
Integrating Belief-Desire-Intention Approaches with POMDPs: The Case of
Team-Oriented Programs

Ranjit Nair and Milind Tambe and Stacy Marsella
Computer Science Department and Information Sciences Institute

University of Southern California
Los Angeles CA 90089�

nair,tambe � @usc.edu,marsella@isi.edu
Abstract

Integrating approaches based on belief-desire-intentions
(BDI) logics with the more recent developments of dis-
tributed POMDPs is today a fundamental challenge in the
multiagent systems arena. One common suggestion for such
an integration is to use stochastic models (POMDPs) for gen-
erating agent behaviors, while using the BDI components for
monitoring and creating explanations. We propose a com-
pletely inverse approach, where the BDI components are used
to generate agent behaviors, and distributed POMDPs are
used in an analysis mode. In particular, we focus on team-
oriented programs for tasking multiagent teams, where the
team-oriented programs specify hierarchies of team plans that
the team and its subteams must adopt as their joint intentions.
However, given a limited number of agents, finding a good
way to allocate them to different teams and subteams to exe-
cute such a team-oriented program is a difficult challenge
We use distributed POMDPs to analyze different allocations
of agents within a team-oriented program, and to suggest im-
provements to the program. The key innovation is to use
the distributed POMDP analysis not as a black box, but as
a glass box, offering insights into why particular allocations
lead to good or bad outcomes. These insights help to prune
the search space of different allocations, offering significant
speedups in the search. We present preliminary experimental
results to illustrate our methodology.

Introduction
Research in multiagent teamwork and cooperative multia-
gent systems in general has successfully used the belief-
desire-intention (BDI) framework. Such BDI systems —
explicitly or implicitly inspired by multi-modal logics based
on beliefs, desires and intentions — have led to the develop-
ment of several practical multiagent applications(Decker &
Lesser 1993; Kitano et al. 1997). However, as we scale-up
such multiagent teams, to 100s or 1000s of agents, robots
or other entities, it becomes increasingly critical to provide
analysis tools for such systems. For instance, in domains
such as disaster rescue, such analysis will be important in
order to specify how many agents and of what type to allo-
cate to various roles in the team. These role allocations can
have a drastic impact on the performance of the team and for

Copyright c
�

2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

large teams, it will be difficult for human developers to even
specify good allocation of roles within such teams.

Analysis of such role allocations is difficult for a variety
of reasons. First, the challenge is not only to provide static
allocations of agents to roles, but also to look ahead at what
reallocations are necessary in the future as well. In partic-
ular, agents in a team may fail during their execution, and
other agents may need to be reallocated to those roles. Role
allocation must take into account the inevitable future costs
of role reallocations. Second, there are significant uncer-
tainties and costs associated with agents’ execution of roles,
and it is important to attempt to optimize such allocation (at
least to some degree). Certainly, a simple check of finding
the best match of capabilities to role requirements(Tidhar,
Rao, & Sonenberg 1996) could lead to highly suboptimal
team operations.

Fortunately, the recent emergence of distributed par-
tially observable Markov decision processes (POMDPs)
and MDPs have begun to provide tools for MAS anal-
ysis(Bernstein, Zilberstein, & Immerman 2000; Boutilier
1996; Peshkin et al. 2000; Pynadath & Tambe 2002; Xuan,
Lesser, & Zilberstein 2001). These models can analyze
complexity-optimality tradeoffs of multiagent coordination
protocols. In particular, by encoding different multiagent
coordination protocols as policies in distributed POMDPs,
and comparing them against specific baseline policies, it is
possible to investigate the potential for improvements in op-
timality and the computational costs that such improvements
would engender. For instance, using as a baseline the glob-
ally optimal policy, we can identify if there are domain types
where existing coordination protocols are (highly) subopti-
mal, when compared with the globally optimal policy. In ad-
dition, analysis of the computational complexity of the glob-
ally optimal policy informs us of the computational costs of
such improvements.

Thus, the integration of BDI logic-based approaches for
synthesis of multiagent behavior with POMDP-based anal-
ysis could lead to significant improvements in multiagent
systems. Unfortunately, while the POMDP based analysis
tools are powerful, they suffer from two key weaknesses.
First, analysis in previous work focused on communica-
tion. In order to extend the analysis to other types of co-
ordination and in particular to role allocation and realloca-
tion in teams, we define Role-based Markov Team Decision

Problem(RMTDP). As important, we demonstrate an over-
all methodology by which such generalization gets done.
A second, more critical problem in these analyses is that
the globally optimal policy is often impossible to generate
practically and thus any potential gains identified using this
policy would be hard to obtain in practice. In other words,
solving the distributed POMDPs to obtain an optimal joint
policy is impractical. Furthermore, operationalizing of such
policies can also be extremely difficult within a BDI system,
as it may not allow all the flexibility that a globally optimal
policy requires.

Our approach to addressing the second problem is to de-
compose the problem of role allocation and reallocation into
two separate components, and attack each component sepa-
rately. Such a divide-and-conquer strategy is certainly com-
putationally attractive. Furthermore, it often matches the
logical separation into two components seen in multiagent
systems: First, there is an organizational structure and sec-
ond, there are algorithms by which the organization coor-
dinates its behavior. In this view, analysis can make sug-
gestions both about improvements in organizational struc-
ture as well as more detailed suggestions about how the
organization coordinates. It is important to stress that this
decomposition into two components can be either explicit
or implicit in the design of a MAS. Explicit representation
has sometimes taken the form of a Team Oriented Program
(TOP) (Tambe, Pynadath, & Chauvat 2000; Tidhar 1993;
Tavares & Demazeau 2002) that specifies the organizational
structure of team and the conditions which lead to organiza-
tional change. Second, there is a TOP “interpreter”, specif-
ically coordination algorithms that interpret the organiza-
tional structure to ensure that the agents coherently coor-
dinate in pursuit of goals. However, even in systems where
there is not an explicit TOP, there is still an implicit organi-
zation in terms of the allocation of limited number of agents
to different subteams that perform the tasks. Although fur-
ther discussion will be made using the notion of an explicit
TOP, the methodology and conclusions apply to other team
planning approaches as well.

