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Abstract. The Distributed Constraint Optimization Problem (DCOP3li¢e to model
many problems in multiagent systems but existing reseamsmbt considered the is-
sue of unreliable communication which often arises in realavapplications. Limited
bandwidth, interference, loss of line-of-sight are sonm@soas why communication
fails in the real world. In this paper we show that an exisasgnchronous algorithm
for DCOP can be made to operate effectively in the face of aggstoss through the
introduction of a very simple timeout mechanism for selectéommunication. De-
spite its simplicity, this mechanism is shown to dramatjce¢duce communication
overhead while preventing deadlocks that can occur wheisages are lost. Results
show that the optimal solution can be guaranteed even in tbgepce of message
loss and that algorithm performance measured in terms @& tonsolution degrades
gracefully as message loss probability increases.

1 Introduction

Inrecent years, several researchers have investigatetiisd Constraint Reasoning (DCR)
as a framework for problem solving in Multiagent Systems[#}][8] [13] [15]. One of the
main features that make it attractive is its distributedur&in which a set of autonomous
agents can each make local decisions but communicate in wrd@prove global solution
quality. In terms of experimental domains, a distributatsee network domain has been used
as a key challenge problem for DCR with significant progreperted [3] [7][9][12].

Despite the many existing complete algorithms for DCR, sagABT, AWC[15], AAS
[13], DisDB[1] and APOI8], what is missing is a study of thefeemance of these algorithms
when message transfer is unreliable. This paper takes stet@ps toward evaluating DCR
algorithm performance under message loss. We will assumnepdesform of unreliable com-
munication: the communication infrastructure has an unknioess probabilityr< 1, where
a message is dropped (not delivered) with probabilitfFor example, the radio-frequency
communication used in the distributed sensor network roeati above is susceptible to in-
terference which can cause intermittent message loss. Weoneider here permanent link
failures which is also an important class of unreliabiMye will focus on one particular asyn-
chronous algorithm — the Adopt algorithm for DistributednStraint Optimization Problems
(DCOP). We focus on Adopt because it is currently one of thetrefiicient decentralized
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constraint optimization algorithms that can provide styguarantees on the global quality
of its solutions[11]. While we will use Adopt for our invegétion, our hope is that our tech-
niques are valuable for other asynchronous DCR algorithesed.

A common method for dealing with unreliable channels in camiwation networks is
to implement an error correction layer in software that casuee reliable message delivery
even when the communication infrastructure itself is iehdly unreliable. This is typically
done through an acknowledgment protocol where ACK messaigessed to verify that a
message has been received. A number of such protocols hamedbeeloped in the field of
computer networking, the most popular of which is TCP [14dwéver, simple reliance on a
lower layer error-correction mechanism to ensure relidelevery is an inefficient approach
for dealing with unreliable communication infrastructimeasynchronous DCR algorithms.
First, it can significantly increase the number of messdgasmust be communicated since
every message must be acknowledged. Second, to enforedendelivery between a given
pair of agents, a sender cannot deliver any messages toraageatr; until the ACK for a
previously sent message is received fromThe time cost in waiting for ACKs can degrade
performance and reduce the efficiency of the higher-levaR{@orithm. Third, this method
is unable to take advantage of the fact that it may be okaydaoresmessages to be lost
without large negative effects on the DCR algorithm.

In this paper, we evaluate an alternative timeout-basedcasgnous communication
model for DCR algorithms. This approach does not requirdi@kacknowledgment mes-
sages for every message and allows agents to continue capating asynchronously even
when messages are lost. We show that this simple mechangsnificantly reduces com-
munication overhead, provides a method for trading off tbmsolution for communication
overhead and provides robustness to message loss. We@sswaairical results using Adopt
in a real-world distributed sensor domain.

2 DCOP Definition

A Distributed Constraint Optimization Problem (DCOP) dstsofn variablesV’ = {x;,z,,
..., }, each assigned to an agent, where the values of the variatdesken from finite,
discrete domain®),, D,,..., D,,, respectively. The goal is for the agents to coordinate thei
choice of values so that a global objective function is opteéd. The objective function is
described as the summation over a satast functionsA cost function for a pair of variables
z;, x; is defined asf;; : D, x D; — N. The cost functions in DCOP are the analogue of
constraints from DisCSP and are sometimes referred to dseéaor “soft” constraints.

