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Abstract

To coordinate effectively, multiple agents must reason andcommunicate about the

interactions between their individual local decisions. Distributed planning, distributed

scheduling, distributed resource allocation and distributed task allocation are some ex-

amples of multiagent problems where such reasoning is required. In order to represent

these types of automated reasoning problems, researchers in Multiagent Systems have

proposed distributed constraints as a key paradigm. Previous research in Artificial In-

telligence and Constraint Programming has shown that constraints are a convenient yet

powerful way to represent automated reasoning problems.

This dissertation advances the state-of-the-art in Multiagent Systems and Constraint

Programming through three key innovations. First, this dissertation introduces a novel

algorithm for Distributed Constraint Optimization Problems (DCOP). DCOP signifi-

cantly generalizes existing satisfaction-based constraint representations to allow opti-

mization. We presentAdopt, the first algorithm for DCOP that allows asynchronous

concurrent execution and is guaranteed to terminate with the globally optimal solution.

The key idea is to perform systematic distributed optimization based on conservative
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solution quality estimates rather than exact knowledge of global solution quality. This

method is empirically shown to yield orders of magnitude speedups over existing syn-

chronous methods and is shown to be robust to lost messages.

Second, this dissertation introducesbounded-error approximationas a flexible method

whereby agents can find global solutions that may not be optimal but are guaranteed

to be within a given distance from optimal. This method is useful for time-limited do-

mains because it decreases solution time and communicationoverhead. Bounded-error

approximation is a significant departure from existing incomplete local methods, which

rely exclusively on local information to obtain a decrease in solution time but at the cost

of abandoning all theoretical guarantees on solution quality.

Third, this dissertation presentsgeneralizedmapping strategies that allow a signifi-

cant class of distributed resource allocation problem to beautomatically represented via

distributed constraints. These mapping strategies are signficant because they illustrate

the utility of the distributed constraint representation.These mapping strategies are use-

ful because they provide multiagent researchers with a general, reusable methodology

for understanding, representing and solving their own distributed resource allocation

problems. Our theoretical results show the correctness of the mappings.

x



Chapter 1

Introduction

Designing loosely-coupled agents that coordinate effectively requires reasoning about

interactions between individual agent decisions. Often itis necessary that such rea-

soning be done by the agents themselves in a collaborative but decentralized manner.

Satellite constellations [3], disaster rescue [20], human/agent organizations [5], intel-

ligent forces [4], distributed and reconfigurable robots [39] and sensor networks [44]

are some examples of multiagent applications where distribution is inherent in the do-

main and one has little choice in redistributing or centralizing decision-making to make

things easier.

In these distributed domains agents must reason about the interactions between their

local decisions in order to obtain good global performance.For example, distributed

robots must collaboratively construct the best joint plan that accomplishes system goals.
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Or, constellations of satellites performing collaborative sensing missions must sched-

ule their observations to maximize collection of scientificdata. Or finally, distributed

sensors must coordinate the allocation of their sensing resources in order to accurately

track multiple targets. In these examples and others, the local decisions made by agents

and the interactions between them can have significant implications on the performance

of the multiagent system as a whole.

This dissertation proposes the Distributed Constraint Optimization Problem (DCOP)

framework to model the interactions between local agent decisions and support efficient

reasoning while maintaining the requirements of decentralization. Previous research in

AI has shown that constraints are a convenient yet powerful way to represent reasoning

problems [33]. DCOP significantly generalizes existing multiagent research that has fo-

cused primarily on satisfaction-based problems [50] whichis inadequate for problems

where solutions may have degrees of quality or cost. Other multiagent researchers have

considered only informal representations of distributed constraint optimization [8] [32]

[43].

This dissertation answers three key questions not currently addressed in existing

research. First, a key outstanding challenge is how to efficiently coordinate distributed

decision-making while providing theoretical guarantees on quality of global solution.

While some distributed methods for DCOP do currently exist,these methods either a)
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provide quality guarantees only by requiring sequential execution [16], or b) allow con-

current execution but provide no kind of quality guarantee [51]. This is a problematic

state of affairs because sequential execution can be prohibitively inefficient, while lack

of theoretical guarantees prevents generalization acrossdomains.

Second, how can agents find approximate (suboptimal) solutions when time is lim-

ited? Previous approaches have typically abandoned theoretical guarantees in order

to reduce solution time. This is inadequate because, aside from experimental results

in specific domains, such methods can provide no characterization of global solution

quality. In addition, the lack of worst-case bounds on algorithm performance is prob-

lematic in domains where unpredicted boundry-cases may unexpectedly arise or costs

of failure are very high, as in space missions [3] and humans/agent organizations [5].

Finally, given that constraints are a convenient, powerful, well-accepted represen-

tation, another key challenge involves designing general purpose techniques for rep-

resenting real world problems in the distributed constraints paradigm. While there is

much existing AI research on how to represent centralized problems using constraints,

little guidance currently exists on how to representdistributedproblem in the constraint

reasoning framework. Multiagent designers faced with a newdomain are required to

invest a substantial degree of effort to correctly represent their problem. In addition,

the modeling effort is often specific to the application preventing reuse across domains.
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1.1 Objective and Approach

The principal question addressed in this thesis is:

How can distributed agents coordinate their local decision-
making to provide theoretical guarantees on global solution qual-
ity under conditions of limited time, memory and communica-
tion?

We make the following assumptions about communication:

• Agents can receive messages. Agents can send messages to other agents if they
know their name.

• Messages are received in the order in which they are sent between any pair of
agents.

• Messages are either dropped or correctly received (or equivalently, corrupted
messages can be detected and dropped).

Our general approach stems from the basic premise that in a distributed multiagent

system where time and communication is limited, it is difficult to obtain exact knowl-

edge of global solution quality. Thus, the approach taken was to develop a method

whereby distributed agents can perform systematic distributed search based on conser-

vative solution qualityestimatesrather than exact knowledge of global solution quality.

In this way, we allow agents to make the best decisions possible with currently available

information. If more information is asynchronously received from others and if time

permits, agents can revise their decisions as necessary. Because estimates are ensured

to be conservative, agents are never led astray and guarantees on global solution quality

are available.
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We show that this method of distributed optimization has a number of benefits.

First, it allows concurrent, asynchronous execution whichyields significant orders of

magnitude speedups while requiring only polynomial space at each agent. Second,

since agents are not entirely dependent on global information to make local decisions,

it is robust to message loss. Finally, this method can be usedto find approximate

(suboptimal) solutions while adhering to user-defined bounds on distance from optimal,

yielding a practical technique for performing principled tradeoffs between time and

solution quality.

1.2 Contributions

The thesis makes several contributions to Distributed Constraint Optimization for co-

ordination in Multiagent Systems. These contributions arelisted below.

• The Adopt algorithm, the first asynchronous complete algorithm for Distributed

Constraint Optimization. In Adopt, agents perform systematic distributed search

based on conservative solution quality estimates in the form of lower bounds. By

exploiting the concurrency allowed by lower bound based search, Adopt is able to

obtain significant orders of magnitude efficiency gains oversequential methods.

(Chapter 3)
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• While the Adopt algorithm presented in Chapter 3 assumes reliable communica-

tion, we demonstrate the proposed method is robust to message loss. (Chapter

4)

• Bounded error approximation for when time is limited. Bounded error approxi-

mation allows agents to find approximate (suboptimal) solutions while adhering

to user-defined bounds on distance from optimal. This methodyields a practical

technique for performing principled tradeoffs between time and solution quality

when time is limited. (Chapter 4)

• A detailed complexity analysis and identification of tractable subclasses of dis-

tributed resource allocation. This provides researchers with tools to understand

the complexity of different types of problems and to understand the difficulty of

their own resource allocation problems. (Chapter 5)

• General mapping strategies for representing distributed resource allocation prob-

lems via distributed constraints. We provide guidance on how to represent such

problems in our framework by first proposing an abstract model of Distributed

Resource Allocation and then converting the model into a distributed constraint

representation using a generalized mapping. This mapping is reusable for any

Distributed Resource Allocation Problem that conforms to the given model and

we can show theoretically that the mapping preserves the problem. (Chapter 5)
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In addition, these contributions taken together provide anend-to-end methodology,

(problem complexity analysis, representation via distributed constraints, distributed so-

lution method) for solving a significant class of distributed resource allocation prob-

lems.

We briefly outline the organization of this dissertation. Chapter 2 proposes the

Distributed Constraint Optimization Problem (DCOP) framework. Chapter 3 presents

the Adopt (Asynchronous Distributed Optimization) algorithm. Chapter 4 considers

solutions to two practical issues that arise when solving DCOP in real-world multiagent

domains: Limited time and unreliable communication. Chapter 5 proposes a general

technique for modeling a key class of multiagent problems inwhich a set of agents are

required to intelligently assign resources to a set of tasks. Chapter 6 reviews related

work. Finally, Chapter 7 concludes by summarizing results and contributions while

Chapter 8 identifies directions for future research.
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Chapter 2

Distributed Constraint Optimization Problem

In this chapter, we introduce an example domain that motivates our work followed by

a precise formalization of the problem.

2.1 Motivation

Our motivation is the design of collaborative agents that work together to accomplish

global goals. While this problem arises in a wide variety of domains, one specific

application we will use to illustrate our problem is a distributed sensor network domain

[44] that has received significant attention by multiagent researchers in recent years

[18] [36] [41] [45]. However, we emphasize that the techniques presented apply to a

broad range of problems.

A sensor network consists of multiple stationary sensors and multiple moving tar-

gets to be tracked. The goal is to accurately track the targets by allocating sensors to

8



targets subject to the following restrictions. Each sensoris directional, i.e., the sen-

sor is equipped with three radar heads, each covering 120 degrees and only one radar

head may be active at a time. Figure 2.1 (left) is a picture of asensor with the three

radar heads shown. An autonomous agent running on-board each sensor controls the

direction of the sensor. Three different sensors must be allocated to a target for it to be

tracked accurately and it is not possible for a sensor to track more than one target. Sen-

sors have limited sensing range so they can only be allocatedto nearby targets. Agents

are able to send messages to each other using low-bandwidth radio-frequency commu-

nication. However, communication range is also limited, soagents may only communi-

cate with nearby agents. Figure 2.1 (right) shows 9 sensors in a grid configuration and

4 targets with their associated weights describing target importance. Assuming each

target can only be tracked by the four closest sensors, it is clear that only two of the

four targets can be tracked. The agents must coordinate the allocation of sensors to

targets with the goal of minimizing the sum of the weights of the ignored targets.

Designing software agents to effectively coordinate in this domain is challenging

for a number of reasons. We outline four key issues of concernin this work.

• Inherent distribution. In inherently distributed domains, no single agent has

global control or global view. In the domain described above, each agent must

individually decide which target it should track based on local information and

information received through messages from other agents. As another example

9



in distributed robotics, each robot is autonomous and decides its own actions.

Existing approaches to coordination that require a centralized decision maker are

not feasible.

• Limited communication.Communication may be limited for a variety of reasons

in different domains. In the sensor domain, communication is limited due to both

range and bandwidth, so we cannot collect all information ina single location

where global allocations could in principle be calculated.Also, radio-frequency

communication is unreliable and messages may be lost. In other domains, privacy

restrictions and prohibitive costs on translating information into an exchangable

format impose limits on communication.

• Limited time. In the sensor domain, time for determining allocations is limited

because targets are moving. For a given set of targets in particular locations,

agents must be able to determine global allocations fast enough to be useful to

track the targets before they have moved too far. In other domains, agents must

act to perform joint tasks or execute joint plans within somegiven time window.

• Theoretical guarantees. In order to confidently deploy multiagent systems,

theoretical guarantees on allocation quality are needed. Heuristic methods that

may fail on boundry cases and provide no bounds on worst-caseperformance are

not sufficient. In the sensor domain, algorithms must be ableto guarantee that the

10
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Figure 2.1: A hardware sensor (left) and schematic of nine sensors in a grid layout
(right).

most important targets will get sufficient sensors allocated to them regardless of

the particular situation. In multi-spacecraft missions proposed by researchers at

NASA [3] [19], distributed satellites must collaborate to schedule/plan activities

to obtain scientific data. Provable quality guarantees on system performance are

required since mission failure can result in extraordinarymonetary and scientific

losses.

2.2 Background: Distributed Constraint Satisfaction

The Distributed Constraint Satisfaction (DisCSP) paradigm [50] has been proposed as

a way to model and reason about the interactions between agents’ local decisions. In

DisCSP each agent controls the value of a variable and agentsmust coordinate their

11
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Figure 2.2: Example DCOP graph

choice of values so that a global objective function is satisfied. The global objec-

tive function is modeled as a set of constraints where each agent is only assumed to

have knowledge of the constraints in which its variable is involved. Every constraint

is required to be propositional, i.e., true or false. In thislimited representation, an as-

signment of values to variables must satisfyall constraints in order to be considered a

solution.

This representation is inadequate for many real-world problems where solutions

may have degrees of quality or cost. For example, real-worldproblems are oftenover-

constrainedwhere it is impossible to satisfy all constraints. For thesetypes of problems

we may wish to obtain solutions thatminimizethe number of unsatisfied constraints.

Next, we present a model that is able to capture this type of optimization problem.
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2.3 Specification of DCOP Model

A Distributed Constraint Optimization Problem (DCOP) consists ofn variablesV =

{x1, x2, ...xn}, each assigned to an agent, where the values of the variablesare taken

from finite, discrete domainsD1, D2,..., Dn, respectively. Only the agent who is as-

signed a variable has control of its value and knowledge of its domain. The goal is to

choose values for variables such that a given objective function is minimized or max-

imized. The objective function is described as the sum over aset of cost functions, or

valued constraints. The cost functions in DCOP are the analogue of constraints from

DisCSP [50] (for convenience, we refer to cost functions as constraints). They take val-

ues of variables as input and, instead of returning “satisfied or unsatisfied”, they return

a valuation as a non-negative number. Thus, for each pair of variablesxi, xj , we may

be given acost functionfij : Di ×Dj → N .

Figure 2.2 shows an example constraint graph with four variablesV = {x1 , x2,

x3, x4}. Each variable has two values in its domain,Di = 0, 1. Assume each variable

is assigned to a different agent. In the example, there are four constraints with the cost

function as shown. All constraints have the same cost function in this example only for

simplicity. In general, each constraint could be very different. Two agentsxi, xj are

neighborsif they have a constraint between them.x1 andx3 are neighbors because a

constraint exists between them, butx1 andx4 are not neighbors because they have no

constraint.

13



The objective is to find an assignmentA∗ of values to variables such that the total

cost, denotedF , is minimized and every variable has a value. Stated formally, we wish

to findA (= A∗) such thatF (A) is minimized, where the objective functionF is de-

fined as

F (A) =
∑

xi,xj∈V

fij(di, dj) , where xi ← di,

xj ← dj in A

For example, in Figure 2.2,F ({(x1, 0), (x2, 0), (x3, 0), (x4, 0)}) = 4 andF ({(x1, 1),

(x2, 1), (x3, 1), (x4, 1)}) = 0. In this example,A∗ = {(x1, 1),(x2, 1), (x3, 1), (x4, 1)}.

Returning to the sensor network domain described in section2.1, we may cast each

sensor as a variable and the three radar heads as variable values. Constraints are derived

from the geographic relationship between sensors. In particular, if a sensor activates one

of its radar heads and detects a target, constraints requirenearby agents to activate their

corresponding radar head to help track the detected target.If a nearby agent violates

the constraint, e.g. it does not activate the correspondingradar head because it is busy

tracking another target, the agents pay a cost equal to the weight of the untracked target.

We will examine this domain and its representation in the DCOP framework in more

detail in Chapter 5.

We are interested primarily in managing interdependenciesbetween different agents’

choices. We will assume each agent is assigned a single variable and use the terms

“agent” and “variable” interchangeably. Since agents sometimes have complex local

14



problems, this is an assumption to be relaxed in future work.Yokoo et al. [52] de-

scribe some methods for dealing with multiple variables peragent in DisCSP and such

methods may also apply to DCOP. We will also assume that constraints are binary,

i.e., are defined over two variables. Note that generalization to n-ary constraints has

been achieved in the DisCSP case without significant revisions to algorithms that were

originally developed for binary constraints. Section 3.5 discusses ways in which the

assumption of single variable per agent and limitation to binary constraints may be re-

laxed. We assume that neighbors are able to communicate. Messages, if received, are

received in the order in which they are sent between any pair of agents. Messages sent

from different agents to a single agent may be received in anyorder.

The computational complexity of DCOP as defined above is NP-hard. To see this,

realize that 3-colorability of a graph, which is known to be NP-complete [31], can be

modeled as an instance of DCOP: Assign all graphs nodes to a single agent, model

graph edges as cost functions that return 0 if colors are different and 1 if colors are the

same, and ask whether a solution of global cost 0 exists.

2.3.1 Scope of Model

The algorithmic techniques to be described later apply to a larger class of problems be-

yond summation over natural numbers. In fact, we can generalize to other “aggregation

operators” such as minimization, which takes a set of natural numbers and returns the

15



minimium in the set. In fact, our techniques can be applied toany associative, commu-

tative, monotonic non-decreasing aggregation operator defined over a totally ordered

set of valuations, with minimum and maximum element. This class of optimization

functions is described formally by Schiex, Fargier and Verfaillie as Valued CSPs [37].

While the DCOP represention presented above is rather general, it is unable to

model certain optimization functions. For example, we could not represent functions

that are not monotonic, such as summation over integers where negative numbers may

cause a decrease in the value of the optimization function. Also, the assumption that the

global cost function can be decomposed into the aggregationof binary cost functions

can be limiting in representing some optimization functions, although we will discuss

ways to deal with this problem in later sections (such as dualization of representations

and the generalization of our methods to n-ary constraints).
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Chapter 3

Asynchronous Complete Method for DCOP

In this chapter we outline a novel lower-bound based distributed search method for

DCOP. The first section outlines the three key features we desire in our solution, ana-

lyzes why existing methods fail to provide them and describes the basic ideas behind

the new method. The following sections present algorithm details, theoretical proofs of

completeness and experimental evaluations.

3.1 Basic Ideas

DCOP demands techniques that go beyond existing methods forfinding distributed sat-

isfactory solutions and their simple extensions for optimization. A DCOP method for

the types of real-world applications previously mentionedmust meet three key require-

ments. First, since the problem is inherently distributed,we require a method where
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agents can optimize a global function in a distributed fashion using only local com-

munication (communication with neighboring agents). Methods were all agents must

communicate with a single central agent are unacceptable. Second, we require a method

that is able to find solutions quickly by allowing agents to operate asynchronously. A

synchronous method where an agent sits idle while waiting for a particular message

from a particular agent is unacceptable because it is wasting time when it could poten-

tially be doing useful work. For example, Figure 3.1 shows groups of loosely connected

agent subcommunities which could potentially execute search in parallel rather than sit-

ting idle. Finally, provable quality guarantees on system performance are needed. For

example, mission failure by a satellite constellation performing space exploration can

result in extraordinary monetary and scientific losses. Thus, we require a method that

efficiently finds provably optimal solutions whenever possible and also allows princi-

pled solution-quality/computation-time tradeoffs when time is limited.

A solution strategy that is able to provide quality guarantees, while at the same time

meeting the requirements of distributedness and asynchrony, is currently missing from

the research literature. A well-known method for solving DisCSP is the Asynchronous

Backtracking (ABT) algorithm of Yokoo, Durfee, Isida, and Kuwabara [50]. Simple

extensions of ABT for optimization have relied on converting an optimization problem

into a sequence of satisfaction problems in order to allow the use of a DisCSP algorithm

[17]. This approach has applied only to limited types of optimization problems (e.g.
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Hierarchical DisCSPs, Maximal DisCSPs), but has failed to apply to general DCOP

problems, even rather natural ones such as minimizing the total number of constraint

violations (MaxCSP). Other existing algorithms that provide quality guarantees for op-

timization problems, such as the Synchronous Branch and Bound (SynchBB) algorithm

[16] discussed later, are prohibitively slow since they require synchronous, sequential

communication. Other fast, asynchronous solutions, such as variants of local search

[16] [53], cannot provide guarantees on the quality of the solutions they find.

As we can see from the above, one of the main obstacles for solving DCOP is com-

bining quality guarantees with asynchrony. Previous approaches have failed to provide

quality guarantees in DCOP using a distributed, asynchronous model because it is diffi-

cult to ensure a systematic backtrack search when agents areasynchronously changing

their variable values. We argue that the main reason behind these failures is that pre-

vious approaches insist on backtrackingonly when they conclude, with certainty, that

the current solution will not lead to the optimal solution. For example, an agent execut-

ing the ABT algorithm concludes with certainty that the current partial solution being

explored will not lead to a global satisfactory solution whenever it locally detects an

unsatisfiable constraint. Thus, while agents are able to asynchronously change vari-

able values in ABT, it is only because of the limited representation of DisCSP, where

only one constraint needs to be broken for a candidate solution to be globally incon-

sistent. Extensions of ABT for optimization problems [17] have continued to rely on
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a satisfaction-based representation and have failed to apply to general DCOP also for

this reason. Similarly, the SynchBB algorithm concludes with certainty that the current

partial solution will not lead to a globally optimal solution whenever its cost exceeds a

global upper bound. This approach to DCOP fails to be asynchronous and parallel be-

cause computing a global upper bound requires that all costsin the constraint network

be accumulated within a single agent before decisions can bemade.

To alleviate the above difficulties, we presentAdopt(Asynchronous Distributed Op-

timization), the first algorithm for DCOP that can find optimal solutions using only

localized asynchronous communication and polynomial space at each agent. Commu-

nication is local in the sense that an agent does not send messages to every other agent,

but only to neighboring agents. An assumption, to be relaxedlater, is that communica-

tion is reliable.

A key idea behind Adopt is to obtain asynchrony by allowing each agent to change

variable value whenever it detects there is apossibility that some other solution may

be better than the one currently under investigation. This search strategy allows asyn-

chronous computation because an agent does not need global information to make its

local decisions – it can go ahead and begin making decisions with only local informa-

tion. The three main ideas in Adopt are described next.

