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Abstract. Coordination between large teams of highly heterogeneous
entities will change the way complex goals are pursued in real world en-
vironments. One approach to achieving the required coordination in such
teams is to give each team member a proxy that assumes routine coordi-
nation activities on behalf of its team member. Despite that approach’s
success, as we attempt to apply this first generation of proxy architec-
ture to larger teams in more challenging environments, some limitations
become clear. In this paper, we present initial efforts on the next gen-
eration of proxy architecture and Team Oriented Programming (TOP),
called Machinetta. Machinetta aims to overcome the limitations of the
previous generation of proxies and allow effective coordination between
very large teams of highly heterogeneous agents. We describe the princi-
ples underlying the design of the Machinetta proxies and present initial
results from two domains.

1 Introduction

Exciting emerging applications require hundreds or thousands of robots, agents
and people (RAPs) to coordinate to achieve their joint goals. In domains such
as military operations, space or disaster response, coordination between large
numbers of agents can revolutionize our ability to achieve complex goals. Such
domains are characterized by widely distributed entities with limited communi-
cation channels between them. The environments often change dynamically and
will in some cases be hostile.

An emerging standard for creating robust, highly heterogeneous teams is an
architecture that uses semi-autonomous proxy agents to create an homogeneous
coordination layer “above” the highly heterogeous agents [18]. By providing each
agent with a proxy that has teamwork knowledge we raise the coordination
ability of the agent-proxy pair to the level at which the rest of the team is
operating. Via the use of adjustable autonomy [9], the amount of coordination
ability that proxy actually provides (and the amount which the agent provides) is
dynamically adjusted to the particular context of the agent at that point in time.
The proxies manage the coordination, performing the routine operations that are
required for cooperation; e.g., informing others when plans are completed, and



assisting in the handling of exceptional situations; e.g., finding RAPs to fulfill
roles due to failures or overloading. The proxies also assist in making adjustments
to the plan the group is following when required. The proxies also perform more
routine tasks, such as information sharing, that ensure the continued smooth
operation of the team, while freeing the agent from engaging in these activities.
One approach to achieving the required coordination in teams for such domains,
is to give each team member a prozy that assumes routine coordination activities
on behalf of its team member[11].

The relatively homogeneous proxies allow developers to write Team Oriented
Programs (TOPs) which are executed according to the coordination algorithms
the programmer knows the proxy is using[12]. For example, TEAMCORE proxies
implement the STEAM interpretation of teamwork[17]. Programmers creating
TOPs need not concern themselves with specifying low level coordination details.
Instead, they specify the activities of the team with high level primitives such
as roles and team plan operators. Writing TOPs at this high level of abstraction
makes it feasible for a programmer to quickly specify complex team activities.
A variety of interesting applications have shown the utility of the proxy based
teams architecture, e.g., the Electric Elves[1] and interactions with autonomous
systems for space missions[15].

Despite their successes, the first generation proxy architectures suffer from
three key limitations when handling: scale, dynamism, and effective integration
of humans in agent teamwork. First, in small-scale teams, agents can be allo-
cated to roles by hand prior to starting up team activities; although limited
reallocation can occur at run-time. Unfortunately, in large-scale teams, off-line
allocation of agents to roles by hand is difficult. Second, a high level of dynamism
in the environment requires that agents’ role allocation and reallocation strat-
egy must often be integrated into one unified fluid algorithm, rather than as two
separate phases (allocation and reallocation) as seen in existing architectures.
Furthermore, agents must consider role reallocation not only under catastrophic
failures (as was done previously), but must be willing to give up current roles
to take up new precious opportunities. Third, as we build increasingly heteroge-
neous teams, and particularly include humans in the loop, we must enable the
proxies to tap into human expertise when coordinating key situations. Previous
research on teamwork has allowed agents and humans to work together, but the
human participation was limited to domain level activities. Proxies should be
able to use human enterprise for both domain activities and coordination.

In this chapter, we present initial efforts on the next generation of TOP and
proxy architecture, called Machinetta. Machinetta aims to overcome the limita-
tions of the previous generation of proxy and allow effective coordination between
very large teams of highly heterogeneous agents. To achieve this, Machinetta
embodies several new design principles. To address the first two limitations dis-
cussed above, Machinetta has a fluid, integrated role allocation and reallocation
algorithm. Within this algorithm, agents attempt to continually allocate and re-
allocate themselves to new tasks. When new tasks/opportunities arise, or when
agents’ capabilities decline substantially, agents reconsider their current commit-



ments to roles; thus, agents may change roles even without catastrophic failures.
This new integrated algorithm enables a much more flexible response to dynamic
environments.

