
Evolution of a Teamwork Model

Nathan Schurr, Steven Okamoto, Rajiv T. Maheswaran,

Paul Scerri and Milind Tambe

1 Introduction

For heterogeneous agents working together to achieve complex goals, teamwork

(Jennings, 1995; Yen, Yin, Ioerger, Miller, Xu, & Volz, 2001; Tambe, 1997a)

has emerged as the dominant coordination paradigm. For domains as diverse

as rescue response, military, space, sports and collaboration between human

workmates, flexible, dynamic coordination between cooperative agents needs to

be achieved despite complex, uncertain, and hostile environments. There is now

emerging consensus in the multiagent arena that for flexible teamwork among

agents, each team member is provided with an explicit model of teamwork, which

entails their commitments and responsibilities as a team member. This explicit

modelling allows the coordination to be robust, despite individual failures and

unpredictably changing environments.

Building on the well developed theory of joint intentions (Cohen & Levesque,

1991) and shared plans (Grosz & Kraus, 1996), the STEAM teamwork model

(Tambe, 1997a) was operationalized as a set of domain independent rules that

describe how teams should work together. This domain independent teamwork

model has been successfully applied to a variety of domains. From combat

1



air missions (Hill, Chen, Gratch, Rosenbloom, & Tambe, 1997) to robot soc-

cer (Kitano, Asada, Kuniyoshi, Noda, Osawa, & Matsubara, 1997) to teams

supporting human organizations (Pynadath & Tambe, 2003) to rescue response

(Scerri, Pynadath, Johnson, P., Schurr, Si, & Tambe, 2003), applying the same

set of STEAM rules has resulted in successful coordination between heteroge-

neous agents. The successful use of the same teamwork model in a wide variety

of diverse domains provides compelling evidence that it is the principles of team-

work, rather than exploitation of specific domain phenomena, that underlies the

success of teamwork based approaches.

Since the same rules can be successfully used in a range of domains, it is

desirable to build a reusable software package that encapsulates those rules

in order to provide a lightweight and portable implementation. The emerging

standard for deploying such a package is via proxies (Pynadath & Tambe, 2003).

Each proxy works closely with a single domain agent, representing that agent

in the team. The second generation of teamwork proxies, called Machinetta

(Pynadath & Tambe, 2003; Scerri et al., 2003), is currently being developed.

The Machinetta proxies use less computing resources and are more flexible than

the proxies they have superseded.

While approaches to teamwork have been shown to be effective for agent

teams, new emerging domains of teamwork require agent-human interactions

in teams. These emerging domains and the teams that are being developed

for them introduce a new set of issues and obstacles. Two algorithms that

need to be revised in particular for these complex domains are the algorithms

for adjustable autonomy (for agent-human interaction) and algorithms for role

allocation. This chapter focuses in particular on the challenge of role allocation.

Upon instantiation of a new plan, the roles needed to perform that plan are

created and must be allocated to members of the team. In order to allocate a

2



dynamically changing set of roles to team members, previous mechanisms re-

quired too much computation and/or communication and did not handle rapidly

changing situations well for teams with many members. A novel algorithm has

been created for role allocation in these extreme teams. Generally in teamwork,

role allocation is the problem of assigning roles to agents so as to maximize

overall team utility (Nair, Ito, Tambe, & Marsella, 2002; Tidhar, Rao, & Sonen-

berg, 1996; Werger & Mataric, 2000). Extreme teams emphasize key additional

properties in role allocation: (i) domain dynamics may cause tasks to disappear;

(ii) agents may perform one or more roles, but within resource limits; (iii) many

agents can fulfill the same role. This role allocation challenge in extreme teams

will be referred to as extended GAP (E-GAP), as it subsumes the generalized

assignment problem (GAP), which is NP-complete (Shmoys & Tardos, 1993).

2 Before Machinetta: STEAM in Soar

Machinetta has evolved from STEAM, which was implemented in Soar (Newell,

1990), and thus has historical roots in the Soar language. For more on Soar,

refer to Chapter 3 of this volume. The two aspects of Machinetta where Soar’s

influence is most apparent are the Team Oriented Plan (TOP) and the coordi-

nation component (see Section 3).

Even though there has been a conversion to Machinetta, the team plans come

from Soar. The language and syntax used to describe the TOP are derived from

the syntax of the operators that Soar used. This allows for the same human

readable expression of team plans that STEAM had.

The Belief-Desire-Intention (BDI) (Georgeff, Pell, Pollack, Tambe, & Wooldrige,

1998) framework of joint intentions (Cohen & Levesque, 1991) is used to guide

communication between proxies. This takes the form of a policy which decides

which beliefs to communicate and which proxies to communicate these beliefs

3



to. For Machinetta, these policy algorithms were translated from Soar into Java

in the coordination component of the proxy. For an example of some of these

Soar rules, see Appendix A.

Indeed, the Soar model can be viewed as a BDI architecture, enabling us to

borrow from BDI theories. In the rest of this section, a mapping of Soar to BDI

is presented, and readers unfamiliar with Soar may wish to proceed forward to

Section 3.