Lower-bound Based Search.Adopt performs distributed backtrack search using an

”opportunistic” best-first search strategy, i.e., each agent keeps on choosing the best
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Figure 3.1: Loosely connected subcommunities of problem solvers

value based on the current available information. Stated differently, each agent always

chooses the variable value with smallest lower bound. This search strategy is in con-

trast to previous distributed “branch and bound” type search algorithms for DCOP (e.g.

SynchBB [16]) that require agents to change value only when cost exceeds a global

upper bound (which proves that the current solution must be suboptimal). Adopt’s new

search strategy is significant because lower bounds are moresuitable for asynchronous

search – a lower bound can be computed without necessarily having accumulated global

cost information. In Adopt, an initial lower bound is immediately computed based only

on local cost. The lower bound is then iteratively refined as new cost information

is asynchronously received from other agents. Note that because this search strategy

allows agents to abandon partial solutions before they haveproved the solution is def-

initely suboptimal, they may be forced to reexplore previously considered solutions.

The next idea in Adopt addresses this issue.

Backtrack Thresholds.To allow agents to efficiently reconstruct a previously ex-

plored solution, which is a frequent action due to Adopt’s search strategy, Adopt uses

the second idea of using a stored lower bound as abacktrack threshold. This tech-

nique increases efficiency, but requires only polynomial space in the worst case, which
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is much better than the exponential space that would be required to simply memorize

partial solutions in case they need to be revisited. The basic idea behind backtrack

thresholds is that if a parent agent knows from previous search experience thatlb is

a lower bound on cost within one of its subtrees, it should inform the subtree not to

bother searching for a solution whose cost is less thanlb when a partial solution is re-

visited. In this way, a parent agent calculates backtrack threshold using a previously

known lower bound and sends the threshold to its children. Then, the child uses the

backtrack threshold as anallowanceon solution cost – a child agent will not change its

variable value so long as the cost of the current solution is less than the given backtrack

threshold. Since the backtrack threshold is calculated using a previously known lower

bound, it is ensured to be less than or equal to the cost of the optimal solution. Thus,

we know the optimal solution will not be missed.

To make the backtrack threshold approach work when multiplesubcommunities

search in parallel, a parent agentxp must distribute its cost allowance, denotedthreshold,

correctly to its multiple children. This is a challenging task because the parent does not

remember how cost was accumulated from its children in the past (to do so would re-

quire exponential space in the worst case). We address this difficulty in the following

way. If xp chooses variable valued which has a local cost ofδ(d), it subdivides the

remaining allowance,threshold − δ(d), arbitrarily among its children. However, this

subdivision may be incorrect, and so must be corrected over time. Letxi be a child of
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xp. After some search,xi may discover that its portion ofthreshold, denotedt(d, xi),

is too low because the lower bound on the cost in its subcommunity, denotedlb(d, xi),

exceedst(d, xi). When this happens,xi unilaterally raises its own allowance and re-

ports lb(d, xi) to its parentxp. The parent agent then redistributesthreshold among

its children by increasingt(d, xi) and decreasing the portions given to the other chil-

dren. Informally, the parent maintains anAllocationInvariant (described later) which

states that its local cost plus the sum oft(d, xi) over all childrenxi must equal its

backtrack thresholdthreshold and aChildThresholdInvariant , which states that no

child xi should be given allowancet(d, xi) less than its lower boundlb(d, xi). Using

these invariants (and cost feedback from its children), theparent continually re-balances

the subdivision of backtrack threshold among its children until the correct threshold is

given to each child.

Termination Detection.Finally, the third key idea is the use of bound intervals for

tracking the progress towards the optimal solution, thereby providing a built-in termi-

nation detection mechanism. A bound interval consists of both a lower bound and an

upper bound on the optimal solution cost. When the size of thebound interval shrinks

to zero, i.e., the lower bound equals the upper bound, the cost of the optimal solution

has been determined and agents can safely terminate when a solution of this cost is

obtained. Most previous distributed search algorithms have required a separate termi-

nation detection algorithm. In contrast, the bound intervals in Adopt provide a natural
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Figure 3.2: Two valid tree orderings for the constraint graph in figure 2.2

termination detection criterion integrated within the algorithm. This is a significant

advance because bound intervals can be used to perform bounded-error approximation.

As soon as the bound interval shrinks to a user-specified size, agents can terminate early

while guaranteeing they have found a solution whose cost is within the given distance

of the optimal solution. This means that agents can find an approximate solution faster

than the optimal one but still provide a theoretical guarantee on global solution quality.

3.2 Adopt Algorithm

Tree Ordering. Before executing Adopt, agents are ordered into a Depth-First Search

(DFS) tree. Thus, unlike previous algorithms such as SynchBB [16], Adopt doesnot

require a linear ordering on all the agents. A DFS tree order is defined by directed

parent-childedges. A valid DFS tree requires that the graph formed by parent-child

24



x1

x2

x3 x4

Neighbors

1
2

0

2

x1

Parent/Child

COST messages
VALUE messages

(a)

0   0
di  dj f(di, dj)

0   1

1   0

1   1 x2

x3 x4

(b)

THRESHOLD messages
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edges is acyclic. A single agent is designated as the root andall other agents have a

single parent. Note that an agent may be the parent of multiple childrenbut no agent

may have multiple parents. We will not describe the details of the algorithm for con-

structing this tree order. It has been shown that a valid treeorder can be constructed

in polynomial-time in a distributed fashion[26]. Yokoo et al. [50] describe a method

where a tree order can be constructed under the reasonable assumption that each agent

has a unique identifier. For our purposes, we will assume the DFS ordering is done in a

preprocessing step.

The given input DCOP constraint graph places one important restriction on the

space of valid tree orderings. Specifically, we require thatthere exist no constraint be-

tween two agents in different subtrees of the DFS tree ordering. The advantage of this
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restriction is that agents in different subtrees are able tosearch for solutions indepen-

dently. However, it is important to understand that this restriction doesnot limit the

space of input constraint graphs – every constraint graph can be ordered into a valid

DFS tree. As an example consider a linear (total) ordering where no agent has more

than one single child. This is a valid tree ordering for any given constraint graph be-

cause there are no branches in the tree. Thus, there cannot exist a constraint between

agents in different subtrees.

For a given input DCOP constraint graph, there may be many valid tree orderings.

Figure 3.2 shows two possible DFS tree orderings for the constraint graph in Figure

2.2. In Figure 3.2.a,x1 is the root,x1 is the parent ofx2, andx2 is the parent of both

x3 andx4. Note that constraints are allowed between an agent and any of its ancestors

or descendents (there is a constraint betweenx1 andx3). In Figure 3.2.b shows an

alternative tree ordering where the agents are ordered in a linear order.

In this work, we do not address how distributed agents can choose the “best” tree

ordering, although it is an important issue deserving further study. Researchers in cen-

tralized CSP have developed sophisticated heuristics for choosing good variable orders

in backtrack style search[34]. A example includes the FirstFail Principle which states

that variables with smaller domain sizes should be instantiated first. The corresponding

heuristic in our distributed situation would recommend that agents with smaller domain

sizes to be higher in the tree. Another dimension to considerwhen comparing two tree
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orders is tree depth, i.e., the length of the longest path from root to leaf. Our intuition

is that a tree with smaller depth is better because information is able to flow up the tree

faster. For example, we should expect that Figure 3.2.a, where the tree depth is 3, is a

better tree order than Figure 3.2.b, where the tree depth is 4. This intuition may become

more obvious to the reader after the Adopt algorithm is explained.

Finally for simplicity, we will also assume that every parent and child are neighbors

(a constraint exists between them). However, this is not a real restriction since we may

always add a “dummy” zero-cost constraint between two agents who are chosen to be

parent/child but are not neighbors in the input constraint graph.

Algorithm Overview.Once the DFS tree is constructed, each agentxi concurrently

executes the following algorithm.

• Initialize the lower bound for each value inDi to zero. Assign a random value to
your variablexi.

• Send your current value ofxi to each neighbor lower in the DFS tree.

• When receive the value of a neighborxj , for each valueDi evaluate the constraint
betweenxi andxj . Add the cost of the constraint to the lower bound for each of
your values. If the lower bound for the current value is higher than the lower
bound for some other valued, switch value tod.

• Send the lower bound for your value with least lower bound to your parent in the
DFS tree. Attach the variable value of the parent under whichthis lower bound
was computed as a “context”.

• When receive a lower bound from your child attached with yourvalued, add
the reported lower bound to the lower bound ford. If the lower bound for your
current value is higher than the lower bound for some other value, switch to value
with least lower bound.
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• When a higher neighbor changes variable value, re-initialize the lower bound for
each value inDi to zero.

• Continue sending and receiving messages and changing values as dictated above
until the following termination conditionis true: The lower boundLB for one
valued is also an upper bound, and the lower bound for all other values is higher
thanLB. Note that when this condition is trued is the globally optimal value for
xi until and unless a higher neighbor changes value.

Once the above termination condition is true at the root agent, the root sends a TER-

MINATE message to its children and terminates itself. Afterreceiving a TERMINATE

message, an agent knows that all of its higher neighbors haveterminated. Once the

termination condition is true at non-root agentxi and it has received a TERMINATE

message from its parent,xi will send TERMINATE messages down to its children. In

this way, TERMINATE messages are recursively sent down the tree until the termina-

tion condition is true at all agents and all agents have terminated.

3.2.1 Algorithm Details

The communication in Adopt is shown in Figure 3.3.b. The algorithm begins by all

agents choosing their variable values concurrently. Variable values are sent down con-

straint edges via VALUE messages – an agentxi sends VALUE messages only to neigh-

bors lower in the DFS tree and receives VALUE messages only from neighbors higher

in the DFS tree. A second type of message, a THRESHOLD message, is sent only

from parent to child. A THRESHOLD message contains a single number representing
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a backtrack threshold, initially zero. Upon receipt of any type of message, an agent i)

calculates cost and possibly changes variable value and/ormodifies its backtrack thresh-

old, ii) sends VALUE messages to its lower neighbors and THRESHOLD messages to

its children and iii) sends a third type of message, a COST message, to its parent. A

COST message is sent only from child to parent. A COST messagesent fromxi to its

parent contains the cost calculated atxi plus any costs reported toxi from its children.

To summarize the communication, variable value assignments (VALUE messages) are

sent down the DFS tree while cost feedback (COST messages) percolate back up the

DFS tree. It may be useful to view COST messages as a generalization of NOGOOD

message from DisCSP algorithms. THRESHOLD messages are sent down the tree to

reduce redundant search.

Procedures from Adopt are shown in Figure 3.4 and 3.5.xi represents the agent’s

local variable anddi represents its current value.

• Definition 1: A context is a partial solution of the form{(xj ,dj), (xk,dk)...}. A

variable can appear in a context no more than once. Two contexts arecompatible

if they do not disagree on any variable assignment.CurrentContext is a context

which holdsxi’s view of the assignments of higher neighbors.

A COST message contains three fields:context, lb andub. Thecontext field of a

COST message sent fromxl to its parentxi containsxl’s CurrentContext. This field

is necessary because calculated costs are dependent on the values of higher variables,
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so an agent must attach the context under which costs were calculated to every COST

message. This is similar to thecontext attachmentmechanism in ABT [50]. When

xi receives a COST message from childxl, andd is the value ofxi in the context

field, thenxi storeslb indexed byd and xl as lb(d, xl) (line 32). Similarly, theub

field is stored asub(d, xl) and thecontext field is stored ascontext(d, xl) (line 33-

34). Before any COST messages are received or whenever contexts become incompat-

ible, i.e.,CurrentContext becomes incompatible withcontext(d, xl), thenlb(d, xl) is

(re)initialized to zero andub(d, xl) is (re)initialized to a maximum valueInf (line 3-4,

18-19, 29-30).

xi calculates cost as local cost plus any cost feedback received from its children.

Procedures for calculation of cost are not shown in Figure 3.4 but are implicitly given by

procedure calls, such asLB andUB, defined next. Thelocal costatxi, for a particular

value choicedi ∈ Di, is the sum of costs from constraints betweenxi and higher

neighbors:

• Definition 2: δ(di) =
∑

(xj ,dj)∈CurrentContext fij(di, dj) is the local costat xi,

whenxi choosesdi.

For example, in Figure 3.3.a, supposex3 received messages thatx1 andx2 currently

have assigned the value 0. Thenx3’s CurrentContext would be{(x1, 0), (x2, 0)}. If

x3 chooses 0 for itself, it would incur a cost of 1 fromf1,3(0, 0) (its constraint with
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x1) and a cost of 1 fromf2,3(0, 0) (its constraint withx2). Sox3’s local cost,δ(0) =

1 + 1 = 2.

Whenxi receives a COST message, it addslb(d, xl) to its local costδ(d) to calculate

a lower bound for valued, denotedLB(d).

• Definition 3: ∀d ∈ Di, LB(d) = δ(d) +
∑

xl∈Children lb(d, xl) is a lower bound

for the subtree rooted atxi, whenxi choosesd.

Similarly, xi addsub(d, xl) to its local costδ(d) to calculate anupper bound for

valued, denotedUB(d).

• Definition 4: ∀d ∈ Di, UB(d) = δ(d) +
∑

xl∈Children ub(d, xl) is aupper bound

for the subtree rooted atxi, whenxi choosesd.

The lower bound for variablexi, denotedLB, is the minimum lower bound over

all value choices forxi.

• Definition 5: LB = mind∈Di
LB(d) is a lower boundfor the subtree rooted at

xi.

Similarly the upper bound for variablexi, denotedUB, is the minimum upper

bound over all value choices forxi.

• Definition 6: UB = mind∈Di
UB(d) is anupper boundfor the subtree rooted at

xi.
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xi sendsLB andUB to its parent as thelb andub fields of a COST message (line

52). (Realize thatLB need not correspond toxi’s current value, i.e.,LB need not equal

LB(di)). Intuitively, LB = k indicates that it is not possible for the sum of the local

costs at each agent in the subtree rooted atxi to be less thank, given that all higher

agents have chosen the values inCurrentContext. Similarly, UB = k indicates that

the optimal cost in the subtree rooted atxi will be no greater thank, given that all

higher agents have chosen the values inCurrentContext. Note that ifxi is a leaf

agent, it does not receive COST messages, soδ(d) = LB(d) = UB(d) for all value

choicesd ∈ Di and thus,LB is always equal toUB in every COST message. Ifxi is

not a leaf but has not yet received any COST messages from its children,UB is equal

to maximum valueInf andLB is the minimum local costδ(d) over all value choices

d ∈ Di.

xi’s backtrack threshold is stored in thethreshold variable, initialized to zero (line

1). Its value is updated in three ways. First, its value can beincreased wheneverxi

determines that the cost of the optimal solution within its subtree must be greater than

the current value ofthreshold. Second, ifxi determines that the cost of the optimal

solution within its subtree must necessarily be less than the current value ofthreshold,

it decreasesthreshold. These two updates are performed by comparingthreshold to

LB andUB (lines 53-56, figure 3.5). The updating ofthreshold is summarized by the

following invariant.
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• ThresholdInvariant: LB ≤ threshold ≤ UB. The threshold on cost for the

subtree rooted atxi cannot be less than its lower bound or greater than its upper

bound.

A parent is also able to set a child’sthreshold value by sending it a THRESHOLD

message. This is the third way in which an agent’sthreshold value is updated. The

reason for this is that in some cases, the parent is able to determine a bound on the

optimal cost of a solution within an agent’s subtree, but theagent itself may not know

this bound. The THRESHOLD message is a way for the parent to inform the agent

about this bound.

A parent agent is able to correctly set thethreshold value of its children by allocat-

ing its ownthreshold value to its children according to the following two equations.

Let t(d, xl) denote the threshold on cost allocated by parentxi to child xl, givenxi

chooses valued. Then, the values oft(d, xl) are subject to the following two invariants.

• AllocationInvariant: For current valuedi ∈ Di, threshold = δ(di) +
∑

xl∈Children

t(di, xl). The threshold on cost forxi must equal the local cost of choosingd plus

the sum of the thresholds allocated toxi’s children.

• ChildThresholdInvariant: ∀d ∈ Di, ∀xl ∈ Children, lb(d, xl) ≤ t(d, xl) ≤

ub(d, xl). The threshold allocated to childxl by parentxi cannot be less than the

lower bound or greater than the upper bound reported byxl to xi.
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By adhering to these invariants, an agent is able to use its own threshold to deter-

mine bounds on the cost of the optimal solution within its childrens’ subtrees.

The threshold value is used to determine when to change variable value. When-

everLB(di) exceedsthreshold, xi changes its variable value to one with smaller lower

bound (line 40-41). (Such a value necessarily exists since otherwise ThresholdInvari-

ant would be violated.) Note thatxi cannot prove that its current value is definitely

suboptimal because it is possible thatthreshold is less than the cost of the optimal so-

lution. However, it changes value to one with smaller cost anyway – thereby realizing

the best-first search strategy previously described.

3.2.2 Example of Algorithm Execution

Figure 3.6 shows an example of algorithm execution for the DCOP shown in figure

3.3. Line numbers mentioned in the description refer to figures 3.4 and 3.5. This ex-

ample is meant to illustrate the search process and the exchange of VALUE and COST

messages. COST messages are labelled in the figures as [LB,UB,CurrentContext]. For

simplicity, not every message sent by every agent is shown. In particular, THRESH-

OLD messages are omitted from the description. (A later example will illustrate how

backtrack thresholds are handled.)

All agents begin by concurrently choosing a value for their variable (line 5). For

this example, let us assume they all choose value0. Each agent sends its value to all
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initialize
(1) threshold← 0; CurrentContext← {}
(2) forall d ∈ Di, xl ∈ Children do
(3) lb(d, xl)← 0; t(d, xl)← 0
(4) ub(d, xl)← Inf ; context(d, xl)← {};

enddo
(5) di ← d that minimizesLB(d)
(6) backTrack

when received(THRESHOLD , t, context)
(7) if context compatible withCurrentContext:
(8) threshold← t

(9) maintainThresholdInvariant
(10) backTrack; endif

when received(TERMINATE , context)
(11) record TERMINATE received from parent
(12) CurrentContext← context

(13) backTrack

when received(VALUE , (xj ,dj))
(14) if TERMINATE not received from parent:
(15) add (xj ,dj) to CurrentContext

(16) forall d ∈ Di, xl ∈ Children do
(17) if context(d, xl) incompatible withCurrentContext:
(18) lb(d, xl)← 0; t(d, xl)← 0
(19) ub(d, xl)← Inf ; context(d, xl)← {}; endif; enddo
(20) maintainThresholdInvariant
(21) backTrack; endif

when received(COST, xk, context, lb, ub)
(22) d← value ofxi in context

(23) remove (xi,d) from context

(24) if TERMINATE not received from parent:
(25) forall (xj ,dj) ∈ context andxj is not my neighbordo
(26) add (xj ,dj) to CurrentContext;enddo
(27) forall d′ ∈ Di, xl ∈ Children do
(28) if context(d′, xl) incompatible withCurrentContext:
(29) lb(d′, xl)← 0; t(d′, xl)← 0
(30) ub(d′, xl)← Inf ; context(d′, xl)← {};endif;enddo;endif

(31) if context compatible
with CurrentContext:

(32) lb(d, xk)← lb

(33) ub(d, xk)← ub

(34) context(d, xk)← context

(35) maintainChildThresholdInvariant
(36) maintainThresholdInvariant ;

endif
(37) backTrack

Figure 3.4: Procedures for receiving messages in the Adopt algorithm. Definitions of
termsLB(d) , UB(d), LB , andUB are given in the text.
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procedure backTrack
(38) if threshold == UB:
(39) di ← d that minimizesUB(d)
(40) else if LB(di) > threshold:
(41) di ← d that minimizesLB(d);endif
(42) SEND (VALUE , (xi, di))
(43) to each lower priority neighbor
(44) maintainAllocationInvariant
(45) if threshold == UB:
(46) if TERMINATE received from parent
(47) orxi is root:
(48) SEND (TERMINATE ,
(49) CurrentContext∪ {(xi, di)})
(50) to each child
(51) Terminate execution;endif;endif
(52) SEND (COST, xi, CurrentContext, LB ,UB)

to parent

procedure maintainThresholdInvariant
(53) if threshold < LB
(54) threshold← LB ; endif
(55) if threshold > UB
(56) threshold← UB; endif

%note: procedure assumes ThresholdInvariant is satisfied
procedure maintainAllocationInvariant
(57) while threshold > δ(di) +

∑

xl∈Children t(di, xl) do
(58) choosexl ∈ Children whereub(di, xl) > t(di, xl)
(59) incrementt(di, xl); enddo
(60) while threshold < δ(di) +

∑

xl∈Children t(di, xl) do
(61) choosexl ∈ Children wheret(di, xl) > lb(di, xl)
(62) decrementt(di, xl); enddo
(63) SEND (THRESHOLD , t(di, xl), CurrentContext )

to each childxl

procedure maintainChildThresholdInvariant
(64) forall d ∈ Di, xl ∈ Children do
(65) while lb(d, xl) > t(d, xl) do
(66) incrementt(d, xl); enddo;endo
(67) forall d ∈ Di, xl ∈ Children do
(68) while t(d, xl) > ub(d, xl) do
(69) decrementt(d, xl); enddo;enddo

Figure 3.5: Procedures in the Adopt algorithm (cont)
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lower priority neighbors (figure 3.6.a). Since the algorithm is asynchronous, there are

many possible execution paths from here – we describe one possible execution path.

x2 will receivex1’s VALUE message. In line 15, it will record this value into its

CurrentContext. In line 21, it will enter thebackTrack procedure.x2 computes

LB(0) = δ(0) + lb(0, x3) + lb(0, x4) = 1 + 0 + 0 = 1 andLB(1) = δ(1) + lb(1, x3) +

lb(1, x4) = 2 + 0 + 0 = 2. SinceLB(0) < LB(1), we haveLB = LB(0) = 1. x2

will also computeUB(0) = δ(0) + ub(0, x3) + ub(0, x4) = 1 + Inf + Inf = Inf and

UB(1) = δ(1) + ub(1, x3) + ub(1, x4) = 2 + Inf + Inf = Inf . Thus,UB = Inf .