Many heuristics used by a team fail under some circumstances. However,
the answer is not simply to replace current coordination algorithms with new
ones. If a big enough team is put into a complex enough environment there
are, despite our best efforts, bound to be situations where any coordination
algorithms perform very poorly or breaks altogether. A key idea in Machinetta is
to acknowledge that such problems are going to occur and build in mechanisms
for meta-reasoning to handle those situations. This is achieved by making as
much of the coordination process as possible explicit, thus making it easier to
monitor the coordination and understand when problems occur. For example,
we use a role allocation algorithm[14] that represents each role to be allocated as
an explicit role. If the role of allocating the role goes unachieved for some period
of time, i.e., because the standard role allocation algorithm does not succeed
in allocating it, the team can detect this situation and recursively invoke meta-
reasoning about a ”role allocation role”.

With respect to involving humans in coordination (and not just in domain-
level tasks), the meta-reasoning capability provides a helpful mechanism. In par-
ticular, when meta-reasoning about coordination, agents can appeal to human
input. However, humans could provide input that may not necessarily be in
agreement with choices made by the coordination algorithm. Thus, given the
possibility of such arbitrary changes by humans to coordination algorithms, the
algorithms must be robust to decisions that are “wrong” according the algorithm.
For example, a human may arbitrarily (so far as the proxies are concerned) de-
cide to terminate a plan and the proxies must implement this decision.

The final change in direction for the new generation of proxy is the proper-
ties that we aim to prove for the key algorithms. With relatively small teams,
establishing properties such as optimality is important. However, proofs of such
algorithm properties typically rely on assumptions such as the underlying situa-
tion not changing while the algorithm is executing. While such assumptions are
very reasonable for small teams, they are not so interesting for very large teams
where the assumptions will never be met. The critical point is that large enough
teams in complex enough environemts will be in a constant state of change. For
example, in a large team for disaster recovery in a large city, some team member
will always be completing, abandoning or beginning a task. The inherent, con-
tinuous dynamics makes other algorithmic properties interesting. For example,
the ”stability” of the system — will one team member’s failure to complete a role
lead to many role reallocations or will the effects be limited? Another interesting
property would be to show that certain events will never happen, or happen only
with a very low probability. For example, we may be able to prove that some
team member will always eventually accept a role, if its priority is above some
threshold. Our current approach is to use the theory of dynamic patterns [7] to
model and understand the system’s properties.



In the remainder of this chapter we present Machinetta in detail, showing
how it embodies the principles discussed above. We also present a graphical
development environment for specifying Machinetta plans. We show preliminary
results from using Machinetta in two domains, a fire fighting domain and a
distributed sensor domain.

2 Proxies

Machinetta proxies are lightweight, domain-independent software modules, ca-
pable of performing the activities required to work cooperatively within a larger
team on TOPs. The proxies are implemented in Java and are designed to run
on a number of platforms including laptops and handheld devices. A proxy’s
software is made up of five components (see Figure 1):

Communication: communication with other proxies

Coordination: reasoning about team plans and communication

State: the working memory of the proxy

Adjustable Autonomy: reasoning about whether to act autonomously or pass
control to the RAP

RAP Interface: communication with the RAP

Each component abstracts away details allowing other components to work
without considering those details. For example, the RAP interface component
is aware of what type of RAP it is connected to and the methods of interacting
with the RAP, while the adjustable autonomy component deals with the RAP as
an abstract entity having particular capabilities. Likewise, the communication
component will be tailored to the RAP communication abilities, e.g., wireless
or wired, but the coordination component will only be told available bandwidth
and cost of communication.
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Fig. 1. Proxy software architecture.

A critical component in deploying the proxies is the mechanism by which they
interact with their RAPs. The adjustable autonomy component is responsible for
deciding what interaction should happen with the RAP, but the RAP interface



component manages that interaction. The RAP interface component is the only
part of the proxy that needs to be designed for a specific type of RAP. These
components are very diverse, matching the very diverse RAPs. For example,
the RAP interface for a person playing the role of fire chief in the disaster
rescue domain is a large graphical interface, while for the agents, a simple socket
communicating a small, fixed set of messages is sufficient. Since the proxies
interact closely with their RAPs, it is desirable to have them in close physical
proximity. For mobile RAPs, the proxies can be run on handheld devices that
communicate wirelessly with robots or, in the case of a person in the field, via a
graphical interface on the handheld device.

