Role Allocation and Reallocation in Multiagent Teams:
Towards A Practical Analysis

Ranijit Nair
Computer Science Dept
Univ. of Southern California
Los Angeles, CA 90089

nair@usc.edu

ABSTRACT

Despite the success of the BDI approach to agent teamwork, initial
role allocation (i.e. deciding which agents to allocate to key roles
in the team) and role reallocation upon failure remain open chal-
lenges. What remain missing are analysis techniques to aid human
developers in quantitatively comparing different initial role alloca-
tions and competing role reallocation algorithms. To remedy this
problem, this paper makes three key contributions. First, the paper
introduces RMTDP (Role-based Multiagent Team Decision Prob-
lem), an extension to MTDP [9], for quantitative evaluations of role
allocation and reallocation approaches. Second, the paper illus-
trates an RMTDP-based methodology for not only comparing two
competing algorithms for role reallocation, but also for identify-
ing the types of domains where each algorithm is suboptimal, how
much each algorithm can be improved and at what computational
cost (complexity). Such algorithmic improvements are identified
via a new automated procedure that generates a family of locally
optimal policies for comparative evaluations. Third, since there
are combinatorially many initial role allocations, evaluating each
in RMTDP to identify the best is extremely difficult. Therefore, we
introduce methods to exploit task decompositions among subteams
to significantly prune the search space of initial role allocations.
We present experimental results from two distinct domains.

Categories and Subject Descriptors
1.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Measurement, Performance, Algorithms

Keywords

Role allocation, Reallocation, Analysis of Teams

1. INTRODUCTION

The belief-desire-intention (BDI) approach to agent teamwork
has led to many practical multiagent applications [12, 14, 13]. Ini-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’03, July 14-18, 2003, Melbourne, Australia.

Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

Milind Tambe
Computer Science Dept
Univ. of Southern California
Los Angeles, CA 90089

tambe@usc.edu

Stacy Marsella
Information Sciences Institute
Univ. of Southern California
Marina del Rey, CA 90292

marsella@isi.edu

tial role allocation, i.e. which agents to allocate to the various roles
in the team, and role reallocation upon failures or new tasks, are two
continuing challenges for building teams [15, 7]. For instance, in
mission rehearsal simulations [12], we need to select the numbers
and types of helicopter agents to allocate to different roles in the
team, and to decide how role substitution should occur upon fail-
ures. Similarly, in disaster rescue [8], initial role allocations (e.g.
which brigades for each fire) can greatly impact team performance.

Critically needed now are analysis techniques to aid human de-
velopers in quantitatively comparing and evaluating different ini-
tial role allocations and competing role reallocation algorithms.
Such evaluations are currently difficult because there are signifi-
cant uncertainties and costs associated with agents’ execution of
roles and roles may need to be reallocated upon execution failures.
In particular, given domain uncertainty and costs, experimentally
evaluating all possible role allocation and reallocation combina-
tions can be expensive or infeasible. Fortunately, the recent emer-
gence of distributed partially observable Markov decision problems
(POMDPs) provides quantitative multiagent analysis techniques [1,
2, 9, 16] that allow such evaluations. The key idea is to encode dif-
ferent multiagent coordination protocols as policies in distributed
POMDPs, and compare them against specific baseline policies to
investigate any potential for improvements in the protocols.

Unfortunately, while the previous distributed-POMDP analysis
techniques are powerful, from our perspective they suffer from two
key limitations. First, analysis in previous work focused on com-
munication [9, 16], rather than role allocation or any other coor-
dination decisions. To address this limitation, we demonstrate an
overall methodology to analyze different aspects of teamwork coor-
dination. In particular, we derive RMTDP (Role-based Multiagent
Team Decision Problem), a distributed POMDP framework for an-
alyzing role allocation and reallocation.

A second limitation is that even after defining a model such as
RMTDP, techniques tailored for analysis of role allocation and real-
location are unavailable. Partly, the problem is the difficulty in de-
riving baseline policies for comparison: as we prove using RMTDP,
the derivation of a globally optimal role-allocation policy is NEXP-
complete. Partly, the logical separation of initial role allocation
from reallocation in BDI teams needs to be reflected in the analy-
sis. Indeed, in BDI teams, initial role allocation is considered part
of the domain-specific organization structure; this interacts with but
is separate from role reallocation, which is often part of the domain-
independent coordination infrastructure to coordinate the organiza-
tion [13]. For example, such separation is clearly seen in the team-
oriented program (TOP) approach to building BDI teams [12, 14,
13]. Thus, in many instances, analyses must focus on selecting just
the right role allocation for a given domain, since the coordination

infrastructure is deployed and fixed. In other instances, since exter-
nal constraints fix the organization structure, analyses should aim
to improve an existing, domain-independent role reallocation algo-
rithm within the coordination infrastructure — this improvement
must be effective across different domains.

To address this second limitation, we treat role allocation and re-
allocation as two separate, interacting design tasks, and tailor anal-
ysis techniques for each. Thus, we first analyze role reallocation
assuming a fixed initial role allocation. We apply RMTDP to quan-
titatively compare two published role reallocation algorithms over
differing domain conditions — comparisons that were previously
very difficult to obtain. We also illustrate a quantitative compari-
son of these strategies with “locally optimal” baseline policies to
identify the types of domains where individual strategies may be
suboptimal, how much a strategy can be improved and the compu-
tational cost of such improvements. While previous work proposed
one restricted kind of “locally optimal” policy as a baseline [9],
this paper presents: (i) an automated procedure to generate an en-
tire family of locally optimal policies and (ii) a methodology for
role reallocation analysis using such policies.

Next we use RMTDPs to improve initial role allocations, given
fixed role reallocation strategies. While we could enumerate each
possible role allocation for a given domain and evaluate each as
a separate RMTDP policy, combinatorially many role allocations
would be evaluated. Instead, we exploit task decomposition among
subteams of a team to significantly prune the search space.

This work is motivated by the needs of role allocation and reallo-
cation in two concrete domains: RoboCupRescue [8] and mission
rehearsal simulation [12]. We have constructed large-scale teams
using BDI approaches for both domains [12]; in particular, we have
used a team-oriented programming approach (TOP) [12, 14, 13],
described in Section 2. We assume these BDI systems as a given
and apply RMTDP only to analyze them — presenting experimen-
tal results from both domains. While we use TOP as an example
BDI approach, our methodology applies to other related teamwork
approaches that need role (re)allocation as well [11].

