make the best decisions possible given currergiiable information.
If more accurate estimates are asynchronously receivaddtbers, an agent can

revise its decisions as necessatry.

e We have proposed bounded-error approximation as a flexibtaad for dealing
with domains where time for problem solvingis limited (Ckapt). The key idea
is to allow the user (or potentially an agent itself) to pdevihe algorithm with
an allowance on suboptimality (an error bound). We showligahcreasing the
given error bound, the time to solution is decreased sigmiflg. These results
are significant because, in contrast to incomplete seartiaag, Adopt provides
the ability to find solutions faster when time is limited buithout giving up

theoretical guarantees on solution quality.

e We have given a detailed complexity analysis of distributesburce allocation
and provided general mapping strategies for represerttivig distributed con-
straints (Chapter 5). The mapping strategies are thealigtigroven to correctly
represent distributed resource allocation problems. Gtiribution is signifi-

cant because it enables existing distributed constrathit@ogies to be brought

147

to bear directly onto the distributed resource allocatioybfem without signifi-

cant re-modeling effort.

148

Chapter 8

Future Work

e Dynamic, real-time environments. A key challenge for dstred inter-agent
reasoning is operating in rapidly changing environmentsstihg methods as-
sume a “one-shot” problem solving process, where agentsafisdliution and
terminate. However, many coordination problems requienggto dynamically
modify their decisions over time as environmental changesio How can this

be done efficiently, without restarting problem solvingifrscratch?

The distributed reasoning techniques presented in thsedegion provide sig-
nificant steps towards addressing this challenge. Indga@mdic environments
only increase the saliency of our key premise: that obtgiglobal knowledge in
a distributed environment is difficult. In such situationss essential that agents
are able to make the best decisions possible with currevdljadnle information.

If things change, the information may be updated and newsaet made. In

149

addition, our techniques that allow agents to find approinsalutions quickly,
but improve those solutions if time permits, provides a psang path forward

for flexibly dealing with real-time situations.

Loss of agents. Agent failure is an important problem in megat-world do-

mains. Sensor nodes may cease to function, robots may ruwf battery power,

or adversaries may interfere with agents in the system.gbasj algorithms that
are robust to such failures is an open question in Distrib@enstraint Reason-
ing.

One possible approach in Adopt is to devise a method to dysaiypiupdate

the agent ordering when some agent is lost. For example,hitdren of the

lost agent may reconnect to the parent of the lost agent. ytlmgpossible to
seemlessly continue algorithm execution by patching the structure in this
manner. The difficulty lies in detecting that an agent hasdest, identifing

how to patch the tree in a distributed manner, and ensuriaigtiie algorithm’s

optimality guarantee is maintained.

Rogue agents. In open domains, such as multiagent systatcgpirate over the
internet, not all agents can be trusted. Agents may sendagesso others that
contain false information in order to further private goaldultiagent research

in incentive-compatibility is concerned with ensuringttagents are truthful. In

150

non-collaborative domains, if such a method can be useddorerthat agents
communicate truthfully, then Adopt may be applied. ThusjleviAdopt was
designed with collaborative agents in mind, it is ratheriffedent to whether
agents are actually collaborative or not, provided theycamapeled to tell the

truth through some other mechanism.

Scale-up. How can we perform distributed optimization wgjtlality guarantees
as we increase the number of agents, say to 100 or 1000s?sAicthie, decom-
position becomes a key technique for dealing with problekgents may be able
to decompose a large DCOP into smaller subproblems comesmpto smaller
communities of agents. A key outstanding challenge is hatotthe decomposi-
tion so that the small communities can do problem solvingpeshdently without

large or unknown effects on overall quality.

151

Reference List

[1] A. Armstrong and E. Durfee. Dynamic prioritization of oplex agents in dis-

[2]

tributed constraint satisfaction problems. Rroc of International Joint Confer-
ence on Artificial Intelligencel997.

H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katzomparison of
mechanisms for improving tcp performance over wireledsslinn Proceedings
of ACM SIGCOMM 1996.

[3] A. Barrett. Autonomy architectures for a constellatioihspacecraft. Irinter-

[4]

[5]

[6]

[7]

national Symposium on Artificial Intelligence Robotics @&domation in Space
(ISAIRAS) 1999.

R. Caulder, J.E. Smith, A.J. Courtemanche, M.F. Mar, &and. Ceranowicz.
Modsaf behavior simulation and control. Rroceedings of the Conference on
Computer Generated Forces and Behavioral Representati@®s.