In line 38, threshold is compared toUB. threshold was set to 1 ( in order to be

equal toLB) in the maintainAllocationInvariant procedure call from line 20. Since

threshold = 1 is not equalUB = Inf , the test fails. The test in line 40 also fails since

LB(0) = 1 is not greater thatthreshold = 1. Thus,x2 will stick with its current value

x2 = 0. In line 52,x2 sends the corresponding COST message tox1 (figure 3.6.b).

Concurrently withx2’s execution,x3 will go through a similar execution.x3 will

evaluate its constraints with higher agents and computeLB(0) = δ(0) = f1,3(0, 0) +

f2,3(0, 0) = 1 + 1 = 2. A change of value tox3 = 1 would incur a cost ofLB(1) =

δ(1) = f1,3(0, 1) + f2,3(0, 1) = 2 + 2 = 4, so insteadx3 will stick with x3 = 0. x3 will

send a COST message withLB = UB = 2, with associated context{(x1, 0), (x2, 0)},

to its parentx2. x4 executes similarly (figure 3.6.b).
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Next,x1 receivesx2’s COST message. In line 31,x1 will test the received context

{(x1, 0)} againstCurrentContext for compatibility. Sincex1’s CurrentContext is

empty, the test will pass. (Note that the root never receivesVALUE messages, so its

CurrentContext is always empty.) The received costs will be stored in lines 32-33

as lb(0, x2) = 1 andub(0, x2) = Inf . In line 37, execution enters thebackTrack

procedure.x1 computesLB(1) = δ(1) + lb(1, x2) = 0 + 0 = 0 andLB(0) = δ(0) +

lb(0, x2) = 0 + 1 = 1. SinceLB(1) < LB(0), we haveLB = LB(1) = 0. Similarly,

UB = Inf . Sincethreshold = 0 is not equalUB = Inf , the test in line 38 fails. The

test in line 40 succeeds andx1 will choose its valued that minimizesLB(d). Thus,x1

switches value tox1 = 1. It will again send VALUE messages to its linked descendents

(figure 3.6.c).

Next, let us assume that the COST messages sent tox2 in figure 3.6.b are delayed.

Instead,x2 receivesx1’s VALUE message from figure 3.6.c. In line 15,x2 will update

its CurrentContext to {(x1, 1)}. For brevity, the remaining portion of this procedure

is not described.

Next,x2 finally receives the COST message sent to it fromx3 in figure 3.6.b.x2 will

test the received context againstCurrentContext and find that they are incompatible

because one contains(x1, 0) while the other contains(x1, 1) (line 31). Thus, the costs

in that COST message will not be stored due to the context change. However, the COST

message fromx4 will be stored in lines 32-33 aslb(0, x3) = 1 andub(0, x3) = 1. In line
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37, x2 then proceeds to thebackTrack procedure where it will choose its best value.

The best value is nowx2 = 1 sinceLB(1) = δ(1) + lb(1, x3) + lb(1, x4) = 0 + 0 + 0

andLB(0) = δ(0) + lb(0, x3) + lb(0, x4) = 2 + 0 + 1 = 3. Figure 3.6.d shows the

change in bothx2 andx3 values after receivingx1’s VALUE message from figure 3.6.c.

x2 andx3 send the new COST messages with the new context wherex1 = 1. x2 also

sends VALUE messages tox3 andx4 informing them of its new value.

Next, figure 3.6.e shows the new COST message that is sent byx2 to x1 after

receiving the COST messages sent fromx3 and x4 in figure 3.6.d. Notice thatx2

computesLB as LB(1) = δ(1) + lb(1, x3) + lb(1, x4) = 0 + 0 + 0 and UB as

UB(1) = δ(1) + ub(1, x3) + ub(1, x4) = 0 + 2 + 1 = 3. Figure 3.6.e also shows

the new COST message sent byx3 after receivingx2’s new value ofx2 = 1. Similarly,

x4 will change variable value and send a COST message withLB = 0 andUB = 0.

In this way, we see the agents have ultimately settled on the optimal configuration with

all values equal to 1 (total cost = 0).

Finally in figure 3.6.f,x2 receives the COST messages from figure 3.6.e, computes

a new bound intervalLB = 0, UB = 0 and sends this information tox1. Upon receipt

of this message,x1 will computeUB = UB(0) = δ(0) + ub(0, x2) = 0 + 0 = 0.

Note thatx1’s threshold value is also equal to zero.threshold was initialized to zero

in line 1 and can only be increased if i) a THRESHOLD message isreceived (line 8),

or b) the ThresholdInvariant is violated (line 54, figure 3.5). The root never receives
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Figure 3.6: Example Adopt execution for the DCOP shown in figure 3.3

THRESHOLD messages, so case (i) never occurred. Sincex1’s LB was never greater

than zero in this example,threshold could never have been less thanLB, so case (ii)

never occurred. Thus,threshold was never increased and remains equal to zero. So,

we have the testthreshold == UB in line 45 evaluate to true. In line 48, it will send a

TERMINATE message tox2, and thenx1 will terminate in line 51.x2 will receive the

TERMINATE message in line 11, evaluatethreshold == UB(= 0) to be true in line

45 and then terminate in line 51. The other agents will terminate in a similar manner.
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3.2.3 Example of Backtrack Thresholds

We illustrate how backtrack thresholds are computed, updated and balanced between

children. The key difficulty is due to context changes. An agent only stores cost infor-

mation for the current context. When the context changes, the stored cost information

must be deleted (in order to maintain polynomial space). If aprevious context is later

returned to, the agent no longer has the previous context’s detailed cost information

available. However, the agent had reported the total sum of costs to its parent, who

has that information stored. So, although the precise information about how the costs

were accumulated from the children is lost, the total sum is available from the parent.

It is precisly this sum that the parent sends to the agent via the THRESHOLD message.

The child then heuristically re-subdivides, or allocates,the threshold among its own

children. Since this allocation may be incorrect, it then corrects for over-estimates over

time as cost feedback is (re)received from the children.

Figure 3.7 shows a portion of a DFS tree. The constraints are not shown. Line

numbers mentioned in the description refer to figure 3.4 and figure 3.5.xp has parent

xq, which is the root, and two childrenxi andxj . For simplicity, assumeDp = {dp}

andδ(dp) = 1, i.e,xp has only one value in its domain and this value has a local cost

of 1.

Supposexp receives COST messages containing lower bounds of 4 and 6 from its

two children (figure 3.7.a). The costs reported toxp are stored aslb(dp, xi) = 4 and
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lb(dp, xj) = 6 (line 32) and associated context ascontext(dp, xi) = context(dp, xj) =

{(xq, dq)}. LB is computed asLB = LB(dp) = δ(dp) + lb(dp, xi) + lb(dp, xj) =

1 + 4 + 6 = 11. In figure 3.7.b, the corresponding COST message is sent to parent

xq. After the COST message is sent, suppose a context change occurs atxp through the

receipt of a VALUE messagexq = d′
q. In line 18-19,xp will resetlb(dp, xi), lb(dp, xj),

t(dp, xi) andt(dp, xj) to zero.

Next,xq receives the information sent byxp. xq will set lb(dq, xp) = 11 (line 32),

and enter themaintainChildThresholdInvariant procedure (line 35). Let us assume

that t(dq, xp) is still zero from initialization. Then, the test in line 65 succeeds since

lb(dq, xp) = 11 > t(dq, xp) = 0 andxq detects that the ChildThresholdInvariant is

being violated. In order to correct this,xq increasest(dq, xp) to 11 in line 66.

Next, in figure 3.7.c,xq revisits the valuedq and sends the corresponding VALUE

messagexq = dq. Note that this solution context has already been explored in the past,

but xp has retained no information about it. However, the parentxq has retained the

sum of the costs, soxq sends the THRESHOLD message witht(dq, xp) = 11.

Next, xp receives the THRESHOLD message. In line 8, the value is stored in the

threshold variable. Execution proceeds to thebackTrack procedure wheremain-

tainAllocationInvariant is invoked in line 44. Notice that the test in line 57 ofmain-

tainAllocationInvariant evaluates to true sincethreshold = 11 > δ(dp) + t(dp, xi) +

t(dp, xj) = 1 + 0 + 0. Thus, in lines 57-59,xp increases the thresholds for its children
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until the invariant is satisfied. Suppose that the split ist(dp, xi) = 10 andt(dp, xj) = 0.

This is an arbitrary subdivision that satisfies the AllocationInvariant – there are many

other values oft(dp, xi) andt(dp, xj) that could be used. In line 63, these values are

sent via a THRESHOLD message (figure 3.7.d).

By givingxi a threshold of 10,xp risks sub-optimality by overestimating the thresh-

old in that subtree. This is because the best known lower bound in xi’s subtree was only

4. We now show how this arbitrary allocation of threshold canbe corrected over time.

Agents continue execution until, in figure 3.7.e,xp receives a COST message from its

right child xj indicating that the lower bound in that subtree is 6.xj is guaranteed to

send such a message because there can be no solution in that subtree of cost less than

6, as evidenced by the COST message previously sent byxj in figure 3.7.a.xp will set

lb(dp, xj) = 6 (line 32) and enter theMaintainChildThresholdInvariant procedure in

line 35. Note that the test in line 65 will succeed sincelb(dp, xj) = 6 > t(dp, xj) = 5

and the ChildThresholdInvariant is being violated. In order to correct this,xp increases

t(dp, xj) to 6 in line 66. Execution returns to line 35 and continues to line 44, where

themaintainAllocationInvariant is invoked. The test in line 60 of this procedure will

succeed sincethreshold = 11 < δ(dp) + t(dp, xi) + t(dp, xj) = 1 + 10 + 6 = 17

and so the AllocationInvariant is being violated. In lines 60-62,xp lowerst(dp, xi) to

4 to satisfy the invariant. In line 63,xp sends the new (correct) threshold values to its

children (figure 3.7.f).
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Figure 3.7: Example of backtrack thresholds in Adopt

In this way, a parent agent continually rebalances the threshold given to its indepen-

dent subtrees in order to avoid overestimating the cost in each subtree while allowing

more efficient search.

3.3 Correctness and Complexity

In order to show that Adopt is correct and complete, we must first show that the lower

bounds and upper bounds computed at each agent are always correct. Thus, Theorem

1 shows that the lower boundLB computed by an agent isnever greaterthan the cost

of the optimal solution within its subtree, and the upper bound UB is never lessthan
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the cost of the optimal solution within its subtree. The proof of Theorem 1 relies on

the following observation: ifxi chooses some valued, then the cost of the best solution

possible in the subtree rooted atxi is equal to (a) the local cost atxi for valued plus(b)

the cost of the optimal solution in the subtrees rooted atxi’s children given thatxi has

chosen valued. Therefore, the optimal solution in the subtree rooted atxi is obtained

if and only if xi chooses a value that minimizes this total cost. To state thisobservation

formally, we need to define the following term: letOPT (xi, context) denote the cost of

the optimal solution in the subtree rooted atxi, given that higher priority variables have

values incontext. For example, ifxi is a leaf, thenOPT (xi, context) = mind∈Di
δ(d),

i.e., the cost of the optimal solution in the subtree rooted at a leaf (which is a single-

node tree consisting of only the leaf) is the value that minimizes the local cost at the

leaf. We now state Property 1.

Property 1: ∀xi ∈ V ,

OPT (xi, CurrentContext)
def
= mind∈Di

δ(d)+

∑

xl∈Children OPT (xl, CurrentContext ∪ (xi, d))

The proof of Theorem 1 proceeds by induction. The base case follows from the fact

LB = OPT (xi , CurrentContext) = UB is always true at a leaf agent. The inductive

hypothesis assumes thatLB (UB) sent byxi to its parent is never greater (less) than
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the cost of the optimal solution in the subtree rooted atxi. The proof also relies on the

fact that costs are reported to only one parent so there is no double counting of costs.

Theorem 1 ∀xi ∈ V ,

LB ≤ OPT (xi, CurrentContext) ≤ UB

Proof: By induction on agent ordering, leaf to root.

Base Case I:xi is a leaf. Sincexi has no children, the equations forLB andUB (see

Definition 4 and 5 in section 3.2.1) simplify toLB = mind∈Di
δ(d) = UB. Property 1

simplifies toOPT (xi, CurrentContext) = mind∈Di
δ(d) for the same reason. So we

concludeLB = mind∈Di
δ(d) = OPT (xi, CurrentContext) = UB. Done.

Base Case II:Every child ofxi is a leaf. We will showLB ≤OPT (xi, CurrentContext).

The proof forOPT (xi, CurrentContext) ≤ UB is analogous.

Since all childrenxl are leaves, we know from Base Case I thatlb(d, xl)≤OPT (xl,

CurrentContext∪ (xi, d)). Furthermore, each childxl sends COST messages only to

xi, so costs are not double-counted. We substituteOPT (xl, CurrentContext∪(xi, d))

for lb(d, xl) into the definition ofLB to get the following:

LB = mind∈Di
δ(d) +

∑

xl∈Children lb(d, xl) ≤

mind∈Di
δ(d) +

∑

xl∈Children OPT (xl, CurrentContext ∪ (xi, d))
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Now we can simply substitute Property 1 into the above to get

LB ≤ OPT (xi, CurrentContext)

and we are done.

Inductive Hypothesis:∀d ∈ Di, ∀xl ∈ Children,

lb(d, xl) ≤ OPT (xl, CurrentContext ∪ (xi, d)) ≤ ub(d, xl)

The proof of the general case is identical to that of Base CaseII, except we assume

lb(d, xl)≤ OPT (xl, CurrentContext∪ (xi, d)) from the Inductive Hypothesis, rather

than from the assumption thatxl is a leaf.2

Next, we must show that Adopt will eventually terminate. Adopt’s termination

condition is shown in line 45 of Figure 3.4, namely the condition threshold = UB

must hold, and ifxi is not the root a TERMINATE message must also be received

from the parent. In Theorem 2, we show that if theCurrentContext is fixed, then

threshold = UB will eventually occur. The proof follows from the fact that agents

continually receive cost reportsLB andUB from their children and pass costs up to

their parent. Theorem 1 showed thatLB has an upper bound andUB has a lower

bound, soLB must eventually stop increasing andUB must eventually stop decreasing.
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The ThresholdInvariant forcesthreshold to stay betweenLB andUB until ultimately

threshold = UB occurs.

Theorem 2 ∀xi ∈ V , if CurrentContext is fixed, thenthreshold = UB will eventu-

ally occur.

Proof: By induction on agent priorities, leaf to root.

Base Case:xi is a leaf.LB = UB is always true atxi because it is a leaf. Every

agent maintains the ThresholdInvariantLB ≤ threshold ≤ UB. Sothreshold = UB

must always be true at a leaf.

Inductive Hypothesis:If CurrentContext is fixed andxi fixes its variable value

to di, then∀xl ∈ Children, threshold = UB will eventually occur atxl and it will

report an upper boundub via a COST message, whereub = t(di, xl).

AssumeCurrentContext is fixed. To apply the Inductive Hypothesis, we must

show thatxi will eventually fix its variable value. To see this, note thatxi changes its

variable value only whenLB(di) increases. By Theorem 1,LB is always less than

the cost of the optimal solution.LB cannot increase forever and soxi must eventually

stop changing its variable value. We can now apply the Inductive Hypothesis which

says that whenxi fixes its value, each child will eventually report an upper bound

ub = t(di, xl). This meanst(di, xl) = ub(di, xl) will eventually be true atxi. We can

substitutet(di, xl) for ub(di, xl) into the definition ofUB to get the following:
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UB
def

≤ UB(di)
def
= δ(di) +

∑

xl∈Children ub(di, xl)

= δ(di) +
∑

xl∈Children t(di, xl)

Using the AllocationInvariantthreshold = δ(di) +
∑

xl∈Children t(di, xl), we sub-

stitutethreshold into the above to getUB ≤ threshold. The right-hand side of the

ThresholdInvariant statesthreshold ≤ UB. So we have bothUB ≤ threshold and

threshold ≤ UB. Sothreshold = UB must be true and the Theorem is proven.2

Note that the algorithm behaves differently depending on whetherxi’s threshold

is set below or above the cost of the optimal solution. Ifthreshold is less than the

cost of the optimal solution, then whenLB increases abovethreshold, xi will raise

threshold until ultimately, LB = threshold = UB occurs. On the other hand, if

threshold is greater than the cost of the optimal solution, then whenUB decreases

belowthreshold, xi will lower threshold sothreshold = UB occurs. In the second

case,LB may remain less thanUB at termination since some variable values may not

be re-explored.

Theorem 2 is sufficent to show algorithm termination becausethe root has an fixed

(empty)CurrentContext and will therefore terminate whenthreshold = UB occurs.

Before it terminates, it sends a TERMINATE message to its children informing them of

its final value (line 48). It is clear to see that when a TERMINATE message is received
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from the parent, an agent knows that its current context willno longer change since all

higher agents have already terminated.

From Theorem 1, if the conditionthreshold = UB occurs atxi, then there exists

at least one solution within the subtree rooted atxi whose cost is less than or equal

threshold. From Theorem 2, the conditionthreshold = UB necessarily occurs. Next,

Theorem 3 shows that the final value ofthreshold is equal to the cost of the optimal

solution.

Theorem 3 ∀xi ∈ V , xi’s final threshold value is equal toOPT (xi, CurrentContext).

Proof: By induction on agent priorities, root to leaf.

Base Case:xi is the root. The root terminates when its (final)threshold value is

equalUB. LB = threshold is always true at the root becausethreshold is initialized

to zero and is increased asLB increases. The root does not receive THRESHOLD

messages so this is the only waythreshold changes. We concludeLB = threshold =

UB is true when the root terminates. This means the root’s finalthreshold value is the

cost of a global optimal solution.

Inductive Hypothesis:Letxp denotexi’s parent.xp’s final threshold value is equal

to OPT (xp, CurrentContext).

We proceed by contradiction. Supposexi’s final threshold is an overestimate. By

the inductive hypothesis,xp’s final threshold is not an overestimate. It follows from the

AllocationInvariant that if the final threshold given toxi (by xp) is too high,xp must
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have given some other child (a sibling ofxi), sayxj , a final threshold that is too low

(See Figure 3.7). Letd denotexp’s current value. Sincexj ’s threshold is too low, it

will be unable to find a solution under the given threshold andwill thus increase its

own threshold. It will reportlb to xp, wherelb > t(d, xj). Using Adopt’s invariants,

we can conclude thatthreshold = UB cannot be true atxp, soxp cannot have already

terminated. By the ChildThresholdInvariant,xp will increasexj ’s threshold so that

lb(d, xj) ≤ t(d, xj). Eventually,lb(d, xj) will reach an upper bound andlb(d, xj) =

t(d, xj) = ub(d, xj) will hold. This contradicts the statement thatxj ’s final threshold

is too low. By contradiction,xj ’s final threshold value cannot be too low andxi’s final

threshold cannot be too high.2

The worst-case time complexity of Adopt is exponential in the number of vari-

ablesn, since constraint optimization is known to be NP-hard. To determine the

worst-case space complexity at each agent, note that an agent xi needs to maintain

a CurrentContext which is at most sizen, and anlb(d, xl) andub(d, xl) for each

domain value and child, which is at most| Di | ×n. Thecontext(d, xl) field can re-

quire n2 space in the worst case. Thus, we can say the worst-case spacecomplexity

of Adopt is polynomial in the number of variablesn. However, it can be reduced to

linear at the potential cost of efficiency. Sincecontext(d, xl) is always compatible with

CurrentContext, CurrentContext can be used in the place of eachcontext(d, xl),

thereby giving a space complexity of| Di | ×n. This can be inefficient since an agent
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must reset alllb(d, xl) andub(d, xl) wheneverCurrentContext changes, instead of

only whencontext(d, xl) changes.

3.4 Evaluation

As in previous experimental set-ups[17], we experiment on distributed graph coloring

with 3 colors. One node is assigned to one agent who is responsible for choosing its

color. Cost of solution is measured by the total number of violated constraints. We will

experiment with graphs of varyinglink density– a graph with link densityd hasdn

links, wheren is the number of nodes in the graph. For statistical signficance, each dat-

apoint representing number of cycles is the average over 25 random problem instances.

The randomly generated instances were not explicitly made to be overconstrained, but

note that link density 3 is beyond phase transition, so randomly generated graphs with

this link density are almost always overconstrained. The tree-structured DFS prior-

ity ordering for Adopt was formed in a preprocessing step. Tocompare Adopt’s per-

formance with algorithms that require a chain (linear) priority ordering, a depth-first

traversal of Adopt’s DFS tree was used.

As in [17], we measure “time to solution” in terms of synchronous cycles. One

cycle is defined as all agents receiving all incoming messages and sending all outgo-

ing messages simultaneously. Other evaluation metrics such as “wall clock” time are
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Figure 3.8: Average number of cycles required to find the optimal solution (MaxCSP)

very sensitive to variations in computation speeds at different agents or communica-

tion delays between agents. These factors are often unpredictable and we would like

to control for them when performing systematic experiments. The synchronous cy-

cle metric allows repeatable experiments and controlled comparisons between different

asynchronous algorithms because it is not sensitive to differing computation speeds at

different agents or fluctuations in message delivery time.

We present the empirical results from experiments using three different algorithms

for DCOP – Synchronous Branch and Bound (SynchBB), Synchronous Iterative Deep-

ening (SynchID) and Adopt. We illustrate that Adopt outperforms SynchBB[16], a dis-

tributed version of branch and bound search and the only known algorithm for DCOP

that provides optimality guarantees. In addition, by comparing with SynchID we show

that the speed-up comes from two sources: a) Adopt’s novel search strategy, which uses
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lower bounds instead of upper bounds to do backtracking, andb) the asynchrony of the

algorithm, which enables concurrency.

SynchID is an algorithm we have constructed in order to isolate the causes of speed-

ups obtained by Adopt. SynchID simulates iterative deepening search[21] in a dis-

tributed environment. SynchID’s search strategy is similar to Adopt since both algo-

rithms iteratively increase lower bounds and use the lower bounds to do backtracking.