2. DOMAINS AND MOTIVATION

For expository purposes, we have intentionally simplified the
mission rehearsal domain and describe it first (the more complex
RoboCupRescue domain is described later): A helicopter team is
executing a mission of transporting valuable cargo from X to Y
through enemy terrain (see Figure 1). There are three paths from X
to Y of different lengths and different risk due to enemy fire. One
or more scouting subteams must be sent out, and the larger the size
of a scouting subteam the safer it is. When scouts clear up any one
path from X to Y, the transports can then move more safely along
that path. However, the scouts may fail along a path, and may need
to be replaced by a transport at the cost of not transporting cargo.
Owing to partial observability, the transports may not receive an
observation that a scout has failed or that a route has been cleared.
We wish to transport the most amount of cargo in the quickest pos-
sible manner within the mission deadline.

The TOPs for domains such as these consist of three key aspects
of a team: (i) a team organization hierarchy consisting of roles; (ii)
a team (reactive) plan hierarchy; and (iii) an assignment of roles
to execute plans. Thus, the developer need not specify low-level
coordination details. Instead the TOP interpreter (the underlying
coordination infrastructure) automatically enables agents to decide
when and with whom to communicate and how to reallocate roles
upon failure. In the TOP for this example, we first specify the team
organization hierarchy (see Figure 2(a)). Task Force is the highest
level team in this organization and consists of two roles Scouting

::fi:: ECOUt I
< ey AN
.

Figure 1: Helicopter Domain

Execute Mission [Task Force]
Task Force

/\ DoScouting RemainingScouts
[Scouting Team] % é [Scouting Team]

Scouting Team Transport Team TS oTransport
)/%A [Transport Team]
UseRoute3
SctTeamA SctTeamC UseRoutel

[SctTeamA] UseRoute2 [SctTeamC]
SctTeamB [SctTeamB]

(@) (b)
Figure 2: TOP a: Organization hierarchy; b: Plan hierarchy

and Transport, where the Scouting subteam has roles for each of the
three scouting sub-subteam. Next we specify a hierarchy of reactive
team plans (Figure 2(b)). Reactive team plans explicitly express
joint activities of the relevant team and consist of: (i) initiation
conditions under which the plan is to be proposed; (ii) termination
conditions under which the plan is to be ended; and (iii) team-level
actions to be executed as part of the plan. In Figure 2(b), the high-
est level plan Execute Mission has three subplans: DoScouting to
make one path from X to Y safe for the transports, DoTransport
to move the transports along a scouted path, and RemainingScouts
for the scouts which haven’t reached the destination yet to get there.

Figure 2(b) also shows coordination relationships: An AND re-
lationship is indicated with a solid arc, while an OR relationship
is indicated with a dotted arc. Thus, DoScouting, DoTransport
and RemainingScouts must all three be done while at least one of
UseRoutel, UseRoute2 or UseRoute3 need be performed. There
is also a temporal dependence relationship among the subplans,
which implies that subteams assigned to perform DoTransport or
RemainingScouts cannot do so until the DoScouting plan has com-
pleted . However, DoTransport and RemainingScouts execute in
parallel. Finally, we assign roles to plans — Figure 2(b) shows the
assignment in brackets adjacent to the plans. For instance, Task
Force team is assigned to jointly perform Execute Mission.

This example scenario helps explain the key challenges faced in
role allocation and reallocation. First, a human developer must al-
locate available agents to the organization hierarchy (Figure 2(a)).
However, there are combinatorially many allocations to choose from
[7, 12]. For instance, starting with even 6 homogeneous helicopters
results in 84 different ways of deciding how many agents to assign
to each scouting and transport subteam. This problem is exacer-
bated by the fact that the best allocations varies significantly based
on domain variations, e.g. Figure 3 shows three different assign-
ments of agents to the team organization hierarchy, each found in
our analysis to be the best for a given setting of probability of he-
licopter failures (details in Section 6). For example, interchanging
the probability of failures for routes 2 and route 3 resulted in the
number of transports in the best allocation changing from 3 (see
Figure 3(b)) to 4 (see Figure 3(c)). If the probability of failure on
route 3 was reduced further, the number of transports increased to
5 (see Figure 3(a)). Furthermore, what reallocation algorithm to
use to reallocate transports to scouting role, is a critical challenge
for the TOP interpreter (coordination infrastructure). For instance,
should the algorithm require all scouts to fail before role reallo-
cation, or would a more pre-emptive reallocation approach work

Task Force Task Force © Task Force

® /\ : /\
}uﬁnq&jramspoﬂeamzs Scouting Team Transport Team=3 Scouting Team Transport Team=4

SciTeamA=0 SciTeamB=0 SctTeamC=1 ~ SciTeamA=0 SctTeamB=1 SctTeamC=2 SciTeamA=0 SctTeamB=2 SctTeamC=0
Figure 3: Best role allocations for different settings

better for this given range of domains? Our analysis takes a step
towards answering the above questions.

The second example scenario, set up in the RoboCupRescue dis-
aster simulation environment [8], consists of 7 fire brigades at three
different fire stations (2 each at stations 1 & 2 and the rest at sta-
tion 3) and 5 ambulances stationed at the ambulance center. Two
fires start that need to be extinguished by the fire brigades. After
a fire is extinguished, ambulance agents need to save the surviv-
ing civilians. As time passes, the health of civilians deteriorates
and fires increase in intensity and so the goal is to rescue as many
civilians as possible with minimal damage to the buildings. Here,
partial observability (each agent can only view objects within its
visual range), and large action uncertainty add significantly to the
difficulty.

The plan hierarchy for this scenario, consists of two Execute-
Rescue plans executed in parallel, one for each of the fires. Each
such plan consists of a ExtinguishFire plan and a RescueCivilians
plan, which further decompose into individual plans. The organi-
zational hierarchy consists of Task Force comprising of two Rescue
subteams, one for each fire. Each such subteam is comprised of
a Brigade Team and an Ambulance Team, where the brigade team
is assigned to extinguishing the fire while the ambulance team is
assigned to rescuing civilians. The problem is which brigades and
ambulances to assign to each Brigade Team and Ambulance Team.
Note that brigades have differing capabilities due to differing dis-
tances from fires.