2.1 Proxy Algorithms

The proxy’s overall execution is message driven. When a message comes in from
its RAP or from another proxy, a new belief is added to the proxy’s state. The
beliefs in the state constitute the proxy’s knowledge of the status of the team
and the environment. The state operates as a blackboard, with components
writing information to the blackboard and others reacting to information written
to the blackboard. Any change to the state triggers two reasoning algorithms:
Coordination (Algorithm 1) and Adjustable Autonomy (Algorithm 2). Either
of these algorithms may in turn change the belief state, which will once again
trigger the algorithms.

Algorithm 1 shows the Coordination algorithm, which instantiates the the-
ory of joint commitments[3] as operationalized by STEAM. The functions, es-
tablishJointCommitment and endJointCommitment establish or terminate com-
mitments by communicating with other proxies when a new belief triggers the
start or end of a team plan. In the algorithm, the function communicate? re-
turns true if the capability or role progress information should be communicated
to others. This function encapsulates previous work on determining policies for
communicating such information with team members[10].

Algorithm 1: Coordination
COORDINATION(Bip)
(1) foreach b € B,
(2) if b is CapabilityInformation or Role Progress
(3) if communicate?(b)
(4) sendToOthers(b)
(5) else if startTeamPlan a?(b)
(6) establishJointCommitment(a)
(7) ALLOCATEROLET0le(x)
(8) else if endTeamPlan a?(b)
9) endJointCommitment(c)
(10) return Bout
The Adjustable Autonomy algorithm (Algorithm 2) is responsible for man-
aging the interactions between the proxy and the RAP. In the algorithm, the



function tellRAP? determines if there is value in sending this particular piece of
information received from another proxy to the RAP. The shouldRAPbeAsked?
is the “core” of adjustable autonomy reasoning and is responsible for decid-
ing whether or not this particular coordination decision should be handled au-
tonomously by the proxy or by the RAP. The if statement beginning on Line 2
shows the basic processing that the proxy performs when its RAP is offered a
new role. First, it decides whether to act autonomously. If so, it decides whether
or not to accept the role on behalf of the RAP (see next section for more detail).

Algorithm 2: Adjustable Autonomy
ADJUSTABLEAUTONOMY (Bin)
(1) foreach b € B,

(2) if b is role offer

(3) if RAP is capable of role
(4) if shouldRAPbeAsked?
(5) Ask RAP

(6) else if accept autonomously?
(7) Bout < role accepted
(8) else

9) Bout < role rejected
(10) else if b is a new role

(11) send role to RAP

(12) return Bout

3 Executing Team Oriented Plans

Within Machinetta, team plans provide an explicit representation of the joint
goals held by all team members. As such, they allow the team members to
scope their reasoning and concentrate on only those tasks that are directly rel-
evant to the team’s currently active goals. Due to its intended use as a domain-
independent coordination architecture, Machinetta makes minimal assumptions
about the nature of team plans. In other words, the team plans provided by the
architecture are a skeleton of execution that the system designer then fleshes
out with the intended domain-specific behavior (e.g., as part of a specific RAP
behavior that triggers off team plans).

As in the original STEAM-based Teamcore architecture [11], we implement
the joint goals of the TOP via reactive team plans. Active team plans take the
form of beliefs within the proxies’ state. This explicit representation enables
the underlying architecture to reason about the means of ensuring coherent
plan execution. Because each proxy maintains separate beliefs about these joint
goals, the architecture can detect (in a distributed manner) any inconsistencies
among team members’ plan beliefs. The architecture’s primary responsibility
regarding coherent team beliefs about active goals is to synchronize the initiation
and termination of team plans. Perhaps more importantly, the proxy must also



ensure that the team makes progress toward achieving its active joint goals.
The proxies themselves have no ability to achieve goals at the domain level;
instead, they must ensure that all of the requisite domain-level capabilities are
brought to bear by instantiating the appropriate roles and filling them with the
appropriate RAPs. Section 3.1 describes the initiation of team plans, Section 3.2
describes the instantiation of the associated roles, and Section 3.3 describes the
termination of team plans.

3.1 Plan Initiation

Machinetta’s proxy-based infrastructure ensures that the team will synchronize
itself appropriately in initiating a new team plan. Thus, the team programmer
need not program such synchronization actions, because the proxies (through
the establishJointCommitment procedure in Algorithm 1) ensure such syn-
chronization, so all team members will agree on the set of active team plans.