However, the difference is that SynchID maintains a single global lower bound and

agents are required to execute sequentially and synchronously while in Adopt, each

agent maintains its own lower bound and agents are able to execute concurrently and

asynchronously. In SynchID, the agents are ordered into a linear chain. (A depth-first
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traversal of Adopt’s DFS tree was used in our experiments.) The highest priority agent

chooses a value for its variable first and initializes a global lower bound to zero. The

next agent in the chain attempts to extend this solution so that the cost remains under the

lower bound. If an agent finds that it cannot extend the solution so that the cost is less

than the lower bound, a backtrack message is sent back up the chain. Once the highest

priority agent receives a backtrack message, it increases the global lower bound and the

process repeats. In this way, agents synchronously search for the optimal solution by

backtracking whenever the cost exceeds a global lower bound.

Figure 3.8 shows how SynchBB, SynchID and Adopt scale up withincreasing num-

ber of agents on graph coloring problems. The results in Figure 3.8 (left) show that

Adopt significantly outperforms both SynchBB and SynchID ongraph coloring prob-

lems of link density 2. The speed-up of Adopt over SynchBB is 100-fold at 14 agents.

The speed-up of Adopt over SynchID is 7-fold at 25 agents and 8-fold at 40 agents. The

speedups due to search strategy are significant for this problem class, as exhibited by

the difference in scale-up between SynchBB and SynchID. In addition, the figure also

show the speedup due exclusively to the asynchrony of the Adopt algorithm. This is ex-

hibited by the difference between SynchID and Adopt, which employ a similar search

strategy, but differ in amount of asynchrony. In SynchID, only one agent executes at

a time so it has no asynchrony, whereas Adopt exploits asynchrony when possible by

allowing agents to choose variable values in parallel. In summary, we conclude that
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Adopt is significantly more effective than SynchBB on sparseconstraint graphs and the

speed-up is due to both its search strategy and its exploitation of asynchronous process-

ing. Adopt is able to find optimal solutions very efficiently for large problems of 40

agents.

Figure 3.8 (right) shows the same experiment as above, but for denser graphs, with

link density 3. We see that Adopt still outperforms SynchBB –around 10-fold at 14

agents and at least 18-fold at 18 agents (experiments were terminated after 100000 cy-

cles). The speed-up between Adopt and SynchID, i.e, the speed-up due to concurrency,

is 2.06 at 16 agents, 2.22 at 18 agents and 2.37 at 25 agents. Finally, Figure 3.9 shows

results from a weighted version of graph coloring where eachconstraint is randomly

assigned a weight between 1 and 10. Cost of solution is measured as the sum of the

weights of the violated constraints. We see similiar results on the more general problem

with weighted constraints.

Figure 3.10 shows the average total number of messages sent by all the agents per

cycle of execution. As the number of agents is increased, thenumber of messages sent

per cycle increases only linearly. This is in contrast to a broadcast mechanism where

we would expect an exponential increase. In Adopt, an agent communicates with only

neighboring agents and not with all other agents.
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3.4.1 Measuring Run-Time

In this section, we address a potential criticism of the above experimental results by

presenting additional evidence that Adopt, under certain assumptions about communi-

cation infrastructure, outperforms the competing algorithms in terms of actual run-time.

While the experimental results presented in the previous section are encouraging,

they leave open one important question. In the previous section, we have presented ex-

perimental results demonstrating that Adopt requires fewer cycles than the competing

algorithms SynchBB and SynchID. This result is important but it is open to the poten-

tial criticism that measuring cycles does not measure run-time directly, which is the

real evaluation metric of concern. By “run-time” we mean theactual wall clock time

from beginning to end of the algorithm execution. The chief concern is that there is

no guarantee that the actual run-time of an Adopt cycle (where agents process multiple

messages per cycle and do constraint checks every cycle) is equivalent to the run-time

of a SynchBB or SynchID cycle (where one agent processes onlyone message per

cycle and may or may not perform any constraint checks in a given cycle). These dif-

ferences suggest that each cycle in Adopt takes more time than each cycle in SynchBB

or SynchID. The question to be answered is: Given that Adopt consumes fewer cycles

than the other algorithms but those cycles may take more time,

• does Adopt really outperform the competing algorithms in terms of actual run-

time?
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In this section, we attempt to answer the above question. As mentioned previously,

it is problematic to measure the run-time of an asynchronousimplementation directly

because such results are very sensitive to the particular experimental set-up, under-

lying communication infrastructure properties, and othervariables. These factors are

often unpredictable and vary significantly across domains.Therefore we investigate

our question in two alternative ways. First, we simply measure the run-time of the

algorithm in our single-processor simulated distributed implementation ignoring com-

munication costs and the potential for speedups due to parallelism. The run-time on

single-processer puts a parallel algorithm like Adopt is ata significant disadvantage.

However, if Adopt outperforms other algorithms under this disadvantage, it provides

evidence that Adopt will also outperform them in a truly distributed setting.

Figure 3.11 shows the result of wall-clock cpu-time for executing the algorithms on

a single-processor simulated distributed implementation. Even with the disadvantage,

Adopt easily outperforms SynchBB. The run-time of Adopt is about equal to SynchID.

This is consistent since both algorithms use the same searchstrategy (lower-bound

based search) and differ only in the amount of parallelism. We can guess that when

Adopt is executed on a fully distributed system, it will haveobtain additional speedups

to outperform SynchID.

As a second method to address our question, we use an analytical model to convert

synchronous cycles to actual run-time that takes into account both computation time
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and communication time. In the rest of this section, we present this model and apply

it to our experimental results from the previous section. Weconclude that when com-

munication time dominates computation time and the communication infrastructure is

able to transmit multiple messages in parallel, an asynchronous algorithm that termi-

nates with fewer cycles will be faster in terms of run-time than a synchronous algorithm

that consumes greater cycles. In other words, synchronous cycles is a valid metric for

estimating run-time under those assumptions. However, if communication latencies are

low, i.e., on the same scale as computation, then the comparative computation time per

cycle becomes the dominating factor.

We now present an analytical model that allows us to calculate run-time from data

collected from synchronous cycle experiments. We first define the following terms:

1) I(xi) : number of incoming messages processed byxi per cycle

2) s : computation time to receive one incoming msg

3) C(xi) : number of constraint checks byxi per cycle

4) t : computation time to do one constraint check

5)O(xi) : number of outgoing messages sent byxi per cycle

6) u : computation time to send one outgoing msg

7) L(n) : time required for the communication infrastructure to transmit n msgs

simultaneously
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Note that the definitions ofI, C, andO have assumed that an agent processes the

same number of messages each cycle, performs the same numberof constraint checks

on each cycle, and sends the same number of messages each cycle (or at least an up-

per bound on these numbers can be determined). This is true for all the algorithms

under consideration. The values ofs, t andu are determined by the experimental set-

up (efficiency of implementation, programming language, processor speed, operating

system, other CPU load on a shared machine, etc..) and may change across different

experimental set-ups. The value ofL is determined by properties of the underlying

communication network. For a given number of messages, we have assumedL is con-

stant (or an average can be determined). Finally, we assumes, t andu are algorithm

independent. On the other hand,I, C, andO are very much dependent on the algorithm

but are independent of experimental set-up.

In each cycle, all agents concurrently process all their incoming messages, do con-

straint checks and send all their outgoing messages. The total computation time for an

algorithm whose execution has been measured in terms of synchronous cycles, denoted

total cycles, is given by the following equation.

total computation time = total cycles× max
xi∈Ag

(s× I(xi) + t× C(xi) + u×O(xi))

(3.1)
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In a sequential algorithm, exactly one agent executes in each cycle and all other

agents are idle. The executing agent processes exactly one incoming message, may or

may not perform a constraint check, and sends exactly one message. So for a sequential

algorithm, we haveI(xi) = O(xi) = 1 andC(xi) ≥ 0 for the executing agentxi, and

I(xj) = O(xj) = 0 andC(xj) = 0 for all other idle agentsxj . LetC denote the number

of constraint checks by the unique agent who executes each cycle. Thus equation (3.1)

for a sequential algorithm simplifies to

total computation time = total cycles× (s + t× C + u) (3.2)

The communication time per cycle is determined by the numberof messages trans-

mitted each cycle. The total communication time consumed byan algorithm whose

execution has been measured in terms of synchronous cycles is given by the following

equation.

total communication time = total cycles× L(
∑

xi∈Ag

O(xi)) (3.3)

Note that we can simplify equation 3.3 for the case of a sequential algorithm where

∑

xi∈AgO(xi) = 1.

Finally, the total run-time is given by the sum of total computation time and total

communication time over all cycles.
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total runtime = total computation time + total communication time (3.4)

This completes the analytical model. This model will allow us to convert our empir-

ical results from the previous section into calculated run-times. We need to only plug

in empirically measured values for the terms 1-7. The rest ofthis section presents our

results.

In our measurements we found the following. The time to process one incoming

message is about equal to the time required to send an outgoing message, i.e,s = u.

Also, this time is about two orders of magnitude slower than the time required to do a

constraint check, i.e.,s = u = 100t. For each algorithm and each problem class, values

for I, C, andO were either empirically measured or a rough upper bound was used.

Next, we make an important assumption on the underlying communication infras-

tructure. Concurrent algorithms are most suitable for communication infrastructures

that allow multiple messages to be transmitted in parallel without significant degrada-

tion in overall throughput. For communication networks where this assumption does

not hold, i.e. each message must be transferred sequentially, the value of a concurrent

algorithm (in terms of efficiency) may be signficantly reduced. Thus, we make the

following assumption:
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• Assumption:L(n) = L, whereL is constant forn less than some reasonable

number.

For example, agent A1 sending messages to A2 should not degrade communication

among two other agents A3 and A4. Examples include communication infrastructure

that has multiple parallel channels or the Internet where the two pairs of agents (A1,A2)

and (A3,A4) are on different subnets. Radio-frequency communication where (A1,A2)

are spatially separated from (A3,A4) also has these properties.

We will calculate run-time for varying values ofL. In particular we consider four

cases: a) when the time required to communicate per cycle, denoted byL, is on the

same order of magnitude as the time required to do a constraint check, denoted byt,

i.e., L = t, b) whenL is one order of magnitude slower, i.e.,L = 10t, c) whenL is

two orders of magnitude slower, i.e.,L = 100t and finally, d) whenL is three orders of

magnitude slower, i.e.,L = 1000t.

Figure 3.12 shows the calculated run-times using the experimental data from Figure

3.8. Graphs are shown for varying values ofL. We can see that when communication

time is about equal to computation time, theL = t case, Adopt does not outperform

SynchID. However asL begins to outweight, we see that Adopt begins to do better. In

theL = 1000t case, we see that the graph looks similar to Figure 3.8. We canconclude

from our analysis that when communication time significantly outweighs computation

time, the cycles metric is an accurate substitute for run-time.
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Figure 3.12: Run-time calculated from number of cycles required to find the optimal
solution

3.5 Algorithmic Variations for Future Work

Adopt is one example within a space of algorithms that may be designed that exploits

our key idea of using lower bounds to perform distributed optimization. In this section,

we explore possible algorithmic modifications to Adopt but leave detailed exploration

of these issues for future work.
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Memory Usage.We consider how Adopt can be modified to obtain efficiency gains

at the expense of the polynomial-space bound at each agent. In Adopt, each agent main-

tains a singleCurrentContext as a partial solution and all stored costs are conditioned

on the variable values specified in that context. When context changes occur, agents

delete all stored costs. This is necessary to maintain the polynomial-space bound.

However, in some cases worst-case exponential-space requirements are tolerable ei-

ther because sufficient memory is available or the worst-case is sufficiently unlikely

to occur. In such cases, we may allow agents to store more thanone partial solution

at a time. Agents should not delete all stored costs when context changes and instead

agents should maintain multiple contexts and their associated costs. In this way, if a

previously explored context should become current again due to variable value changes

at higher agents, then the stored costs will be readily available instead of having to be

recomputed. Preliminary experiments (not reported here) have shown this technique

can dramatically decrease solution time.

Reducing Communication.We consider how Adopt can be modified to reduce the

number of messages communicated. In Adopt, an agent always sends VALUE and

COST messages every time it receives a message from another agent, regardless of

whether its variable value or costs have changed. As a consequence, an agent often

sends a message that is identical to a message that it sent in the immediately prior cy-

cle. Although this is seemingly wasteful, it is a sufficient mechanism to ensure liveness.
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However, if other mechanisms are employed to ensure liveness, then it may be possi-

ble to reduce the number of messages dramatically1. Briefly, an agent can deterimine

whether a message should be sent by simply checking whether amessage it is about to

send is identical to the message it sent in the immediately prior cycle. The message is

sent if and only if the message is different from the previousone. Thus, an agent only

sends a message if it has new information to communicate.

Sending COST messages to non-parent ancestors.We consider how Adopt can be

modified to allow COST messages to be sent to multiple ancestors instead of only to the

parent. To see how such reporting may decrease solution time, consider the following

scenario. Supposexr is the root agent and it has a constraint with neighborxi who

is very low in the tree, i.e., the length ofp is large, wherep is the path fromxr to

xi obtained by traversing only parent-child edges in the tree-ordering. Ifxr initially

chooses a bad variable value that causes a large cost on the constraint shared withxi,

we would likexr to be informed of this cost as soon as possible so that it may explore

other value choices. In Adopt,xi will send a COST message only to its immediate

parent and not toxr. The parent will then pass the cost up to its parent and so on up

the tree. This method of passing costs up the tree is sufficient to ensure completeness,

however, the drawback in this case is that since the length ofp is large, it will take a

1An alternative mechanism for ensuring liveness through theuse of timeouts is described in Section
4.3.1.
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long time forxr to be informed of the cost incurred byxi. Thus, it may take a long time

beforexr will abandon its bad choice resulting in wasted search.

To resolve this problem, we may allow an agent to report cost directly to all its

neighbors higher in the tree. The key difficulty is that when an agent receives multiple

COST messages it cannot safely sum the lower bounds in those messages to compute a

new lower bound as in Definition 3 of Section 3.2.1 because double-counting of costs

may occur. Such double-counting will violate our completeness guarantee. We can

resolve this difficulty by attaching a list of agent names to every COST message (in

addition to the information already in the COST messages). This list of names corre-

sponds to those agents whose local costs were used to computethe cost information in

that message. A receiving agent can use this list to determine when two COST mes-

sages contain overlapping costs.

More precisely, a leaf agent attaches its own name to every COST message it sends.

When an agent receives a COST message, it appends its own nameto the list contained

in that message and attaches the new list to every COST message it sends. When an

agent receives multiple COST messages, the lower bounds received in those messages

are summed if and only if the attached list of agent names are disjoint. If they are

not disjoint, the information in the message with the biggerlist is used and the other

message is discarded. Although we do not yet have a proof thatis method is complete, it
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seems like a promising approach for improving the Adopt algorithm while maintaining

completeness.

Extension to n-ary constraints.Adopt can be easily extended to operate on DCOP

where constraints are defined over more than two variables. Suppose we are given a

DCOP that contains a ternary constraintfijk : Di × Dj × Dk → N defined over 3

variablesxi, xj , xk, as shown in Figure 3.13. The tree ordering procedure must ensure

thatxi, xj andxk lie on a single path from root to leaf (they may not be in different

subtrees since all three are considered neighbors). Suppose xi andxj are ancestors of

xk. With binary constraints, the ancestor would send a VALUE message to the descen-

dent. With our ternary constraint, bothxi andxj will send VALUE messages toxk.

xk then evaluates the ternary constraint and sends COST messages back up the tree as

normal. The way in which the COST message is received and processed by an ancestor

is unchanged. Thus, we deal with an n-ary constraint by assigning responsiblity for its

evaluation to the lowest agent involved in the constraint. The only difference between

evaluation of an n-ary constraint and a binary one is that thelowest agent must wait

to receive all ancestors’ VALUE messages before evaluatingthe constraint. For this

reason operating on problems with n-ary constraints may decrease concurrency and ef-

ficiency of the Adopt algorithm. However this seems unavoidable due to the inherent

complexity of n-ary constraints.
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Figure 3.13: A ternary constraint

Extension to multiple variables per agent.Our assumption of one variable per agent

can be problematic in domains where agents have complex local subproblems that are

more appropriately modeled using multiple variables. We outline two simple methods

that exist for dealing with this problem and point out their drawbacks. These methods

are also described by Yokoo et al [52] in the context of Distributed Constraint Satisfac-

tion. We then propose a third method which may be more effective than either of these

two simple methods.

First, it is always possible to convert a constraint reasoning problem involving mul-

tiple variables into a problem with only one variable by defining a new variable whose

domain is the cross product of the domains of each of the original variables. This

method can in principle be used to convert an agent’s complexlocal subproblem into

a subproblem with only one variable. This would allow Adopt to be applied without

any modifications. Second, another method is to create multiple virtual agents within a

single real agent and assign one local variable to each virtual agent. Each virtual agent
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then operates as an independent Adopt agent. In principle, this method also allows

Adopt to be applied without any modifications.

While the above methods work in principle they may have significant problems in

practice. In the first method, the domain size of the new variable will be exponential

in the number of variables in the original problem. Exhaustively searching over all the

domain values for the new variable can be prohibitively expensive. On the other hand,

the virtual agent approach is inefficient since it does not take advantage of the fact that

the virtual agents within a single real agent have direct access to each others memory.

A key choice to be made in dealing with multiple variables peragent is whether to

form the (DFS tree) ordering over the problem variables or over the agents. The first

method described above (in which a local subproblem is converted into a single vari-

able) forms the ordering over the agents. The second method (in which virtual agents

are employed) forms the ordering over the problem variables. Forming the ordering

over agents is criticised by Yokoo et al. [52] (in the contextof DisCSP) because an

agent must perform an exhaustive search over its subproblembefore it is able to send a

NOGOOD message. If a higher agent makes a bad choice, the lower agent must do a

lot of work before it can inform the higher agent of the bad choice. Thus, the authors

propose an algorithm which chooses to order over problem variables.

However Yokoo’s criticism of ordering over agents does not apply in our case of

DCOP. The reason is that an agent need not do an exhaustive search over its local
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subproblem in order to compute a lower bound for its subproblem. Therefore, it can

send feedback to higher agents in the form of a lower bound in COST messages without

doing exhaustive search. We propose forming the ordering over the agents, but avoid

converting the local subproblem into a single variable. Instead, each agent searches

over its local subproblem of multiple variables using a centralized lower-bound based

optimization method, e.g., IDA* search [33]. IDA* is a suitable method for use in

Adopt with multiple variables per agent because it allows anagent to compute a lower

bound for its subproblem without exhaustively searching the entire subproblem. In

Adopt, an agent could use IDA* to compute a lower bound for itssubproblem quickly

and send a COST message immediately to its parent without having to exhaustively

search its entire subproblem first. A key open question is howthe agent should order

its local variables before employing IDA*. A rational strategy may be to place higher

in the local ordering those variables that have constraintswith higher priority agents. In

conclusion, we believe this is a promising approach for dealing with multiple variables

per agent in Adopt. However, how these approaches may actually work in practice is

an empirical question which requires further investigation.
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Chapter 4

Limited Time and Unreliable Communication

In this chapter we extend the method presented in the previous chapter to deal with two

practical issues that arise in real-world domains: Limitedtime and unreliable communi-

cation. The first section describes our approach for reducing solution time and presents

empirical results demonstrating the ability to perform principled tradeoffs between so-

lution time and quality. The second section demonstrates robustness to message loss.

4.1 Limited Time

In this section we consider how agents can perform distributed optimization when suf-

ficient time to find the optimal solution is not available. This is significant because in

many time-critical domains there exist hard or softdeadlinesbefore which decisions

must be made. These deadlines restrict the amount of time available for problem-

solving so that it becomes infeasible to determine the optimal solution. This problem is
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important because it is known that DCOP is NP-hard, so time required to find optimal

solutions cannot be done efficiently in the worst-case.

Previous approaches to this problem have typically abandoned systematic global

search in favor of incomplete local methods that rely exclusively on local information.

This approach is effective in reducing solution time in manydomains but the reduction

is accomplished by abandoning all theoretical guarantees on solution quality. Instead

of theoretical guarantees, empirical evaluations on a necessarily limited number of do-

mains are used to demonstrate algorithm effectiveness. This approach has a three sig-

nificant drawbacks. First, the reliance on solely empiricalevaluation makes it difficult

to predict the effectiveness of a given method in new unseen domains. Little can be said

about solution quality or solving time when the method is translated to new problems.

Second, incomplete local methods cannot guarantee optimalsolutions no matter how

much time is allowed. Even in situations where more time is available, an incomplete

local method is unable to take advantage of this additional time to guarantee better so-

lution quality. Finally, agents cannot know the global quality of the solutions they have

obtained. This prevents agents from performing any kind of reasoning about how or

whether they should terminate or continue searching for better solutions.

We present a more flexible method calledbounded error approximationwhereby

agents can find global solutions that may not be optimal but are within a given distance
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from optimal. This method decreases solution time for application in time limited do-

mains. Bounded error approximation is similar to incomplete search in that approxi-

mate suboptimal solutions are found fast, but is different from incomplete search in that

theoretical guarantees on global solution quality are still available.

4.1.1 Bounded-error Approximation

We consider the situation where the user provides Adopt withan error boundb, which is

interpreted to mean that any solution whose cost is withinb of the optimal is acceptable.

More formally, we wish to find any solutionS where cost(S) ≤ cost(optimal solution)

+ b. For example in overconstrained graph coloring, if the optimal solution requires

violating 3 constraints,b = 5 indicates that 8 violated constraints is an acceptable

solution. Note that this measure allows a user to specify an error bound without a priori

knowledge of the cost of the optimal solution.

The key difficulty is that the cost of the optimal solution is unknown in advance so

it is hard to know if the cost of an obtained solution is withinthe user-defined bound.

We solve this problem in Adopt by using the best known lower bound as anestimateof

the cost of the optimal solution. Then, the agents search fora complete solution whose

cost isb over the best known lower bound. If such a solution is found, it can be returned

as a solution within the given error bound.