We first demonstrate improvements to the coordination
component. Here, we focus on an automated approach to
creating “locally optimal” algorithms that estimate the glob-
ally optimal policy. Such policies have been shown to be
effective estimates that provide significant performance im-
provements with less significant computational costs than
the globally optimal policy. In particular, Pynadath and
Tambe (Pynadath & Tambe 2002) describe an algorithm for
finding a locally optimal policy that provides an exponen-
tial speedup over the globally optimal policy. However, this
previous work manually defined and generated a local opti-
mal. Here we not only demonstrate an automated approach
to generating alternative locally optimal but incorporate it
into a methodology for doing team analysis. Our approach is
based on examination of critical coordination events, ”trig-
ger” events for teamwork, and the perturbation of the team’s
behavior at these coordination events.

Next we focus on making improvements to the team-
oriented program itself. We address this problem by pre-
senting an approach to analyzing and improving the TOP,

Result of analysis

Team-oriented program

RMTDP model BDI system

Figure 1: Integration of BDI and POMDP

using our analysis techniques. Analysis of alternative TOPs,
of course, makes the intractability issue even more pro-
nounced. Thus we take an even more radical approach here
to addressing the tractability problem. Again, our approach
is based on a perturbation-like process, but here we perturb
the TOP itself and then seek to evaluate it in the RMTDP.
Thus, our approach involves the following basic steps:

1. Start with developer specified team oriented program

2. Represent team oriented program as an RMTDP policy

3. Search space of team oriented programs using RMTDP
for evaluation

A key contribution of our work is that we can signifi-
cantly improve upon the process of searching this space of
team-oriented programs. In particular, rather than treating
the RMTDP as a black-box, we treat it as a glass-box, diag-
nosing the results of the evaluation to understand why spe-
cific results were obtained. We use these results to prune
the search for an improvement in team-oriented programs.
In particular, the diagnosis aids in exploiting the structure of
the team oriented program to come up with component-wise
upper bounds on performance. These heuristic upper bounds
are obtained using the RMTDP evaluations and can be used
to prune the team oriented programming space. We provide
comparison of various approaches for searching the space
of team oriented programs theoretically and empirically in
a concrete domain involving teams of helicopter pilots. We
illustrate that both techniques introduced in this paper lead
to potential improvements in the search.

Our approach in this paper involves integrating the BDI-
logic based Team-oriented Programming approach with a
decentralized POMDP model, RMTDP, in a unique way.
Rather than using the RMTDP for generating agent behav-
ior and the BDI components for monitoring and creating ex-
plaining, we invert the roles as shown in Figure 1. Thus,
the BDI system is used to come up with a Team-oriented
Program, which is then evalauted and analyzed using the
RMTDP model. The results of this analyses are then fed
back to the BDI system.

Team Oriented Program
A Team Oriented Program specifies three key aspects of a
team: (i) a team organization hierarchy; (ii) a team (reactive)
plan hierarchy; and (iii) assignments of agents to execute
plans.

We consider a group of helicopters involved in a mission
of transporting cargo through enemy terrain as a running ex-
ample throughout this paper to explain its different parts.
We start with a fixed number of helicopters, say 6. These
helicopters can be used as either transport or scouting heli-
copters and have a joint goal to get from a point X to point Y.
There are 3 paths of different lengths and different risks to
crashes that the helicopters can use to get from X to Y. When
a scouting helicopter moves along a path the traversed por-
tion becomes safe for other helicopters to travel on. A heli-
copter may either move from its current position to the next
point on its path with a single move action or may remain
where it is. When a scout fails (e.g., it crashes) it can be re-
placed by a transport however transports cannot be replaced
by scouts. More details of this domain are presented in the
next section.

The team organization hierarchy consists of roles for in-
dividuals and for groups of agents. For example, Figure
2 illustrates the organization hierarchy of the roles of heli-
copters involved in a mission of transporting cargo through
enemy terrain. Each leaf node corresponds to a role for
an individual agent, while the internal nodes correspond to
(sub)teams of these roles. Task Force is thus the highest level
team in this organization and SctA1 is an individual role.

The second aspect of a team-oriented program involves
specifying a hierarchy of reactive team plans. While these
reactive team plans are much like reactive plans for individ-
ual agents, the key difference is that they explicitly express
joint activities of the relevant team. The reactive team plans
require that the developer specify the: (i) initiation condi-
tions under which the plan is to be proposed; (ii) termina-
tion conditions under which the plan is to be ended, specif-
ically, conditions which cause the reactive team plan to be
achieved, irrelevant or unachievable; and (iii) team-level ac-
tions to be executed as part of the plan. Figure 3 shows
an example from the evacuation scenario (please ignore the
bracketed names [] for now). Here, high-level reactive team
plans, such as Execute Mission, typically decompose into
other team plans, such as DoScouting. DoScouting is itself
achieved via other sub-plans such as UseRoute1. There may
be additional relationships between sub-plans. An AND re-
lationship is indicated with a solid arc while an OR rela-
tionship is indicated with a dotted arc. Thus, DoScouting,
DoTransport and RemainingScouts must all three be done
while any of UseRoute1, UseRoute2 or UseRoute3 need be
performed.