To see the mapping from Soar to BDI, let us consider a very abstract defi-

nition of the Soar model. Soar is based on operators, which are similar to reac-

tive plans, and states (which include the agent’s highest-level goals and beliefs

about its environment). Operators are qualified by preconditions which help

select operators for execution based on an agent’s current state. Selecting high-

level operators for execution leads to subgoals and thus a hierarchical expansion

of operators ensues. Selected operators are reconsidered if their termination

conditions match the state. While this abstract description ignores significant

aspects of the Soar architecture, such as (i) its meta-level reasoning layer, and

(ii) its highly optimized rule-based implementation layer, it will be sufficient for

the sake of defining an abstract mapping between BDI architectures and Soar

as follows:

1: Intentions are selected operators in Soar

2: Beliefs are included in the current state in Soar

3: Desires are goals (including those generated from operators which are sub-

goals)

4: Commitment strategies are strategies for defining operator termination con-

ditions. For instance, operators may be terminated only if they are achieved,

unachievable or irrelevant

4



In Soar, a selected operator (commitment) constrains the new operators (op-

tions) that the agent is willing to consider. In particular, the operator constrains

the problem space that is selected in its subgoal. This problem space in turn

constrains the choice of new operators that are considered in the subgoal (un-

less a new situation causes the higher-level operator itself to be reconsidered).

Interestingly, such insights from Soar have parallels in BDI architectures. Both

Soar and BDI architectures have by now been applied to several large-scale ap-

plications. Thus, they share concerns of efficiency, real-time, and scalability to

large scale applications. Interestingly, even the application domains have also

overlapped. For instance, PRS and dMARS have been applied in air-combat

simulation, which is also one of the large-scale applications for Soar.

Despite such commonality, there are some key differences between Soar and

conventional BDI models. Interestingly, in these differences, the two models

appear to complement each other’s strengths. For instance, Soar research has

typically appealed to cognitive psychology and practical applications for ratio-

nalizing design decisions. In contrast, BDI architectures have appealed to logic

and philosophy. Furthermore, Soar has often taken an empirical approach to

architecture design, where systems are first constructed and some of the underly-

ing principles are understood via such constructed systems. Thus, Soar includes

modules such as chunking, a form of explanation-based learning, and a truth

maintenance system for maintaining state consistency, which as yet appear to

be absent from BDI systems. In contrast, the approach in BDI systems appears

is to first clearly understand the logical and philosophical underpinnings and

then build systems.

5



3 Machinetta Proxies

Proxies are pieces of software that facilitate the actions and communication

necessary for robots, agents and people (RAPs) to work cooperatively on a team

plan. Each team member has a proxy that represents it in team collaboration.

This section will describe the inner workings of a Machinetta proxy. Machinetta

proxies are implemented as lightweight, domain-independent Java programs,

capable of performing the activities required to get a large group heterogeneous

entities to work together. The proxies are designed to run on a number of

platforms including laptops, robots and handheld devices.

3.1 Components

The Machinetta proxy’s software is made up of five components as seen in Figure

1. Each component abstracts away details allowing other components to work

without considering those details.

Communication: communication with other proxies

Coordination: reasoning about team plans and communication

State: the working memory of the proxy

Adjustable Autonomy: reasoning about whether to act autonomously or

pass control to the team member

RAP Interface: communication with the team member

The adjustable autonomy component addresses the circumstances under

which the proxy should act autonomously as opposed to waiting for input from

a team member. Such reasoning is vital to the successful deployment of hetero-

geneous teams containing people. However, other components and proxies are

insulated from this reasoning process by the adjustable autonomy component

6



Figure 1: Proxy software architecture.

and need only know the ultimate decision made by the proxy, whether that

decision was made autonomously or by the team member.

The RAP interface component is the only part of the proxy that needs to be

designed for a specific type of team member. For example, the RAP interface

for a person playing the role of fire chief in the disaster rescue domain is a large

graphical interface, while for agents a simple socket communicating a small, fixed

set of messages is sufficient. With some extensions, these techniques were used

to allow Machinetta to scale up to run 200 proxies on two desktop computers.

3.2 TOP

A team of proxies implements Team Oriented Plans (TOPs). A TOP is a team-

level description of the activities that need to be performed in order to achieve

the goals of the team. It consists of reactive team plans, roles, relationships

between roles, and conditions for initiating a plan and terminating a plan. The

proxies dynamically instantiate plans when, during the course of execution, their

current states match a plan’s required trigger conditions. The proxy communi-

cation policy determines precisely which messages should be sent among proxies

to ensure that cohesion is maintained.

In developing Machinetta, much of the focus has been on joint intentions

7



theory (Cohen & Levesque, 1991) due to its detailed formal specification and

prescriptive power. The joint intentions framework provides a modal logic spec-

ification of a team’s mental state, called a joint intention. A team has a joint

intention to commit a team action if its team members are jointly committed to

completing that team action, while mutually believing that they are completing

it. A joint commitment in turn is defined as a joint persistent goal (JPG). The

team T ’s JPG to achieve p, where p stands for completion of a team action, is

denoted (JPG T p q). The variable q is a relevance term and is true if and only

if p is still relevant; if the team mutually believes q to be false, then there is no

need to achieve p (i.e., no need to perform the team action) and so the JPG can

be abandoned. For illustrative purposes, only teams with two members x and y

will be considered here, with their JPG to achieve p with respect to q denoted

(JPG x y p q). The following definitions can be extended in a straightforward

manner to larger teams.