Figure 1.a shows an example DCOP with four agents where ezgla lsingle variable
with domain{0, 1}. There are four constraints shown. Two agents:; are neighborsif
there is a constraint between their variables. In Figurtg Bndx; are neighbors but, and
x4 are not. The objective is to find an assignmdritof values to variables such that the ag-
gregate cost’' is minimized. Stated formally, we wish to find (= .A*) such thatF'(A) is
minimized, where the objective functidnis defined as

F(A) = > fij(di,d;) ,wherex; —d,,

i €V Tj < dj mn A

For example in Figure 1 if all variables are assigned thea/@lthent" = 4. If all variables
are assigned the value 1 théh= 0 which is the optimal solution.
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3 Adopt Algorithm for DCOP

Adopt is an algorithm for DCOP that is able to find globallyioml! solutions while allowing
agents to choose variable values in parallel. Adopt pedoandistributed concurrent con-
ditioning search using the communication of lower boundgttmle agents toward globally
minimum cost value choices. It has been shown to be able e sekrtain classes of bench-
mark problems efficiently due to its concurrency. We prowadarief overview of the Adopt
algorithm and refer the reader to [11] for details.

As a preprocessing step before Adopt executes, the agemsifglobal tree structure over
their variables in which each variable except the root Wdeihas a singlparent Figure 2.a
shows one possible tree formed from the constraint graphThé tree provides an organiza-
tional structure that is useful for providing theoreticabgantees on termination and solution
quality. Once the tree is formed, agents begin executiorichveach agent asynchronously
executes a processing loop in which it waits for incomingsagss, processes them and sends
outgoing messages. Agents pass messages up or down theAtééE messages are sent
down the tree along constraint edges informing lower agehtise value choices of higher
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neighbors. Agents record the value choices of other agerds‘current context” or “agent
view”. A context is a partial solution representing an ageview of the current assignments
of other agents’ variables. In response to VALUE messag@§STmessages are sent from
child to parent to provide feedback to higher agents on treue choices. The technique of
context attachmers used to deal with asynchronous changes and so each COSageds
attached with the sending agent’s own current context.llFinBEHRESHOLD messages are
used to increase efficiency of the optimization process taubhat necessary for correctness.

A key novelty of the Adopt algorithm is its built-in terminah detection mechanism.
Agents continue communicating messages until a local textioin condition is true at the
root agent. Once the termination condition is true at the agent, the root sends a TERMI-
NATE message to its children and terminates itself. Afteereing a TERMINATE message
from its parent, an agent knows that all of its higher neighli@mve terminated and once its
own local termination condition is true, it will send TERMAYE messages down to its own
children and terminate itself. In this way, TERMINATE megea are recursively sent down
the tree until all agents have terminated. While we havetechinany details for simplicity,
the Adopt algorithm has been proved to terminate with théalg optimal solution [11],
i.e., itis sound and complete assuming reliable commuinicat

4 Issues with Asynchronous Communication

The dominant asynchronous communication model in exi®@R algorithms like Adopt[11]
and others, is for agents to initially send messages, anddkecute a continuous loop in
which they respond to received messages by sending moragessdn this model, an agent
does not send any messages unless it receives a messagerarst send a message every
time a message is received in order to avoid possible ddelldbis model has two prob-
lems. First, while this model has been successful in pragidermination guarantees while
allowing agents to execute asynchronously, message leaigdates these guarantees due to
deadlock problems. Second, even if there is no messagdhassodel is not very efficient
in terms of the number of messages exchanged because affentsmnmunicate unneces-
sarily. We elaborate on each problem in turn.

When messages are dropped, one of the major difficultiesatieds is the possibility
of deadlock in which all agents are waiting for each otherdammunicate. For example,
consider two agents; andx, executing the Adopt algorithm:; sends a VALUE message
to x5, and waits for an incoming messagse.receives the VALUE message and sends back to
x1 a COST response. Suppose this message is lost. At this poiistplocked and so is;
waiting for another message fram. Thus, the loss of one message has resulted in the agents
getting deadlocked. The primary cause of this difficultyhis asynchronous communication
model in which agents send messages only in response tptredenessages. Indeed, this
problem arises in any DCR algorithm that uses this asyndu®communication model.

To reduce communication overhead, the simplest approafcn &n agent to only send
messages if it has something new to say, i.e., a variable ealcosts have changed. However,
this approach by itself is insufficient to guarantee congriess because duplicate messages
must be sent in some cases. Why must an agent send a messag@taical to a message
it has just sent in the previous execution cycle? To see wdalize that DCR algorithms
deal with asynchronous changes through the use of contexbatent. When an agent...
receives a COST message attached with a context that doestadt its current context (i.e.,
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procedure sendMsgs

(1) if timeSinceLastMsgSent > TIMEOUT or
(2) valueChanged:

©) SEND WALUE _MSG)

4 to each lower priority neighbor

(5) if timeSinceLastMsgSent > TIMEOUT or
(6) costChanged:

) SEND COST_MSG) to parent
(8) if terminationCondition == true:
9 SEND (TERMINATE _MSG) to each child

Figure 3: Procedure for using TIMEOUT mechanism in Adopt

agent view), the message is deemed to be obsolete and istgyhtowever, it is possible that
in fact the agent’s current context is obsolete and the vedanessage has more up-to-date
information. Thus, the sending agent,,.; must resend the message — even though no costs
may not have changed.