The software developer must also specify any domain-
specific coordination constraints in the execution of team
plans. In the example program in Figure 3, the plan Execute
Mission has three subplans: DoScouting which involves
trying to make one path from X to Y safe for the trans-
ports, DoTransport to move the transports along a scouted
path, and RemainingScouts for the scouts which haven’t
reached the destination yet to get there. The developer must
represent the domain-specific constraint that a subteam as-
signed to perform DoTransport cannot do so until the other
subteam assigned DoScouting has reached its masking lo-
cations and begun observing. However, DoTransport and
RemainingScouts can be done in parallel.

Task Force

Scouting Team Transport Team

SctTeamA
SctTeamB

SctTeamC

Figure 2: TOP: Organization hierarchy with roles

Execute Mission [Task Force]

DoScouting
[Scouting Team]

DoTransport
[Transport Team]

UseRoute1
[SctTeamA] UseRoute2

[SctTeamB]

UseRoute3
[SctTeamC]

RemainingScouts
[Scouting Team]

Figure 3: TOP: Partial reactive team plan hierarchy

The final aspect of team-oriented programming is assign-
ments of agents to plans. This is done by first assigning the
roles in the organization hierarchy to plans and then assign-
ing agents to roles. Assigning only abstract roles rather than
actual agents to plans provides a useful level of abstraction:
new agents can be more quickly (re)assigned when needed.
Figure 3 shows the assignment of roles to the reactive plan
hierarchy for the helicopter domain (in brackets [] adjacent
to the plans). For instance, Task Force team is assigned to
jointly perform Execute Mission. Not all roles need be ful-
filled however all roles within AND relationships and at least
one within OR relationships must be fulfilled.

Markov Team Decision Problem
For quantitative analysis of role allocation and reallo-
cation, we extend the Markov Team Decision Problem
(MTDP) (Pynadath & Tambe 2002). While our extension
focuses on role (re)allocation, it also illustrates a general
methodology for analysis of other aspects of team coor-
dination. Note that, while we use MTDP, other possible
distributed POMDP models could potentially also serve as
a basis (Bernstein, Zilberstein, & Immerman 2000; Xuan,
Lesser, & Zilberstein 2001).

Given a team of agents � , an MTDP (Pynadath & Tambe
2002) is defined as a tuple: �����
	��
���
�������
��� . It con-
sists of a finite set of states ��������� �!�"���#��$. Each
agent % can perform an action from its set of actions 	�& .�('�)*�!+-, � �!.!.".!�
,0/ 12/43��
)6587 gives the probability of transi-
tioning from state) to state)95 given that the agents per-
form the actions +:, � �!.".!.;�
,0/ 12/<3 jointly. Each agent% receives an observation =>&@?A��& based on the func-
tion �B'C)D�"+ ,E�9�".!.!."�
,F/ 12/G3��H=��6�".!.!."�I=�/ 1J/ 7 , which gives

the probability that the agents receive the observations,=��K�!.".!.!�H=L/ 12/ given that the world state is) and they perform+M, � �!.".!.;�
,0/ 12/N3 jointly. The agents receive a single joint
reward �B'�)*�
, � �".!.!."�
,F/ 12/ 7 .

The state of the world,) need not be observable to the
agent. Thus, each agent % chooses its actions based on its
local policy, O0& , which is a mapping of its observation his-
tory to actions. Thus, at time P , agent % will perform actionO & 'Q=NR& �!.".!.!�H=NS& 7 . OT�U+VO � �!.".!.;�0OW/ 12/43 refers to the joint
policy of the team of agents.

Extension for explicit coordination: XZY
Beginning with MTDP, the next step in our methodology is
to make an explicit separation between domain-level actions
and the coordination actions of interest. Earlier work intro-
duced the COM-MTDP model (Pynadath & Tambe 2002)
where the coordination action was fixed to be the commu-
nication action. However, other coordination actions could
also be separated from domain-level actions in order to in-
vestigate their impact. Thus, to investigate role allocation
and reallocations, actions for allocating agents to roles and
to reallocate such roles are separated out. To that end, we de-
fine RMTDP (Role-based Markov Team Decision Problem)
as a tuple, �C�>�
	[�
�������
���
���H\^]_� with a new component,\^] . In particular, \^]M� �"` � �!.".!.!� `6a � is a set of all roles
that the agents can undertake . Each instance of role

`"b
may

be assigned some agent % to fulfill it. Agents’ actions are
now distinguishable into two types:
Role-Taking actions: cd�de &gf 1 c�& is a set of combined

role-taking actions, where c�&W� �6h &jiIk9� contains the role-
taking actions for agent % . h &ji k�?lc & means that agent %
takes on the role

` b ?�\^] .
Role-Execution Actions: m�� e &gf 1 m & is a set of com-

bined execution actions, where m & �on�p iIk�frq�s m &ji k con-
tains the execution actions for agent % . m�&tiuk is the set of
agent % ’s actions for executing role

`!b ?�\^]
Thus, in RMTDP, successive epochs alternate between

role-taking (c) and role-execution actions(m). If the time in-
dex is divisible by v , agents are in the role-taking epoch, exe-
cuting role-taking actions, and otherwise they are in the role-
execution epoch. Although this sequencing of role-taking
and role-execution epochs restricts different agents from
running role-taking and role-execution actions in the same
epoch, it is conceptually simple and synchronization is au-
tomatically enforced. More importantly, the distinction be-
tween role-taking and -execution actions is critical to enable
a separation in their costs, so as to more easily analyze the
costs of role-taking actions. To this end, in RMTDP, reward
is role-taking reward, ��w_'C)*�
,E�9�".!.!."�
,F/ 12/ 7 , for even time in-
dices and role-execution reward, �4x�'�)*�
,E�9�".!.".!�
,F/ 12/ 7 , other-
wise. We view the role-taking reward as the cost (negative
reward) for taking up different roles in different teams. For
instance, in our example domain, when transports change
roles to be scouts, there is cost for dumping its cargo and
loading scout equipment. However, such change of roles
may potentially provide significant future rewards.