The joint intentions framework uses temporal operators such as 3 (even-

tually) and 2 (always), individual propositional attitude operators such as

(BEL x p) and (GOAL x p) (agent x has p as a belief and as a goal, re-

spectively), and joint propositional attitude operators such as (MB x y p) and

(MG x y p) (agents x and y have p as a mutual belief and as a mutual goal,

respectively) to build more complex modal operators to describe both individ-

ual and team mental states. Two other operators, the weak achievement goal

(WAG) operator and the weak mutual goal (WMG) operator, are needed to

define a JPG.

8



WeakAchievementGoal

(WAG x y p q) , (¬(BEL x p) ∧ (GOAL x 3p)) ∨

[(BEL x p) ∧ (GOAL x 3(MB x y p))] ∨

[(BEL x 2¬p) ∧ (GOAL x 3(MB x y 2¬p))] ∨

[(BEL x ¬q) ∧ (GOAL x 3(MB x y ¬q))]

An agent x on a team with another agent y will have p as a WAG with

respect to q when at least one of four conditions holds:

1: x does not believe that p has been achieved, and x has as a goal for p to be

achieved;

2: x believes that p has been achieved, and has as a goal for the team to mutually

believe that p has been achieved;

3: x believes that p is unachievable, and has as a goal for the team to mutually

believe that p is unachievable; or

4: x believes that p is irrelevant, and has as a goal for the team to mutually

believe that p is irrelevant.

Notice that the first condition merely requires that x not believe that p has

been achieved; it is not necessary for x to believe that p has not been achieved.

WeakMutualGoal

(WMG x y p q) , (MB x y (WAG x y p q) ∧ (WAG y x p q))

A team with members x and y has p as a WMG with respect to q when

there is a mutual belief among team members that each team member has p as

a WAG.

9



JointPersistentGoal

(JPG x y p q) , (MB x y ¬p) ∧ (MG x y p) ∧

(UNTIL [(MB x y p) ∨ (MB x y 2¬p) ∨ (MB x y ¬q)]

(WMG x y p q))

In order for a team with members x and y to have p as a JPG with respect

to q, four conditions must hold:

1: All team members mutually believe that p is currently unachieved;

2: All team members have p as their mutual goal, i.e., they mutually know that

they want p to be true eventually; and

3: Until p is mutually known to be achieved, unachievable or irrelevant, the

team holds p as a WMG.

To enter into a joint commitment (JPG) in the first place, all team members

must establish appropriate mutual beliefs and commitments. The commitment

to attain mutual belief in the termination of p is a key aspect of a JPG. This

commitment ensures that team members stay updated about the status of team

activities, and thus do not unnecessarily face risks or waste their time.

These principles are embodied in Machinetta in the following way. When a

team plan is instantiated, the proxies may communicate with their respective

RAPs about whether to participate in the plan. Upon successfully triggering

a new plan, the proxies perform the “establishJointCommitment” procedure

specified by their coordination policy to ensure that all proxies agree on the

plan. Because each proxy maintains separate beliefs about these joint goals,

the team can detect (in a distributed manner) any inconsistencies among team

10



members’ plan beliefs. The proxies then use termination conditions, specified in

the TOP, as the basis for automatically generating the communication necessary

to jointly terminate a team plan when those conditions are met.

3.3 Role Allocation

Roles are slots for specialized execution that the team may potentially fill at

runtime. Assignment of roles to team members is of critical importance to

team success. This is especially true for heterogeneous teams, where some team

members have little or no capability to perform certain roles. However, even for

homogeneous teams, team members can usually only perform a limited number

of roles simultaneously and so distributing roles satisfactorily throughout the

team is of great importance.

Upon instantiation of a newly triggered plan, Machinetta proxies also instan-

tiate any associated roles. The initial plan specification may name particular

team members to fill these roles, but often the roles are unfilled and are then

subject to role allocation. The proxies themselves have no ability to achieve

goals at the domain level; instead, they must ensure that all of the requisite

domain-level capabilities are brought to bear by informing team members of

their responsibility to perform instantiated roles that are allocated to them.

One role allocation algorithm successfully used in Machinetta is described in

Section 5.

3.4 Example

To see how joint intentions and role allocation affect team behavior, consider

an example of personal assistant proxies in an office environment. A group of

three researchers, Scientist1, Scientist2, and Scientist3, need to make a joint

presentation of their work at a meeting. Each person has a proxy (Proxy1 for

11



Scientist1 Scientist2 Scientist3

Proxy1 Proxy2 Proxy3

Team Beliefs

Scientist 1 : Capability – Present Intro

Scientist 2 : Capability – Present Intro, DemoProgram

Scientist 3 : Capability – Present Intro, PresentConclusion

Give Presentation Plan

Precondition: PresentationBelief.needspresenting == true

Body: Present Intro Role

Demo Program Role

Present Conclusion Role

Postcondition: PresentationBelief.needsPresenting == false

Figure 2: Office assistant TOP and architecture.

Scientist1, etc.) that facilitates his participation in team plans. The task of

making the presentation together is represented by a team plan, which is shared

by all the proxies in a TOP as seen in Figure 2. The presentation involves

multiple roles which should be allocated to different group members.