75



More formally, Adopt can be guaranteed to find a global solution within boundb of

the optimal by allowing the root’s backtrack threshold to overestimate byb. The root

agent usesb to modify its ThresholdInvariant as follows:

• ThresholdInvariant For Root (Bounded Error): min(LB+b, UB) = threshold.

The root agent always setsthreshold to b over the currently best known lower

boundLB, unless the upper boundUB is known to be less thanLB + b.

Let us revisit the example shown in figure 2.2. We will re-execute the algorithm,

but in this case the user has given Adopt an error boundb = 4. Instead of initializing

threshold to zero, the root agentx1 will initialize threshold to b. Note thatLB is

zero upon initialization andUB is Inf upon initialization. Thus,min(LB + b, UB) =

min(4, Inf) = 4 and the thresholdInvariant above requiresx1 to setthreshold = 4.

In addition, the AllocationInvariant requiresx1 to sett(0, x2) = 4 since the invariant

requires thatthreshold = 4 = δ(0) + t(0, x2) = 0 + t(0, x2) hold.

In figure 4.1.a, all agents again begin by concurrently choosing value0 for their

variable and sending VALUE messages to linked descendents.In addition,x1 sends a

THRESHOLD message tox2. Upon receipt of this message,x2 setsthreshold = 4

(line 8).

Each agent computesLB andUB and sends a COST message to its parent (figure

4.1.b). This was described previously in section 3.2.2 and shown in figure 3.6.b. The

execution path is the same here.
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Next,x1 receivesx2’s COST message. As before, the received costs will be stored

in lines 32-33 aslb(0, x2) = 1 andub(0, x2) = Inf . In line 37, execution enters

the backTrack procedure. x1 computesLB(1) = δ(1) + lb(1, x2) = 0 + 0 = 0

and LB(0) = δ(0) + lb(0, x2) = 0 + 1 = 1. SinceLB(1) < LB(0), we have

LB = LB(1) = 0. UB(0) andUB(1) are computed asInf , soUB = Inf . Since

threshold = 4 is not equalUB = Inf , the test in line 38 fails. So far, the execution is

exactly as before. Now however, the test in line 40 fails becauseLB(di) = LB(0) = 1

is not greater thanthreshold = 4. Thus,x1 will not switch valueto x1 = 1 and will

instead keep its current value ofx1 = 0.

Next,x2 receives the COST messages sent fromx3 andx4. The received costs will

be stored in lines 32-33 aslb(0, x3) = 2, ub(0, x3) = 2, lb(0, x4) = 1, andub(0, x4) =

1. In line 37, execution enters thebackTrack procedure.x2 computesLB(0) = δ(0)+

lb(0, x3) + lb(0, x4) = 1 + 2 + 1 = 4 andLB(1) = δ(1) + lb(1, x3) + lb(1, x4) =

2 + 0 + 0 = 2. Thus,LB = LB(1) = 2. Similarly, x2 computesUB(0) = δ(0) +

ub(0, x3) + ub(0, x4) = 1 + 2 + 1 = 4 andUB(1) = δ(1) + ub(1, x3) + ub(1, x4) =

2 + Inf + Inf = Inf . Thus,UB = UB(0) = 4. Sincethreshold = UB = 4, the

test in line 38 succeeds. However,x2 will not switch value since its current value is the

one that minimizesUB(d). Note that the equivalent test in line 45 succeeds, but the

test in line 46 fails sincex2 has not yet received a TERMINATE message fromx1. So,
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x2 does not terminate. Instead, execution proceeds to line 52 where a COST message

is sent tox1. This is depicted in figure 4.1.c.

Next,x1 receivesx2’s COST message. The received costs will be stored aslb(0, x2) =

2 and ub(0, x2) = 4. x1 now computesLB(1) = δ(1) + lb(1, x2) = 0 + 0 + 0

and LB(0) = δ(0) + lb(0, x2) = 0 + 2 = 2. Similarly, x1 computesUB(1) =

δ(1) + ub(1, x2) = 0 + Inf = Inf andUB(0) = δ(0) + ub(0, x2) = 0 + 4 = 4. Thus,

UB = UB(0) = 4. So, now we have the testthreshold == UB in line 45 evaluate to

true, sincethreshold = UB = 4. Sincex1 is the root, the test in line 47 succeeds and

x1 will terminate with valuex1 = 0. It will send a TERMINATE message tox2 and the

other agents will terminate in a similar manner.

In this way, we see the agents have ultimately settled on a configuration with all

values equal to 0, with a total cost of 4. Since the optimal solution has cost 0, the

obtained solution is indeed within the given error bound ofb = 4. The solution was

found faster because less of the solution space was explored. In particular, note thatx1

never had to explore solutions withx1 = 1.

Theorems 1 and 2 still hold with the bounded-error modification to the Threshold-

Invariant. Also, agents still terminate whenthreshold value is equalUB. The root’s

final threshold value is the cost of a global solution within the given error bound. Us-

ing this error bound, Adopt is able to find a solution faster than if searching for the
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x2=0
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[1,1,x2=0]

[1,Inf,x1=0] [2,4,x1=0]

[2,2,(x1=0,x2=0)]x2=0

x1=0

x4=0x3=0

(c)(b)(a)

t(0,x2)=4

Figure 4.1: Example Adopt execution for the DCOP shown in figure 2.2, with error
boundb = 4.

optimal solution, thereby providing a method to trade-off computation time for solu-

tion quality. This trade-off is principled because a theoretical quality guarantee on the

obtained solution is still available.

4.1.2 Experiments

We evaluate the effect on time to solution (as measured by cycles) and the total number

of messages exchanged, as a function of error boundb in Figure 4.2. Error boundb = 0

indicates a search for the optimal solution. Figure 4.2 (left) shows that increasing the

error bound significantly decreases the number of cycles to solution. At 18 agents,

Adopt finds a solution that is guaranteed to be within a distance of 5 from the optimal

in under 200 cycles, a 30-fold decrease from the number of cycles required to find the
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optimal solution. Similarly, figure 4.2 (right) shows that the total number of messages

exchanged per agent decreases significantly asb is increased.

We evalute the effect on cost of obtained solution as a function of error boundb.

Figure 4.3 shows the cost of the obtained solution for the same problems in Figure 4.2.

(Data for problems instances of 18 agents is shown, but the results for the other problem

instances are similar.) The x-axis shows the “distance fromoptimal” (cost of obtained

solution minus cost of optimal solution for a particular problem instance) and the y-axis

shows the percentage of 25 random problem instances where the cost of the obtained

solution was at the given distance from optimal. For example, the two bars labeled

“b = 3” show that whenb is set to 3, Adopt finds the optimal solution for 90 percent

of the examples and a solution whose cost is at a distance of 1 from the optimal for the

remaining 10 percent of the examples. The graph shows that inno cases is the cost of

the obtained solution beyond the allowed bound, validatingour theoretical results. The

graph also shows that the cost of the obtained solutions are often much better than the

given bound, in some cases even optimal.

The above results support our claim that varyingb is an effective method for doing

principled tradeoffs between time-to-solution and quality of obtained solution. These

results are significant because, in contrast to incomplete search methods, Adopt pro-

vides the ability to find solutions faster when time is limited but without giving up

theoretical guarantees on solution quality.
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4.2 Extensions for Future Work

In our view, the bounded-error approximation technique presented above represents a

novel method for performing optimization under limited time. Given that the algorithm

parameterb provides agents with the ability to effectively trade speedfor solution qual-

ity, it is natural to begin thinking about ways in which one can use this ability. We

believe this opens up a wide array of possiblities for futurework in distributed reason-

ing algorithms. We briefly discuss two interesting avenues.

Anytime Algorithms.When time is limited, agents could potentially setb very high

initially to quickly find a greedy solution. After terminating the search, if more time

for problem solving is available, they could iteratively decrease the error boundb in

attempts to find better solutions. In this way, Adopt can be used in ananytimefashion,

where at any time during algorithm execution, a candidate solution with some upper

bound on cost is available.

Meta-level ReasoningSuppose agents know that they have 20 seconds to find a so-

lution to a given DCOP. How should they set theb parameter to ensure with some suf-

ficient probability that a solution will be found in 20 seconds? One approach is to use

meta-level reasoning where agents use performance profilesto predict for a given prob-

lem, or class of problems, how long problem-solving is expected to take at a given error

bound. Hansen and Zilberstein [15] present some methods fordoing this in centralized
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algorithms. They present a general framework for meta-level control of anytime algo-

rithms [15]. This framework allows a meta-level controllerto obtain the highest quality

solution when taking into account the time necessary to find it. Their techniques could

be adapted to the distributed case using Adopt and bounded-error approximation as

tools.

4.3 Unreliable Communication

In this section we consider how agents can perform distributed optimization when mes-

sage delivery is unreliable, i.e. messages may be dropped. Existing work in DCR algo-

rithms typically assume that communication is perfect. This assumption is problematic

because unreliable communication is a common feature of many real-world multiagent

domains. Limited bandwidth, interference, loss of line-of-sight are some reasons why

communication can fail. We introduce a novel method for dealing with message loss in

the context of a particular DCR algorithm named Adopt. The key idea in our approach

is to let the DCR algorithm inform the lower error-correction software layer which key

messages are important and which can be lost without significant problems. This allows

the algorithm to flexibly and robustly deal with message loss. Results show that with

a few modifications, Adopt can be guaranteed to terminate with the optimal solution

even in the presence of message loss and that time to solutiondegrades gracefully as

message loss probability increases.
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In order to provide strong guarantees on the correctness andcompleteness of DCR

algorithms, algorithm designers have typically made the following two assumptions

about the communication infrastructure on which the distributed algorithm operates:

• Reliable: Delay in delivering a message is finite, i.e., every messagesent is even-

tually received.

• Atomic: Order is preserved in transmissions between any pair of agents.

We consider how we can relax the reliability assumption without giving up key

algorithm properties such as the guarantee of termination with a correct solution. We

assume a simple form of unreliable communication: the communication infrastructure

has an unknownloss probabilityr< 1, where a message is dropped (not delivered) with

probabilityr. In our experiments we will assumer is constant over time, but this is not

strictly necessary. Investigation for relaxation of the atomic assumption is an issue for

future work.

A common method for dealing with unreliable channels in communication net-

works is to implement an error correction layer in software that can ensure reliable

message delivery even when the communication infrastructure itself is inherently un-

reliable. This is typically done through an acknowledgmentprotocol where ACK mes-

sages are used to verify that a message has been received. A number of such protocols

have been developed in the field of computer networking, the most popular of which is
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TCP [42]. Unfortunately, recent research provides evidence that TCP is infeasible in

many types of communication networks important for applications in multiagent sys-

tems, such as wireless and ad-hoc networks [2] [30].

Simply relying on a lower layer error-correction mechanismto ensure reliable deliv-

ery is an inadequate approach for dealing with unreliable communication infrastructure

when developing multiagent algorithms. First, it can significantly increase the number

of messages that must be communicated since every message must be acknowledged.

Second, a sender cannot send any messages to a given agentxi until the ACK for a pre-

viously sent message is received fromxi for fear of the violating the atomic assumption

mentioned earlier. The time cost in waiting for ACKs can degrade performance and re-

duce the efficiency of the higher-level DCR algorithm. Third, this method is unable

to take advantage of the fact that it may be okay for some messages to be lost without

large negative effects on the higher-level DCR algorithm.

We propose a novel approach to dealing with message loss in DCR algorithms. We

assume the availability of an asynchronous DCR algorithm and a lower error-correction

software layer. Instead of relying exclusively on the error-correction layer, we advo-

cate giving the DCR algorithm itself the control to decide which messages must be

communicated reliably and which can be lost. The idea is thatby requiring only key

messages be communicated reliably while allowing other messages to be lost, we can

design DCR algorithms that are more flexible and robust to message loss.
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We show how this idea can be implemented within the context ofthe Adopt algo-

rithm and the benefits that are derived. With a few modifications, we show that Adopt

is still guaranteed to terminate with the optimal solution even if communication is un-

reliable. Experimental results show that Adopt’s performance degrades gracefully with

message loss. We also present results that suggest that artificially introducing message

loss even when communication is reliable could be a way to decrease the amount of

work agents need to do to find the optimal solution. Indeed, previous work by Fernan-

dez et al. has shown that artificially introducing communication delay in DCR can have

beneficial effects on the performance of DCR algorithms.

4.3.1 Algorithm Modifications for Message Loss

Since Adopt is completely asynchronous, we hypothesize it is well suited for operating

under unreliable communication infrastructure. In particular, agents are able to process

messages no matter when they are received and are insensitive to the order in which

messages are received (provided the messages come from different agents). This is in

contrast to synchronous algorithms which require messagesto be received and sent in a

particular order. For example in synchronous algorithms such as Synchronous Branch

and Bound [16], if a message is lost no progress can be made until that message is

successfully retransmitted.
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While asynchrony is a key advantage, the major difficulty that arises is the danger

of deadlock. Deadlock can occur for two reasons: the loss of VALUE/COST messages,

or the loss of TERMINATE message. We consider each case separately. If VALUE or

COST messages are lost, we could have a deadlock situation with agents waiting for

each other to communicate. For example, consider two agentsx1 andx2. x1 sends a

VALUE message tox2. x2 evaluates and sends back tox1 a COST message. Suppose

this message gets lost. At this point,x1 is now waiting for a COST message fromx1,

whilex2 is waiting for another VALUE message fromx1. Thus, the loss of one message

has resulted in the agents getting deadlocked.

We can overcome deadlock problems arising from loss of VALUEand COST mes-

sages due to another key novelty of the Adopt algorithm: Adopt’s built-in termination

detection. The termination condition allows an agent to locally determine whether the

algorithm has terminated. If no messages are received for a certain amount of time and

an agent’s termination condition is not true, then that agent can conclude that a dead-

lock may have occurred due to message loss. The agent can thenresend VALUE and

COST messages to its neighbors in order to trigger the other agents and break the dead-

lock. This method requires the implementation of a timeout mechanism at each agent.

The value of the timeout can be set according to the average time between successive

messages. This solution is more flexible and efficient than the alternative approach

of dealing with message loss at a lower error-correction software layer. Instead, the
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algorithm intelligently determines when messages need to be resent by using the local

termination condition as a guide. This method is also stateless in the sense that an agent

does not need to remember the last message it sent in case a resend is needed. The agent

can simply send out its current value and current cost whenever a timeout occurs.

Another reason deadlock can occur is if a TERMINATE message is lost. Agents

terminate execution in response to the TERMINATE message received from their par-

ents. If that message gets lost, an agent has no knowledge that the rest of the agents

have come to a stop. The TERMINATE messages are essentially adistributed snap-

shot mechanism [6] whereby the agents determine that the termination condition is true

at all the other agents. Unfortunately, distributed snapshot algorithms require reliable

communication. Thus, Adopt requires that TERMINATE messages be sent reliably.

This is can be done through an acknowledgment protocol whereeach TERMINATE

message sent must be acknowledged by the recipient by responding to the sender with

an ACK message. The sender will resend its message if an ACK isnot received after

certain amount of time. The sender continues to resend untilan ACK is eventually re-

ceived. Sincer < 1, the TERMINATE message and the ACK will eventually (in the

limit) go through. Since TERMINATE messages only need to be communicated once

between parent and child, the overhead for this is not very severe, and is certainly less

than requiring every message to be communicated reliably.
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With these modifications it can be ensured that Adopt will eventually terminate with

the optimal solution, regardless of the amount of network disturbance, so long as the

probability of a message being lost is less than 1. To see thatAdopt will eventually

terminate, realize the deadlock detection timeout will ensure that an agentxi will not

sit waiting forever for a message that may not come when its own termination condition

is not true. Instead,xi will continue sending messages to its children until a replyis

received. Thus, each child will eventually report toxi a lower bound that is also an

upper bound. When this occurs,xi’s termination condition will finally be true and it

can terminate.

4.3.2 Experiments

We experiment on distributed graph 3-coloring.1 One node is assigned to one agent

who is responsible for its color. Global cost of solution is measured by the total number

of violated constraints. We experiment with graphs of link density 3 – a graph with link

densityd hasdn links, wheren is the number of nodes in the graph. We average over

6 randomly generated problems for each problem size and eachproblem was run three

times for each loss probability, for a total of 18 runs for each datapoint. Each agent runs

in a separate thread and time to solution is measured as CPU time. We use a uniform

1I thank Syed Muhammed Ali and Rishi Goel for their assistancewith these experiments

89



timeout value of 10 seconds. We ensured consistent system load between runs and each

run produced an optimal solution.

Table 4.1 shows the relative change in running time as a percentage of the running

time when communication is perfect (r = 0). We see that as loss probabilityr increases

from 0% to 10%, the running time increases very little – only 5.88% for 10 agents and

4.66% for 12 agents. At loss probablity of 20%, we begin to seemore severe effects on

running time – 20.95% for 10 agents and 19.31% for 12 agents. The data provides initial

evidence that Adopt’s performance degrades gracefully as message loss rate increases.

In addition to solution time, we would also like to know if theagents are doing

more or less work when messages are being lost as compared to when communication

is perfect. One measure of “work” is the total number of messages processed. Table 4.2

shows the relative change in the total number of messages processed as a percentage of

the number of messages processed when communication is perfect. We see that agents

process fewer messages as message loss rate increases – around 8% less for 12 agents at

20% loss. These results show that agents are able to obtain a solution of optimal quality

but by processing fewer messages as compared to the perfect communication case. This

suggests that artificially introducing message loss even when communication is reliable

could be a way to decrease the amount of work agents need to do to find the optimal

solution. In fact, recent work by Fernandez et al. has shown that artificially introducing
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Table 4.1: Running time as a percentage of when there is zero loss.
Loss rate(r) 8 Agents 10 Agents 12 Agents

0% 100.00% 100.00% 100.00%
2% 99.61% 98.84% 100.17%
5% 103.94% 100.40% 100.01%
10% 110.78% 105.88% 104.66%
20% 128.93% 120.95% 119.31%

Table 4.2: Number of messages processed (rcvd) as a percentage of when there is zero
loss

Loss rate(r) 8 Agents 10 Agents 12 Agents
0% 100.00% 100.00% 100.00%
2% 98.80% 98.01% 98.36%
5% 98.44% 96.47% 95.27%
10% 98.63% 95.04% 93.02%
20% 97.58% 92.24% 92.59%

communication delay in DCR can have beneficial effects on theperformance of DCR

algorithms [11]. This is something we will explore in futurework.

To summarize, we found that while sending acknowledgementsfor every message

was excessive and too expensive, and sending none was problematic, the right tradeoff

was to allow the DCR algorithm to control which key messages need to be sent reliably.

We showed that this method allows an asynchronous algorithmto tolerate message

loss and still terminate with the globally optimal solution. Empirical results showed

that time-to-solution increased gradually as message lossrate is increased which is

a desireable property in a DCR algorithm. We also found that agents need to process

fewer messages to find the optimal solution when messages maybe lost, which suggests

that an active loss mechanism may improve algorithm performance.
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Chapter 5

Modeling Real-world Problems

In this chapter, we illustrate that the Distributed Constraint Reasoning (DCR) paradigm

can be used to represent and solve an important class of Distributed Resource Alloca-

tion problem. We develop an abstract formalization of the Distributed Resource Al-

location problem that allows detailed complexity analysisand general mappings into

the DCR representation. Previous work in modeling Distributed Resource Allocation

has lacked a systematic formalization of the problem and a general solution strategy. In

particular, formalizations that allow detailed complexity analysis and general mappings

into DCR are missing.

Figure 5.1 depicts the overall methodology. First, we propose an abstract formal-

ization of Distributed Resource Allocation (shown as box (a)) that is able to capture

both the distributed and dynamic nature of the problem. The abstract formalization

is significant because it allows us to understand the complexity of different types of
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Distributed Resource Allocation problems and allows tractable problem subclasses to

be identified. Next, we develop generalized mappings into DCR (shown as box (b)).

In particular, we will consider two specific DCR representations: DCOP which was

previously defined in chapter 2 and DyDisCSP which is defined in this chapter. DCOP

can represent optimization problems but cannot represent dynamic problems. On the

other hand, DyDisCSP is able to represent dynamic problems at the expense of limit-

ing to a satisfaction-based representation. The Adopt algorithm can be used to solve

DCOPs while the LD-AWC algorithm presented in this chapter can be used to solve Dy-

DisCSPs. Unfortunately sound and complete algorithms for dynamic optimization are

currently unavailable. Thus, we will present mappings intoboth DCOP and DyDisCSP,

each concerned with different aspects of the problem ( optimization and dynamics).

The general mapping strategies are significant because theyenable existing DCR

technologies to be brought to bear directly onto the distributed resource allocation

problem. In particular with these mappings, we can use DCR algorithms like Adopt

and LD-AWC in particular to automatically solve distributed resource allocation prob-

lems. In addition, they allow future algorithmic advances in DCR to also be directly

applied to the distributed resource allocation problem without significant re-modeling

effort. Thus, our formalism and generalized mappings may provide researchers with

tools for both representing and solving their resource allocation problem using DCR.
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In section 5.1, we will describe the details of the distributed sensor network problem

as a concrete example of the Distributed Resource Allocation problem. This domain

is then used to illustrate the formal definitions in section 5.2 which formalize our ab-

stract model of Distributed Resource Allocation. Properties and complexity classes

are defined in section 5.3 and 5.4. In section 5.5, we define theDynamic Distributed

Constraint Satisfaction Problem (DyDisCSP) and the LD-AWCalgorithm for solving

DyDisCSP. Sections 5.6 and 5.7 define our mappings of Distributed Resource Alloca-

tion into DyDisCSP. Section 5.8 defines our mapping into DCOP.

5.1 Application Domain

Our distributed sensor network problem introduced previously is used to illustrate the

difficulties described above and to also illustrate our formalization of Distributed Re-

source Allocation that is described later. The domain consists of multiple stationary

sensors, each controlled by an independent agent, and targets moving through their

sensing range. Figure 2.1 shows the hardware. Each sensor isequipped with a Doppler

radar with three sector heads. Each sector head covers 120 degrees and only one sector

can be active at a time. While all of the sensor agents must choose to activate their

sector heads to track the targets, there are some key difficulties in such tracking.