3. MULTIAGENT TEAM DECISION PROB-
LEM

For quantitative analysis of role allocation and reallocation, we
extend the Multiagent Team Decision Problem (MTDP) [9]. While
our extension focuses on role (re)allocation, it also illustrates a gen-
eral methodology for analysis of other aspects of team coordina-
tion. Note that, while we use MTDP, other possible distributed
POMDP models could potentially also serve as a basis [1, 16].

Given a team of agents «, an MTDP [9] is defined as a tu-
ple: (S, A, P,Q,0,R). It consists of a finite set of states S =
21 X -+ X E,. Each agent ¢ can perform an action from its set
of actions A;. P(s,< a1,...,ajq| >,s’) gives the probability of
transitioning from state s to state s’ given that the agents perform

the actions < a1, ..., a4 > jointly. Each agent 4 receives an ob-
servation w; € ; based on the function O(s, < a1,...,ajq| >
, Wi, ..., wq|), Which gives the probability that the agents receive
the observations, wi, ..., w|q given that the world state is s and
they perform < as, ..., a|o > jointly. The agents receive a single
joint reward R(s,a1,...,a|q))-

The state of the world, s need not be observable to the agent.
Thus, each agent 7 chooses its actions based on its local policy, m;,
which is a mapping of its observation history to actions. Thus, at
time ¢, agent 4 will perform action 7; (), ..., w!). 7 =< m1,...,

|| > refers to the joint policy of the team of agents.

3.1 Extension for explicit coordination:rc

Beginning with MTDP, the next step in our methodology is to
make an explicit separation between domain-level actions and the

coordination actions of interest. Earlier work introduced the COM-
MTDP model [9] where the coordination action was fixed to be the
communication action. However, other coordination actions could
also be separated from domain-level actions in order to investigate
their impact. Thus, to investigate role allocation and reallocations,
actions for allocating agents to roles and to reallocate such roles are
separated out. To that end, we define RMTDP (Role-based Multi-
agent Team Decision Problem) as a tuple, (S, A, P,Q,0, R,RL)
with a new component, RL. In particular, RL = {r1,...,rs}isa
set of all roles that the agents can undertake . Each instance of role
r; may be assigned some agent s to fulfill it. Agents’ actions are
now distinguishable into two types:

Role-Taking actions: T = [J,., Y is a set of combined role-
taking actions, where Y; = {v;-, } contains the role-taking
actions for agent i. v;-; € Y; means that agent i takes on
theroler; € RL.

Role-Execution Actions: & =[], ®; isaset of combined exe-
cution actions, where ®; = ijenc ®;,-, contains the exe-

cution actions for agent . @, is the set of agent 4’s actions
for executing role r; € RL

Thus, in RMTDP, successive epochs alternate between role-taking
() and role-execution actions(®). If the time index is divisible by
2, agents are in the role-taking epoch, executing role-taking actions,
and otherwise they are in the role-execution epoch. Although this
sequencing of role-taking and role-execution epochs restricts dif-
ferent agents from running role-taking and role-execution actions
in the same epoch, it is conceptually simple and synchronization is
automatically enforced. More importantly, the distinction between
role-taking and -execution actions is critical to enable a separation
in their costs, so as to more easily analyze the costs of role-taking
actions. To this end, in RMTDP, reward is role-taking reward,
Ry (s,a1,...,a|y), for even time indices and role-execution re-
ward, Rs(s,a1,...,aq|), Otherwise. We view the role-taking re-
ward as the cost (negative reward) for taking up different roles in
different teams. For instance, in our example domain, when trans-
ports change roles to be scouts, there is cost for dumping its cargo
and loading scout equipment. However, such change of roles may
potentially provide significant future rewards.

Within this model, we can represent the specialized behaviors
associated with each role, e.g. a transport vs. a scout role. While
filling a particular role, r;, agent ¢ can only perform role-execution
actions, ¢ € @, which may be different from the role-execution
actions ®,,,, for role r;. These different roles can produce varied
effects on the world state (modeled via transition probabilities, P)
and the team’s utility. Thus, the policies must ensure that agents for
each role have the capabilities that benefit the team the most.

3.2 Complexity results with RMTDP

While previous sections qualitatively emphasized the difficulty
of role (re)allocation, RMTDP helps in understanding the complex-
ity more precisely. In particular, we can define a role-taking policy,
;v for each agent’s role-taking action, a role-execution policy, m;s
for each agent’s role-execution action. The goal in RMTDP is then
to come up with joint policies 7y and ws that will maximize the
total reward over a finite horizon 7. Such an optimal role taking
policy not only provides for role allocation, but it also takes into
account optimal future role reallocations. The following theorem
illustrates the complexity of finding such optimal joint policies.

THEOREM 1. The decision problem of determining if there ex-
ist policies, 7y and 7g, for an RMTDP, that yield a reward at least
K over some finite horizon T is NEXP-complete.

PROOF. Proof follows from the reduction of MTDP [9] to/from
RMTDP. To reduce MTDP to RMTDP, we set RMTDP’s role tak-
ing actions, Y’ to null. To reduce RMTDP to MTDP, we generate a
new MTDP whose state space contains an additional feature to in-
dicate if the current state corresponds to a role-taking or -executing
stage of the RMTDP. The transition function, P’, augments the
original function P: P’ ((£1s, - . . , &b, taKING) , v, . . ., Ujal, (E1e,

-+ &ne, executing)) =P ((£1b,- - -, nb) V15 - -, Vi, (Eles - - -
where v1, ..., v is arole-taking action in the RMTDP(similarly
from executing to taking). Finding the required policy in MTDP is
NEXP-complete [9]. [

While the previous theorem focused on the complexity of com-
bined role-taking and role execution actions, we can focus on the
complexity of just determining the role taking actions, given fixed
role-execution actions.

THEOREM 2. The decision problem of determining if there ex-
ists a role-taking policy, 7y, for an RMTDP, that yields a reward
at least K together with a fixed role-execution policy 7, over some
finite horizon T is NEXP-complete.