Within this model, we can represent the specialized be-
haviors associated with each role, e.g. a transport vs. a scout

role. While filling a particular role,
`!b

, agent % can only per-
form role-execution actions, yz?{m_&jiuk , which may be differ-
ent from the role-execution actions m &ji
| for role

`"}
. These

different roles can produce varied effects on the world state
(modeled via transition probabilities, �) and the team’s util-
ity. Thus, the policies must ensure that agents for each role
have the capabilities that benefit the team the most.

Complexity results with RMTDP
While previous sections qualitatively emphasized the diffi-
culty of role (re)allocation, RMTDP helps in understanding
the complexity more precisely. In particular, we can define
a role-taking policy, O &tw for each agent’s role-taking action,
a role-execution policy, OF&jx for each agent’s role-execution
action. The goal in RMTDP is then to come up with joint
policies O0w and O2x that will maximize the total reward over
a finite horizon ~ . Such an optimal role taking policy not
only provides for role allocation, but it also takes into ac-
count optimal future role reallocations. The following theo-
rem illustrates the complexity of finding such optimal joint
policies.

Theorem 1 The decision problem of determining if there
exist policies, O w and O x , for an RMTDP, that yield a reward
at least K over some finite horizon T is NEXP-complete.

Proof: Proof follows from the reduction of MTDP (Py-
nadath & Tambe 2002) to/from RMTDP. To reduce
MTDP to RMTDP, we set RMTDP’s role taking ac-
tions, c�5 to null. To reduce RMTDP to MTDP, we
generate a new MTDP whose state space contains an
additional feature to indicate if the current state cor-
responds to a role-taking or -executing stage of the
RMTDP. The transition function, �[5 , augments the original
function � : � 5 '
��� �
� �!.!.".!�
� $D� � taking �F� h � �!.!.".;� h / 12/t�"�g� �H� �.".!."�H� $D� � executing�
7��T�('
�g� �
� �t.!.".;�H� $D� ��� h � �t.!.!."� h / 12/t�t�g� �H� �.".!."�H� $D� �H7 where

h � �!.".!.!� h / 1J/ is a role-taking action in the
RMTDP(similarly from executing to taking). Finding the
required policy in MTDP is NEXP-complete (Pynadath &
Tambe 2002). �

While the previous theorem focused on the complexity
of combined role-taking and role execution actions, we can
focus on the complexity of just determining the role taking
actions, given fixed role-execution actions. Unfortunately,
as the following theorem illustrates, determining an optimal
policy for even this restricted problem has the same com-
plexity as the original RMTDP.

Theorem 2 The decision problem of determining if there
exists a role-taking policy, O0w , for an RMTDP, that yields
a reward at least K together with a fixed role-execution pol-
icy O x , over some finite horizon T is NEXP-complete.

Proof sketch: We begin with an MTDP and reduce it to
an RMTDP with a fixed role-execution policy (in the sim-
plest such fixed role-execution policy, agents execute NO-
OPs). �

Note that Theorem 2 refers to a completely general glob-
ally optimal role-taking policy, where any number of agents
can change roles at any point in time. Given the above result,
in general the globally optimal role-taking policy will be of

doubly exponential complexity, and so we may be left no
choice but to run a brute-force policy search, i.e. to enumer-
ate all the role-taking policies and then evaluate them, which
together determines the run-time of finding the globally op-

timal policy. The number of policies is

��� c �I� ��� �0���� ��� ����� / 1J/
, i.e.

doubly exponential in the finite horizon and the number of
agents. This clearly illustrates the point made in Section ,
that the search for a globally optimal policy is intractable.

Note that, in the worst case, cost of evaluating a sin-

gle policy can be given by �G�*' � � � � � � � 7
��� (Pynadath &

Tambe 2002). We will in general assume a fixed procedure
for policy evaluation and primarily focus on the number of
policies being evaluated. Improvement in policy evaluation
could be an orthogonal dimension of investigation.

Constructing an RMTDP
Constructing an RMTDP for evaluating a TOP is a key
step in our approach. To that end, we must define
each of the elements of the RMTDP tuple, specifically,�����
	��
���
�������
���I\^]�� , by a process that relies on both the
TOP plans as well as the underlying domain. While this step
has not been automated, we briefly describe mapping tech-
niques based on the work on our two domains.

First, we need to define the set of states � . To this end,
it is critical to model the variables tested in the precondi-
tions and termination conditions of the TOP plans. For com-
plex domains, it is useful to consider abstract descriptions
of the state modeling only the significant variables. Agents’
role-taking and -execution actions in RMTDP are defined
as follows. For each role in the TOP organization hierar-
chy, we define a role-taking action in each state) . The role-
execution actions are those allowed for that role in the TOP
plan hierarchy given the variable values in state) .