The first difficulty is that the domain is inherently distributed. In order for a target

to be tracked accurately, at least three agents must collaborate. They must concurrently
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Figure 5.1: Graphical depiction of the described methodology.
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Figure 5.2: A schematic of four sensor nodes.

activate their sectors so the target is sensed by at least three overlapping sectors. For

example, in Figure 5.2, if an agent A1 detects target 1 in its sector 0, it must inform two

of its neighboring agents, A2 and A4 for example, so that theyactivate their respective

sectors that overlap with A1’s sector 0.

The second difficulty with accurate tracking is that when an agent is informed about

a target, it may face ambiguity in which sector to activate. Each sensor can detect only

the distance and speed of a target, so an agent that detects a target can only inform

another agent about the general area of where a target may be,but cannot tell other

agents specifically which sector they must activate. For example, suppose there is only

target 1 in Figure 5.2 and agent A1 detects that a target is present in its sector 0. A1

can tell A2 that a target is somewhere in the region of its sector 0, but it cannot tell A2

which sector to activate because A2 has two sectors (sector 1and 2) that overlap with

A1’s sector 0. In order to resolve this ambiguity, A2 may be forced to first activate
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its sector 1, detect no target, then try its sector 2. Thus, activating the correct sector

requires a collaboration between A1 and A2. A1 informs A2 that a target exists in some

ambiguous region and A2 then resolves the remaining ambiguity. The significance here

is that no single agent can determine the correct allocationof all sectors to targets.

The third difficulty is that resource contention may occur when multiple targets

must be tracked simultaneously. For instance, in Figure 5.2, A4 needs to decide whether

to track target 1 or target 2 and it cannot do both since it may activate only one sector at

a time. A4 should choose to track target 2 since there is no other way for target 2 to be

tracked. A4 is “critical” for tracking target 2. In general,determining whether an agent

is “critical” for a particular target requires non-local information about targets out of

an agent’s immediate sensing range. In this example, note that target 1 and 2 are tasks

that conflict with one another. Targets that are spatially distant do not conflict with each

other and thus can easily be tracked without resource contention. Thus, as we will see,

the relationship among tasks will affect the difficulty of the overall resource allocation

problem.

Finally, the situation is dynamic because targets move through the sensing range.

Even after agents find a configuration that is accurately tracking all targets, they may

have to reconfigure themselves as targets move over time.

The above application illustrates the difficulty of resource allocation among dis-

tributed agents in a dynamic environment. Lack of a formalism for dynamic distributed
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resource allocation problem can lead to ad-hoc methods which cannot be easily reused.

Instead, our adoption of a formal model allows our problem and its solution to be stated

in a more general way, possibly increasing our solution’s usefulness. More importantly,

a formal treatment of the problem also allows us to study its complexity and provide

other researchers with some insights into the difficulty of their own resource allocation

problems. Finally, a formal model allows us to provide guarantees of soundness and

completeness of our results. The next section presents our formal model of resource

allocation.

5.2 Formal Definitions

A Distributed Resource Allocation Problem consists of 1) a set of agents that can each

perform some set of operations, and 2) a set of tasks to be completed. In order to be

completed, a task requires some subset of agents to perform certain operations. We can

define a task by the operations that agents must perform in order to complete it. The

problem is to find an allocation of agents to tasks such that all tasks are performed. In

this way, we view the agents as the resources to be allocated.This problem is formal-

ized next.

• Definition 1: A Distributed Resource Allocation Problem is a structure<Ag, Ω,

Θ> where
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– Ag = {A1, A2, ...,An} is a set of agents.

– Ω = {O1
1, O

1
2, ..., Oi

p, ..., On
q } is a set of operations, where operationOi

p

denotes the p‘th operation of agentAi. An operation can either succeed or

fail. Let Op(Ai) denote the set of operations ofAi.

– Θ = {T1, T2, ..., Tn} is a set of tasks, where each taskT ∈ Θ is a set of

sets{t1, t2, ..., tn} and eachti ∈ T is a set of operations. Eachti is called a

minimal set.

Intuitively, the minimal sets of a task specify the alternative ways (sets of opera-

tions) to perform the task. We assume that tasks are either performed or not performed.

We do not model varying degrees of task performance. Tasks are performed by exe-

cuting all the operations in one of its minimal sets. No more (or less) operations are

needed. Thus, we require that each minimal settr of a given taskT is “minimal” in the

sense that no other minimal set inT is a subset oftr. Beyond the minimal resources

required for a task, we do not model more complex task features such as task duration,

task difficulty, task performance cost, etc. although we note that these are features that

are important in many domains and deserve attention.

We assume operations inOp(Ai) aremutually exclusivein the sense that an agent

can only perform one operation at a time. This is an assumption that holds in our

domain of distributed sensor networks and in many other domains. However, in order
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to capture domains where agents are able to perform multipleoperations and do many

tasks at once, this assumption must be relaxed in future work.

A solution to a resource allocation problem is to choose a minimal set for each

present task such that the chosen minimal sets do not conflict. We say that two minimal

sets of two different tasksconflict if they each contain an operation belonging to the

same agent. Since we assume that an agent can only perform oneoperation at a time,

it is not possible for all the operations in two conflicting minimal sets to be executed

simultaneously. In general when there are too many tasks andnot enough agents, it may

not be possible to choose non-conflicting minimal sets for every present task. In such

cases, we wish the agents to allocate resources only to the most important tasks. More

formally, we wish to findΘsat ⊆ Θcurrent, such that<Ag, Ω, Θsat > has a solution

and | Θsat | is maximized. In other words, we must solve the optimizationproblem

where we wish to choose a subset of the tasks so that the maximum number of tasks are

completed.

To illustrate this formalism in the distributed sensor network domain, we cast each

sensor as an agent and activating one of its (three) sectors as an operation. We will use

Oi
p to denote the operation of agentAi activating sector p. For example, in Figure 5.2,

we have four agents, soAg = {A1, A2, A3, A4}. Each agent can perform one of three

operations, soΩ = {O1
0,O1

1, O1
2,O2

0,O2
1, O2

2, O3
0,O3

1, O3
2, O4

0,O4
1, O4

2 }. To specify the
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subset of operations belonging to a particular agent, sayA1, we useOp(A1) = {O1
0,O1

1,

O1
2 }.

We distinguish between tasks that arepresentandnot present. Present tasks require

resources, while tasks that are not present do not require resources. Tasks change from

being present to not present and vice versa over time.Θ (defined above) corresponds

to the set of all tasks, present or not. We useΘcurrent (⊆ Θ) to denote the set of tasks

that are currently present. We call a resource allocation problemstatic if Θcurrent is

constant over time anddynamicotherwise. In our distributed sensor network example,

since targets come and go, the problem is a dynamic one. We do not model resource

allocation problems where the resources may be dynamic (i.e., where agents may come

and go).

Returning to our example, we now define our task setΘ. We define a separate task

for each region of overlap of sectors where a target may potentially be present. In other

words, tasks correspond to spatially segmented regions of space. The existence of an

actual target in a particular segmented region correspondsto a present task. Regions

of overlap that do not currently contain a target are tasks that do not currently need

to be performed. Associated with each region is the set of operations that can sense

that space, i.e., the sensor sectors that cover it. In the situation illustrated in Figure

5.2, we have two targets shown. We define our current task set as Θcurrent = {T1, T2}.

In the figure, there are many other regions of overlap for which tasks are defined, but

101



we omit description of the full setΘ for simplicity. TaskT1 requires any three of the

four possible agents to activate their corresponding sector, so we define a minimal set

corresponding to all the
(

4
3

)

combinations. Thus,T1 = {{O1
0, O2

2, O3
0}, {O

2
2, O3

0, O4
1},

{O1
0, O3

0, O4
1}, {O

1
0, O2

2, O4
1}}. Note that the subscript of the operation denotes the

number of the sector the agent must activate. In the example,task T2 can only be

tracked by two sectors, soT2 = {{O3
0, O4

2}}.

For each task, we useΥ(Tr) to denote the union over all the minimal sets ofTr,

and for each operation, we useT (Oi
p) to denote the set of tasksTr for which Oi

p can

contribute, that is, those tasks that includeOi
p in Υ(Tr). For instance,Υ(T1) = {O1

0, O2
2,

O3
0, O4

1} andT (O3
0) = { T1, T2} in the example above.

The setΘcurrent is determined by the environment and not necessarily immediately

known to all the agents. It also changes over time. A key difficulty is how the agents can

come to know which tasks are currently present. We will discuss this question shortly

after the following two definitions. We assume that when an agentexecutesone of its

operations, the operation either succeeds or fails depending on the presence or absence

of tasks in the environment at the time the operation is executed.

• Definition 2: Let Oi
p ∈ Ω be an operation executed byAi. If ∃ Tr ∈Θcurrent such

thatOi
p ∈ Υ(Tr), thenOi

p succeeds. If Oi
p has no corresponding task inΘcurrent,

the operationfails.
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In our example, if agentA1 executes operationO1
0 (activates sector 1) and ifT1 ∈

Θcurrent (target 1 is present), thenO1
0 will succeed (A1 will detect a target), otherwise

it will fail. Note that our notion of operation failure corresponds to a sensor signal

indicating the absence of a task, not actual hardware failure. Hardware failure or sensor

noise is an issue not modeled. However, an actual system built using this formalism

has been able to incorporate techniques for dealing with noise and failure by using a

two-layered architecture, where a lower layer of the implementation deals with these

issues[36].

We say a task is (being)performedwhen all the operations in some minimal set

succeed. More formally,

• Definition 3: ∀Tr ∈ Θ, Tr is performediff there exists a minimal settr ∈ Tr

such that all the operations intr succeed. A task that is not present cannot be

performed, or equivalently, a task that is performed must beincluded inΘcurrent.

The intuition is that as long as the task is present, it can (and should) be performed.

When it is no longer present, it cannot (and need not) be performed. This is different

from the notion of agents working on a task until it is “completed”. In our formalism,

agents have no control over task duration.

For example, taskT2 is performed (targetT2 is tracked) ifA3 executes operation

O3
0 and A4 executes operationO4

2. The task continues to be performed as long as
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those operations are being executed and the task is present i.e., the target remains in the

specified region of space.

To summarize our formalism and terminology:

• Tasks arepresentor not present, as determined by the environment.

• Operations areexecutedby the agents and executed operationssucceedor fail

depending on the presence or absence of corresponding tasks.

• Tasks areperformedwhen all the operations in some minimal set succeed.

As mentioned above, a key difficulty is how the agents can cometo know which

tasks are currently present. In our model, agents execute their operations to not only

perform existing tasks, but also to detect when new tasks have appeared and when

existing tasks disappear. Thus, agents must continually interleave problem solving and

operator execution.

If a new task appears and an agent executes its operation, theoperation will succeed

and signal to the agent that some task is present. It may not necessarily know exactly

which task is present, since there may be multiple tasks for which the same operation

may succeed. Aside from this difficulty (which we will address in our solution method-

ology), another tricky issue is ensuring that every new taskwill eventually be detected

by some agent, i.e., some agent will execute its operation todetect it. We must avoid sit-

uations where all agents are busy doing other tasks or sleeping and ignoring new tasks.
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This can be done in various ways depending on the particular domain. In the sensor

domain, we require agents to “scan” for targets by activating different sectors when

they are currently not involved in tracking any target. Thus, our model relies on the

following assumption which ensures that no present task goes unnoticed by everyone.

• Notification assumption:

– (i) If task Tr is present, then at least one agent executes an operation forTr:

∀Tr ∈ Θ, if Tr ∈ Θcurrent, then∃ Oi
p ∈ Υ(Tr) such thatOi

p is executed (and

sinceTr is present,Oi
p succeeds).

– ii) ∀Ts( 6= Tr) ∈ Θcurrent, Oi
p 6∈ Υ(Ts).

(ii) states that the notifying operationOi
p (from (i)) must not be part of any other

present task. This only implies that the success of operation Oi
p will uniquely identify

the taskTr among all present tasks, but not necessarily among all (e.g., not present)

tasks. Thus, the difficulty of global task ambiguity remains. This assumption is only

needed to prevent two present tasks from being detected by one agent through the exe-

cution of a single operation, in which case the agent must choose one of them, leaving

the other task undetected by anyone. In distributed sensor networks, hardware restric-

tions preclude the possibility of two targets being detected by a single sector, so this

assumption is naturally satisfied.
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This concludes our model. In later sections, we will map thisDistributed Resource

Allocation model into a Dynamic Distributed Constraint Satisfaction Problem. We

will show how these mappings and associated algorithms can be used to address the

problems of distribution, task dynamics, resource contention, and global task ambiguity

that arise within our model.

5.3 Properties of Resource Allocation

We now state some definitions that will allow us to categorizea given resource allo-

cation problem and analyze its difficulty. In particular, wenotice some properties of

task and inter-task relationships. We choose to identify these properties because, as

we will see, they have a bearing on the computation complexity of the overall resource

allocation problem. Definitions 4 through 7 are used to describe the complexity of a

given task in a given problem, i.e., the definitions relate toproperties of anindividual

task. Next, definitions 8 through 10 are used to describe the complexity of inter-task

relationships, i.e., the definitions relate to the interactions between aset of tasks.

5.3.1 Task Complexity

For our purposes, we consider a particular notion of task complexity, namely, the ex-

pressiveness allowed by the minimal set representation. Inits most general form (the
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Unrestricted class defined below), one can express a varietyof minimal sets. How-

ever, for certain problem classes, we can limit the minimialset representation to reduce

computational complexity. We now define some of these types of problem classes.

One class of resource allocation problems have the propertythat each task requires

any k agents from a pool ofn (n ≥ k) available agents. That is, the task contains a

minimal set for each of the
(

n

k

)

combinations. The following definition formalizes this

notion.

• Definition 4: ∀ Tr ∈ Θ, Tr is task-
(

n

k

)

-exact iff Tr has exactly
(

n

kr

)

minimal sets

of sizekr, wheren = | Υ(Tr) | andkr(≤ n) depends onTr.

For example, the taskT1 (corresponding to target 1 in Figure 5.2) is task-
(

4
3

)

-exact

because it has exactly
(

4
3

)

minimal sets of sizek = 3, wheren = 4 =| Υ(T1) |. The

following definition defines the class of resource allocation problems where every task

is task-
(

n

k

)

-exact.

• Definition 5 :
(

n

k

)

-exactdenotes the class of resource allocation problems<Ag,

Ω, Θ > such that∀ Tr ∈ Θ, Tr is task-
(

n

kr

)

-exact.

We find it useful to define a special case of
(

n

k

)

-exact resource allocation problems,

namely those whenk = n. Intuitively, all agents are required so each task contains

only a single minimal set.
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• Definition 6:
(

n

n

)

-exactdenotes the class of resource allocation problems<Ag,

Ω, Θ> such that∀ Tr ∈ Θ, Tr is task-
(

nr

kr

)

-exact, wherenr = kr =| Υ(Tr) |.

For example, the taskT2 (corresponding to target 2 in Figure 5.2) is task-
(

2
2

)

-exact.

• Definition 7: Unrestricted denotes the class of resource allocation problems

<Ag, Ω, Θ> with no restrictions on tasks.

Note that
(

n

n

)

-exact⊂
(

n

k

)

-exact⊂ Unrestricted.

5.3.2 Task Relationship Complexity

The following definitions refer to relations between tasks.We define two types of

conflict-freeto denote resource allocation problems that have solutions, or equivalently,

problems where all tasks can be performed concurrently.

• Definition 8: A resource allocation problem is calledStrongly Conflict Free

(SCF) if for all Tr, Ts ∈ Θcurrent and∀ Ai ∈ Ag, | Op(Ai) ∩ Υ(Tr) | + |

Op(Ai) ∩ Υ(Ts) |≤ 1, i.e., no two tasks have in common an operation from the

same agent.

The SCF condition implies that we can choose any minimal set out of the given

alternatives for a task and be guaranteed that it will lead toa solution where all tasks

are performed, i.e., no backtracking is ever required to finda solution.
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• Definition 9: A resource allocation problem is calledWeakly Conflict Free

(WCF) if there exists some choice of minimal set for every present task such

that all the chosen minimal sets are non-conflicting.

The WCF condition is much weaker that the SCF condition sinceit only requires

that there exists some solution. However, a significant amount of search may be re-

quired to find it. Finally, we define problems that may not haveany solution.

• Definition 10: A resource allocation problem that cannot be assumed to be WCF

is called(possibly) over-constrained (OC). In OC problems, all tasks may not

necessarily be able to be performed concurrently because resources are insuffi-

cient.

Note that SCF⊂WCF⊂ OC.

5.4 Complexity Classes of Resource Allocation

Given the above properties, we can define 9 subclasses of problems according to their

task complexity and inter-task relationship complexity: SCF and
(

n

n

)

-exact, SCF and

(

n

k

)

-exact, SCF and unrestricted, WCF and
(

n

n

)

-exact, WCF and
(

n

k

)

-exact, WCF and

unrestricted, OC and
(

n

n

)

-exact, OC and
(

n

k

)

-exact, OC and unrestricted.

Table 5.1 summarizes our complexity results for the subclasses of resource alloca-

tion problems just defined. The columns of the table, from topto bottom, represent

109



increasingly complex tasks. The rows of the table, from leftto right, represent increas-

ingly complex inter-task relationships. We refer the reader to [29] for detailed proofs.

Although our formalism and mappings addresses dynamic problems, our complex-

ity analysis here deals with a static problem. A dynamic resource allocation problem

can be cast as solving a sequence of static problems, so a dynamic problem is at least

as hard as a static one. Furthermore, all our complexity results are based on a cen-

tralized problem solver. In terms of computational complexity, a distributed problem

can always be solved by centralizing all the information. However, we note that this

model of complexity ignores issues such as communication costs, communication de-

lays, message loss, limited communication range/bandwith, etc.

Theorem 4 Unrestricted SCF resource allocation problems can be solved in time lin-

ear in the number of tasks

Proof: Greedily choose any minimal set for each task. They are guaranteed not to

conflict by the Strongly Conflict Free condition.2

Theorem 5
(

n

n

)

-exact WCF resource allocation problems can be solved in time linear

in the number of tasks.

Proof: Greedily choose the single minimal set for each task.

Theorem 6
(

n

k

)

-exact WCF resource allocation problems can be solved in time poly-

nomial in the number of tasks and operations.
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Proof: We can convert a given
(

n

k

)

-exact resource allocation problem to a network-

flow problem, which is known to be polynomial time solvable [31]. We first construct

a tripartite graph from a given resource allocation problemand then convert the graph

into a network-flow problem.

Let <Ag, Ω, Θ> be an
(

n

k

)

-exact problem. Construct a tripartite graph as follows:

• Create three empty sets of vertices, U, V, and W and an empty edge set E.

• For each taskTr ∈ Θ, add a vertexur to U.

• For each agentAi ∈ Ag, add a vertexvi to V.

• For each agentAi, for each operationOi
p ∈ Op(Ai), add a vertexwi

p to W.

• For each agentAi, for each operationOi
p ∈Op(Ai), add an edge between vertices

vi, wi
p to E.

• For each taskTr, for each operationOi
p ∈ Υ(Tr), add an edge between vertices

ur, wi
p to E.

We convert this tripartite graph into a network-flow graph inthe following way.

Add two new vertices, a supersources, and supersinkt. Connects to all vertices in V

and assign a max-flow of 1. For all edges among V, W, and U, assign a max-flow of 1.

Now, connectt to all vertices in U and for each edge (ur, t), assign a max-flow ofkr.

We now have a network flow graph with an upper limit on flow of
∑|θ|

i=1 ki.
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We show that the resource allocation problem has a solution if and only if the max-

flow is equal to
∑|θ|

i=1 ki.

⇒ Let a solution to the resource allocation problem be given. We will now construct

a flow equal to
∑|θ|

i=1 ki. This means, for each edge between vertexur in U andt, we

must assign a flow ofkr. It is required that the in-flow tour equalkr. Since each edge

between W and U has capacity 1, we must choosekr vertices from W that have an

edge intour and fill them to capacity. LetTr be the task corresponding to vertexur,

and tr ∈ Tr be the minimal set chosen in the given solution. We will assign a flow

of 1 to all edges (wi
p, ur) such thatwi

p corresponds to the operationOi
p that is required

in tr. There are exactlykr of these. Furthermore, since no operation is required for

two different tasks, when we assign flows through vertices inU, we will never choose

wi
p again. For vertexwi

p such that the edge (wi
p, ur) is filled to its capacity, assign a

flow of 1 to the edge (vi, wi
p). Here, when a flow is assigned through a vertexwi

p, no

other flow is assigned throughwi
q ∈ Op(Ai) (p 6= q) because all operations inOp(Ai)

are mutually exclusive. Therefore,vi’s outflow cannot be greater than 1. Finally, the

assignment of flows froms to V is straightforward. Thus, we will always have a valid

flow (inflow=outflow). Since all edges from U tot are filled to capacity, the max-flow

is equal to
∑|θ|

i=1 ki.

⇐ Assume we have a max-flow equal to
∑|θ|

i=1 ki. Then for each vertexur in U,

there arekr incoming edges filled to capacity 1. By construction, the setof vertices in
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W matched tour corresponds to a minimal set inTr. We choose this minimal set for

the solution to the resource allocation problem. For each such edge (wi
p, ur), wi

p has an

in-capacity of 1, so every other edge out ofwi
p must be empty. That is, no operation is

required by multiple tasks. Furthermore, since outgoing flow thoroughvi is 1, no more

than one operation inOp(Ai) is required. Therefore, we will not have any conflicts

between minimal sets in our solution.2

Theorem 7 Determining whether an unrestricted resource allocation problem is Weakly

Conflict Free is NP-Complete.

Proof: We reduce from 3 coloring problem. For reduction, let an arbitrary instance

of 3-color with colorsc1, c2, c3, verticesV and edgesE, be given. We construct the

resource allocation problem as follows:

• For each vertexv ∈ V , add a taskTv to Θ.

• For each taskTv ∈ Θ, for each colorck, add a minimal settck
v to Tv.

• For each edgevi, vj ∈ E, for each colorck, add an operatorOck
vi,vj

to Ω and add

this operator to minimal setstck
vi

andtck
vj

.