The most common mechanism for creating team plans is to write a “team plan
template”. Such a template represents a class of possible plan instantiations. We
thus save on specification effort, since writing one team plan template replaces
the specification of many individual plans themselves. For example, we can write
one template to represent a generic plan of “Fight a fire at building z”, rather
than writing hundreds of plans of the form “Fight a fire at building 1”7, “Fight
a fire at building 2”7, “Fight a fire at building 3”, etc.

When the preconditions of a plan template match the proxy’s current state
of beliefs (i.e., when startTeamPlan « is true), a new plan belief is instantiated
with the specific details of the particular precondition match. This team plan
belief can then trigger domain-specific behavior through the interface with a
proxy’s specific RAP. The proxies dynamically instantiate plans when, during
the course of execution, their current states match a plan’s required trigger
conditions. The preconditions specify those trigger conditions, templates against
which the proxies try to match active belief objects in their proxy state. Because
we cannot anticipate all of the possible structures that a belief object may take
on, we perform this matching by converting the belief object into some canonical
string representation.

The preconditions may also include coordination constraints among team
plans. For example, subgoal relationships translate into an additional precondi-
tion on child plans (e.g., if @y is a subgoal of g, then there is a precondition
for «; requiring a current plan belief «g). We can also specify temporal con-
straints between parallel subgoals (e.g., if a3 must complete before s begins,
then there is a precondition for as requiring a current plan belief oy that has
been completed). Thus, the architecture can automatically translate coordina-
tion constraints specified at the abstract plan level into specific preconditions at
the coordination policy level.

Upon successfully triggering a new plan, the proxies perform the
establishJointCommitment procedure specified by their coordination policy.
For example, in the initial stages of development, we used a naive communi-
cation policy that established commitments by requiring communication of all



beliefs. Because all of the proxies are truthful and because we assume perfect
communication, such a policy necessarily achieves mutual belief of active team
plans. We have also implemented the STEAM policy [17] as a communication
policy that is able to more flexibly balance the costs and benefits of communi-
cation during the establishment of a new commitment.

3.2 Role Instantiation

Roles are slots for specialized execution that the team may potentially fill at run-
time. Upon instantiation of a newly triggered plan, the proxies also instantiate
any associated roles, subject to the specific triggers. The specification of such
roles is domain-specific, and may include appropriate role relationships, such
as AND, OR, and role-dependency relationships (using STEAM semantics [17]).
The initial plan specification may name particular RAPs to fill these roles, but
more typically, the roles are instantiated unfilled. These unfilled roles are then
subject to role allocation, as specified by the ALLOCATEROLE call in Algorithm 1.

3.3 Plan Termination

As in the original Teamcore architecture [11], the TOP includes each plan’s ter-
mination conditions, under which a team plan is achieved, irrelevant or unachiev-
able. Such explicit specification ensures common knowledge of such conditions,
so that the team can terminate the goal coherently. Machinetta then automat-
ically uses the termination conditions as the basis for automatically generating
the communication necessary to jointly terminate a team plan.

Postconditions are roughly identical to preconditions, except for the obvious
difference that the conditions contained within a postcondition refer to plan
termination rather than initiation. Furthermore, the conditions are not matched
against arbitrary beliefs, but rather against only those beliefs stored within the
relevant container belief object (e.g., a plan). There is another key difference,
in that we differentiate among three different types of termination states. In
particular, we distinguish whether a plan terminated because it has become
achieved, unachievable, or irrelevant (following the STEAM semantics [17]).

When a proxy’s current beliefs match the postconditions of a currently active
team plan (i.e., endTeamPlan « is true), the proxy triggers the plan termina-
tion phase of Algorithm 1. Again, our developmental coordination policy simply
communicated the terminated plan belief (along with the domain-specific that
triggered the termination) to all of the team members. We have also imple-
mented the STEAM policy as an alternate endJointCommitment procedure
that is capable of communicating only selectively.