To illustrate these steps, consider the plans in Figure 3.
The preconditions of plans such as UseRoute1 and others
test the start location of the helicopters to be at start location
X, while the termination conditions test that scouts are at
end location Y. Thus, the locations of all the helicopters are
critical variables modeled in our set of states S. For role-
taking, each helicopter can perform one of four actions, i.e.
being a member of one of the three scouting teams or of the
transport team. Role-execution actions are the TOP actions
for the plan that the agent’s role is assigned in the TOP. In
our case, the role execution policy for the scout role is to
always go forward until it reaches Y, while for the transport
role the policy is to wait at X until it obtains observation of
a signal that one scouting subteam has reached Y.

Further, the types of observations for each agent must be
defined. We define the set of observations to be the variables
tested in the preconditions and termination conditions of the
TOP plans and individual agent plans. For instance, the
transport helos may observe the status of scout helos (normal
or destroyed), as well as a signal that a path is safe. Finally,
we must define the transition, observation and reward func-
tions. Determining these functions requires some combina-
tion of human domain expertise and empirical data on the
domain behavior. However, as shown later in Section , even

an approximate dynamic and observational model, is suffi-
cient to deliver significant benefits. Defining the reward and
transition function may sometimes require additional state
variables to be modeled. In our helicopter domain, the time
at which each the scouting and transport mission was com-
pleted determined the amount of reward and hence time was
included as a state variable.

Analysis using Model
RMTDP can be shown to have NEXP-complete complex-
ity, from reductions similar to COM-MTDP paper. In or-
der to reduce the complexity, it is useful to define events,
such as failure of an agent, which will act like a coordi-
nation trigger. This approach is seen often in implemented
systems, for example, restrict the problem of “Team forma-
tion and reformation” to “Role Replacement”. For exam-
ple, STEAM(Tambe 1997) assumes an initial team forma-
tion performed by a human, and focuses on reformation via
role replacement, where a failed agent must be replaced by
another. Similarly, the SharedPlans theory focuses on un-
reconciled actions(Grosz & Kraus 1996), where an agent or
a subteam considers substituting for an unfilled (or failed)
role.

In STEAM, an agent in role � will replace a failed agent
in role � only if the following inequality holds:�L�!�Q�����
�D�t�Q���L�� �¡F¢£�L�!���C���
�D�t�Q������¤�¡W¥§¦

(1)�L�!���C���
�D�t�Q�����Q¨©¡«ª­¬®��¯�¨°�C±��
�!���C���
�D��²
ª³¦z´!��µ�¶��"·¸��±;¶
In other words, replacement occurs if role � is considered

critical and role � is not critical. Thus STEAM’s classifica-
tion of coordination triggers is role-failure-critical or role-
failure-not-critical. Our classification is more fine-grained,
i.e., in a scenario, it may involve first-role-failure vs second-
role-failure vs third-failure, etc.

Earlier methodology, as specified in COM-MTDP(Pyna-
dath & Tambe 2002) dictated that we first derive by hand, an
algorithm for a ”locally optimal” policy. However, there are
two problems in this derivation: (i) Deriving such a com-
plex expression by hand is cumbersome and hinders anal-
ysis; (ii) The focus here remains on a single decision, and
no guidance is provided on multiple decisions. It is possible
to automatically generate various locally optimal policies by
perturbing the response of a particular coordination trigger.
For example, we can perturb STEAM’s response to the first
failure that occurs and replace it by an optimal policy given
that the response to all other triggers remains the same as
STEAM’s. Various such locally optimal policies can be au-
tomatically generated by perturbing the response to one or
more coordination trigger.

Apart from coming up with various locally optimal poli-
cies automatically, RMTDP is also useful in the analy-
sis of the complexity and optimality of various approaches
to the “Role Replacement” problem. For example in
STEAM, criticality is determined in �B' � � � 7 by process-
ing role-dependency conditions supplied by a human. This
is clearly very tractable especially when compared to the
“globally optimal” policy, allows any number of agents to
perform any role taking action at any point in time (even be-
fore the actual failure). The time complexity for finding the

globally optimal joint policy by searching this space is thus:�º¹ ��� c 1 �H� �r»©� �0���� �r»E� ����� / 1J/ �D' � � � � � � 1 � 7I�½¼ , i.e. doubly expo-

nential in the finite horizon and the number of agents. The
complexity of a locally optimal policy depends on the how
“fine-grained” its response to the trigger is. For example,
the complexity of a locally optimal policy that varies its
response depending on what time the trigger occurred has
complexity �B'�v � ' � � � � � � 1 � 7 � 7 while a locally optimal pol-
icy that varies its response depending on both time of the
trigger and which trigger has complexity �B'Cv / S i
&¿¾�¾;�ui a / À �' � � � � � � 1 � 7 � 7 .

To further demonstrate the utility of RMTDPs, we now
consider the example domain involving helicopter agents.
These agents must decide whether to do a role replacement
when a failure occurs. We compare the performance of var-
ious policies, across a space of distinct domains obtained by
varying the cost of replacement and the probability of a fail-
ure.

In this experiment, we start with 6 helicopters and var-
ious starting configurations. For example, 3 scouts all as-
signed to path 2 (UseRoute2). When a scout fails (e.g., it
crashes) it can be replaced by a transport by incurring a Role
replacement cost for expending additional man-power. Once
a transport becomes a scout it cannot transform back. (We
assume that there is an ordering that determines which trans-
port will perform a role replacement.) Further, we assume
that a helicopter can fail at any unscouted point x between
X and Y based on some known (uniform) probability distri-
bution. To ensure a focus on role replacement, we assume
that the policies for role execution and communication are
the same for all approaches. A helicopter’s role execution
policy while assigned to a scout role is that it will always
go forward until it reaches Y, while the transport role exe-
cution policy is to wait at X until any one scout reaches Y.
The reward is higher if more helicopters reach the destina-
tion safely and if they reach early rather than late.