• Assign each operator to a unique agentAO
ck
vi,vj

in Ag.

Figure 5.3 illustrates the mapping from a 3 node graph to a resource allocation

problem. With the mapping above, we can show that the 3-colorproblem has a solution

if and only if the constructed resource allocation problem is weakly conflict free.
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⇒ Assume the 3-color problem has a solution. Then there existsa coloring such

that no adjacent vertices have the same color. Letvi andvj be two arbitrary vertices

that are coloredck andcl. Then we can choosetck
vi

andtcl
vj

as minimal sets for tasksTvi

andTvj
, respectively. We need to show that the WCF condition holds between these

two tasks for all agents. We will show it for one agent and the proof for all agents is

identical. LetOck
vi,vm

be an operator intck
vi

. By construction,{ Ock
vi,vm
} = Op(AO

ck
vi,vm

).

So we have| tck
vi
∩ Op(AO

ck
vi,vm

) | = 1. Then, the WCF condition is violated just in

caseOck
vi,vm

is in tcl
vj

. This is only possible if m=j and k=l. But m=j means that the two

vertices we picked are adjacent and k=l means they are colored the same color, which

cannot be a solution to the 3-color problem. So the problematic case is ruled out and

the resource allocation problem is WCF.

⇐ Assume our constructed resource allocation problem is WCF.Let tck
vi

andtcl
vj

be

WCF minimal sets for tasksTvi
andTvj

. Then we can colorvi andvj with colorsck and

cl respectively. The only case where there could be a problem isif (vi, vj) is in E and

k=l. Assume this is the case. Then, by construction, there exists an operatorOck
vi,vj

that

is in tck
vi

. But this operator is also intck
vj

(= tcl
vj

), which violates WCF. So the problematic

case is ruled out and we have a valid 3-coloring.2

In OC problems sufficient resources may not be available to complete all present

tasks. Instead, we may wish to findΘsat ⊆ Θcurrent, such that<Ag, Ω, Θsat> has a

solution and| Θsat | is maximized. In other words, we wish to choose a subset of the
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tasks so that the maximum number of tasks are completed. We show complexity of this

problem to be NP-Complete.

Theorem 8 The OC Distributed Resource Allocation problem is NP-Complete.

Proof: We show that a special case is NP-Complete, namely, assume the problem is

(

n

n

)

-exact. If we are given a subset ofΘ, we can determine if the RAP is solvable in

linear time (by Theorem 5). So the problem is in NP. To show this problem is NP-hard,

we will reduce from the INDEPENDENT-SET problem [31]. INDEPENDENT-SET

is defined as: LetG = (V, E) be an undirected graph, and letI ⊆ V . The setI is

independentif wheneveri, j ∈ I then there is no edge betweeni andj. The goal is to

find the largest independent set in graphG.

The reduction from INDEPENDENT-SET is as follows. For each nodei, we create

a taskTi with exactly one minimal set. For each edge,i, j ∈ E, we create an operation

Oi,j and add it to the minimal set ofTi and Tj. Finally, create one agent for each

operation. We can see that two tasks conflict if and only if their nodes inG have an

edge between them. LetI ⊆ V be is a solution to the INDEPENDENT-SET. LetΘsat

be the set of tasks corresponding to the nodes inI. There is no edge between any

i, j ∈ I, so there cannot be any operation in common betweenTi andTj in Θsat. Thus,

Θsat is the solution to the resource allocation problem. The reverse direction is similar.

2
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Figure 5.3: Reduction of graph 3-coloring to Resource Allocation Problems

Table 5.1: Complexity Classes of Resource Allocation,n = size of task setΘ, m = size
of operation setΩ. Columns represent task complexity and rows represent inter-task
relationship complexity.

SCF WCF OC
(

n

n

)

-exact O(n) O(n) NP-Complete
(

n

k

)

-exact O(n) O((n + m)3) NP-Complete
unrestricted O(n) NP-Complete NP-Complete

5.5 Dynamic Distributed CSP (DyDisCSP)

In order to solve resource allocation problems captured by our formalized model, we

will use distributed constraint satisfaction techniques.The following section defines the

notion of a Dynamic Distributed Constraint Satisfaction Problem (DyDisCSP). Exist-

ing approaches to distributed constraint satisfaction fall short for our purposes because

they cannot capture the dynamic aspects of the problem. In dynamic problems, a so-

lution to the resource allocation problem at one time may become obsolete when the

underlying tasks have changed. This means that once a solution is obtained, the agents

must continuously monitor it for changes and must have a way to express such changes

in the problem. This section presents DyDisCSP in order to address this shortcoming,
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DisCSP assumes that the set of constraints are fixed in advance. This assumption

is problematic when we attempt to apply DisCSP to domains where the environment is

unknown and changes over time. For example, in distributed sensor networks, agents do

not know where the targets will appear and how they will move.This makes it difficult

to specify the DisCSP constraints in advance. Rather, we desire agents to sense the

environment and then activate or deactivate constraints depending on the result of the

sensing action. We formalize this idea next.

We take the definition of DisCSP one step further by defining Dynamic DCSP (Dy-

DisCSP). A DyDisCSP is a DisCSP where constraints are allowed to be dynamic, i.e.,

agents are able to add or remove constraints from the problemaccording to changes in

the environment. More formally,

• Definition 11: A dynamicconstraint is given by a tuple (P, C), where P is a

arbitrary predicate that is evaluated to true or false by an agent sensing its envi-

ronment and C is a familiar constraint from DisCSP.

When P is true, C must be satisfied in any DyDisCSP solution. When P is false, it is

okay for C to be violated. An important consequence of dynamic DisCSP is that agents

no longer terminate when they reach a stable state. They mustcontinue to monitor P,

waiting to see if it changes. If its value changes, they may berequired to search for

a new solution. Note that a solution when P is true is also a solution when P is false,

so the deletion of a constraint does not require any extra computation. However, the
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converse does not hold. When a constraint is added to the problem, agents may be

forced to compute a new solution. In this work, we only need toaddress a restricted

form of DyDisCSP where onlylocal constraintsare allowed to be dynamic. We will

see that this is sufficient to model the types of problems we are interested in. Next, we

discuss how we can solve such restricted DyDisCSPs through asimple modification to

an existing DisCSP algorithm.

Asynchronous Weak Commitment (AWC) [52] is a sound and complete algorithm

for solving DisCSPs. An agent with local variableAi, chooses a valuevi for Ai and

sends this value to agents with whom it has external constraints. It then waits for and

responds to messages. When the agent receives a variable value (Aj = vj) from another

agent, this value is stored in an AgentView. Therefore, an AgentView is a set of pairs

{(Aj , vj), (Ak, vk), ...}. Intuitively, the AgentView stores the current value of non-local

variables. A subset of an AgentView is a “NoGood” if an agent cannot find a value for

its local variable that satisfies all constraints. For example, an agent with variableAi

may find that the set{(Aj, vj), (Ak, vk)} is a NoGood because, given these values for

Aj andAk, it cannot find a value forAi that satisfies all of its constraints. This means

that these value assignments cannot be part of any solution.In this case, the agent will

request that the others change their variable value and a search for a solution continues.

To guarantee completeness, a discovered NoGood is stored sothat that assignment is

not considered in the future.
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The most straightforward way to attempt to deal with dynamism in DisCSP is to

consider AWC as a subroutine that is invoked anew everytime aconstraint is added.

Unfortunately, in domains such as ours, where the problem isdynamic but does not

change drastically, starting from scratch may be prohibitively inefficient. Another op-

tion, and the one that we adopt, is for agents to continue their computation even as

local constraints change asynchronously. The potential problem with this approach is

that when constraints are removed, a stored NoGood may now become part of a so-

lution. We solve this problem by requiring agents to store their own variable values

as part of non-empty NoGoods. For example, if an agent with variableAi finds that

a valuevi does not satisfy all constraints given the AgentView{(Aj , vj), (Ak, vk)},

it will store the set{(Ai, vi), (Aj , vj), (Ak, vk)} as a NoGood. With this modifica-

tion to AWC, NoGoods remain “no good” even as local constraints change. Let us

call this modified algorithm Locally-Dynamic AWC (LD-AWC) and the modified No-

Goods “LD-NoGoods” in order to distinguish them from the original AWC NoGoods.

The following lemma establishes the soundness and completeness of LD-AWC.

Lemma I: LD-AWC is sound and complete.

The soundness of LD-AWC follows from the soundness of AWC. The completeness

of AWC is guaranteed by the recording of NoGoods. A NoGood logically represents a

set of assignments that leads to a contradiction. We need to show that this invariant is

maintained in LD-NoGoods. An LD-NoGood is a superset of somenon-empty AWC
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NoGood and since every superset of an AWC NoGood is no good, the invariant is true

when a LD-NoGood is first recorded. The only problem that remains is the possibility

that an LD-NoGood may later become good due to the dynamism oflocal constraints.

A LD-NoGood contains a specific value of the local variable that is no good but never

contains a local variable exclusively. Therefore, it logically holds information about

external constraints only. Since external constraints arenot allowed to be dynamic in

LD-AWC, LD-NoGoods remain valid even in the face of dynamic local constraints.

Thus the completeness of LD-AWC is guaranteed.

5.6 Mapping SCF Problems into DyDisCSP

We now describe a solution to the SCF subclass of resource allocation problems, de-

fined in Definition 8 of Section 5.2, by mapping onto DyDisCSP.We choose DyDisCSP

instead of DCOP for two reasons: DyDisCSP is able to represent dynamic problems

and the SCF condition guarantees that a satisfactory solution exists so optimization is

not necessary. Our goal is to provide a general mapping, named Mapping I, that allows

any dynamic unrestricted SCF resource allocation problem to be modeled as DyDisCSP

by applying this mapping.

Mapping I is motivated by the following idea. The goal in DyDisCSP is for agents

to choose values for their variables so all constraints are satisfied. Similarly, the goal

in resource allocation is for the agents to choose operations so all tasks are performed.
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Therefore, in our first attempt we map agents to variables andoperations of agents to

values of variables. For example, if an agentAi has three operations it can perform,

{Oi
1, O

i
2, O

i
3}, then the variable corresponding to this agent will have three values in

its domain. However, this simple mapping attempt fails due to the dynamic nature of

the problem; operations of an agent may not always succeed. Therefore, we define two

values for every operation, one for success and the other forfailure. In our example,

this would result in six values for each variableAi: {Oi
1yes,Oi

2yes,Oi
3yes,Oi

1no,Oi
2no,

Oi
3no}.

It turns out that even this mapping is inadequate due to ambiguity. Ambiguity arises

when an operation can be required for multiple tasks but onlyone task is actually

present. To resolve ambiguity, we desire agents to be able tonot only communicate

about which operation to perform, but also to communicate for which task they intend

the operation. For example in Figure 5.2, Agent A3 is required to activate the same

sector for both targets 1 and 2. We want A3 to be able to distinguish between the two

targets when it communicates with A2, so that A2 will be able to activate its correct

respective sector. For each of the values defined so far, we will define new values

corresponding to each task that an operation may serve.

Mapping I: Given a Resource Allocation Problem〈Ag, Ω, Θ〉, the corresponding

DyDisCSP is defined over a set ofn variables.
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• A = {A1, A2,...,An}, one variable for eachAi ∈ Ag. We will use the notationAi

to interchangeably refer to an agent or its variable.

The domain of each variable is given by:

• ∀Ai ∈ Ag, Dom(Ai) =
⋃

Oi
p∈Ω

Oi
pxT (Oi

p)x{yes,no}.

In this way, we have a value for every combination of operations an agent can

perform, a task for which this operation is required, and whether the operation succeeds

or fails. For example in Figure 5.2, Agent A3 has one operation (sector 0) with two

possible tasks (target 1 and 2). Although the figure does not show targets in sector 1

and sector 2 of agent A3, let us assume that targets may appearthere for this example.

Thus, let taskT3 be defined as a target in A3’s sector 1 and let taskT4 be defined as a

target in A3’s sector 2. This means A3 would have 8 values in its domain:{O3
0T1yes,

O3
0T1no,O3

0T2yes,O3
0T2no,O3

1T3yes,O3
1T3no,O3

2T4yes,O3
2T4no}.

A word about notation:∀ Oi
p ∈ Ω, the set of values inOi

pxT (Oi
p)x{yes} will be

abbreviated by the termOi
p*yes and the assignmentAi = Oi

p*yes denotes that∃v ∈

Oi
p*yes such thatAi = v. Intuitively, the notation is used when an agent detects that

an operation is succeeding, but it is not known which task is being performed. This is

analogous to the situation in the distributed sensor network domain where an agent may

detect a target in a sector, but does not know its exact location. Finally, when a variable

Ai is assigned a value, the corresponding agent executes the corresponding operation.
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Next, we must constrain agents to assign “yes” values to variables only when an

operation has succeeded. However, in dynamic problems, an operation may succeed

at some time and fail at another time since tasks are dynamically added and removed

from the current set of tasks to be performed. Thus, every variable is constrained by the

following dynamiclocal constraints (as defined in Section 5.5).

• Dynamic Local Constraint 1 (LC1): ∀Tr ∈ Θ, ∀Oi
p ∈ Υ(Tr),

LC1(Ai) = (P, C), where Predicate P:Oi
p succeeds.

Constraint C:Ai = Oi
p*yes

• Dynamic Local Constraint 2 (LC2): ∀Tr ∈ Θ, ∀Oi
p ∈ Υ(Tr),

LC2(Ai) = (P, C), where Predicate P:Oi
p does not succeed.

Constraint C:Ai 6= Oi
p*yes

The truth value of P is not known in advance. Agents must execute their operations,

and based on the result, locally determine if C needs to be satisfied. In dynamic prob-

lems, where the set of current tasks is changing over time, the truth value of P will also

change over time, and hence the corresponding DyDisCSP willneed to be continually

monitored and resolved as necessary.

We now define the External Constraint (EC) between variablesof two different

agents. EC is a normal static constraint and must always be satisfied.

• External Constraint : ∀Tr ∈ Θ, ∀Oi
p ∈ Υ(Tr), ∀Aj ∈ A,
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EC(Ai, Aj): (1) Ai = Oi
pTryes, and

(2) ∀tr ∈ Tr, Oi
p ∈ tr, ∃q Oj

q ∈ tr.

⇒ Aj = Oj
qTryes

The EC constraint requires some explanation. It says that ifAi detects a task, then

other agents in minimal settr must also help with the task. In particular, Condition (1)

states that an agentAi is executing a successful operationOi
p for taskTr. Condition (2)

quantifies the other agents whose operations are also required forTr. If Aj is one of

those agents, i.e.,Oj
q is an operation that can help performTr, the consequent requires

Aj to choose operationOj
q. Note that every pair of variablesAi andAj have an EC

constraint between them. IfAj is not required forTr, condition (2) is false and EC is

trivially satisfied.

5.6.1 Correctness of Mapping I

We now show that Mapping I can be used to model a given SCF resource allocation

problem as a DyDisCSP. Theorem 9 states that our DyDisCSP always has a solution.

This means the constraints as defined above are not inconsistent and thus, it is always

possible to solve the resulting DyDisCSP. Theorem 10 then states that if agents reach

a solution, all tasks are (being) performed. Note that the converse of the Theorem 10

does not hold, i.e. it is possible for agents to be performingall tasksbeforea solution
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to the DyDisCSP is reached. This is due to the fact that when all current tasks are being

performed, agents whose operations are not necessary for the current tasks could still

be violating some constraints.

Theorem 9 Given an unrestricted SCF Resource Allocation Problem〈Ag,Ω,Θ〉, Θcurrent

⊆ Θ, a solution always exists for the DyDisCSP obtained from Mapping I.

Proof: We proceed by presenting a solution to any given DyDisCSP problem obtained

from Mapping I.

Let B = {Ai ∈ A | ∃Tr ∈ Θcurrent, ∃O
i
p ∈ Υ(Tr)}. B contains precisely those

agents who have an operation that can contribute to some current task. We will first

assign values to variables inB, then assign values to variables that are not inB. If

Ai ∈ B, we assignAi = Oi
pTryes, whereTr ∈ Θcurrent andOi

p ∈ Υ(Tr). We know

suchTr andOi
p exist by the definition ofB. If Ai 6∈ B, we may choose anyOi

pTrno ∈

Domain(Ai) and assignAi = Oi
pTrno.

To show that this assignment is a solution, we first show that it satisfies the EC

constraint. We arbitrarily choose two variables,Ai andAj, and show that EC(Ai, Aj)

is satisfied. We proceed by cases. LetAi, Aj ∈ A be given.

• case 1:Ai 6∈ B SinceAi = Oi
pTrno, condition (1) of EC constraint is false and

thus EC is trivially satisfied.
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• case 2:Ai ∈ B, Aj 6∈ B Ai = Oi
pTryes in our solution. Lettr ∈ Tr, Oi

p ∈ tr.

We know thatTr ∈ Θcurrent and sinceAj 6∈ B, we conclude that6 ∃Oj
q ∈ tr.

Condition (2) of the EC constraint is false and thus EC is trivially satisfied.

• case 3:Ai ∈ B, Aj ∈ B Ai = Oi
pTryes andAj = Oj

qTsyes in our solution.

Let tr ∈ Tr, Oi
p ∈ tr. Ts andTr must be strongly conflict free since both are in

Θcurrent. If Ts 6= Tr, then 6 ∃ Oj
n ∈ Ω, Oj

n ∈ tr. Condition (2) of EC(Ai,Aj) is

false and thus EC is trivially satisfied. IfTs = Tr, then EC is satisfied sinceAj is

helpingAi performTr.

Next, we show that our assignment satisfies the LC constraints. If Ai ∈ B then

Ai = Oi
pTryes, and LC1, regardless of the truth value of P, is clearly not violated.

Furthermore, it is the case thatOi
p succeeds, sinceTr is present. Then the predicate P

of LC2 is not true and thus LC2 is not present. IfAi 6∈ B andAi = Oi
pTrno, it is the

case thatOi
p is executed and, by definition, does not succeed. Then, the predicate P of

LC1 is not satisfied and thus LC1 is not present. LC2, regardless of the truth value of

P, is clearly not violated. Thus, the LC constraints are satisfied by all variables. We can

conclude that all constraints are satisfied and our value assignment is a solution to the

DyDisCSP.2

Theorem 10 Given an unrestricted SCF Resource Allocation Problem〈Ag,Ω,Θ〉, Θcurrent

⊆ Θ and the DyDisCSP obtained from Mapping I, if an assignment ofvalues to vari-

ables in the DyDisCSP is a solution, then all tasks inΘcurrent are performed.
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Proof: Let a solution to the DyDisCSP be given. We want to show that all tasks in

Θcurrent are performed. We proceed by choosing a taskTr ∈ Θcurrent. Since our

choice is arbitrary and tasks are strongly conflict free, if we can show that it is indeed

performed, we can conclude that all members ofΘcurrent are performed.

Let Tr ∈ Θcurrent be given. By theNotification Assumption, some operationOi
p,

required byTr will be executed. However, the corresponding agentAi, will be unsure

as to which task it is performing whenOi
p succeeds. This is due to the fact thatOi

p

may be required for many different tasks. It may choose a task, Ts ∈ T (Oi
p), and LC1

requires it to assign the valueOi
pTsyes. We will show thatAi could not have chosen

incorrectly since we are in a solution state. The EC constraint will then require that

all other agentsAj , whose operations are required forTs also execute those operations

and assignAj = Oj
qTsyes. We are in a solution state, so LC2 cannot be present forAj .

Thus,Oj
q succeeds. Since all operations required forTs succeed,Ts is performed. By

definition,Ts ∈ Θcurrent. But since we already know thatTs andTr have an operation

in common, the Strongly Conflict Free condition requires that Ts = Tr. Therefore,Tr

is indeed performed.2
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5.7 Mapping WCF Problems into DyDisCSP

This section begins with a discussion of the difficulty in using Mapping I for solving

WCF problems. This leads to the introduction of a second mapping, Mapping II, which

is able to map WCF problems into DyDisCSP.

Our first mapping has allowed us to solve SCF resource allocation problems. How-

ever, when we attempt to solve WCF resource allocation problems with this mapping,

it fails because the DyDisCSP becomes overconstrained. This is due to the fact that

Mapping I requires all agents who can possibly help perform atask to do so. If only

three out of four agents are required for a task, Mapping I will still require all four

agents to perform the task. In some sense, this results in an overallocation of resources

to some tasks. This is not a problem when all tasks are independent as in the SCF

case. However, in the WCF case, this overallocation may leave other tasks without

sufficient resources to be performed. One way to solve this problem is to modify the

constraints in the mapping to allow agents to reason about relationships among tasks.

However, this requires adding n-ary (n > 2) external constraints to the mapping. This

is problematic in a distributed situation because there areno efficient algorithms for

non-binary distributed CSPs. Existing methods require extraordinary amounts of inter-

agent communication. Instead, we create a new mapping by extending mapping I to

n-ary constraints, then taking its dual representation. Inthe dual representation, vari-

ables correspond to tasks and values correspond to operations. This allows all n-ary
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constraints to belocal within an agent and all external constraints are reduced to equal-

ity constraints. Restricting n-ary constraints to be localrather than external is more

efficient because it reduces the amount of communication needed between agents. This

new mapping, Mapping II, allocates only minimal resources to each task, allowing

WCF problems to be solved. Mapping II is described next and proven correct. Here,

each agent has a variable for each task in which its operations are included.

Mapping II: Given a Resource Allocation Problem〈Ag, Ω, Θ〉, the corresponding

DyDisCSP is defined as follows:

• Variables: ∀Tr ∈ Θ, ∀Oi
p ∈ Υ(Tr), create a DyDisCSP variableTr,i and assign

it to agentAi.

• Domain: For each variableTr,i, create a valuetr,i for each minimal set inTr,

plus a “NP” value (not present). The NP value allows agents toavoid assigning

resources to tasks that are not present and thus do not need tobe performed.

