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Abstract. The Distributed Constraint Optimization Problem (DCOP) isable to model
many problems in multiagent systems but existing research has not considered the is-
sue of unreliable communication which often arises in real world applications. Limited
bandwidth, interference, loss of line-of-sight are some reasons why communication
fails in the real world. In this paper we show that an existingasynchronous algorithm
for DCOP can be made to operate effectively in the face of message loss through the
introduction of a very simple timeout mechanism for selective communication. De-
spite its simplicity, this mechanism is shown to dramatically reduce communication
overhead while preventing deadlocks that can occur when messages are lost. Results
show that the optimal solution can be guaranteed even in the presence of message
loss and that algorithm performance measured in terms of time to solution degrades
gracefully as message loss probability increases.

1 Introduction

In recent years, several researchers have investigated Distributed Constraint Reasoning (DCR)
as a framework for problem solving in Multiagent Systems [4][6] [8] [13] [15]. One of the
main features that make it attractive is its distributed nature in which a set of autonomous
agents can each make local decisions but communicate in order to improve global solution
quality. In terms of experimental domains, a distributed sensor network domain has been used
as a key challenge problem for DCR with significant progress reported [3] [7][9][12].

Despite the many existing complete algorithms for DCR, suchas ABT, AWC[15], AAS
[13], DisDB[1] and APO[8], what is missing is a study of the performance of these algorithms
when message transfer is unreliable. This paper takes the first steps toward evaluating DCR
algorithm performance under message loss. We will assume a simple form of unreliable com-
munication: the communication infrastructure has an unknown loss probabilityr< 1, where
a message is dropped (not delivered) with probabilityr. For example, the radio-frequency
communication used in the distributed sensor network mentioned above is susceptible to in-
terference which can cause intermittent message loss. We not consider here permanent link
failures which is also an important class of unreliability.We will focus on one particular asyn-
chronous algorithm – the Adopt algorithm for Distributed Constraint Optimization Problems
(DCOP). We focus on Adopt because it is currently one of the most efficient decentralized
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constraint optimization algorithms that can provide strong guarantees on the global quality
of its solutions[11]. While we will use Adopt for our investigation, our hope is that our tech-
niques are valuable for other asynchronous DCR algorithms as well.

A common method for dealing with unreliable channels in communication networks is
to implement an error correction layer in software that can ensure reliable message delivery
even when the communication infrastructure itself is inherently unreliable. This is typically
done through an acknowledgment protocol where ACK messagesare used to verify that a
message has been received. A number of such protocols have been developed in the field of
computer networking, the most popular of which is TCP [14]. However, simple reliance on a
lower layer error-correction mechanism to ensure reliabledelivery is an inefficient approach
for dealing with unreliable communication infrastructurein asynchronous DCR algorithms.
First, it can significantly increase the number of messages that must be communicated since
every message must be acknowledged. Second, to enforce in-order-delivery between a given
pair of agents, a sender cannot deliver any messages to a given agentxi until the ACK for a
previously sent message is received fromxi. The time cost in waiting for ACKs can degrade
performance and reduce the efficiency of the higher-level DCR algorithm. Third, this method
is unable to take advantage of the fact that it may be okay for some messages to be lost
without large negative effects on the DCR algorithm.

In this paper, we evaluate an alternative timeout-based asynchronous communication
model for DCR algorithms. This approach does not require explicit acknowledgment mes-
sages for every message and allows agents to continue communicating asynchronously even
when messages are lost. We show that this simple mechanism significantly reduces com-
munication overhead, provides a method for trading off time-to-solution for communication
overhead and provides robustness to message loss. We provide empirical results using Adopt
in a real-world distributed sensor domain.

2 DCOP Definition

A Distributed Constraint Optimization Problem (DCOP) consists ofn variablesV = {x1,x2,

...xn}, each assigned to an agent, where the values of the variablesare taken from finite,
discrete domainsD1, D2,..., Dn, respectively. The goal is for the agents to coordinate their
choice of values so that a global objective function is optimized. The objective function is
described as the summation over a set ofcost functions. A cost function for a pair of variables
xi, xj is defined asfij : Di × Dj → N . The cost functions in DCOP are the analogue of
constraints from DisCSP and are sometimes referred to as “valued” or “soft” constraints.

Figure 1.a shows an example DCOP with four agents where each has a single variable
with domain{0, 1}. There are four constraints shown. Two agentsxi, xj are neighborsif
there is a constraint between their variables. In Figure 1,x1 andx3 are neighbors butx1 and
x4 are not. The objective is to find an assignmentA∗ of values to variables such that the ag-
gregate costF is minimized. Stated formally, we wish to findA (= A∗) such thatF (A) is
minimized, where the objective functionF is defined as

F (A) =
∑

xi,xj∈V

fij(di, dj) , where xi ← di,

xj ← dj in A

For example in Figure 1 if all variables are assigned the value 0 thenF = 4. If all variables
are assigned the value 1 thenF = 0 which is the optimal solution.
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Figure 1: Example of a simple DCOP graph.
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Figure 2: a) Example tree structure, b) Message Communication.