We compared the performance of the various policies for
different initial configurations of transport and scout heli-
copters. In the STEAM policy, the transports use the in-
equality 1 to determine whether to replace a failed scout.
In STEAM, failure of the last remaining scout would be
seen as critical and all other roles as non-critical. In Seow
(Seow & How 2002) , we consider a fixed utility function
based approach to determine if a transport should replace a
scout based on the configuration and the rewards for suc-
cessful completion of scouts and transports. This is very
similar to the role replacement policy used by FC Portu-
gal in its championship RoboCup soccer team. PertSteam1,
PertSteam2 and PertSteam3 are locally optimal perturba-
tions of the STEAM policy where the response to the first,
second or third failure, respectively, is replaced by the lo-
cally optimal response. Here the locally optimal response
depends on the time of the failure and is obtained by calcu-
lating the expected future reward. The computational cost of
calculating these policies is �B'�v � ' � � � � � � 1 � 7 � 7 . We com-
pared these policies to a locally optimal policy where the

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Replacement Cost

V
op

t −
 V

Probability of failure=0.1
Steam
FCP

helo
PertSteam2
PertSteam3

Figure 4: Sub-optimality of replacement policies with prob-
ability of failure fixed at 0.1

response to failure depends on which failure it was and also
on the time of failure and obtained by calculating the ex-
pected future response. This policy is very expensive to
compute �B'�v / Á9Â & }¿Ã i
� a / � ' � � � � � � 1 � 7 � 7 . The number of fail-
ures,

� Ä ,�%uÅ�Æ `KÇ) � is � � � , because in the worst case all the
agents would fail. Note that this is cheaper than the glob-
ally optimal policy. We use this policy as the benchmark for
the comparison of the various policies.

In figures 4 and 5 we compare the sub-optimality of vari-
ous replacement polices when the initial configuration was 4
scouts and 2 transports. All 4 scouts were assigned to route
2. In both figures we plot the sub-optimality with respect to
the benchmark policy on the Y-axis. In figure 4 we varied
the replacement cost, keeping the probability of failure fixed
at 0.1. Here we found that at low replacement costs STEAM
and the locally optimal perturbations of STEAM were very
close to benchmark while the Seow policy did quite poorly
initially. However, with increasing replacement cost we find
that Seow starts getting very close to the benchmark, while
STEAM becomes more and more suboptimal. In figure 5
we varied the probability of failure keeping the replacement
cost fixed at 10. AS seen in this figure, all the policies do
quite well at low failure rates. However when the proba-
bility of failure increases, the Seow policy does worse than
STEAM and other locally optimal perturbations of STEAM.

Searching Team Oriented Program Space
In the previous section, we explored the derivation of locally
optimal policies for reorganizing a team based only replac-
ing failed roles. Whereas these dealt with finding a policy
for team reorganization issue, it did not address the issue
of finding a good initial allocation of agents to roles within
a team plan. We now will look at this problem of finding
the best initial configuration assuming that we have a fixed
role replacement strategy. We will describe this search with
respect to Team Oriented Program (TOP).

The TOP is used in several ways. First it reduces the num-

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Probability of failure

V
op

t −
 V

Replacement Cost=12
Steam
FCP

helo
PertSteam2
PertSteam3

Figure 5: Sub-optimality of replacement policies with role
replacement cost fixed

ber of policies that are explored in the RMTDP by using the
TOP and perturbations to the TOP to suggest “local” policies
to derive. Second, the TOP structure suggests alternative
heuristics to be employed in the search for an optimal pol-
icy. Third, the TOP structure is used to simplify the search
for an optimal policy by using the structure to decompose
the RMTDP search space.

The TOP structure and perturbation of that structure can
help guide the search for the optimal policy because the TOP
by itself is in essence an abstract policy which imposes con-
straints on any specific policy consistent with it. To appreci-
ate this fact, lets consider again the TOP for our helicopter
example. See Figure 3. Note the TOP imposes a hierarchi-
cal team organization that assigns roles to various domain
agents as well as the number of agents in those roles. In ad-
dition, coordination constraints are imposed which specify
which subteam tasks need to be performed, which subteam
tasks are substitutes for each other as well the order in which
these tasks need to be completed. Not all teams and team
policies will be consistent with this organizational structure
and more specifically not all policies will explore the state
space in a fashion consistent with the ordering constraints.
Therefore the TOP constrains the space of policies and fur-
ther any policy consistent with it can be used to evaluate the
TOP.

We restrict the space of team oriented programs by vary-
ing only certain dimensions like initial team structure, initial
role allocation and role relationships. This helps improve
tractability. We assume a reasonable developer specified
starting team plan. In order to demonstrate this methodol-
ogy we restrict the dimensions of the team oriented program
space to initial team structure and role allocation.

In order to find the best TOP we could check the eval-
uation of each and every initial configuration (initial team
structure and initial role allocation) using RMTDP and
choose the configuration that returns the highest value. This
involves a brute force search through the entire search space
of team oriented programs. The number of possible ini-

tial configurations is exponential in the number of agents
and hence this method is not computationally viable when
there are many agents and roles. Other methods like using
combinatorial auctions to determine the initial configuration
(Hunsberger & Grosz 2000) are faced with the same prob-
lems.