PROOF. We reduce an MTDP to an RMTDP with a different
role-taking action for every action in the MTDP. The role-execution
policy is to perform the action corresponding to the current role. [

Note that Theorem 2 refers to a completely general globally op-
timal role-taking policy, where any number of agents can change
roles at any point in time. Given the above result, in general the
globally optimal role-taking policy will be of doubly exponential
complexity, and so we may be left no choice but to run a brute-
force policy search, i.e. to enumerate all the role-taking policies
and then evaluate them, which together determines the run-time
of finding the globally optimal policy. The number of policies is

071\ |

|| Ter=1 , i.e. doubly exponential in the finite horizon and

the number of agents. This clearly illustrates the point made in Sec-
tion 1, that the search for a globally optimal policy is intractable.
Note that, in the worst case, cost of evaluating a single policy

can be given by O ((|S| . |Q|)T) [9]. We will in general assume

a fixed procedure for policy evaluation and primarily focus on the
number of policies being evaluated.

3.3 Constructing an RMTDP

Constructing an RMTDP for evaluating a TOP is a key step in
our approach. To that end, we must define each of the elements of
the RMTDP tuple, specifically, (S, A, P,Q2,0, R, RL), by a pro-
cess that relies on both the TOP plans as well as the underlying do-
main. While this step has not been automated, we briefly describe
mapping techniques based on the work on our two domains.

First, we need to define the set of states S. To this end, it is
critical to model the variables tested in the preconditions and ter-
mination conditions of the TOP plans. For complex domains, it is
useful to consider abstract descriptions of the state modeling only
the significant variables. Agents’ role-taking and -execution ac-
tions in RMTDP are defined as follows. For each role in the TOP
organization hierarchy, we define a role-taking action in each state
s. The role-execution actions are those allowed for that role in the
TOP plan hierarchy given the variable values in state s.

To illustrate these steps, consider the plans in Figure 2(b). The
preconditions of plans such as UseRoutel and others test the start
location of the helicopters to be at start location X, while the ter-
mination conditions test that scouts are at end location Y. Thus, the
locations of all the helicopters are critical variables modeled in our

3 gnﬁ>)

set of states S. For role-taking, each helicopter can perform one
of four actions, i.e. being a member of one of the three scouting
teams or of the transport team. Role-execution actions are the TOP
actions for the plan that the agent’s role is assigned in the TOP. In
our case, the role execution policy for the scout role is to always go
forward until it reaches Y, while for the transport role the policy is
to wait at X until it obtains observation of a signal that one scouting
subteam has reached Y.

Further, the types of observations for each agent must be de-
fined. We define the set of observations to be the variables tested
in the preconditions and termination conditions of the TOP plans
and individual agent plans. For instance, the transport helos may
observe the status of scout helos (normal or destroyed), as well as
a signal that a path is safe. Finally, we must define the transition,
observation and reward functions. Determining these functions re-
quires some combination of human domain expertise and empirical
data on the domain behavior. However, as shown later in Section
6, even an approximate dynamic and observational model, is suffi-
cient to deliver significant benefits. Defining the reward and tran-
sition function may sometimes require additional state variables
to be modeled. In our helicopter domain, the time at which each
the scouting and transport mission was completed determined the
amount of reward and hence time was included as a state variable.

4. ANALYSIS OF ROLE REALLOCATION

This section and the next one will now illustrate how RMTDP
could be applied for iterative improvements in role allocation (in
the TOP) and role reallocation algorithms (in the TOP interpreter).
In this section, we focus on selecting the right reallocation strat-
egy for a range of domains of interest — an important issue for
developers of BDI coordination infrastructures. We show the ap-
plication of RMTDP in quantitatively contrasting alternative real-
location strategies used in BDI systems and present an automated
approach to suggest improvements to those strategies.

Our approach starts from the perspective of how BDI coordi-
nation actions, reallocation in particular, actually work. For illus-
tration, we consider the reallocation strategy in the STEAM “in-
terpreter”, given that STEAM has been applied in several real do-
mains [12]. Inspired by the SharedPlans theory [5], this realloca-
tion strategy focuses on role replacement, where a failed agent must
be replaced by another. Such events, as the failure of an agent, of-
ten trigger a BDI system’s “local” decision on whether to reallocate
roles. Thus, in STEAM, given a trigger of a failure of an agent F,
an agent R will decide to replace a failed agent F' only if the fol-
lowing inequality holds:

Criticality (Rolep) — Criticality (Roleg) > 0 1)

Criticality () = 1 if x is critical; = 0 otherwise

Replacement occurs if £7’s role is considered critical and R’s role
is not critical. Thus STEAM’s classification of reallocation triggers
is role-failure-critical or role-failure-not-critical.

Is this STEAM approach guaranteed to be better than other re-
lated approaches in other BDI systems? For instance, the role ex-
change strategy of the FC Portugal RoboCup soccer team [10] al-
lows two agents to exchange roles, thus performing a pairwise re-
allocation of roles. Their approach employs a utility calculation
based on the tradeoffs between the assumed rewards/costs of each
agent taking on the other’s role versus not doing this exchange. Ex-
changes are triggered when the two agents agree that the payoff is
positive. Assuming the two agents are A and B:

Utility (Rolep, A) + Utility (Role 4, B)
—Utility (Role s, A) — Utility (Roleg, B) > 0 2)

Such an approach can be straightforwardly adapted to role reallo-
cation upon failures. Agent A would replace a failed agent B if the

01. epochs «—{0,...,T}; policySpace « null
02. for each agent decision epoch t<=T

03. for each joint obs. history w0... wt1
04. for each policy = in policySpace

05. ' —m ol —7

06. for each joint observation wt

07. for each trigger in trigger |ist

08. if trigger.triggered(w?...w!) =true
09. i+ trigger.respondi ngAgent

10. mwd ... wf] « respond

11. 7//[w?...w!] «— dont Respond

12. pol i cySpace « policySpace. add(=)
13. pol i cySpace « policySpace. add(«")
14. el se

15, Wl 0] = Topiginatlw? .. wf]

16. pol i cySpace « policySpace. add(«’)
17. pol i cySpace «— policySpace. renmove()

18. return best(policySpace)

Figure 4: Locally optimal policy generation.

following inequality holds (where utility of a failed agent is 0):
Utility (Roleg, A) — Utility (Rolea, A) > 0 ®3)

RMTDP analysis can be used to quantitatively contrast such al-
ternative role reallocation strategies and determine under what con-
dition one is preferable. Furthermore, we can compare these strate-
gies with a “locally optimal” policy to determine the types of do-
mains where improvements are possible in each strategy and by
how much. A locally optimal policy is one that considers reallo-
cations at exactly the same junctures (reallocation triggers) as the
strategy it is being compared with (as opposed to a globally optimal
policy that may consider reallocations at other times). The deriva-
tion of alternative local optimal policy provides a means to check
if, for a trigger like role failure, whether the BDI system’s behav-
ior could be improved or not. In defining such trigger events for
RMTDP analysis, the classification can be more fine-grained than
the BDI system being analyzed, e.g. first-role-failure vs. second-
role-failure vs. third-failure, etc. The finer grain allows the analysis
to uncover cases where the BDI’s decision-making is doing well
versus not so well.