In the next section, we present a simple solution that allwade-offs between the two
competing issues of deadlock avoidance and high commumrcaterhead.

5 The Timeout Mechanism

We present a simple communication model which uses a timmaeahanism to significantly
reduce communication overhead and provide robustnessdeage loss. Rather than com-
municating in every cycle to deal with asynchronous chamrgesas been done in previous
algorithms or communicating only when information has gexhwhich can lead to incom-
pleteness, we propose a parameterized approach to conatianim which agents commu-
nicate only if they have something new to say or they have @t 8ny messages in a given
amount of time, as specified by an algorithmic parameteedalMEOUT. The algorithm
for communication in the Adopt algorithm is shown in Figureld see that deadlocks will
not occur, realize the timeout will ensure that an agentmatlsit waiting forever for a mes-
sage that may not come. Instead, it will continue sendingagss to its children until a reply
is received and its termination condition is eventuallytru

The TIMEOUT mechanism dramatically reduces the amount afroanication neces-
sary to find the globally optimal solution, up to 80% in the esments discussed later. The
mechanism also overcomes deadlock problems caused byflossssages. It can be en-
sured that the algorithm will eventually terminate with tyatimal solution, regardless of
the amount of network disturbance, so long as the probglifita message being lost is
less than 1. Only the TERMINATE messages, which are esdigraialistributed snapshot
mechanism [2], require reliable communication. An ackremgiment protocol can be used
to ensure TERMINATE messages are successfully commuuiichte since they only need
to be communicated once between parent and child, the aefbethis is not very severe,
and is certainly less than requiring all types of messagbs mommunicated reliably.

The TIMEOUT mechanism is effective due to a key novelty of Aaopt algorithm:
Adopt’s built-in termination detection. Rather than relyion an external quiescence detec-
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tion algorithm, the built-in termination condition allows agent to locally determine whether
to terminate. If no messages are received for a certain anodtime and an agent’s termi-
nation condition is not true, then that agent can concludedldeadlock may have occurred
due to message loss. The agent can then resend messageightsors in order to trigger
the other agents and break the deadlock. In this way, theitdgois able to intelligently
determine that messages need to be resent by using theénbt@hmination condition as a
guide.

We also see that since Adopt is completely asynchronouswell suited for operating
under unreliable communication infrastructure. In pafc, agents are able to process any
message no matter when it is received and are insensitibe torter in which messages are
received. The method is also stateless in the sense thaeah @&ges not need to remember
the last message it sent in case a resend is needed. The ageiinply send out its current
messages whenever a timeout occurs. This is in contrasttthsynous algorithms which
require messages to be received and sent in a particular. &ateexample in Synchronous
Branch and Bound [5], if a message is lost no progress can loe onatil that message is
successfully retransmitted.

6 Experimental Domain: Sensor Network as DCOP

Our application is a distributed sensor network domainltiagtgained the attention of a num-
ber of multiagent researchers in recent years[3] [7] [L2] T®Be domain consists of multiple
fixed directional sensors and multiple targets in their sgnsange. The direction of each
sensor is controlled by an autonomous on-board agent. Ageatable to send messages to
each other using low-bandwidth radio-frequency commurtnahowever the communica-
tion is unreliable due to possible interference. Furtheansensors may become ineffective
due to loss of power or damage. Figure 4.a shows 9 sensorsrid aampfiguration. Three
sensors must be pointed at a target to track it and no sengotrack more than one target.
Assuming each target is within the sensing range of onlydheriearest sensors, we see that
only two of the four targets can be feasibly tracked in Figur€he agents must coordinate in
order to track the targets with highest weights as denotaddopumber next to each target.

While there are many possible representations of this doasaing distributed constraints,
our representation of the sensor domain using DCOP is showigure 4.b. Only the vari-
ables and constraints for agents A1 and A2 are shown. eljtithe DCOP requires as-
signing triples of agents to targets. If there are too mangets and not enough agents,
lower-weighted targets are ignored. The goal then is tommize the sum of the weights of
the ignored targets. This mapping attempts to represeatiaimain in the sense that if agents
find values for variables that minimize the sum cost overtal¢onstraints, they will mini-
mize the sum weight of ignored targets. The mapping is mid/ay the desire to use only
unary and binary constraints and avoid higher arity comdsa