3 Adopt Algorithm for DCOP

Adopt is an algorithm for DCOP that is able to find globally optimal solutions while allowing
agents to choose variable values in parallel. Adopt performs a distributed concurrent con-
ditioning search using the communication of lower bounds toguide agents toward globally
minimum cost value choices. It has been shown to be able to solve certain classes of bench-
mark problems efficiently due to its concurrency. We providea brief overview of the Adopt
algorithm and refer the reader to [11] for details.

As a preprocessing step before Adopt executes, the agents form a global tree structure over
their variables in which each variable except the root variable has a singleparent. Figure 2.a
shows one possible tree formed from the constraint graph in 1. The tree provides an organiza-
tional structure that is useful for providing theoretical guarantees on termination and solution
quality. Once the tree is formed, agents begin execution in which each agent asynchronously
executes a processing loop in which it waits for incoming messages, processes them and sends
outgoing messages. Agents pass messages up or down the tree.VALUE messages are sent
down the tree along constraint edges informing lower agentsof the value choices of higher
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neighbors. Agents record the value choices of other agents in a “current context” or “agent
view”. A context is a partial solution representing an agent’s view of the current assignments
of other agents’ variables. In response to VALUE messages, COST messages are sent from
child to parent to provide feedback to higher agents on theirvalue choices. The technique of
context attachmentis used to deal with asynchronous changes and so each COST message is
attached with the sending agent’s own current context. Finally, THRESHOLD messages are
used to increase efficiency of the optimization process but are not necessary for correctness.

A key novelty of the Adopt algorithm is its built-in termination detection mechanism.
Agents continue communicating messages until a local termination condition is true at the
root agent. Once the termination condition is true at the root agent, the root sends a TERMI-
NATE message to its children and terminates itself. After receiving a TERMINATE message
from its parent, an agent knows that all of its higher neighbors have terminated and once its
own local termination condition is true, it will send TERMINATE messages down to its own
children and terminate itself. In this way, TERMINATE messages are recursively sent down
the tree until all agents have terminated. While we have omitted many details for simplicity,
the Adopt algorithm has been proved to terminate with the globally optimal solution [11],
i.e., it is sound and complete assuming reliable communication.

4 Issues with Asynchronous Communication

The dominant asynchronous communication model in existingDCR algorithms like Adopt[11]
and others, is for agents to initially send messages, and then execute a continuous loop in
which they respond to received messages by sending more messages. In this model, an agent
does not send any messages unless it receives a message and itmust send a message every
time a message is received in order to avoid possible deadlocks. This model has two prob-
lems. First, while this model has been successful in providing termination guarantees while
allowing agents to execute asynchronously, message loss invalidates these guarantees due to
deadlock problems. Second, even if there is no message loss,this model is not very efficient
in terms of the number of messages exchanged because agents often communicate unneces-
sarily. We elaborate on each problem in turn.

When messages are dropped, one of the major difficulties thatarises is the possibility
of deadlock in which all agents are waiting for each other to communicate. For example,
consider two agentsx1 andx2 executing the Adopt algorithm.x1 sends a VALUE message
to x2 and waits for an incoming message.x2 receives the VALUE message and sends back to
x1 a COST response. Suppose this message is lost. At this point,x1 is blocked and so isx2

waiting for another message fromx1. Thus, the loss of one message has resulted in the agents
getting deadlocked. The primary cause of this difficulty is the asynchronous communication
model in which agents send messages only in response to receipt of messages. Indeed, this
problem arises in any DCR algorithm that uses this asynchronous communication model.

To reduce communication overhead, the simplest approach isfor an agent to only send
messages if it has something new to say, i.e., a variable value or costs have changed. However,
this approach by itself is insufficient to guarantee completeness because duplicate messages
must be sent in some cases. Why must an agent send a message that is identical to a message
it has just sent in the previous execution cycle? To see why, realize that DCR algorithms
deal with asynchronous changes through the use of context attachment. When an agentxrec

receives a COST message attached with a context that does notmatch its current context (i.e.,
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procedure sendMsgs
(1) if timeSinceLastMsgSent > TIMEOUT or
(2) valueChanged:
(3) SEND (VALUE MSG)
(4) to each lower priority neighbor
(5) if timeSinceLastMsgSent > TIMEOUT or
(6) costChanged:
(7) SEND (COST MSG) to parent
(8) if terminationCondition == true:
(9) SEND (TERMINATE MSG) to each child

Figure 3: Procedure for using TIMEOUT mechanism in Adopt

agent view), the message is deemed to be obsolete and is ignored. However, it is possible that
in fact the agent’s current context is obsolete and the received message has more up-to-date
information. Thus, the sending agent,xsend must resend the message – even though no costs
may not have changed.