To further facilitate the analysis, we have automated the pro-
cess of deriving these alternative locally optimal policies. Earlier
methodology, as specified in [9] dictated that we first derive an al-
gorithm for a “locally optimal” policy by hand. However, there are
two problems in this derivation: (i) Deriving such a complex ex-
pression by hand is cumbersome and hinders analysis; (ii) The fo-
cus there remained on a single trigger, and no guidance is provided
on multiple triggers. It is possible to automatically generate various
locally optimal policies by replacing or perturbing the response of a
particular reallocation trigger. For example, our approach can per-
turb STEAM'’s response to the first and second failure that occurs
by replacing it with an optimal RMTDP policy that is derived un-
der the assumption that the response to all other triggers remains the
same as STEAM’s. Furthermore, the response may also vary with
time, even for a single trigger. Indeed, Figure 4 presents such an al-
gorithm that automatically generates a locally optimal replacement
policy. In this algorithm, we require a list of trigger events and a
specific agent that would respond to each trigger. For each decision
epoch and trigger, the responding agent chooses between perform-
ing “respond” (i.e. replace) or “dontRespond”. We can obtain a
family of locally optimal policies by varying the list of triggers.

Deriving a local optimal policy achieves considerable compu-
tational savings over the global optimal. Recall derivation of the

. Probability of failure=0.1 Cost=12
- Steam 1 -~ Steam
* * FCPo * FCPo
0.8] * PertSteam2 0.8 PertSteam2 / %
> -©- PertSteam3 > -©- PertSteam3
1 0.6 * 1 0.6 *
g * 5 *
>04 * >04 /
* g *
ok P
02 02 * 7
*
o8- b8 o000 g
10 1 20 5 0.1 0.15 0.2
ﬁeplaoement Coft 0Fprobabuﬂy of faiflitd

a b
Figure 5: Sub(-o)ptimality of replacement pofic)ies, a: Varying
replacement cost and b: Varying probability of failure
la

policies.

1" -1
“globally optimal” policy must evaluate { | Y| T2T=1

The number of policies that need to be considered for a locally op-
timal policy depends on the how many triggers it considers. For
example, 27 policies have to be evaluated for a locally optimal
policy that varies its response depending on what time the trigger
(only one trigger) occurred, while for deriving a locally optimal
policy that varies its response depending on both time of the trigger
and which trigger (1st, 2nd, etc.), it has to evaluate 2/t799e7slxT
policies, as shown in Figure 4.

To demonstrate the empirical utility of automated RMTDP real-
location analysis, consider the helicopter domain from Section 2.
These agents must decide whether to do a role replacement when
a failure occurs. We compare the performance of various policies,
across a space of distinct domains obtained by varying the replace-
ment cost and probability of failure. For this experiment, we start
with 6 helicopters and various starting role allocations. Here, we
will discuss the results for an allocation of 3 scouts (all assigned to
path 2) and 3 transports. The results for other allocations are sim-
ilar. When a scout is replaced by a transport, a Role replacement
cost is incurred. (We assume that there is an ordering that deter-
mines which transport will perform a role replacement.) To ensure
a focus on role replacement, we assume that for all approaches,
the policies for role-execution and communication are the same, as
given in Section 3.3. The reward is higher if more transports reach
the destination and if they reach early rather than late.

We compared the performance of 4 policies. In the STEAM pol-
icy, the transports use the inequalityl to determine whether to re-
place a failed scout. In STEAM, failure of the last remaining scout
would be seen as critical and all other roles as non-critical. In the
policy we call FCPy¢;, (based on [10]), inequality 3 is used to
determine whether to replace a failed scout. The FCPy,.;, policy
would replace a failed scout by a transport if the utility for the suc-
cessful completion of the scouting mission and transport mission
exceeds the replacement cost and the loss of reward because there is
one less transport (under the assumption of no subsequent failures).
PertSTEAM2 and PertSTEAMS are locally optimal perturbations
of the STEAM policy, generated automatically by running the al-
gorithm in Figure 4, considering the trigger to be the 2nd and 3rd
failure respectively. The above 4 policies were then compared to a
benchmark policy, generated from Figure 4 with list of all failures
as the list of triggers. As discussed earlier, such a policy is more
expensive to compute than PertSTEAM2 and PertSTEAMS, given
that it varies its response depending on which trigger it is (1st, 2nd,
etc). Note that this is still cheaper than the globally optimal policy.

In Figure 5 we compare the sub-optimality of various replace-
ment polices. In Figure 5(a), we varied the replacement cost, keep-
ing the probability of failure fixed at 0.1. In Figure 5(b) we varied
the probability of failure keeping the replacement cost fixed at 12.
In both figures we plot the sub-optimality with respect to the bench-

mark policy, V,,+ — V, on the Y-axis (lower values are better). The
two graphs identify that:

e In domains with low replacement cost or low probability of
failure, STEAM is close to benchmark, suggesting that a
more expensive reallocation strategy is not required.

o |f we must choose between STEAM and FCP..,, then for
domains with low probability of failure and low cost, use
STEAM else we use FCPj,z0.

e STEAM’sresponse to second failure is optimal since STEAM

and PertSTEAMZ2 exhibit identical performance in both graphs.

e However, in both graphs, PertSTEAM3 does better than the
other 3 policies, clearly identifying room for improvement.
In particular, on third failures, STEAM will always replace
and thus, in both high replacement cost and failure rate do-
mains, must be over-eager to replace, even when helicopters
will not be able to meet the mission deadline.

e STEAM would be improved by factoring in replacement cost
and failure rate.