The team plan is instantiated once the belief exists that there is a presenta-

tion that needs to be done. Only one proxy considers taking on a role at a time

in order to eliminate redundancy of plan roles. At the time of consideration, the

proxy can either ask the person it represents if that role should be taken or the

proxy can decide autonomously whether or not the role should be accepted. If

the proxy decides to act autonomously, it determines whether to accept the role

by estimating a capability level of the person, based on the person’s ability to do

the task and how many roles that person currently has. If that capability level

is higher than a threshold that is set for that particular role, the proxy accepts

the role and notifies the person. Otherwise, the role is rejected and passed on

12



to another proxy in the hopes of it being allocated to someone more capable.

For the purposes of this example, suppose that the roles are successfully

allocated, with Scientist1 presenting the introduction, Scientist2 presenting the

demonstration, and Scientist3 presenting the conclusion. The researchers begin

preparing their respective portions of the presentation. The proxies all have the

JPG of making the presentation.

Now consider four ways in which this joint commitment can be terminated.

In the first case, suppose that the meeting time arrives and the three scientists

present their respective portions. As each completes his part of the presentation,

his proxy is updated of the status. Once Proxy3 is notified that the conclusion

has been presented, it knows that the presentation has been completed and so

the JPG has been achieved. It now communicates this fact to the other proxies,

so that all members of the team mutually believe that the presentation has been

completed.

In the second case, suppose that Scientist3 becomes sick on the day of the

presentation. He informs his proxy that he will be unable to attend. Proxy3

realizes that without Scientist3’s participation the JPG is unachievable, and so

it drops its goal of making the presentation. Under its joint commitment, it

then communicates this information to the other proxies, who can then notify

their users. This allows team members to stop preparations for the presentation

and attend to other business. Once mutual belief that the goal is unachievable

is established, the joint commitment dissolves. Because Scientist3 is the only

team member capable of presenting the conclusion, there is no way to salvage

the team plan.

The third case is similar to the second, but it is Scientist1 who falls ill.

Proxy1 then notifies Proxy2 and Proxy3 that the goal is unachievable, and so

they drop the JPG. In this case, however, Proxy2 and Proxy3 recognize that it

13



may be possible to still make the presentation; Proxy2 and Proxy3 then enter

into a new joint commitment to repair the team plan. They do so by reallocating

the introduction presentation to someone other than Proxy1; for the sake of this

example, say that Proxy2 accepts this role. The new, repaired team plan can

now be instantiated and Proxy2 and Proxy3 enter into a JPG to perform the

presentation. Scientist2 is informed that he must present the introduction as

well as the demonstration, and the meeting can go on as scheduled.

In the last case, Proxy3 learns that the meeting has been cancelled and so the

presentation has become irrelevant. As a result, it drops its goal of presenting,

and the JPG of presenting becomes false as well. However, as in the case of the

goal being unachievable, the team behavior is not completely dissolved, because

only Proxy3 knows that the presentation is irrelevant; a WAG to make the

presentation persists. Proxy3 now must take action to achieve mutual belief

among all team members that the presentation is irrelevant. To achieve this,

it notifies the other two proxies that the meeting has been cancelled. These

proxies in turn notify their users of the cancellation. Only when there is mutual

belief that the presentation is irrelevant are the proxies fully released from their

joint commitment.

4 Domains

The proxy approach has been applied earlier to several domains such as battle-

field simulations (Tambe, 1997b) and RoboCup soccer simulations (Pynadath &

Tambe, 2003; Kitano et al., 1997). This section will describe three additional

domains that have been used to explore proxy-based teamwork. In each of these

domains the same teamwork approach has been applied and been shown to be

effective without changes to the key ideas.

The first domain is that of a team of personal assistant agents. Individual

14



software agents embedded within an organization represent each human user in

the organization and act on their behalf. These personal assistant agents work

together in teams toward service of cooperative tasks. Such agentified organiza-

tions could potentially revolutionize the way a variety of tasks are carried out by

human organizations. In an earlier research project called “Electric Elves”, an

agent system was deployed at USC with a small number of users and ran con-

tinuously for nine months (Chalupsky, Gil, Knoblock, Lerman, Oh, Pynadath,

Russ, & Tambe, 2002). The longest running multiagent system in the world, it

provided personal assistant agents (proxies) for about a dozen researchers and

students and integrated several schedulers and information agents. The result-

ing small-scale team of 15-20 agents aided in daily tasks such as rescheduling

meetings, selecting presenters for research meetings, tracking people and or-

dering meals. Communicating with palm pilots and cell phones, the personal

assistant agents adjusted their autonomy appropriately. Partly building on this

experience, work has begun work on a more comprehensive joint project with

SRI International that is known as CALO. The aim of CALO is to create a

wide-ranging and functional personal assistant agent that maintains a persis-

tent presence by continuously learning from its user and acting on its user’s

behalf. Designing a ubiquitous agent that propagates its utilization by pro-

viding incentives to both institutions and individuals critically depends on the

development of efficient and effective teamwork.