H. Chalupsky, Y. Gil, C.A. Knoblock, K. Lerman, J. Oh, D.Pynadath, T.A.
Russ, and M. Tambe. Electric elves: Applying agent techooto support human
organizations. IfProceedings of Innovative Applications of Artificial Iligénce
Conference2001.

K.M. Chandy and L. Lamport. Distributed snapshots: Deii@ing global states
of distributed systemsACM Transactions on Computer Systed835.

M. Chia, D. Neiman, and V. Lesser. Poaching and distoactn asynchronous
agent activities. Innternational Conference on Multiagent Systei898.

[8] S.E Conry, K. Kuwabara, V.A. Lesser, and R.A. Meyer. Nitlge negotiation for

[9]

distributed constraint satisfactiodlEEE Trans. Systems, Man and Cybernetics
1991.

R. Dechter, A. Dechter, and J. Pearl. Optimization instoaint networks. In
Influence Diagrams, Belief Nets, and Decision Analyse90.

152

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

K. Decker and V. Lesser. Quantitative modeling of coexggnvironmentsinter-

national Journal of Intelligent Systems in Accounting,dfine and Management
2(4), 1993.

C. Fernandez, R. Bejar, B. Krishnamachari, and C. Gor@@snmunication and
computation in distributed csp algorithms. Mminciples and Practice of Con-
straint Programming2002.

S. Fitzpatrick and L. Meertens. An experimental assesg of a stochastic, any-
time, decentralized, soft colourer for sparse graphs.Stirchastic Algorithms:
Foundations and Applications, Proceedings SAG201.

C. Frei and B. Faltings. Resource allocation in netwouking abstraction and
constraint satisfaction techniques.Rroc of Constraint Programmindg.999.

Brian P. Gerkey and Maja J Mataric. Sold!: Auction methdor multi-robot
coordination. I[EEE Transactions on Robotics and Automation, Specialklssu
Multi-robot Systemgpages 758-768, 2002.

Eric Hansen and Shlomo Zilberstein. Monitoring and tcolnof anytime algo-

rithms: A dynamic programming approachrtificial Intelligence pages 139—
157, 2001.

K. Hirayama and M. Yokoo. Distributed partial constriasatisfaction problem.
In G. Smolka, editorPrinciples and Practice of Constraint Programmingages
222-236. 1997.

K. Hirayama and M. Yokoo. An approach to over-consteaimistributed con-
straint satisfaction problems: Distributed hierarchicahstraint satisfaction. In
Proceedings of International Conference on Multiagent&ys 2000.

B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker, Rawlins, and V. Lesser.
Distributed sensor network for real time tracking.Aroceedings of the 5th Inter-
national Conference on Autonomous AgeAG01.

H. Jung, M. Tambe, A. Barrett, and B. Clement. Enabliffggient conflict res-
olution in multiple spacecraft missions via dcsp. Rroceedings of the NASA
workshop on planning and schedulir2P02.

H. Kitano, S. Todokoro, I. Noda, H. Matsubara, and T Tsshi. Robocup res-
cue: Search and rescue in large-scale disaster as a domautdmomous agents
research. IrProceedings of the IEEE International Conference on Syskéam,
and Cybernetics1999.

153

[21] Richard E. Korf. Depth-first iterative-deepening: aptimmal admissible tree
search Atrtificial Intelligence 27(1):97-109, 1985.

[22] M. Lemaitre and G. Verfaillie. An incomplete method feolving distributed
valued constraint satisfaction problems Proceedings of the AAAI Workshop on
Constraints and Agent4997.

[23] V. Lesser and D. Corkill. The distributed vehicle mamihg testbed: A tool for
investigating distributed problem solving networkd.Magazine 4(3), 1983.

[24] J. Liu and K. Sycara. Exploiting problem structure fastdbuted constraint op-
timization. InProceedings of International Conference on Multi-Agergt&ms
1995.

[25] J. Liu and K. Sycara. Multiagent coordination in tightoupled task scheduling.
In Proceedings of International Conference on Multi-Agergt&yms 1996.

[26] N. Lynch. Distributed Algorithms Morgan Kaufmann, 1996.

[27] R. Mailler and V. Lesser. A mediation based protocol dastributed constraint
satisfaction. InThe Fourth International Workshop on Distributed Congttai
Reasoning2003.