In summary, RMTDP analysis has identified where the two BDI
strategies do well, where they do more poorly as well as which
decisions and factors need to be taken into account in order to im-
prove them. It does this analysis both in terms of contrasting the
strategies in relation to each other and in relation to local optimums.
Finally, it provides a worst case estimate of the cost of making the
improvements, via the cost of deriving the local optimum.

5. ANALYSIS OF ROLE ALLOCATION

While the previous section focused on analysis of role realloca-
tion in the TOP interpreter, this section focuses on role allocation
done in the TOP itself. As mentioned earlier, role allocation fo-
cuses on deciding how many and what types of agents to allocate
to different roles in the organization hierarchy. Figure 6 shows a
partially expanded role allocation space defined by the TOP orga-
nization hierarchy in Figure 2 for 6 helicopters. Each node of the
role allocation space completely specifies the allocation of agents
to roles at the corresponding level of the organization hierarchy (lg-
nore for now, the number to the right of each node). For instance,
the root node of the role allocation space specifies that 6 helicopters
are assigned to the Task Force (level 0) of the organization hierar-
chy while the leftmost leaf node (at level 2) in Figure 6 specifies
that 1 helicopter is assigned to SctTeamA, 0 to SctTeamB, 0 to Sct-
TeamC and 5 helicopters to Transport Team. Thus as we can see
each leaf node in the role allocation space is a complete, valid role
allocation of agents to roles in the organization hierarchy.

In order to determine if one leaf node (role allocation) is su-
perior to another we compare by constructing an RMTDP policy
for each leaf. The role allocation specified by the leaf node cor-
responds to the role-taking actions that each agent will execute at
time=0. For example, in the case of the left most leaf in Figure 6, at
time 0, one agent (recall from Section 2 that this is a homogeneous
team and hence which specific agent does not matter) will become a
member of SctTeamA while all other agents will become members
of Transport Team. The rest of the role-taking policy will be the
role replacement policy determined in Section 4, i.e. for the range
of domains of interest it is the STEAM policy. Each agent’s role-
execution policies are determined by the plan associated to their
role. Thus, we have been able to construct a policy for the RMTDP
that corresponds to the role allocation.

We could do a brute force search through all role allocations,
evaluating each in order to determine the best role allocation. How-
ever, the number of possible role allocations is exponential in the

©
@m@@“ ICACH

— e
6. 613.8. 500.12 1359 57 6. 2926.08
T
Figure 6: Partially expanded role allocation space (6 helos)

leaf roles in the organization hierarchy. Thus, we must prune the
search space.

5.1 Pruning the role allocation space

We prune the space of valid role allocations using heuristic over-
estimates (max estimates) for the parents of the leaves of the role
allocation space (Section 5.2). In particular, once we obtain max
estimates for all the parent nodes (shown in brackets to the right of
each parent node in Figure 6), we use branch-and-bound style prun-
ing. First, we sort the parent nodes by their estimates and then start
evaluating children of the parent with the highest max estimate. In
the case of the role allocation space in Figure 6, we would start
with evaluating the leaves of the parent node that has 1 helicopter
in Scouting Team and 5 in Transport Team. The value of evaluating
each leaf node is shown to the right of the leaf node. Once we have
obtained the value of the best leaf node, in this case 1500.12, we
compare this with the max estimates of the other parents of the role
allocation space. As we can see from Figure 6 this would result in
pruning of 3 parent nodes (left most parent and right two parents).
Next, we would then proceed to evaluate all the leaf nodes under
the parent with 2 helos in Scouting Team and 4 in Transport Team.
This would result in pruning of all the remaining unexpanded par-
ent nodes and we will return the leaf with the highest value, which
in this case is the node corresponding to 2 helos allocated to Sct-
TeamA and 4 to Transport Team. Although demonstrated for a 3-
level hierarchy, extending to deeper hierarchies is straightforward.

5.2 Calculating over-estimates for parents

We will now discuss how the max estimates can be calculated
for each parent. The max estimate of a parent must necessarily be
an overestimate of the maximum expected reward of all the leaf
nodes under it or else we might end up pruning potentially use-
ful role allocations. In order to calculate the max estimate of each
parent we could evaluate each of the leaf nodes below it using the
RMTDP, but this would nullify the benefit of any subsequent prun-
ing. We, therefore turn to the plan hierarchy (see Figure 2(b)) to
see how this evaluation of the parent node can be broken up into
components, which can be evaluated separately thus decomposing
the problem. Our approach exploits the structure of the BDI pro-
gram to construct small-scale RMTDPs, unlike other decomposi-
tion techniques [3, 6]. For each parent in the role allocation space,
we use these RMTDPs to evaluate the values for each component.
The values of the components of each parent can be added to obtain
its max estimate (an upper bound on its children’s values).

As shown in Figure 8, the first step in our approach involves de-
ciding how to decompose the plan hierarchy into components and
then create smaller RMTDPs, one for each component. We explain
this methodology using the plan hierarchy in Figure 2(b). Using the
temporal constraints in the plan hierarchy, we choose a level of the
plan hierarchy at which to do a decomposition. For example, since
temporal constraints exist between DoScouting, DoTransport and
RemainingScouts, we choose these as the components for our max
estimation. The process of constructing an RMTDPs for a compo-

nent is similar to the method described in Section 3.3. In particu-
lar, we determine the set of state variables relevant to the compo-
nent that it corresponds to, e.g. those variables that are present in
the preconditions and termination conditions of this component are
clearly relevant. Fortunately, all state variables that are irrelevant
to the component can be eliminated. For example, in the DoTrans-
port component, only the variables that refer to number of mem-
bers of Transport Team, the locations of each of these transports
and the route that they should follow (the scouted route) are rel-
evant. Information about the other scouts is not important to this
component and can be eliminated from the state.