In the next section, we present a simple solution that allowstrade-offs between the two
competing issues of deadlock avoidance and high communication overhead.

5 The Timeout Mechanism

We present a simple communication model which uses a timeoutmechanism to significantly
reduce communication overhead and provide robustness to message loss. Rather than com-
municating in every cycle to deal with asynchronous changesas has been done in previous
algorithms or communicating only when information has changed which can lead to incom-
pleteness, we propose a parameterized approach to communication in which agents commu-
nicate only if they have something new to say or they have not sent any messages in a given
amount of time, as specified by an algorithmic parameter called TIMEOUT. The algorithm
for communication in the Adopt algorithm is shown in Figure 3. To see that deadlocks will
not occur, realize the timeout will ensure that an agent willnot sit waiting forever for a mes-
sage that may not come. Instead, it will continue sending messages to its children until a reply
is received and its termination condition is eventually true.

The TIMEOUT mechanism dramatically reduces the amount of communication neces-
sary to find the globally optimal solution, up to 80% in the experiments discussed later. The
mechanism also overcomes deadlock problems caused by loss of messages. It can be en-
sured that the algorithm will eventually terminate with theoptimal solution, regardless of
the amount of network disturbance, so long as the probability of a message being lost is
less than 1. Only the TERMINATE messages, which are essentially a distributed snapshot
mechanism [2], require reliable communication. An acknowledgment protocol can be used
to ensure TERMINATE messages are successfully communicated, but since they only need
to be communicated once between parent and child, the overhead for this is not very severe,
and is certainly less than requiring all types of messages tobe communicated reliably.

The TIMEOUT mechanism is effective due to a key novelty of theAdopt algorithm:
Adopt’s built-in termination detection. Rather than relying on an external quiescence detec-
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tion algorithm, the built-in termination condition allowsan agent to locally determine whether
to terminate. If no messages are received for a certain amount of time and an agent’s termi-
nation condition is not true, then that agent can conclude that a deadlock may have occurred
due to message loss. The agent can then resend messages to itsneighbors in order to trigger
the other agents and break the deadlock. In this way, the algorithm is able to intelligently
determine that messages need to be resent by using the built-in termination condition as a
guide.

We also see that since Adopt is completely asynchronous, it is well suited for operating
under unreliable communication infrastructure. In particular, agents are able to process any
message no matter when it is received and are insensitive to the order in which messages are
received. The method is also stateless in the sense that an agent does not need to remember
the last message it sent in case a resend is needed. The agent can simply send out its current
messages whenever a timeout occurs. This is in contrast to synchronous algorithms which
require messages to be received and sent in a particular order. For example in Synchronous
Branch and Bound [5], if a message is lost no progress can be made until that message is
successfully retransmitted.

6 Experimental Domain: Sensor Network as DCOP

Our application is a distributed sensor network domain thathas gained the attention of a num-
ber of multiagent researchers in recent years[3] [7] [12] [9]. The domain consists of multiple
fixed directional sensors and multiple targets in their sensing range. The direction of each
sensor is controlled by an autonomous on-board agent. Agents are able to send messages to
each other using low-bandwidth radio-frequency communication however the communica-
tion is unreliable due to possible interference. Furthermore, sensors may become ineffective
due to loss of power or damage. Figure 4.a shows 9 sensors in a grid configuration. Three
sensors must be pointed at a target to track it and no sensor may track more than one target.
Assuming each target is within the sensing range of only the four nearest sensors, we see that
only two of the four targets can be feasibly tracked in Figure4. The agents must coordinate in
order to track the targets with highest weights as denoted bythe number next to each target.

While there are many possible representations of this domain using distributed constraints,
our representation of the sensor domain using DCOP is shown in Figure 4.b. Only the vari-
ables and constraints for agents A1 and A2 are shown. Intuitively, the DCOP requires as-
signing triples of agents to targets. If there are too many targets and not enough agents,
lower-weighted targets are ignored. The goal then is to minimize the sum of the weights of
the ignored targets. This mapping attempts to represents the domain in the sense that if agents
find values for variables that minimize the sum cost over all the constraints, they will mini-
mize the sum weight of ignored targets. The mapping is motivated by the desire to use only
unary and binary constraints and avoid higher arity constraints.