In the second domain, disaster response (see Figure 3), teams are created to

leverage the unique capabilities of Robots, Agents and People (RAPs). Proxy-

facilitated teamwork is vital to effective creation of RAP teams. A major chal-

lenge stems from the fact that RAP entities may have differing social abilities

and hence differing abilities to coordinate with their teammates. In order to

fully model these challenges, the experimental platform in this project is an

15



Figure 3: Disaster Response using Machinetta Proxies.

extension of the RoboCup Rescue simulation environment (Kitano, Tadokoro,

Noda, Matsubara, Takahashi, Shinjoh, & Shimada, 1999) that enables human-

robot interactions. Fire brigade agents act in a virtual city, while human and

robot team members act in the physical world. The fire brigades can search the

city after an earthquake has hit and can extinguish any fires that are found.

The agents try to allocate themselves to fires in a distributed manner, but can

call on the expertise of the human fire chief if required. The fire chief can al-

locate trucks to fires easily both because of a more global view of the situation

and because the spatial, high-level reasoning required is well suited to human

capabilities. Thus, the fire chief’s proxy must carefully adjust its own autonomy

when accepting and rejecting roles.

The third domain involves a type of Unmanned Aerial Vehicle (UAV) known

as Wide Area Search Munitions (WASMs), which are part UAV and part mu-

16



Figure 4: Unmanned Aerial Vehicle Simulator.

nition (Scerri, Xu, Liao, Lai, & Sycara, 2004). Experiments were performed

using a simulation environment. Figure 4 shows a screenshot of the simulation

environment in which a large group of WASMS (small spheres) are flying in pro-

tection of a single aircraft (large sphere). Various surface to air missle sites are

scattered around the environment. Terrain type is indicated by the color of the

ground. As many as 200 WASMs were simulated, each with its own Machinetta

proxy. In the experiments, a team of WASMs coordinate to find and destroy

ground based targets in support of a manned aircraft that they are guarding.

5 Novel Role Allocation Method

To allocate unfilled roles to team members, a novel role allocation algorithm has

been developed that draws upon ideas from distributed constraint optimization

problems (DCOPs). Based on valued constraints, DCOP is a powerful and

natural representation for the role allocation problem. Mapping the problem to

17



a well-known paradigm like DCOP allows a large body of work to be leveraged

for the algorithm. DCOP-based algorithms have been previously applied to

limited role allocation problems, but have several shortcomings when used for

very large teams in dynamic environments. The DCOP-based role allocation

algorithm for teams, Low-communication, Approximate DCOP (LA-DCOP), is

designed to overcome these shortcomings in extreme teams.

Details of the LA-DCOP algorithm are provided in the following two sec-

tions. First, a formal description role allocation problem is presented. The

second section presents the LA-DCOP algorithm and describes how it solves a

DCOP representation of the role allocation problem.

5.1 Problem Description

Simple role allocation problems for a single point in time can be formulated as

a generalized assignment problem (GAP), which is a well known representation.

Under this formulation, roles are assigned to team members, subject to resource

constraints, yielding a single, static allocation. GAP is must be extended to

include more complex aspects of role allocation such as dynamism. The solution

of this extended GAP (E-GAP) is a series of allocations through time. LA-

DCOP solves a DCOP representation of the E-GAP. The next two subsections

provide formal descriptions of GAP and E-GAP.

5.1.1 GAP

A GAP problem adapted for role allocation is defined by team members for

performing roles and roles to be assigned (Shmoys & Tardos, 1993). Each team

member, ei ∈ E, is defined by its capability to perform roles, R = {r1, . . . , rn},
and their available resources. The capability of a team member, ei, to perform

a role, ri, is quantitatively given by: Cap(ei, ri) → [0, 1]. Capability reflects the

18



quality of the output, the speed of task performance or other factors affecting

output. Each role requires some resources of the team member in order to be

performed. Resource requirements of a team member ek for a role rj are written

as Resources(ek, rj) and the available resources of an agent, e, as e.resources.

Following convention, we define a matrix A, where ai,j is value of the ith

row and jth column and

ai,j = 1 if ei is performing rj otherwise ai,j = 0.

Thus, the matrix A defines the allocation of roles to team members. The

goal in GAP is to maximize:

f(A) =
∑

e∈E

∑

r∈R

Cap(e, r)× ae,r

such that

∀i(∀e ∈ E(
∑

r∈R

Resources(e, r)× ae,r ≤ e.resources))

and

∀r ∈ R
∑

e∈E

ae,r ≤ 1.

Intuitively, this says that the goal is to maximize the capabilities of the

agents assigned to roles, subject to the resource constraints of team members,

ensuring that at most one team member is assigned to each role but potentially

more than one role per team member.

19



5.1.2 Extended GAP

To introduce the dynamics of extreme teams into GAP, make R, E, Cap and

Resources functions of time. The most important consequence of this is that

a single allocation A is no longer sufficient; rather, a sequence of allocations is

needed, A→, one for each discrete time step. A delay cost function, DC(ri, t),

captures the cost of not performing ri at time t. Thus, the objective of the

E-GAP problem is to maximize:

f(A→) =
∑

t

∑

e∈E

∑

r∈R

(Cap(e, r, t)× ae,r,t)

−
∑

t

∑

r∈R

(1−
∑

e∈E

ae,r,t)×DC(r, t)

such that

∀i(∀e ∈ E(
∑

r∈R

Resources(e, r)× ae,r,t ≤ e.resources))

and

∀r ∈ R
∑

e∈E

ae,r,t ≤ 1

Thus, extreme teams must allocate roles rapidly to accrue rewards, or else

incur delay costs at each time step.