After constructing RMTDPs for each component, we evaluate
the max estimate for each parent node in the role allocation space
(See Figure 8). First, we identify the start states for each component
from which to evaluate the RMTDPs. We explain this step using a
parent node from Figure 6 — Scouting Team = 2 helos, Transport
Team = 4 helos (see Figure 7). For the very first component, the
start states corresponds to all the role allocations under the parent
node. As shown in Figure 7, the start states of the DoScouting
component for this parent, correspond to all possible role alloca-
tions of 2 helos to Scouting Team and 4 helos to Transport Team,
e.g. 1 helo to SctTeamB, 1 helo to SctTeamC and 4 helos to Trans-
port Team. The role allocation corresponding to a start state tells
the agents what role to take in that start state. The remainder of the
role-taking policy is specified by the role replacement policy. For
each of the next components — where the next component is one
linked by a sequential dependence — the start states are the end
states of the preceding component. However, as explained later in
this section, we can significantly reduce this list of start states from
which each component can be evaluated. Note, if the next compo-
nent is not sequentially dependent on the prior one, then its start
states are determined from its own children.

Similarly, the starting observation histories for a component are
the observation histories on completing the preceding component
(no observation history for the very first component). BDI plans
do not normally refer to entire observation histories but rely only
on key observations which are typically referred to in the precon-
ditions of the component. Each starting observation history can be
shortened to include only these relevant observations, thus obtain-
ing a reduced list of starting observation sequences.

In order to obtain the max estimate for a parent node of the role
allocation space, we simply sum up the maximum of the evalua-
tion for each component over all its start states and starting obser-
vations. E.g. the maximum values of each component (see right
of each component in Figure 7) were summed to obtain the max
estimate (84 4 3330 + 36 = 3420). The calculation of the max es-
timate for a parent nodes should be much faster than evaluating the
leaf nodes below it in most cases for three reasons. Firstly, parent
nodes are evaluated component-wise. Thus, if multiple start states
result in the same end state, we can remove duplicates to get the
start states of the next component. This prevents a lot of duplica-
tion of the evaluation effort, something that cannot be avoided for
leaf nodes, where each state is evaluated independently from start
to finish. Secondly, since each component only contains the state
variables relevant to it, we can further reduce the set of start states
drastically. As seen in Figure 7, the start states of the DoTrans-
port component only considers the scouted route and number of
transports (some transports may have replaced failed scouts), thus
greatly reducing the set of end states of DoScouting component.
Finally, the number of starting observation sequences will be much
less than the number of ending observation histories of the preced-
ing components.

We refer to this methodology of obtaining the max estimates of

[84] i ; [3300] % [36]

DoScouting DoTransport RemainingScouts
[Scouting Team=2 helos] [Transport Team=4 helos] [Scouting Team=2 helos]

/T

SctTeamA=2 SctTeamA=0
SctTeamB=0 e o |SctTeamB=1
SctTeamC=0 SctTeamC=1
TransportTeam=4 TransportTeam=4

Route scouted=1
TransportTeam=4|

Route scouted=3
TransportTeam=

Route scouted=1| ¢ o
TransportTeam=3|

Figure 7: Component-wise decomposition of a parent node

Constructi ng RMIDPs

1. Divide the plan hierarchy into conponents

2. For each component construct an RMIDP by
determning S,Q,P,0, and R

MaxEstimate for a parent node

1. For each conponent RMIDP

2. htain start states, states and correspondi ng
observation histories at start OHistories

3. MaxEstimate =+ MBXsestates,ohcOHistories(€Val UAL €('s,0R))

Figure 8: Calculating over-estimates for parents.

each parent as MAXEXP. A variation of this, the maximum ex-
pected reward with no failures (NOFAIL), is obtained in a similar
fashion except that we assume that the probability of any agent fail-
ing is 0. This will result in less branching and hence evaluation of
each component will proceed much quicker. The NOFAIL heuristic
only works if the evaluation of any policy without failures occur-
ring is higher than the evaluation of the same policy with failures
possible. This should normally be the case in most domains. The
evaluation of the NOFAIL heuristics for the role allocation space
for 6 helicopters is shown in square brackets in Figure 6.

6. EXPERIMENTAL RESULTS

For the two domains introduced in Section 2, helo and RoboCupRes-

cue [8], we focus on determining the best initial assignment of
agents to roles; but assume a fixed TOP and role replacement strat-
egy (we use the STEAM policy from Section 4). Thus, the initial
role assignment considers future role replacements, as discussed in
Section 1. For the helicopter domain, the TOP is the one discussed
in Section 2. As can be seen in Figure 2(b), the organization hierar-
chy requires determining the number of agents to be allocated to the
three scouting subteams and the remaining helos must be allocated
to the transport subteam. Different numbers of initial helicopters
were attempted, varying from 3 to 10.

Figure 9 shows the results of comparing the different methods for
searching the role allocation space; in particular, we show results
from MAXEXP, NOFAIL and NOPRUNE (brute force). In Figure
9(a), the Y-axis is the number of nodes in the role allocation space
evaluated, while in Figure 9(b) the Y-axis represents the runtime in
seconds on a logarithmic scale. In both figures, we vary the number
of agents on the X-axis. Figure 9(a) clearly shows significant reduc-
tions over NOPRUNE in the numbers of nodes evaluated due to the
pruning by MAXEXP and NOFAIL. This reduction grows quadrat-
ically to more than 20-fold at 10 agents. Note that the NOFAIL
heuristic results in less pruning than MAXEXP for 9 and 10 agents
because, although it is cheaper to evaluate, its estimate is higher
than the MAXEXP estimate. Figure 9(b) shows how the MAX-
EXP heuristic results in a 14-fold speedup over the NOPRUNE in
the 10 agent case. The NOFAIL heuristic, which is very quick to
compute the max estimates, far out performs the MAXEXP heuris-
tic (180-fold speedup over MAXEXP for 10 agents). Speedups of
MAXEXP and NOFAIL continually increase with increasing num-
ber of agents. The speedup of the NOFAIL method over MAXEXP
is so marked because, in this domain, ignoring failures results in

<5 NOFAIL < NOFAIL
* MAXEXP * MAXEXP
250 NOPRUNE]| NOPRUNE| *
%) *
O 200 7 *
§ 8 * e
150 g’ go*
© o) R
S 100 @ § 59"
z o
50
. S S -
2 8 10 2 4 10

4 No. of %igents No. ofagents

a b
Figure 9: Perf(gr%nance of role allocation spacé s)earch, a: Num-
ber of nodes evaluated, and b: Run-time in seconds

Table 1: Performance of role allocations in RoboCupRescue

Civilians saved | Bldg. damage(%) | RoboCupRescue
Best Alloc. 6 0.10 1.17
Alt. Alloc. 1 4 1.42 3.29
Alt. Alloc. 2 2 8.18 542

much less branching. There were different best role allocations for
different settings of the probability of failure, as shown in Figure 3,
for 6 helos, indicating the difficulty of finding the best allocation.