The mapping proceeds as follows. We create a variﬁprﬁmr each target j and agent i
who could possibly sense target j. The domain of varidhjlés the set of agent triples that
could track target j. For example, the domain of varialilésT? in Figure 4.b (and’?, T}!
not shown) is the sefA1A42A3, A1A2A4, A1A3A4, A2A3A4, Ignore}. The Ignore value
indicates that zero agents are allocated to the target. Aaliég constraint between two
variableél”j ande belonging to agents i and k requires them to agree on whicleBtagvill
track the target j. A mutual exclusion constraint betweemveriables/’; and7}; within agent
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Tji: Variable for target j in agent i
f(Tj!, T;¥)—>{0,Inf}: Equality constraint
f(Tji, T ) =>{0,Inf}: Mutual exclusion constrain

»Inf /
T

T: 1 T: 2
o 50 arg870
VR B

Target 3 Target 4
80 %20

» (Inf 07
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a) Sensor grid b) DCOP representation

Figure 4: Mapping of sensor network to DCOP

I requires that the agent not participate in tracking twgets. The cost of violating these
two constraints is set to a very high value (Inf) essentiaipking them “hard” constraints.
Finally, an Ignore constraint defined for each target gitesdost for choosing thégnore
value for that target.

7 Experiments

Although Adopt allows agents to execute asynchronouslyp&réorm our experiments in a
simulation environment in which agents execute in synabusrcycles. Oneycleis defined
as all agents receiving all incoming messages and sendingtgbing messages simultane-
ously. The synchronous cycle metric allows repeatableraxgats because it is not sensitive
to differing computation speeds at different agents or flatbns in message delivery time.
Indeed, these factors are often unpredictable and we wdddd control for them when
performing systematic experiments. However, we note thaakness of this metric is that it
does not take into account the time required for local preiogs So instead of only reporting
the number of cycles, we also report a metric has called ‘@woent constraint checks” [10]
in which we record the maximum number of constraint checkarbyagent in a given cycle
and then sum over all cycles.

We experiment in the sensor network domain. Multiple vdeslper agent are handled
using the virtual agent approach [16] in which multiple tids within one agent each run
the Adopt algorithm independently for a single variable. ¥8e two sensor configurations:
GRID in which sensors are arranged as shown in Figure 4 andIEHAwhich sensors
are arranged in two parallel rows. For each configuratiomeziied number of targets are
randomly placed and the four nearest sensors are assumedthe lonly ones who could
track it. Each target is given a random weight in [0,100]. edatapoint is the average of 20
runs and in all cases, the globally optimal solution is aleéi

7.1 Reduction in Communication Overhead

We first present experiments evaluating the use of the TIME@&rameter on cycles, con-
current constraint checks, and number of messages. Figlrevis results in a GRID forma-
tion while Figure 6 shows results in a CHAIN formation. We whiwow performance varies
for four TIMEOUT values: (1,10,100,1000). The results shtbat the number of messages
communicated decreases dramatically as TIMEOUT is ineakadn the other hand, if it is
increased too high, we see that the number of cycles insedse. We conclude from these
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Figure 6: Chain Sensor Network, 24 sensors, 10 targetedsorg TIMEOUT value increases cycles (left) and
computation (middle), but reduces communication (right)

experiments that a TIMEOUT value of 10 cycles provides an@mate trade off between
these two competing aspects of performance, and reduceswoitation significantly, from
25000 (for TIMEOUT=1) to 10000 (for TIMEOUT=10) in the GRIXeeriments and simi-
larly from 55000 to 25000 in the CHAIN experiments.

7.2 Robustness to Message Loss

We have also evaluated with the effect of message loss oretti@mance of Adopt. Figure
7 and 8 shows the change in performance on a GRID and CHAINanktwespectively as
message loss rates are increased from 0 to 20%. A timeow @&lli0 cycles is used. We
see that Adopt is fairly robust to low rates of message logsea®rmance according to all
three metrics is not very much effected. At high loss ratekd8b and higher, we begin to see
performance inevitably degrade although the optimal swius still obtained in all cases.
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Figure 7: Grid with 9 sensors and 4 targets. Increasing ngedsas levels gracefully degrade performance in
cycles (left), computation (middle) and communicatioglit).
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Figure 8: Chain with 24 sensors and 7 targets. Increasingagedoss levels gracefully degrade performance
in cycles (left), computation (middle) and communicatidglt).

8 Conclusions

We evaluated a simple timeout mechanism for both reducimgnmenication overhead and
preventing deadlocks when messages are lost in asynctyahsuibuted constraint opti-
mization problem solving. We showed that this method alltives Adopt algorithm to tol-
erate message loss and still terminate with the globallyradtsolution. Empirical results
in a distributed sensor network domain showed that the nmsimadramatically reduced
the amount of communication necessary to find the globaltyrad solution, up to 80% in
some experiments and algorithm performance decreasesfigiigp@as message loss rate is
increased.
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