4 Specifying Team Oriented Plans

As a step towards realizing Team Oriented Programming paradigm, we have
built a Java based Graphical User Interface (GUI) to facilitate domain experts



to specify these TOPs. We view a TOP consisting of three parts: team orga-
nization hierarchy and descriptions of individual agents and their capabilities.
These are specified using the tool in form of diagrams and are finally converted
to beliefs each agent should hold to start with. These beliefs are described in
XML. We have designed a XML scheme that can specify reactive plans and
constraints between them, also different roles and capabilities of agents. Current
Machinetta work has focused on developing proxies capable of executing simple
team plans and we are in the process of extending the capabilities of the proxies
to incorporate all the aforementioned features. The key thing to note about our
specifications of TOPs is what is not specified. Specifically, nothing about how
the coordination should be performed is explicitly specified.

Our TOP specification interface has 3 views; the first is plan hierarchy where
user can draw reactive plans with plans/subplans as nodes and links showing
hierarchy between them. FEach subplan can have preconditions and postcondi-
tions and plan body. The agents will instantiate a team plan when preconditions
match with the environment. One can specify what information will be passed
to the instantiated team plan while specifying preconditions. Figure 1 shows the
use of tool to specify TOP for a Robocup Rescue scenario. By using hierarchy
in plans we can break down a complex plan in parts as in this case fightFire
can have two subplans to evacuate civilians, secure the area, extinguish the fire.
When a particular subplan’s success depends on coordination with other activity
we can specify coordination constraints between them. For example, such con-
straints can be useful in specifying that activities of transport of civilians and
securing the route for transport vehicles must be coordinated. Also AND/OR
constraints between subplans can be specified, for example, while fighting a fire,
evacuating people, securing an area and extinguishing fire, all actions should
be done, failure in any subplan can result in failure of fightFire plan, thus the
designs should use an AND constraint.

A subplan can be chosen by double-clicking it and pre and post conditions
for it can be specified in the right subpanel. Conditions themselves have a set
of keys and values of those keys which will trigger the plans. These keys are
attributes of the domain specific beliefs. The GUI has facilities to specify such
preconditions. Multiple preconditions can be specified which then are thought to
be in disjunction. Postconditions are very similar and have a type associated with
them for differentiating in achieved, unachievable and irrelevant cases. Returning
parameters are the output keys passed to the instantiated team plan which
have further information about the event that caused that plan to trigger. For
example, FightFire plan is passed back information about location of FirePresent
after the precondition is matched.

The second view is team organization hierarchy. The team hierarchy defines
subteams as those teams that get more specialized down the tree. Thus the
subteam FireEngines consists of engines that can fight chemical fire and engines
that can fight electrical fires. The plan hierarchy nodes can be associated with
a particular subteam via its name. As in this case only fireEngines subteam will
be assigned to extinguish-fire subplan. When the domain expert wants to assign
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specific agents to specific tasks, this type of specification of teams and subteams
can be useful. These can be used either as hints or constraints for role allocation.
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Fig. 3. Snapshot showing team organization hierarchy

The third view is a list of available domain agents and their capabilities.
Capabilities are matched against requirements before agents are assigned to
specific subteams. The last panel allows the user to specify the domain specific
beliefs. We represent a domain specific belief as a key-value pair. For example, in
the fire fighting domain, FirePresent belief has keys location and extinguished
and corresponding values of where the fire is and its status, which the agent
believes.

The last step is to save the TOPs specified graphically in XML documents as
individual beliefs of agents. These beliefs consist of the team plans and the agents
own capabilities. Hints or constraints for forming teams/subteams can be stored.
Throughout the interface users are not allowed to input invalid specifications,
such as specifying preconditions on non-existing keys. This simplifies validation
procedure. Most of the XML generation is straight-forward. Currently the tool



can handle the plan graphs which are tree-structured,, although it can be easily
extended to any arbitrary plan graph.

5 Experiments

We have performed initial experiments in two domains. Each set of experiments
and domain is aimed at testing one aspect of the Machinetta architecture.

5.1 Fire Fighting

In our first experiment, we used a simulator of a fire fighting domain[14]. The
aim of this experiment was to include a human fire chief in the loop to help the
team of intelligent agent fire fighters assign themselves to fires. The experiment
was designed to show that the basic approach of identifying problems in team
coordination and referring them to an expert was effective. The key parameter
varied in this experiment is when the expert was brought into help. In particular,
the mazxAsked parameter controls the number of team members that should be
offered a role before asking for expert input. If mazAsked= 0%, a proxy whose
team member cannot (or will not) take on the role, the role will be immediately
referred to an expert. If mazAsked= 100%, the algorithm ensures that all poten-
tially capable team members are offered the role once before giving up. At the
extreme, a special setting of maxAsked= co means that proxies repeatedly pass
the role amongst themselves (with each getting offered the role multiple times)
without ever giving up. Varying mazAsked throughout this range produces dis-
tinct algorithms that produce different loads on role-allocation expert (i.e., the
fire chief).