[28] R. Mailler, V. Lesser, and B. Horling. Cooperative nggtion for soft real-time
distributed resource allocation. Rroceedings of Second International Joint Con-
ference on Autonomous Agents and MultiAgent Sys200S.

[29] P. J. Modi, H. Jung, W. Shen, M. Tambe, and S. Kulkarni.yAamic distributed
constraint satisfaction approach to resource allocatioRrinciples and Practice
of Constraint Programming2001.

[30] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modgltop throughput: A
simple model and its empirical validation. ACM Computer Communications
Review: Proceedings of SIGCOMM 199898.

[31] Christos H. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[32] V. Parunak, A. Ward, M. Fleischer, J. Sauter, and T. @hanDistributed
component-centered design as agent-based distributsttaion optimization. In
Proc. of the AAAI Workshop on Constraints and Ageb®97.

[33] S. Russell and P. NorvigArtificial Intelligence: A Modern ApproachPrentice
Hall, 1995.

154

[34] Zsofia Ruttkay. Constraint satisfaction - a survéyI Quarterly 11, 1998.

[35] T. Sandholm and Subhash Suri. Side constraints andonoa-attributes in mar-
kets. InInternational Joint Conference on Artificial Intelligend&orkshop on
Distributed Constraint Reasoning001.

[36] P. Scerri, P.J. Modi, W. Shen, and M. Tambe. Are multragdgorithms relevant
for robotics applications? a case study of distributed tairg algorithms. In
ACM Symposium on Applied Computi2@03.

[37] T. Schiex, H. Fargier, and G. Verfaillie. Valued corétt satisfaction problems:
Hard and easy problems. International Joint Conference on Artificial Intelli-
gence 1995.

[38] T. Schiex and G. Verfaillie. Nogood recording for staéind dynamic constraint
satisfaction problemdnternational Journal of Artificial Intelligence Togl4994.

[39] W.-M. Shen and Mark Yim. Self-reconfigurable robol&EE Transactions on
Mechatronics7(4), 2002.

[40] M.C. Silaghi, D. Sam-Haroud, and Boi Faltings. Asyrmious search with
aggregations. IfProceedings of National Conference on Atrtificial Intellige
2000.

[41] L-K. Soh and C. Tsatsoulis. Reflective negotiating dgéor real-time multisen-
sor target tracking. Innternational Joint Conference On Artificial Intelligence
2001.

[42] W. R. StevensTCP/IP lllustrated, Volume.1Addison-Wesley, 1994.

[43] Katia Sycara, Steven F Roth, Norman Sadeh-Koniecpul,Mark S. Fox. Dis-
tributed constrained heuristic searclEEE Transactions on Systems, Man, and
Cybernetics21:1446-1461, 1991.

[44] BAE Systems. Ecm challenge problem, http://www.sasg®m/ants/ecm.htm.
2001.

[45] R. Vincent, B. Horling, V. Lesser, and T. Wagner. Impleming soft real-time
agent control. IfProceedings of the 5th International Conference on Autamgsn
Agents2001.

[46] T. Wagner and V. Lesser. Criteria-directed heuriséiskt scheduling.Interna-
tional Journal of Approximate Reasoning, Special Issueare8uling 1998.

155

[47] W. Walsh and M. Wellman. A market protocol for decentratl task allocation.
In International Conference on Multi-Agent Systed®98.

[48] W. Walsh, M. Yokoo, K. Hirayama, and M. Wellman. On markespired ap-
proaches to propositional satisfiability. limernational Joint Conference on Arti-
ficial Intelligence 2001.

[49] Michael Wellman. A market-oriented programming eoviment and its applica-
tion to distributed multicommodity flow problemslournal of Artificial Intelli-
gence Researclpages 1-23, 1993.

[50] M. Yokoo. Distributed Constraint Satisfaction:Foundation of Coogit#on in
Multi-agent SystemsSpringer, 2001.

[51] M. Yokoo and K. Hirayama. Distributed breakout algbnt for solving dis-
tributed constraint satisfaction problems. Pmoceedings of International Con-
ference on Multi-Agent Systeyi996.

[52] M. Yokoo and K. Hirayama. Distributed constraint sitegion algorithm for
complex local problems. IRroceedings of International Conference on Multi-
agent System4998.

[53] W. Zhang and L. Wittenburg. Distributed breakout réeid. In Proceedings of
the Eighteenth National Conference on Atrtificial Intellhge 2002.

156