Our next set of experiments shows the practical utility of our role
allocation analysis in complex domains. We are able to show sig-
nificant performance improvements in the actual RoboCupRescue
domain using the role allocations generated by our analysis. First,
we construct an RMTDP for the rescue scenario, described in Sec-
tion 2, by taking guidance from the TOP and the underlying domain
(as described in Section 3.3). We then use the NOFAIIL heuristic to
determine the best role allocation — NOPRUNE could not be run
because of its slowness. The best allocation recommended assign-
ing three ambulances and three fire brigades(2 from stationl and
1 from station2) for the first fire and the remaining agents to the
second fire. We tested this best allocation in the actual RoboCup
Rescue simulation. For comparison, we considered two alternate
allocations. Alternate 1 was the next best allocation with a signif-
icant value difference (RMTDP ranked four allocations to be ex-
tremely close in value, so we consider the fifth). It allocated 3 am-
bulances and 2 fire brigades (1 from stationl and 1 from station3)
for first fire, remaining agents to second fire. While, alternate 2
was an allocation that RMTDP predicted would perform poorly —
2 ambulances and 2 fire brigades (both from stationZ) for first fire,
remaining agents to second fire. In Table 1, we show how the best
role allocation compared to the alternate allocations. The best al-
location resulted in 6 survivors out of 7 trapped civilians, while
the alternate allocations results in 4 and 2 survivors, respectively.
Also, the best allocation resulted in less percentage damage to the
buildings due to fire and received a better (lower) RoboCupRescue
score, which considers civilian lives lost, damage to buildings and
injuries (most weight for lives lost).

7. CONCLUSION AND RELATED WORK

While the BDI approach to agent teamwork remains the most
successful within multiagents, initial role allocation and realloca-
tion remain open challenges. Critically needed now are analysis
techniques to help human developers in quantitatively comparing
different initial role allocations and competing role reallocation al-
gorithms. To this end, this paper provided three key contributions.
First, it introduced RMTDP, a distributed POMDP based frame-
work, for analysis of role (re)allocation, generalizing prior work
on analysis of communication. RMTDP analysis enables a vir-
tuous cycle of improvements to role allocation and role realloca-
tion to ensue. Second, for role reallocation, the paper illustrated a

methodology not only in comparing two competing algorithms, but
also identified the types of domains where each is suboptimal, how
much each algorithm can be improved and at what computational
cost (complexity). Such algorithmic improvements are identified
via a new automated procedure that generates a family of locally
optimal policies for comparative evaluations. Third, given the com-
binatorially many initial role allocations, we introduced methods to
exploit task decompositions among subteams to significantly prune
the search space of initial role allocations. We presented results
from two distinct domains to illustrate our methodology.

While the work used team-oriented programming [12, 13, 14]
as an example BDI approach, it is relevant to other similar tech-
niques of modeling and tasking collectives of agents, such as Lesser
et al’s [4] TAEMS approach. In other related work, role alloca-
tion based on matching of capabilities [15] and combinatorial auc-
tions [7] has been proposed earlier. The key difference with prior
work is our use of stochastic models (RMTDPs) to evaluate alloca-
tions: this enables us to compute the benefits of role allocation,
taking into account costs of reallocation upon failure. Our key
contributions focused on improving the efficiency of this stochastic
analysis. Finally, in terms of MDP research, MTDP is itself identi-
cal to the DEC-POMDP [1] model; and could be seen to generalize
Boutilier’s MMDP [2] model. RMTDP extends MTDP to analyze
role allocation and reallocation in BDI teams, which has required
the development of novel, practical techniques for analysis.
Acknowledgement: Thanks to J. Blythe, A. Cassandra, H. Jung,

S. Kapetanakis, S. Koenig, M. Littman, D. Pynadath and P. Scerri for valu-
able discussions. This research was supported by NSF grant #0208580.

8. REFERENCES

[1] D.S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of
decentralized control of MDPs. In UAI, 2000.

[2] C. Boutilier. Planning, learning & coordination in multiagent
decision processes. In TARK, 1996.

[3] T.Dean and S. H. Lin. Decomposition techniques for planning in
stochastic domains. In IJCAI, 1995.

[4] K. Decker and V. Lesser. Quantitative modeling of complex
computational task environments. In AAAI, 1993.

[5] B. Grosz and S. Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86(2):269-357, 1996.

[6] C. Guestrin, S. Venkataraman, and D. Koller. Context specific
multiagent coordination and planning with factored MDPs. In AAAL,
2002.

[7] L. Hunsberger and B. Grosz. A combinatorial auction for
collaborative planning. In ICMAS, 2000.

[8] H. Kitano, S. Tadokoro, and I. Noda. Robocup-rescue: Search and
rescue for large scale disasters as a domain for multiagent research.
In IEEE Conference SMC, 1999.

[9] D. Pynadath and M. Tambe. Multiagent teamwork: Analyzing the
optimality complexity of key theories and models. In AAMAS, 2002.

[10] L.P.Reis, N. Lau, and E. C. Oliveira. Situation based strategic
positioning for coordinating a team of homogeneous agents. LNCS
2103:175.

[11] P. Stone and M. Veloso. Task decomposition, dynamic role
assignment, and low-bandwidth communication for real-time
strategic teamwork. Artificial Intel., 110(2):241-273, 1999.

[12] M. Tambe, D. Pynadath, and N. Chauvat. Building dynamic agent
organizations in cyberspace. IEEE Internet Computing, 4(2), 2000.

[13] J. Tavares and Y. Demazeau. Vowels co-ordination model. In
AAMAS, 2002.

[14] G. Tidhar. Team-oriented programming: Social structures. Technical
Report 47, Australian A.l. Institute, 1993.

[15] G. Tidhar, A. Rao, and E. Sonenberg. Guided team selection. In
ICMAS, 1996.

[16] P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in
multiagent cooperation. In Agents, 2001.