5.2 LA-DCOP

Given the response requirements for agents in extreme teams, they must solve

E-GAP in an approximate fashion. LA-DCOP is a DCOP algorithm that is

being proposed for addressing E-GAP in a distributed fashion. LA-DCOP ex-

ploits key properties of extreme teams that arise due to large-scale domains and

similarity of agent functionality (e.g., using probability distributions), while

simultaneously addressing special role-allocation challenges of extreme teams

20



(e.g., inability of strong decomposition into smaller subproblems). In DCOP,

each agent is provided with one or more variables and must assign values to vari-

ables (Fitzpatrick & Meertens, 2001; Zhang & Wittenburg, 2002; Modi, Shen, &

Tambe, 2002). LA-DCOP maps team members to variables and roles to values,

as shown in Algorithm 1. Thus, a variable taking on a value corresponds to a

team member taking on a role. Since team members can take on multiple roles

simultaneously, each variable can take on multiple values at once, as in graph

multi-coloring.

In E-GAP, a central constraint is that each role should be assigned to only

one team member, which corresponds to each value being assigned by only one

variable. In DCOP, this requires having a complete graph of not equals con-

straints between variables (or at least a dense graph, if not strictly E-GAP) – the

complete graph arises because agents in extreme teams have similar function-

ality. Dense graphs are problematic for DCOP algorithms (Modi et al., 2002;

Fitzpatrick & Meertens, 2001), so a novel technique is required. For each value,

create a token. Only the team member currently holding a token representing a

value can assign that value to its variable. If the team member does not assign

the value to its variable, it passes the token to a teammate who then has the

opportunity to assign the value represented by the token. Essentially, tokens

deliberately reduce DCOP parallelism in a controlled manner. The advantage

is that the agents do not need to communicate to resolve conflicts.

Given the token-based access to values, the decision for the agent becomes

whether to assign values represented by tokens it currently has to its variable

or to pass the tokens on. First the agent must check whether the value can be

assigned while respecting its local resource constraints (Algorithm 1, line 10). If

the value cannot be assigned within the resource constraints of the team mem-

ber, it must choose a value(s) to reject and pass on to other teammates in the

21



form of a token(s) (Algorithm 1, line 13). The agent keeps values that maxi-

mize the use of its capabilities (performed in the MaxCap function, Algorithm

1, line 11). Notice that changing values corresponds to changing roles and may

not be without cost. Also notice that the agent is “greedy” in that it performs

the roles it is best at.

Algorithm 1: VarMonitor(Cap, Resources)
(1) V ← ∅
(2) while true
(3) msg ← getMsg()
(4) token ← msg
(5) if token.threshold = NULL
(6) token.threshold ← ComputeThreshold(token)
(7) if token.threshold < Cap(token.value)
(8) V ← V ∪ token.value

(10) if
∑

v∈V Resources(v) ≥ agent.resources
(11) out ← V− MaxCap(Values)
(12) foreach v ∈ out
(13) PassOn(new token(v))
(14) V alues ← V alues− out

(16) else
(17) PassOn(token) /* Cap < threshold */

Secondly, a team member must decide whether it is in the best interests of the

team for it to assign the value represented by a token to its variable (Algorithm

1, line 7). The key question is whether passing the token on will lead to a more

capable team member taking on the role. Using probabilistic models of the

members of the team and the roles that need to be assigned, the team member

can choose the minimum capability the agent should have in order to assign the

value. Notice that it is the similar functionality of the agents in extreme teams

and their large numbers that allows us to apply probabilistic models. Intuitively,

the agent estimates the likely capability of an agent performing this role in a

good allocation. This minimum capability is referred to as the threshold. The

threshold is calculated once (Algorithm 1, line 6), and attached to the token

22



as it moves around the team. Computing thresholds that maximize expected

utility is a key part of this algorithm; once thresholds are calculated, agents

simply circulate tokens until each token is held by an agent with capability

above threshold for the role and within resource constraints. (To avoid agents

passing tokens back and forth, each token maintains the list of agents it has

visited; if all agents have been visited, the token can revisit agents, but only

after a small delay.)

6 Experiments

LA-DCOP has been tested extensively in three environments. The first is an

abstract simulator that allows many experiments to be run with very large

numbers of agents (Okamoto, 2003). In the simulator, agents are randomly

given capabilities for each type of role, with some percentage being given zero

capability. Given many agents with overlapping capabilities for role types, dense

constraint graphs result, where a constraint ensures two agents do not take the

same role. For each time step that the agent has the role, the team receives

ongoing reward based on the agent’s capability. Message passing is simulated

as taking one time step and messages always get through. New roles appear

spontaneously and the corresponding tokens are distributed randomly. The

new roles appear at the same rate that old roles disappear, hence keeping the

total number of roles constant. Each data point represents the average from 20

runs.

The first experiments tests LA-DCOP against three competitors. The first

is DSA, which is shown to outperform other approximate DCOP algorithms in a

range of settings (Modi et al., 2002; Fitzpatrick & Meertens, 2001); empirically

determined best parameters were used for DSA (Zhang & Wittenburg, 2002).