The fire chief interface consists of two frames. One frame shows a map of
the city, displaying labeled markers for all of the fires that have been found, the
positions of each fire brigade, and the location of the role each fire brigade is
assigned to. The fire chief does not have direct access to the simulation state
through the simulator itself, but is instead updated according to only the mes-
sages received by the fire chief’s proxy. Therefore, the fire chief may be viewing
a delayed picture of the simulation’s progress. The other frame displays a list
of all of the role-allocation tasks that have been allocated to the fire chief. By
clicking on a task, the relevant capability information about each fire brigade is
shown. The right-side window lists the fire brigades’ distances to the fire, their
water levels, and the roles they are currently performing. The fire chief can then
view this data and find an appropriate agent to fulfill the role.

We conducted tests with three different fire chiefs. Each completed several
practice runs with the simulation prior to experiments in order to minimize any
learning effects. Each scenario was run for 100 time steps, with each step taking
30 seconds. The total data presented here represents 20 hours of run-time with
a human in the loop.

Table 1 shows the team’s domain-level performance across each experimental
configuration. The scoring function measures how much of the city was destroyed



by fire, with higher scores representing worse performance. The table shows the
mean scores achieved, with the standard deviations in parentheses. Examining
our two dimensions of interest, we can first compare the two rows to examine
the effect of increasing the complexity of the coordination problem. In this case,
increasing the number of fire brigades improves performance, as one might expect
when adding resources while keeping the number of initial tasks fixed.

# Brigades||mazAsked= 0%|mazAsked= 100%|maxAsked= oo
3 58(3.56) 73(16.97) 74(0.71)
10 52(19.09) 42(14.00) 73(4.24)

Table 1. Domain-level performance scores.

However, we can dig a little deeper and examine the effect of increasing
complexity on the fire chief’s performance. In the simpler configuration, asking
the fire chief earlier (i.e., mazAsked= 0) improves performance, as the team gets
a head start on exploiting the person’s capabilities. On the other hand, in the
more complex configuration, asking the fire chief earlier has the opposite effect.
To better understand the effect of varying the point at which we assign roles to
people, Table 2 presents some of the other statistics we gathered from these runs
(mean values, with standard deviations in parentheses). With 3 brigades, if we
count the mean number of roles taken on by the fire chief, we see that it stays
roughly the same (401 vs. 407) across the two mazAsked settings. In this case,
asking the fire chief sooner, allows the team to exploit the person’s capabilities
earlier, without much increase in his/her workload. On the other hand, with 10
brigades, the fire chief’s mean role count increases from 563 to 716, so although
the proxies ask the fire chief sooner, we are imposing a significant increase in
the person’s workload. Judging by the decreased average score in the bottom
row of Table 1, the increased workload more than offsets the earlier exploitation
of the person’s capabilities. Thus, our experiments provide some evidence that
increasing domain-level scale has significant consequences for the appropriate
style of interaction with human team members.

Regardless of the variation of human behavior across scale, the data demon-
strates that exploiting human capabilities can, in fact, improve overall team
performance. We see this most clearly by examining the rightmost column of
Table 1, which represents the results when the agents make all of the decisions.
These scores are significantly worse than the leftmost data column, where the
person is handed role-allocation roles immediately. Thus, the ability of our role-
allocation algorithm to exploit the special coordination capabilities of people has
provided a dramatic improvement in the performance of our team.

We can draw some additional conclusions about the heterogeneity introduced
by people by clustering our statistics by person rather than by configuration.
Each row in Table 3 represents the mean statistics of one of our three differ-
ent fire chiefs. The “Tasks Performed” column counts the number of firefighting



# maz || Domain Fire Chief Tasks % Tasks
Brigs. | Asked Roles Roles Performed| Performed
3 0% |[116 (7.12) |401 (51.81) |27 (6.55) [23.29 (6.51)
100% || 146 (33.94) |407 (54.45) |24 (6.36) [16.02 (0.63)
10 0% |[103 (38.18)|864 (79.90) |67 (2.83) [14.49 (2.13)
100% || 98 (42.40)|563 (182.95)|41 (8.38) [48.06 (19.32)

Table 2. Role and fire-chief task metrics.