In this way, we have a variable for each task and a copy of each such variable

is assigned to each agent that has an operation for that task.For example in Figure

5.2, Agent A1 has one variable,T1,1, Agent A2 has one variableT1,2, Agent A3 has

two variables,T1,3 andT2,3, one for each task it can perform, and Agent A4 has two

variables,T1,4 andT2,4. The domain of eachT1,i variable has five values, one for each

of the four minimal sets as described in Section 5.2, plus theNP value.
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Next, we must constrain agents to assign non-NP values to variables only when

an operation has succeeded, which indicates the presence ofthe corresponding task.

However, in dynamic problems, an operation may succeed at some time and fail at

another time since tasks are dynamically added and removed from the current set of

tasks to be performed. Thus, every variable is constrained by the following dynamic

local constraints.

• Dynamic Local (Non-Binary) Constraint (LC1) :

∀Ai ∈ Ag, ∀Oi
p ∈ Op(Ai), let B = { Tr,i | O

i
p ∈ Tr }. Then let the constraint be

defined as a non-binary constraint over the variables in B as follows:

Predicate P:Oi
p succeeds

Constraint C:∃Tr,i ∈ B Tr,i 6= NP.

• Dynamic Local Constraint (LC2): ∀Tr ∈ Θ, ∀Oi
p ∈Υ(Tr), let the constraint be

defined onTr,i as follows:

Predicate P:Oi
p does not succeed

Constraint C:Tr,i = NP.

We now define the constraint that defines a valid allocation ofresources and the

external constraints that require agents to agree on a particular allocation.

• Static Local Constraint (LC3): ∀Tr,i, Ts,i, if Tr,i = tr,i andTs,i = ts,i, thentr,i

andts,i cannot conflict. NP does not conflict with any value.

130



• External Constraint (EC) : ∀i, j, r Tr,i = Tr,j.

For example, if Agent A4 assignsT1,4 = {O1
0, O2

2, O4
2}, then LC3 says it cannot

assign a minimal set to its other variableT2,4, that contains any operation of either

Agent A1, A2 or A4. SinceT2,4 has only one minimal set,{O3
0, O4

2} which contains

Agent A4, the only compatible value is NP. Note that if Target1 and 2 are both present

simultaneously as shown in Figure 5.2, the situation is overconstrained since the NP

value will be prohibited by LC1.

5.7.1 Correctness of Mapping II

We will now prove that Mapping II can be used to represent any given WCF Resource

Allocation Problem as a DyDisCSP. As in Mapping I, the Theorem 11 shows that our

DyDisCSP always has a solution, and the Theorem 12 shows thatif agents reach a

solution, all current tasks are performed.

Theorem 11 Given a WCF Resource Allocation Problem〈Ag,Ω,Θ〉, Θcurrent ⊆ Θ,

there exists a solution to DyDisCSP obtained from Mapping II.

Proof: For all variables corresponding to tasks that are not present, we can assign

the value “NP”. This value satisfies all constraints except possibly LC1. But the P

condition must be false since the task is not present, so LC1 cannot be violated. We are

guaranteed that there is a choice of non-conflicting minimalsets for the remaining tasks

131



(by the WCF condition). We can assign the values corresponding to these minimal sets

to those tasks and be assured that LC3 is satisfied. Since all variable corresponding to a

particular task get assigned the same value, the external constraint is satisfied. We have

a solution to the DyDisCSP.2

Theorem 12 Given a WCF Resource Allocation Problem〈Ag,Ω,Θ〉, Θcurrent ⊆Θ and

the DyDisCSP obtained from Mapping II, if an assignment of values to variables in the

DyDisCSP is a solution, then all tasks inΘcurrent are performed.

Proof: Let a solution to the DyDisCSP be given. We want to show that all tasks in

Θcurrent are performed. We proceed by contradiction. LetTr ∈Θcurrent be a task that is

not performed in the given solution state. Condition (i) of theNotification Assumption

says some operationOi
p, required byTr will be executed and (by definition) succeed.

LC1 requires the corresponding agentAi, to assign a minimal set to some task which

requiresOi
p. There may be many choices of tasks that requireOi

p. SupposeAi chooses

a taskTs. Ai assigns a minimal set, sayts, to the variableTs,i. The EC constraint will

then require that all other agentsAj , who have a local copy ofTs calledTs,j, to assign

Ts,j = ts. In addition, ifAj has an operationOj
q in the minimal setts, it will execute

that operation. Also, we know thatAj is not already doing some other operation since

ts cannot conflict with any other chosen minimal set (by LC3).

We now have two cases. In case 1, supposeTs 6= Tr. Condition (ii) of theNotifi-

cation Assumptionstates thatTr is the only task that both requiresOi
p and is actually
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present. Thus,Ts cannot be present. By definition, ifTs is not present, it cannot be

performed. If it cannot be performed, there cannot exist a minimal set ofTs where all

operations succeed (def of “performed”). Therefore, some operation ints must fail.

Let Oj
q be an operation of agentAj that fails. SinceAj has assigned valueTs,j = ts,

LC2 is violated byAj . This contradicts the fact we are in a solution state. Case 1 is

not possible. This leaves case 2 whereTs = Tr. Then, all operations ints succeed and

Tr is performed. We assumedTr was not performed, so by contradiction, all tasks in

Θcurrent must be performed.2

5.8 Mapping OC Problems into DCOP

In the previous sections we were able to represent dynamic problems only by limiting

ourselves to SCF and WCF problems. In this section we consider OC problems where

we must deal with an optimization problem. Since effective distributed constraint opti-

mization algorithms for dynamic problems do not currently exist, we are forced to limit

ourselves to static problems.

We assume we are given aweight functionw: T → N that quantifies the cost

of not completing a task. The goal is for the agents to find aTignore ⊆ T such that

∑

T∈Tignore
w(T ) is minimized and there are enough agents to complete all tasks in

T \ Tignore.
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We informally outline the mapping of OC problems into DCOP. While we do not

formally prove its correctness, this mapping is presented mainly to illustrate the ver-

satility of the constraint representation in its ability tomodel optimization-based dis-

tributed resource allocation problems. Mapping III converts an overconstrained dis-

tributed resource allocation problem into a DCOP thereby allowing an algorithm such

as Adopt to be used to solve such problems.

Mapping III: Given a static Resource Allocation Problem〈Ag, Ω, Θ〉, the corre-

sponding DCOP is defined over a set ofn variables.

• A = {A1, A2,...,An}, one variable for eachAi ∈ Ag.

The domain of each variable is given by:

• ∀Ai ∈ Ag, Dom(Ai) = set of operationsAi could possibly execute.

The above is similar to Mapping I except that{yes, no} values are not needed.

This is because we no longer need to deal with ambiguity sincewe have assumed a

static problem. This also means that our constraints will bestatic. We define an n-ary

constraint for each task. For each taskT , we define an n-ary constraint over all the

agents/variables who could possibly contribute doingT . The constraint is avalued

constraint whose cost function is shown in Figure 5.4. Suppose we have task T1 from

Figure 5.2. If the maximum number of agents (all four agents A1,A2,A3,A4) choose to

perform the operations for T1, then the agents pay zero cost on the n-ary constraint that
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A1   A2   A3  A4      Cost

T1     T1    T1    T1        0 

T1     T1    T1    T2      w(T1)/4

T1     T1    T2    T2     w(T1)/2

T1     T3    T2    T2      w(T1)

Minimal Set of T1 = {A1, A2, A3, A4} 

N−ary constraint for T1:

Figure 5.4: N-ary constraint for Mapping III
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Figure 5.5: Graph of cost function for n-ary constraint for Mapping III

corresponds to T1. This is shown in first row of the cost table in Figure 5.4. If one of

the agents decides not to allocate itself to T1 and instead dosome other task, the cost

on this constraint is increased to 1/4 the weight of the task.This is shown in the second

row of the cost table. Similar for the third row. Finally, in the fourth row, only one

agent allocated to the task. This is considered worthless and the agents pay the full cost

for not performing this task. Figure 5.5 is a graphical depiction of this cost function.
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One potential problem with Mapping III is that it requires agents to solve DCR

problems containing n-ary constraints which can be expensive. However, similar to the

technique used to change from Mapping I and II, we can convertMapping III into its

dual representation which has only binary constraints.
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Chapter 6

Related Work

6.1 Related Work in Distributed Constraint Reasoning

This section discusses related work in distributed constraint reasoning for multiagent

domains. Section 6.1.1 provides an discussion of work on distributed constraint satis-

faction relevant to DCOP, while section 6.1.2 provides an overview of various existing

approaches to DCOP.

6.1.1 Distributed Constraint Satisfaction

Yokoo, Hirayama and others have studied the DisCSP problem in depth and a family of

sound and complete algorithms for solving these types of problems in a decentralized

manner exist [50]. This has been an important advance and provides key insights that
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influence the work presented here. However, existing distributed search methods for

DisCSP do not generalize easily to DCOP.

Armstrong and Durfee [1] investigate the effect of agent priority orderings on effi-

ciency in DisCSP. They show that variable ordering heuristics from CSP can be reused

as priority orderings in DisCSP and that dynamic reorderingis also a useful technique.

These results could potentially be generalized and appliedto DCOP. Silaghi, Sam-

Haroud and Faltings [40] present an alternative representation of DisCSP in which

constraints are assigned to agents while variables are shared between agents. This ap-

proach allows the distributed constraint paradigm to be applied in distributed domains

where constraints cannot be shared, perhaps for privacy reasons, but variables may be

assigned to multiple agents. Representing DCOP in this manner is an interesting direc-

tion of future work.

6.1.2 Distributed Constraint Optimization

Table 6.1 outlines the state of the art in existing approaches to DCOP. Methods are

parameterized by communication model (asynchronous or synchronous), completeness

(guaranteed optimal solutions for DCOP), and “distributedness”. We assume that a

method is not distributed if all agents are required to communicate directly with a single

agent irrespective of the underlying constraint network. The individual approaches are

discussed further below.

138



Table 6.1: Characteristics of Distributed Constraint Optimization Methods
Method Asynch? Optimal? Dist?
Satisfaction-Based Search[24][17] N N Y
Local [16][12] Y N Y
Synchronous Search [16] N Y Y
Greedy Repair [22] N N N
Asynchronous Best-First Search (Adopt) Y Y Y

Satisfaction-based methods.This method leverages existing DisCSP search algo-

rithms to solve special classes of DCOP, e.g. overconstrained DisCSP. In overcon-

strained DisCSP, the goal is to optimize a global objective function by relaxing con-

straints since no completely satisfactory solution may be possible. The approach typi-

cally relies on converting the DCOP into a sequence of satisfaction problems in order

to allow the use of a DisCSP algorithm. This can be done by iteratively removing con-

straints from the problem until a satisfactory solution is found. However, a drawback

of this approach is that agents need to repeatedly synchronize to remove constraints (al-

though the satisfaction-based search component may be asynchronous). Hirayama and

Yokoo [17] show that this approach can find optimal solutionsfor a limited subclass

of optimization problems, namely overconstrained DisCSP in which solutions can be

structured into hierarchical classes. Liu and Sycara [24] present another similar itera-

tive relaxation method, Anchor&Ascend, for heuristic search in a job-shop scheduling

problem. These satisfaction-based methods fail to generalize to the DCOP defined

in this work since agents are not able to asynchronously determine which constraints

should be relaxed to obtain the optimal solution.
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Local Methods.In this approach, agents are oblivious to non-local costs and simply

attempt to minimize costs with respect to neighboring agents. Methods such as random

value change or dynamic priority ordering may be used for escaping local minima. In

this method, no guarantees on solution quality are available even if given unlimited

execution time. Furthermore, agents cannot know the quality of the solution they have

obtained. Examples of this approach include the Iterative Distributed Breakout (IDB)

algorithm[16]. This algorithm utilizes the Satifaction-Based approach described above,

and so is limited in the type of DCOP it can address. In particular, IDB is applicable to a

particular class of DCOP in which agents wish to minimize themaximum cost incurred

at any agent. This type of criterion function has the specialproperty that some agent

can always locally determine the global cost of the current solution without knowledge

of the cost incurred at other agents. For this class of DCOP, IDB is empirically shown

to find good solutions quickly but cannot guarantee optimality.

Fitzpatrick and Meertens [12] present a simple distributedstochastic algorithm for

minimizing the number of conflicts in an overconstrained graph coloring problem.

Agents change variable value with some fixed probability in order to avoid concur-

rent moves. No method for escaping local minimum is used. Thealgorithm is shown

empirically to quickly reduce the number of conflicts in large sparse graphs, even in

the face of noisy/lossy communication. It is unknown how this approach would work

in general since the quality of local minima can be arbitrarily poor.
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Synchronous Search.This approach can be characterized as simulating a central-

ized search method in a distributed environment by imposingsynchronous, sequential

execution on the agents. It is seemingly straightforward tosimulate centralized search

algorithms in this manner. An example includes SynchBB (Synchronous Branch and

Bound) [16]. While this approach yields an optimal distributed algorithm, the imposi-

tion of synchronous, sequential execution can be a significant drawback.

Greedy Repair.Lemaitre and Verfaille [22] describe an incomplete method for solv-

ing general constraint optimization problems. They address the problem of distributed

variables by requiring a leader agent to collect global costinformation. Agents then per-

form a greedy repair search where only one agent is allowed tochange variable value at

a time. Since all agents must communicate with a single leader agent, the approach may

not apply in situations where agents may only communicate with neighboring agents.

6.1.3 Other Work in DCOP

R. Dechter, A. Dechter, and Pearl [9] present a theoretical analysis of the constraint op-

timization problem establishing complexity results in terms of the structure of the con-

straint graph and global optimization function. In addition, they outline an approach for

distributed search for the optimal solution based on dynamic programming, although no

algorithm or empirical results are given. They do not deal with asynchronous changes

to global state or timeliness of solution.
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Parunaket al [32] describe the application of distributed constraint optimization

to the design of systems that require interdependent sub-components to be assembled

in a manufacturing domain. The domain illustrates the unique difficulties of interde-

pendencies between sub-problems in distributed problem solving and illustrates the

applicability of the distributed constraint representation. Frei and Faltings [13] focus

on modelling bandwidth resource allocation as a CSP. Although they do not deal with

distributed systems, they show how the use of abstraction techniques in the constraint

modelling of real problems results in tractable formulations.

6.2 Related Work in Multiagent Systems

A variety of researchers have focused on formalizing resource allocation as a central-

ized CSP[13]. In addition, the Dynamic Constraint Satisfaction Problem has been stud-

ied in the centralized case by [38]. In centralized CSP, there is no distribution or ambi-

guity during the problem solving process. However, the factthat the resource allocation

problem is inherently distributed in many domains means that ambiguity must be dealt

with. We also categorize different resource allocation problems and provide detailed

complexity results.

Distributed sensor networks have gained significant attention in recent years. Sen-

sor hardware nodes are becoming more sophisticated and ableto support increasing

levels of both computation and communication. This trend, in turn, has lead to the
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consideration of the Distributed AI (DAI) and the Multiagent perspective for address-

ing technical problems in distributed sensor networks [28][27] [18] [36] [41] [45].

Mailler and Lesser [28] propose the SPAM protocol for multi-stage mediated nego-

tiation. In multi-stage negotiation, a quick solution is found in the first stage and

if remaining time is available, a second stage attempts to refine the solution to im-

prove global quality. The negotiation is mediated by multiple managers who negotiate

amongst themselves on behalf of the sensor agents. SPAM has also been generalized

to more abstract DisCSP domains [27]. Soh and Tsatsoulis [41] describe a case-based

reasoning approach where agents choose different negotiation strategies depending on

environmental circumstances in order to collaboratively track moving targets. Vincent

et al. [45] and Horling et al. [18] bring existing multi-agent technologies, such as

the TAEMS modelling language [10] and the Design-to-Criteria plan scheduler [46],

to bear on the distributed sensor network problem. These approaches report positive

results in customizing and applying existing DAI technologies to the specific problem

of coordination in distributed sensor networks.

There is significant research in the area of distributed resource allocation. For

instance, Liu and Sycara [25] address resource allocation in the distributed job-shop

scheduling problem. The solution technique presented is anextension of local dispatch

scheduling – the extension allows agents to use non-local information to make their

local decisions. Schedules are shown to improve using this technique. Chia et al’s [7]
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work on job-shop scheduling for airport ground service schedules is another example of

distributed resource allocation. The authors are able to reduce schedule inefficiencies

by allowing agents to communicate heuristic domain specificinformation about their

local jobs. Finally, the Distributed Vehicle Monitoring Testbed (DVMT) of Lesser et

al. [23] is well known in distributed AI as a domain for distributed problem solving. A

set of problem-solving nodes must cooperate and integrate distributed sensing data to

accurately track a moving vehicle. This domain is inherently distributed and exhibits

both dynamics and ambiguity. To summarize, while previous work in distributed re-

source allocation has been effective for particular problem domains, a formalization

of the general problem which allows tractable subclasses tobe identified, is yet to be

developed.

A recent approach to distributed resource allocation that has received significant

attention is that of market-based systems, or multi-agent auctions[49]. We view these

approaches as complementary to a distributed constraints approach. Indeed, Sandholm

and Suri [35] discuss the need for non-price attributes and explicit constraints in con-

juction with market protocols. Briefly, price-based searchtechniques coordinate a set

of agents by allowing them to buy and sell goods in order to maximize local utility. This

approach has been used effectively to structure distributed search in many multi-agent

domains including multi-commodity flows [49], multi-agenttask allocation [47] and

even distributed propositional satisfiability [48].
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One of the main features of market-based systems is that agents communicate only

in terms of prices. The price of a good is a compact way to implicitly convey to an agent

non-local information about the global utility of obtaining some good. This is a key

advantage in open systems where agents cannot be trusted. However, the market-based

approach may be unnecessarily restrictive in many collaborative multiagent domains.

In collaborative domains, agents may be able to reach globaloptimal solutions faster by

exchanging more information beyond prices. However, the market-based approach in

collaborative multi-robot scenarios has been investigated by Gerkey and Mataric [14].

In conclusion, much research remains to be done to compare and contrast market-based

systems and distributed constraints as competing technologies for distributed resource

allocation.
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Chapter 7

Conclusion

Motivated by the need to design collaborative agents that are able to reason about how

their decisions interact with each other and with a global objective, this dissertation

makes several contributions to the field of Multiagent Systems. We review these con-

tributions next.

• We have presented the Adopt algorithm for Distributed Constraint Optimization

(Chapter 3). In Adopt, agents execute in a completely decentralized manner and

communicate asynchronously and locally. The algorithm is proven to terminate

with the globally optimal solution. Empirical results in a benchmark domain

show that Adopt achieves significant orders of magnitude efficiency gains over

competing methods. Additionally, we show that the algorithm is robust to loss of

messages.
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The above benefits are derived from our general idea that in a distributed environ-

ment agents should perform optimization based on conservative solution quality

estimates. By communicating conservative estimates asynchronously, we allow

agents to make the best decisions possible given currently available information.

If more accurate estimates are asynchronously received from others, an agent can

revise its decisions as necessary.

• We have proposed bounded-error approximation as a flexible method for dealing

with domains where time for problem solving is limited (Chapter 4). The key idea

is to allow the user (or potentially an agent itself) to provide the algorithm with

an allowance on suboptimality (an error bound). We show thatby increasing the

given error bound, the time to solution is decreased significantly. These results

are significant because, in contrast to incomplete search methods, Adopt provides

the ability to find solutions faster when time is limited but without giving up

theoretical guarantees on solution quality.

• We have given a detailed complexity analysis of distributedresource allocation

and provided general mapping strategies for representing it via distributed con-

straints (Chapter 5). The mapping strategies are theoretically proven to correctly

represent distributed resource allocation problems. Thiscontribution is signifi-

cant because it enables existing distributed constraint technologies to be brought

147



to bear directly onto the distributed resource allocation problem without signifi-

cant re-modeling effort.
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Chapter 8

Future Work

• Dynamic, real-time environments. A key challenge for distributed inter-agent

reasoning is operating in rapidly changing environments. Existing methods as-

sume a “one-shot” problem solving process, where agents finda solution and

terminate. However, many coordination problems require agents to dynamically

modify their decisions over time as environmental changes occur. How can this

be done efficiently, without restarting problem solving from scratch?

The distributed reasoning techniques presented in this dissertation provide sig-

nificant steps towards addressing this challenge. Indeed, dynamic environments

only increase the saliency of our key premise: that obtaining global knowledge in

a distributed environment is difficult. In such situations,it is essential that agents

are able to make the best decisions possible with currently available information.

If things change, the information may be updated and new decisions made. In
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addition, our techniques that allow agents to find approximate solutions quickly,

but improve those solutions if time permits, provides a promising path forward

for flexibly dealing with real-time situations.

• Loss of agents. Agent failure is an important problem in manyreal-world do-

mains. Sensor nodes may cease to function, robots may run outof battery power,

or adversaries may interfere with agents in the system. Designing algorithms that

are robust to such failures is an open question in Distributed Constraint Reason-

ing.

One possible approach in Adopt is to devise a method to dynamically update

the agent ordering when some agent is lost. For example, the children of the

lost agent may reconnect to the parent of the lost agent. It may be possible to

seemlessly continue algorithm execution by patching the tree structure in this

manner. The difficulty lies in detecting that an agent has been lost, identifing

how to patch the tree in a distributed manner, and ensuring that the algorithm’s

optimality guarantee is maintained.

• Rogue agents. In open domains, such as multiagent systems that operate over the

internet, not all agents can be trusted. Agents may send messages to others that

contain false information in order to further private goals. Multiagent research

in incentive-compatibility is concerned with ensuring that agents are truthful. In
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non-collaborative domains, if such a method can be used to ensure that agents

communicate truthfully, then Adopt may be applied. Thus, while Adopt was

designed with collaborative agents in mind, it is rather indifferent to whether

agents are actually collaborative or not, provided they arecompeled to tell the

truth through some other mechanism.

• Scale-up. How can we perform distributed optimization withquality guarantees

as we increase the number of agents, say to 100 or 1000s? At this scale, decom-

position becomes a key technique for dealing with problems.Agents may be able

to decompose a large DCOP into smaller subproblems corresponding to smaller

communities of agents. A key outstanding challenge is how todo the decomposi-

tion so that the small communities can do problem solving independently without

large or unknown effects on overall quality.
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