Pruning Search Space using evaluations
The process of searching this space of team oriented pro-
grams can be further improved using heuristic approaches
that exploit the structure of the team oriented program to
come up with component-wise upper bounds on perfor-
mance. These heuristic upper bounds are obtained using the
RMTDP evaluations and can be used to prune the team ori-
ented programming space. The estimates are then summed
up to get a overestimate of the expected reward for that in-
ternal node which we refer to as the max value. This is first
done at the level just above the leaf nodes and can then be
propagated up for all internal nodes. The process of arriving
at component-wise estimates including the different heuris-
tics that we applied are described in the following subsec-
tion.

Once this estimate is available for all internal nodes we
begin evaluation of the leaf nodes. If a leaf node has a value
higher than that of the previous best leaf we check if any
pruning of the TOP space is possible. For this, we compare
each internal node’s max value with the evaluation of the
new best leaf node. If lesser, then we can eliminate the leaf
node and all its descendants from the TOP space thus result-
ing in fewer leaf nodes to evaluate. Clearly pruning nodes
higher in the hierarchy is more useful as this will likely re-
sult in greater pruning.

1. Parents È list of parent nodes
2. for each parent in Parents do:
3. for each component in Team-Oriented Program
4. Find estimate of maximum expected reward
5. max[parent] È Sum component-wise estimates
6. bestVal È ¢�É
7. for each parent in Parents do:
8. if done[parent] =true or pruned[parent] = true
9. continue
10. child È parent Ê nextChild()
11. if child

ª
null

12. done[parent] È true
13. continue
14. childVal È Evaluate(child)
15. if childVal

¥
bestVal

16. bestVal È childVal
17. best È child
18. for each parent1 in Parents do:
19. if max[parent1] Ë bestVal
20. pruned[parent1] È true
21. return best

Figure 6: Algorithm for Searching TOP space.

Heuristics for Pruning
The process of obtaining over-estimates for each component
relies on treating each component independently of the oth-

ers. In the case of components that are performed in se-
quence, the end states of the first component are the start
states of the resulting components. Thus in order to accu-
rately obtain an overestimate of the second component we
need to be able to determine its start states. The key here is
to avoid doing a full-scaled reachability analysis. The key
idea to identify the start states for a component is to arrive at
test to determine if a given state is valid start state. This test
can be easily devised based on the start conditions of the
component and the end-conditions for the successful com-
pletion of the previous component. The set of start states
can be further reduced because not all the state variables of
the state will affected by the component. By examining the
reward function, the model dynamics and the observation
function we can identify which state variables are not af-
fected by the component. We can put in dummy values for
these state variables thus combining all states which have the
same values for the relevant state variables. This will result
in a much smaller set of state variables that can be obtained
by making just one pass through the set of states.

We assume that components of the TOP that are per-
formed in parallel cannot affect each other.

There are two main heuristics that we have applied for
pruning. These are:

1. Component-wise maximum expected reward (MAXEXP
heuristic)

2. Component-wise expected reward assuming no failures
(NOFAIL heuristic)

In order to calculate the MAXEXP heuristic, we first iden-
tify the start states of each component. Then we evaluate
each component separately from each of its start states and
use the maximum evaluation as the MAXEXP heuristic. In
order to calculate the NOFAIL heuristic, we evaluate each
component separately from each of its start states but we as-
sume that the probability of any action failing is 0. Thus all
actions are considered to be deterministic. This will result
in much less branching and hence evaluations will proceed
much quicker. The NOFAIL heuristic only works if the eval-
uation without failures is always higher than with failures
which should normally be the case.

The evaluation of the MAXEXP and NOFAIL heuristics
for space of TOPs which are pertubations of the TOP de-
scribed in figures 2 and 3 is shown in figure 7.

6 Helos

1 Scout
MAXEXP=4149.72

NOFAIL=4167

0 Scouts
MAXEXP=0
NOFAIL=0

6 Scouts
MAXEXP=95.98

NOFAIL=126

5 Scouts
MAXEXP=920.44

NOFAIL=951

4 Scouts
MAXEXP=1744.94

NOFAIL=1676

3 Scouts
MAXEXP=2569.90

NOFAIL=2601

2 Scouts
MAXEXP=3355.85

NOFAIL=3384

Figure 7: MAXEXP and NOFAIL heuristic values for dif-
ferent TOPs

MAXEXP NOFAIL NOPRUNE
6 Agents, 2 Comp. 16 16 54
6 Agents, 3 Comp. 16 16 54
7 Agents, 2 Comp. 17 17 63

Table 1: Number of nodes of the TOP space evaluated

Experimental Results
In our experiments we used the same domain described in
section 2 and 3. However here, we are trying to determine
what the best initial assignment of agents to roles will be
assuming that the replacement strategy and domain policy
is fixed. For the pruposes of this experiment we fixed the
replacement strategy to be the same as STEAM, i.e. a trans-
port will replace a failed scout only if the failure was criti-
cal. As can be seen in fig 3, there are 3 main components-
DoScouting, DoTransport and RemainingScouts. Scout-
ing is done first until one of the scouts reaches the destina-
tion. This is followed by Transport and RemainingScouts
done in parallel. We tried two settings of the problem, with
or without the RemainingScouts component. Also we tried
starting with either 6 or 7 scouts.