allocations performed by the fire chief, while the “% Performed” column mea-
sures that count against the number of total firefighting allocations assigned to
the fire chief by the proxy architecture. Given the small sample size, we cannot
draw any conclusions about a person’s expected behavior. On the other hand,
it is clear that we can expect a great deal of variance in behavior. For example,
although fire chiefs A and B achieve roughly similar mean scores, they do so
in very different ways. In fact, our proxies can expect fire chief A to be half as
likely as fire chief B to respond to a task request. On the other hand, fire chief
C is about equally likely as A to respond, and C performs roughly the same
number of tasks as B, yet C achieves only half the score as the other two. Thus,
it appears unlikely that we can easily classify people’s capabilities, since, for
even the relatively few dimensions measured here, our human fire chiefs show no
generalizable characteristics.

Fire Chief||Score|Tasks Performed|% Performed
A 0.61 25 28%
B 0.59 40 56%
C 0.31 42 32%

Table 3. Statistics for each Fire Chief.

5.2 Recharging 100 Robots

In our second domain, we have a large number of sensor robots (CSRs) dis-
tributed in some environment over and extended period. Over time the batteries
on the CSR robots run down and they need to be collected for recharging by a
CHR robot. The CSR robot is led to the recharging station by the CHR robot,
hence must have some remaining battery power to be recharged. This scenario
is part of DARPA’s Software for Distributed Robotics program. Proxies run-
ning on CHR robots must cooperatively work out which CHR collects which
CSR. In this set of experiments we aim to better establish the properties of the
autonomous role allocation algorithm.



We have conducted several experiments in order to evaluate our approach,
using a simulation of the distributed robotics domain. The simulator represents
the building as a grid and the CHRs are able to move from grid location to
grid location, pick up CSRs and recharge CSRs by moving them to a recharge
station. While the details of robot control are not simulated, the uncertainty
CHRs have about their position is modelled using a localization algorithm very
similar to those used on real CHRs. In particular, the localization algorithm uses
a well known markovian localization method [4], based on simulated landmarks
in the building. Battery level in the CSRs decrease with uncertainty, thus it is
not possible to predict its dynamic during the task execution.

We used two different kinds of simulation set up. In the first one, the experi-
ments are conducted without using the proxies for the role assignment. The role
allocation approach is implemented in a software module inside the simulator. In
the second setting the proxies have been connected to the simulator and execute
the same approach for the role assignment. While in the first set of experiments
we mainly focused on investigating how different parameter settings for the envi-
ronment affect the performance of our approach, the second experimental setting
is used to validate the obtained results using the proxies framework.

In the first set of experiments, we tested four different algorithms: the al-
location algorithm described in [14], an extension of this algorithm to handle
dynamic capability estimation, a mechanism for the uncertainty handling, and
finally the combination of these two extensions. We decided to vary the amount
of CHRs that can have a degradation on their localization capability during the
experiments and investigate how this parameter affects the different algorithms
performance.

For the first set of experiments we used an environment with 24 CHRs and 47
CSRs and each experiment is 6000 simulation steps long. For each different pa-
rameter setting we performed five repetitions. The results obtained are reported
in table 4 and in table 5. Table 4 show the results when five CHRs experience
problems in their localization capability while table 5 reports the result with
ten. In each table the first column shows the algorithm used, the second column
shows the average battery level of CSRs over time. The third column shows the
average of the minimum battery level of all the CSRs over time. In both the
second and third columns, the averages exclude the battery levels of robots that
have failed. The fourth column of the tables, show the number of CSR that com-
pletely failed, i.e., the number of CSRs whose battery level falls to 0. Finally the
last column shows the standard deviation computed over the five repetitions.

The results show that the overall performance of the team is negatively
affected, when more CHRs have their localization capability degraded. When
comparing results obtained using the overload handling algorithm with the ba-
sic algorithm, the number of failed CSRs were lower while both the average
battery level and the average of the minimum battery level were improved. The
improvement is similar both for the case when five and ten CHRs can have a
degrading localization capability. Moreover, the overload handling algorithm re-



|Alg0rithm |Avg B. L.|Min B. L.|Fail |O' |
Basic 0.644672 |0.195902 |13.6(2.8

Ovl Handl. [0.65997 |0.223343 (11.8|0.97
Unc Handl. [0.693892 |0.229101 [12.2]0.75
Ovl and Unc|0.684224 |0.241805 (9.8 [1.47
Table 4. Results for five CHR with localization problems

|Alg0rithm |Avg B. L.|Min B. L.|Fail |O' |
Basic 0.633321 |0.17654 |20.6|2.58
Ovl Handl. ]0.65293 ]0.215206 |17.6{1.85
Unc Handl. |0.691214 |0.221129 [15.8|2.64
Ovl and Unc|0.691896 |0.219198 [16.2]2.79