The mapping proceeds as follows. We create a variableT i
j for each target j and agent i

who could possibly sense target j. The domain of variableT i
j is the set of agent triples that

could track target j. For example, the domain of variablesT 1

1
, T 2

1
in Figure 4.b (andT 3

1
, T 4

1

not shown) is the set{A1A2A3, A1A2A4, A1A3A4, A2A3A4, Ignore}. TheIgnore value
indicates that zero agents are allocated to the target. An equality constraint between two
variablesT i

j andT k
j belonging to agents i and k requires them to agree on which 3 agents will

track the target j. A mutual exclusion constraint between two variablesT i
j andT i

k within agent
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Figure 4: Mapping of sensor network to DCOP

i requires that the agent not participate in tracking two targets. The cost of violating these
two constraints is set to a very high value (Inf) essentiallymaking them “hard” constraints.
Finally, an Ignore constraint defined for each target gives the cost for choosing theIgnore

value for that target.

7 Experiments

Although Adopt allows agents to execute asynchronously, weperform our experiments in a
simulation environment in which agents execute in synchronous cycles. Onecycleis defined
as all agents receiving all incoming messages and sending all outgoing messages simultane-
ously. The synchronous cycle metric allows repeatable experiments because it is not sensitive
to differing computation speeds at different agents or fluctuations in message delivery time.
Indeed, these factors are often unpredictable and we would like to control for them when
performing systematic experiments. However, we note that aweakness of this metric is that it
does not take into account the time required for local processing. So instead of only reporting
the number of cycles, we also report a metric has called “concurrent constraint checks” [10]
in which we record the maximum number of constraint checks byany agent in a given cycle
and then sum over all cycles.

We experiment in the sensor network domain. Multiple variables per agent are handled
using the virtual agent approach [16] in which multiple threads within one agent each run
the Adopt algorithm independently for a single variable. Weuse two sensor configurations:
GRID in which sensors are arranged as shown in Figure 4 and CHAIN in which sensors
are arranged in two parallel rows. For each configuration, a specified number of targets are
randomly placed and the four nearest sensors are assumed to be the only ones who could
track it. Each target is given a random weight in [0,100]. Each datapoint is the average of 20
runs and in all cases, the globally optimal solution is obtained.

7.1 Reduction in Communication Overhead

We first present experiments evaluating the use of the TIMEOUT parameter on cycles, con-
current constraint checks, and number of messages. Figure 5shows results in a GRID forma-
tion while Figure 6 shows results in a CHAIN formation. We show how performance varies
for four TIMEOUT values: (1,10,100,1000). The results showthat the number of messages
communicated decreases dramatically as TIMEOUT is increased. On the other hand, if it is
increased too high, we see that the number of cycles increases also. We conclude from these
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Figure 5: Grid Sensor Network, 16 sensors, 5 targets. Increasing TIMEOUT value increases cycles (left) and
computation (middle), but reduces communication (right)
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Figure 6: Chain Sensor Network, 24 sensors, 10 targets. Increasing TIMEOUT value increases cycles (left) and
computation (middle), but reduces communication (right)

experiments that a TIMEOUT value of 10 cycles provides an appropriate trade off between
these two competing aspects of performance, and reduces communication significantly, from
25000 (for TIMEOUT=1) to 10000 (for TIMEOUT=10) in the GRID experiments and simi-
larly from 55000 to 25000 in the CHAIN experiments.

7.2 Robustness to Message Loss

We have also evaluated with the effect of message loss on the performance of Adopt. Figure
7 and 8 shows the change in performance on a GRID and CHAIN network respectively as
message loss rates are increased from 0 to 20%. A timeout value of 10 cycles is used. We
see that Adopt is fairly robust to low rates of message loss asperformance according to all
three metrics is not very much effected. At high loss rates of10% and higher, we begin to see
performance inevitably degrade although the optimal solution is still obtained in all cases.

 0

 1000

 2000

 3000

0 2 5 10 20

C
yc

le
s

Loss Rate (pct) 

Loss Rate vs Cycles

 0

 2500

 5000

0 2 5 10 20

C
C

C
 (

10
0k

)

Loss Rate (pct) 

Loss Rate vs Concurrent Constraint Checks

 0

 2000

 4000

 6000

 8000

 10000

0 2 5 10 20

M
es

sa
ge

s

Loss Rate (pct) 

Loss Rate vs Messages

Figure 7: Grid with 9 sensors and 4 targets. Increasing message loss levels gracefully degrade performance in
cycles (left), computation (middle) and communication (right).
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Figure 8: Chain with 24 sensors and 7 targets. Increasing message loss levels gracefully degrade performance
in cycles (left), computation (middle) and communication (right).

8 Conclusions

We evaluated a simple timeout mechanism for both reducing communication overhead and
preventing deadlocks when messages are lost in asynchronous distributed constraint opti-
mization problem solving. We showed that this method allowsthe Adopt algorithm to tol-
erate message loss and still terminate with the globally optimal solution. Empirical results
in a distributed sensor network domain showed that the mechanism dramatically reduced
the amount of communication necessary to find the globally optimal solution, up to 80% in
some experiments and algorithm performance decreases gracefully as message loss rate is
increased.
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