We then compared the performance of the MAXEXP and
NOFAIL heuristics for pruning with doing no pruning at
all (NOPRUNE). The performance is compared in terms of
number of nodes in the TOP space evaluated and these re-
sults are shown in table . All 3 techniques were able to find
the best allocation. As can be seen, a lot of pruning was ob-
tained by using these heuristic techniques thus demonstrat-
ing their usefulness.

Related Work
While the research in this paper focused on team-oriented
programming(Tambe, Pynadath, & Chauvat 2000; Tidhar
1993) it is relevant to other techniques of modeling and task-
ing collectives of agents. For instance, Lesser et al’s TAEMS
approach for modeling tasks and coordination relationships
is analogous to a team-oriented program and the analysis
proposed here may provide benefits in terms of allocating or
reallocating roles to agents.

Another key area of related work is team formation, which
has relied on search using matching capabilities (Tidhar,
Rao, & Sonenberg 1996) or combinatorial auctions(Huns-
berger & Grosz 2000) to form teams. There are several key
differences of this search process from the one discussed in
our work. First, the search in the TOP space described in this
paper uses stochastic models (RMTDPs) to compute costs.
One key advantage is that RMTDPs enable the computation
of not only the immediate benefits of team formation, but
also the costs of reformation upon failure. Second, a major
innovation in our current work is to use RMTDPs as a glass
box, to extract key heuristics to prune the search space. The
use of such models or their use in pruning has been absent
in prior work.

Research on adaptive agent organizations is relevant as
well. For instance, Horling et al illustrate heuristic tech-
niques for modifying an agent organization. Barber and

MacMahon illustrate the difficult challenge of such adapta-
tions in an agent organization(Barber & Martin 2001). For-
tunately, RMTDP begins to provide the missing analytical
tools that can help search the space of agent organizations
more efficiently.

Finally, in terms of research on markov decision pro-
cesses, previous sections have already discussed the re-
lationship of RMTDP to COM-MTDP. We can also dis-
cuss RMTDP’s relationship to other such distributed mod-
els. Given that the MTDP model is identical to the POIPSG
model (Peshkin et al. 2000) and DEC-POMDP) (Bernstein,
Zilberstein, & Immerman 2000), RMTDP could be seen to
enhance this model to enable explicit consideration of role
allocation and reallocation.

Conclusion
Integrating approaches based on belief-desire-intentions
(BDI) logics with the more recent developments of dis-
tributed POMDPs is today a fundamental challenge in the
multiagent systems arena. We address this issue by using
distributed POMDPs to analyze and direct the process of ar-
riving at a good BDI based team plan.

In particular, we have presented an approach to analyz-
ing and improving teamwork and empirically demonstrated
the effectiveness of the approach. Our approach employs
POMDP-based analysis but makes two key improvements to
prior work in this area. First, we presented a formal frame-
work that allows analysis of any aspect of team coordina-
tion. In contrast, prior work was restricted to the analysis
of communication. Second, we addressed the central issue
impacting the practicality of POMDP analysis, the cost of
finding the globally optimal policy. We addressed this issue
by decomposing the problem of finding a policy into a co-
ordination component and a team oriented program compo-
nent. Effective perturbation-based techniques for attacking
each of these components of the overall problem were pre-
sented. This work is extended and described in more detail
in (Nair, Tambe, & Marsella 2003).

Moving forward, we envision that this decomposition
based approach could be realized within a larger iterative
analysis process. Such a process would improve the team
oriented program, in turn improve the coordination and then
repeat the process.

Acknowledgment
This research was supported by grant #0208580 from the
National Science Foundation. We thank Jim Blythe and
David Pynadath for discussions related to the paper.

References
Barber, S., and Martin, C. 2001. Dynamic reorganization of
decision-making groups. In Agents.

Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000. The
complexity of decentralized control of MDPs. In UAI.

Boutilier, C. 1996. Planning, learning & coordination in multia-
gent decision processes. In TARK.

Decker, K., and Lesser, V. 1993. Quantitative modeling of com-
plex computational task environments. In AAAI.

Grosz, B., and Kraus, S. 1996. Collaborative plans for complex
group action. Artificial Intelligence 86(2):269–357.

Hunsberger, L., and Grosz, B. 2000. A combinatorial auction for
collaborative planning. In ICMAS.

Kitano, H.; Asada, M. Kuniyoshi, Y.; Noda, I.; and Osawa, E.
1997. Robocup: The robot world cup initiative. In IJCAI.

Nair, R.; Tambe, M.; and Marsella, S. 2003. Role allocation and
reallocation in multiagent teams: Towards a practical analysis. In
AAMAS.

Peshkin, L.; Meuleau, N.; Kim, K.-E.; and Kaelbling, L. 2000.
Learning to cooperate via policy search. In UAI.

Pynadath, D., and Tambe, M. 2002. Multiagent teamwork: An-
alyzing the optimality complexity of key theories and models. In
AAMAS.

Seow, K., and How, K. 2002. Collaborative assignment: a multi-
agent negotiation approach using bdi concepts. In AAMAS.

Tambe, M.; Pynadath, D.; and Chauvat, N. 2000. Building dy-
namic agent organizations in cyberspace. IEEE Internet Comput-
ing 4(2).

Tambe, M. 1997. Towards flexible teamwork. JAIR 7:83–124.

Tavares, J., and Demazeau, Y. 2002. Vowels co-ordination model.
In AAMAS.

Tidhar, G.; Rao, A.; and Sonenberg, E. 1996. Guided team selec-
tion. In ICMAS.

Tidhar, G. 1993. Team-oriented programming: Social structures.
Technical Report 47, Australian A.I. Institute.

Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Communication
decisions in multiagent cooperation. In Agents.