Table 5. Results for ten CHR with localization problems

|Algorithm |Avg B. L.|Min B. L.|Fail |z7 |
Unc Hnd. 5 [0.695983 |0.238347 |14.6|1.36
Unc Hnd. 10]|0.699272 (0.237091 |17.6|2.87

Table 6. Results for the limited exchange

|Alg0rithm |Avg B. L.|Min B. L.|Fail |O' |
[Unc Hand1.[0.699902 [0.236674 [12.5[1.65]

Table 7. Results for the distributed setting



sults in a lower standard deviation from the average failure value, showing a
better adaption to problematic situations.

Also the algorithm for uncertainty handling seems to improve the perfor-
mance for the overall team. In particular for the result reported in table 4 we
have a very low standard deviation, similar to the overload handling mechanism.
However when the number of CHR that can have localization problems is higher
we have actually a higher standard deviation but still acceptable results. The
results reported in table 4 and 5 for the uncertainty handling algorithm, are
obtained assuming that each CHR can ask and have a response at each simu-
lation step from all its team mates when trying to exchange a role. This is a
very strong assumption and it is not likely to be met in the real application.
Therefore we performed an experiment limiting the number of team mates that
can be queried during each time step. In table 6 we report the results for this
set of experiments. The first row of the table refers to the case where five CHR
can have their localization capability degraded, while the second row reports the
results for ten. In both cases, the results are worst if compared with the respec-
tive row of table 4 and 5. These experiments show that the discussed approach
could not be effective enough for our reference scenario, where the assumption
made in the previous experiments could easily not be met.

In the second experimental setting we connected the proxies to the simula-
tor. We decided to test the algorithm for the uncertainty handling, when five
CHRs can have a degradation in their localization capability. All the parameters
described in the previous set of experiments are used also in this set, except for
the number of repetition that in this case is not five but two. These experiments
have been conducted in order to see how the overall performance of the algo-
rithm could be affected using the actual proxy framework. In particular for our
scenario, a very important issue is the conflict that can possibly arise among the
proxies’ information on the actual world state, due to the asinchronicity of the
message passing approach. The results reported in table 7 show that the algo-
rithm performance seems not to be heavily affected by this issue, however the
small number of experiments conducted does not allow to draw a statistically
significant conclusion, and further investigations need to be done.

6 Related Work

Proxy-based integration architectures are not a new concept, however no previ-
ous architecture has been explicitly designed to have robots, agents and people
in the same team. Jennings’s GRATE* [5] uses a teamwork module, implement-
ing a model of cooperation based on the joint intentions framework. Each agent
has its own cooperation level module that negotiates involvement in a joint task
and maintains information about its own and other agents’ involvement in joint
goals. Jones [6], Fong [16], Kortenkamp[8] and others have worked on improving
collaboration between groups of robots and a single person, though these ap-
proaches to robotics teams have not explicitly used proxies. The Electric Elves
project was the first human-agent collaboration architecture to include both



proxies and adjustable autonomy[2]. COLLAGEN [13] uses a proxy architecture
for collaboration between a single agent and user. Payne et al[19] illustrate how
variance in an agent’s interaction style with humans affects performance in do-
main tasks. Tidhar [20] used the term “team-oriented programming” to describe
a conceptual framework for specifying team behaviors based on mutual beliefs
and joint plans, coupled with organizational structures. His framework also ad-
dressed the issue of team selection [20] — team selection matches the “skills”
required for executing a team plan against agents that have those skills.

7 Conclusions and Future Work

As seen in both domains, Machinetta shows promise in allowing complex teams
to tackle the challenge of effective coordination. The main advantages to our
approach become apparent when dealing with teams that display one or a com-
bination of the characteristics: large scale, dynamic environment, and integration
of humans. By connecting the Machinetta proxies with the graphical develop-
ment tool for constructing team plans, the TOP programmer gains a good idea
of what is going on in the plan and how to make effective changes in it in order
to have the team behave more desirably. In the future, we plan on extending the
features of both the graphical planning tool and Machinetta itself, while keeping
the framework generalizable.
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