DSA does not easily allow multiple roles to be assigned to a single agent, so the

23



(a) (b)

Figure 5: (a) comparing the average output per agent per time step versus the number
of agents. (b) the number of messages sent versus the number of agents

comparison focuses on the case where each agent can take only one role. As a

baseline, LA-DCOP is also compared against a centralized algorithm that uses

a “greedy” assignment (Castelpietra, Iocchi, Nardi, Piaggio, Scalzo, & Sgor-

bissa, 2002) and against a random assignment. Figure 5(a) shows the relative

performance of each algorithm. The experiment used 2000 roles over 1000 time

steps. The y-axis shows the total reward per agent per time step, while the

x-axis shows the number of agents. Not surprisingly, the centralized algorithm

performs best and the random algorithm performs worst. Of the distributed

algorithms, LA-DCOP performs statistically better than DSA. However, the

real key is the amount of communication used, as shown in Figure 5(b). No-

tice that the y-axis is a logarithmic scale, thus LA-DCOP uses approximately

three orders of magnitude fewer messages than the greedy algorithm and four

orders of magnitude fewer messages than DSA. Thus, LA-DCOP performs bet-

ter than DSA despite using far less communication, and only marginally worse

than a centralized approach despite using only a tiny fraction of the number of

messages.

Figure 6 shows how the performance of LA-DCOP scales with the number

of agents in the system. The y-axis shows the output per agent per time step

24



Figure 6: The average output per agent per time step (left hand y-axis) and number
of messages per agent (right hand y-axis) as the number of agents is scaled up.

Figure 7: The effects of different proportions of roles changing each step. The y-axis
shows the output per agent per time step, x-axis shows the percentage of agents with
capability > 0.

(left-hand side) and average number of messages per agent (right-hand side)

and the x-axis shows the number of agents. Notice that the algorithm’s poorest

performance is actually when the number of agents is fairly small. This is

because the probability models are “less reliable” for small numbers of agents.

However, for large numbers of agents, the number of messages per agent and

performance per agent stays constant, suggesting that LA-DCOP can be applied

to very large extreme teams. While these results are a pleasant surprise, the

scope of their application – rapid role allocation for extreme teams – should be

noted.

A key feature of extreme teams domains is that the roles to be assigned

change rapidly and unpredictably. In Figure 7, LA-DCOP is shown to perform

25



(a) (b)

Figure 8: (a) shows the number of fires extinguished by 200 fire trucks versus threshold
(b) shows the number of targets hit by UAVs versus threshold.

well even when the change is very rapid. The four lines represent different rates

of change, with 0.01 meaning that every time step (i.e., the time it takes to

send one message), 1% of all roles are replaced with roles requiring a different

capability. At middling capability (50%), with 1% dynamics, LA-DCOP loses

10% of reward per agent on average, but complete DCOP algorithms today

cannot even handle dynamics.

The second set of experiments used 200 LA-DCOP enhanced versions of

Machinetta proxies (Scerri et al., 2003), distributed over a network, executing

plans in two simple simulation environments. This was possibly larger than

any previously published report on complex multiagent teams, and certainly an

order of magnitude jump over the last published reports of teamwork based on

proxies (Scerri et al., 2003). Previous published techniques for role allocation in

the proxies fail to scale up to extreme teams of 200 agents — complete DCOP

fails on dense graphs, and symbolic matching ignores quantitative information.

The proxies execute sophisticated teamwork algorithms as well as LA-DCOP

and thus provide a realistic test of LA-DCOP. The first environment is a version

of a disaster response domain where fire trucks must fight fires. Capability in

this case is the distance of the truck from the fire, since this affects the time

until the fire is extinguished. Hence, in this case, the threshold corresponds

26



to the maximum distance the truck will travel to a fire. Figure 6(a) shows the

number of fires extinguished by the team versus threshold. Increasing thresholds

initially improves the number of fires exstinguished, but too high a threshold

results in a lack of trucks accepting roles and a decrease in performance. In the

second domain, 200 simulated UAVs explore a battle space, destroying targets

of interest. While in this domain LA-DCOP effectively allocates roles across a

large team, thresholds are of no benefit. The key point of these experiments is

to show that LA-DCOP can work effectively in a fully distributed environment

with realistic domains and large teams.

7 Summary

This chapter reports on Machinetta, a proxy-based approach to enabling team-

work among diverse entities. This approach is implemented in Java and is

derived from an earlier model, STEAM, that was implemented in Soar. The

Machinetta proxies are equip each team member with a model of the commit-

ments and responsibilities necessary for teamwork. This model is derived from

a BDI framework and the notion of joint intentions. These proxies have been

effectively applied to a variety of domains ranging from personal assistants to

disaster rescue to Unmanned Aerial Vehicles (UAVs). Across each of these do-

mains, a key challenge that these proxies must attack is role allocation. These

Machinetta proxies and the BDI framework have led to the creation of a new

role-allocation algorithm (LA-DCOP). This innovation has allowed for the con-

struction of proxies that have repeatedly and definitively demonstrated effective

teamwork in diverse domains.

27



Appendix A

Soar Communication Rules:

Step 1: The rules in file create-communicative-goals are used to match an

agent’s private state (beliefs) with any of the team operator’s termination con-

ditions – i.e., conditions that would make the team operator achieved, unachiev-

able or irrelevant. These communicative goals are only possible as communica-

tive goals at this juncture.

Step 2: The rules in file terminate-jpg-estimate-tau are used to estimate the

likelihood that the given communicative goals are the common knowledge in the

team. The likelihood is specified as high, low or medium.

Step 3: The rules in file elaborate-communicative-goals are used to match the

specified likelihoods with the communication costs to check if communication is

possible

Step 4: If communication is possible, rules in communicate-private-beliefs

are used to communicate the relevant information to others in the team.

Step 5: Due to communication or high likelihood that relevant information

is mutually believed, agents assume that certain knowledge is now mutually

believed.

References

Castelpietra, C., Iocchi, L., Nardi, D., Piaggio, M., Scalzo, A., & Sgorbissa, A.

(2002). Coordination among heterogenous robotic soccer players. Proceedings

of International Conference on Intelligent Robots and Systems 2002.

Chalupsky, H., Gil, Y., Knoblock, C. A., Lerman, K., Oh, J., Pynadath, D. V.,

Russ, T. A., & Tambe, M. (2002). Electric Elves: Agent technology for

supporting human organizations. AI Magazine, 23 (2), 11–24.

28



Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Nous, 25 (4), 487–512.

Fitzpatrick, S., & Meertens, L. (2001). Stochastic algorithms: Foundations and

applications, proceedings saga 2001, Vol. LNCS 2264, Chap. An Experimental

Assessment of a Stochastic, Anytime, Decentralized, Soft Colourer for Sparse

Graphs, pp. 49–64. Springer-Verlag.

Georgeff, M., Pell, B., Pollack, M., Tambe, M., & Wooldrige, M. (1998). The

belief-desire-intention model of agency. Proceedings of Agents, Theories, Ar-

chitectures and Languages (ATAL).

Grosz, B., & Kraus, S. (1996”). Collaborative plans for complex group actions.

Artificial Intelligence, 86 , 269–358.

Hill, R., Chen, J., Gratch, J., Rosenbloom, P., & Tambe, M. (1997). Intelli-

gent agents for the synthetic battlefield: A company of rotary wing aircraft.

Innovative Applications of Artificial Inttigence (IAAI-97).

Jennings, N. (1995). The archon systems and its applications. Project Report.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., & Matsubara, H.

(1997). RoboCup: A challenge problem for AI. AI Magazine, 18 (1), 73–85.

Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjoh, A.,

& Shimada, S. (1999, October). Robocup rescue: Searh and rescue in large-

scale disasters as a domain for autonomous agents research. Proc. 1999 IEEE

Intl. Conf. on Systems, Man and Cybernetics, Vol. VI (pp. 739–743). Tokyo.

Modi, P. J., Shen, W., & Tambe, M. (2002). Distributed constraint optimization

and its application (Technical Report ISI-TR-509). University of Southern

California/Information Sciences Institute.

Nair, R., Ito, T., Tambe, M., & Marsella, S. (2002). Task allocation in robocup

rescue simulation domain. Proceedings of the International Symposium on

RoboCup.

29



Newell, A. (1990). Unified theories of cognition. Cambridge, Massachusetts:

Harvard University Press.

Okamoto, S. (2003). Dcop in la: Relaxed. Master’s thesis, University of Southern

California.

Pynadath, D. V., & Tambe, M. (2003). An automated teamwork infrastruc-

ture for heterogeneous software agents and humans. Journal of Autonomous

Agents and Multi-Agent Systems, Special Issue on Infrastructure and Require-

ments for Building Research Grade Multi-Agent Systems, 7:71–100.

Scerri, P., Pynadath, D. V., Johnson, L., P., R., Schurr, N., Si, M., & Tambe, M.

(2003). A prototype infrastructure for distributed robot-agent-person teams.

The Second International Joint Conference on Autonomous Agents and Mul-

tiagent Systems.

Scerri, P., Xu, Y., Liao, E., Lai, G., & Sycara, K. (2004). Scaling teamwork to

very large teams. Proceedings of the International Conference on Autonomous

Agents and Multiagent Systems. submitted.

Shmoys, D., & Tardos, E. (1993). An approximation algorithm for the general-

ized assignment problem. Mathematical Programming, 62 , 461–474.

Tambe, M. (1997a). Agent architectures for flexible, practical teamwork. Na-

tional Conference on AI (AAAI97), 22–28.

Tambe, M. (1997b). Towards flexible teamwork. Journal of Artificial Intelligence

Research, 7 , 83–124.

Tidhar, G., Rao, A., & Sonenberg, E. (1996). Guided team selection. Proceedings

of the Second International Conference on Multi-Agent Systems.

Werger, B. B., & Mataric, M. J. (2000). Broadcast of local eligibility for multi-

target observation. Proc. of 5th Int. Symposium on Distributed Autonomous

Robotic Systems (DARS).

30



Yen, J., Yin, J., Ioerger, T. R., Miller, M. S., Xu, D., & Volz, R. A. (2001).

Cast: Collaborative agents for simulating teamwork. Proceedings of the In-

ternational Joint Conference on Artificial Intelligence (pp. 1135–1142).

Zhang, W., & Wittenburg, L. (2002). Distributed breakout revisited. Proceed-

ings of American Association for Artificial Intellgince 2002.

31


