Preprocessing Techniques for
Distributed Constraint Optimization

Syed Muhammad Afi, Sven Koenig, and Milind Tambe

USC, CS Department, 941 W 37th Street, Los Angeles, CA 90089-078A, U
{syednuha, skoeni g, t anbe}@isc. edu

Abstract. Although algorithms for Distributed Constraint Optimization Prob-
lems (DCOPs) have emerged as a key technique for distributed regsteir
application faces significant hurdles in many multiagent domains due to their
inefficiency. Preprocessing techniques have been successfullytaispeed up
algorithms for centralized constraint satisfaction problems. This papedirces

a framework of very different preprocessing techniques thattbpp&DOPT, an
asynchronous optimal DCOP algorithm that significantly outperformspesimgy
DCOP algorithms by more than one order of magnitude.

1 Introduction

Algorithms for Distributed Constraint Optimization Prebds (DCOPs) [1,2] have
emerged as a key technique for distributed reasoning, divein ability to optimize
over a set of distributed constraints. For example, DCOBralgns have been used
in distributed sensor networks [3] to optimize the allosatbf sensors to targets so
as to maximize the value of the tracked targets or the areared\by the sensors [3,
1]. Solving DCOPs optimally is known to be NP-hard, yet oneoineeds to develop
DCOP algorithms that provide optimal solutions as effidieat possible. For exam-
ple, researchers have recently developed ADOPT, an asymahs optimal DCOP al-
gorithm that significantly outperforms competing optimalOP algorithms (that do
not allow partial or complete centralization of value assignts) [1]. This paper in-
troduces a framework of preprocessing techniques that miglkeithms like ADOPT
even more efficient. The idea of preprocessing is not newdarctimtext of CSPs, where
arc-consistency, path-consistency and general k-censigtalgorithms can speed up
CSP algorithms dramatically [4,5]. However, preprocegsitgorithms have not yet
been investigated in the context of DCOPs. In this paper,lesedhis gap with prepro-
cessing algorithms that are very different from preproogsalgorithms for CSPs. Our
preprocessing algorithms demonstrate for the first time ghgprocessing can indeed
speed up DCOP algorithms. In fact, they can speed up ADOPTdrg than one order
of magnitude.

* This research was supported in part by a subcontract from NA®ABrbpulsion Laboratory
(JPL) and in part by an NSF award under contract 11S-035058é.vi¢ws and conclusions
contained in this document are those of the authors and should not berétéer as repre-
senting the official policies, either expressed or implied, of the sporgsorganizations or the
U.S. government.

2 DCOPsand ADOPT

DCOPs consist of a set of ageri¥s D(n) denotes the set of possible values that agent
n € N can assign to itself. The other agents cannot directly remsdvialue, but the
agent can communicate the value to its neighbe&n), d(n')) denotes the cost of a
soft binary constraint between agents N andn’ € N if agentn is assigned value
d(n) € D(n) and agent)’ is assigned valud(n’) € D(n’). We refer to these cost
functions simply as constraints. The objective is to asaigalue to every agent so that
the sum of the costs of the constraints is minimal.

In this paper, we build on ADOPT, the first optimal DCOP altion that uses
only localized asynchronous communication and polynospalce for each agent [1].
ADOPT constructs a constraint tree, which is a tree of agetts the property that
any two agents that are involved in some constraint are ikdgmessor-successor (but
not necessarily parent-child) relationship in the tree.O®X searches the constraint
tree in a way that resembles uninformed and memory-boundesions of A*, but
does so in a distributed fashion, where every agent sendsages only to its parent
or successors in the constraint tree. ADOPT begins by alitagghoosing their values
concurrently. Agents can send their values to those sumceeey are neighbors with.
When an agent receives a value message, it computes and sevgtsh@essage to its
parent in the constraint tree. This cost message is an detiohahe total cost of the
constraints for the best complete assignment of valuesetonisssage-sending-agent’s
successors (and to the agent itself) that is: (i) guaranieée a lower bound on the
real cost, and (ii) guaranteed to be consistent with theeotigssignment of values to
its predecessors. The agent calculates this lower bouimdastby adding the exact
costs of all constraints that involve agents with known gal(hamely its predecessors
with whom it has constraints) and a lower bound estimate efstinallest sum of the
costs of all constraints in the subtree rooted at the ageneifred from its children
via cost messages). Initially, all agents use zero as lowend estimates. The agents
increase these lower bound estimates as they receive cesages from their children.
The agents set them back to zero whenever they receive amasgage that indicates
that one of their predecessors has changed its value.

3 Preprocessing Framewor k

Our preprocessing framework consists of a preprocessiagepfollowed by the main
phase which just runs ADOPT. The preprocessing phase ssppDOPT with non-
zero lower bound estimates to focus its search. They aralasdd by solving a relaxed
version of the DCOP, which is why we refer to them in the folilogvas heuristic val-
ues. The heuristic values can be calculated by using eitB€DRAT itself to solve the
relaxed DCOP or specialized preprocessing algorithms.speicialized preprocessing
algorithms DPO, DP1 and DP2 are dynamic programming alyostthat assign heuris-
tic values to the agents, starting at the leaves of the ainstree and then proceeding
from each agent to its parent. We use the following additiontation to describe them
formally: C(n) € N denotes the set of children of agente N. A(n) denotes the
set of predecessors of agentc N with which the agent has constraints. Finally, the

heuristic valué:(d(n)) is a lower bound estimate of the smallest sum of the costd of al
constraints in the subtree rooted at the agert IV, provided that agent is assigned
the valued(n) € D(n). DPO, DP1 and DP2 sét(d(n)) := 0 for all d(n) € D(n) and

n € N with C(n) = , that is, the heuristic values of all leaves to zero. Thegudate

the remaining heuristic valuégd(n)) for all d(n) € D(n) andn € N with C(n) = ()

as follows:

DPO h(d(n)) := anec(n) Zn”eA(n/) ming,/ye p(n/y MiNgn/yeD(n’) c(d(n’),d(n’"))
DPlh(d(n)) := Zn’ec(n) ming ,/yep(n’) (R(d(n")) + c(d(n’), d(n)))
DP2/h(d(n)) := 2",60 (ming e pnry (R(d(n)) + e(d(n’), d(n))

S e rturtay P D (),)

DPO, DP1 and DP2 calculate different heuristic values affdrdn their compu-
tation and communication overhead. Each heuristic valueR# is guaranteed to be
at least as large as the corresponding heuristic value 6f B0 and DP1. Thus, the
heuristic values of DP2 are at least as informed as the oneP@fand DP1.

4 Experimental Results

In the following, we refer to ADOPTO, ADOPT1 and ADOPT2 as tt@mbination
of DPO, DP1 and DP2, respectively, in the preprocessingephasl ADOPT in the
main phase. It is obvious that these versions solve DCORmalbt since they use
lower bound estimates as heuristic values. Since the wingetimes of DPO, DP1,
and DP2 per iteration are polynomial and their number ofttens is polynomial as
well, their runtimes are polynomial. Since solving DCOPBIR-hard, the runtimes of
the preprocessing algorithms do not contribute to the divenatime in a major way.
However, it is not immediately obvious whether the prepssagg algorithms are able
to reduce the total runtime, that is, the sum of the runtinfébepreprocessing phase
and the main phase. Hence, it is crucial to perform an expetiah investigation of the
different preprocessing algorithms.

Our test domains are three-coloring problems with a linksitgrof two. The values
of the agents correspond to the colors, and the costs of ia#l plvalues of any two
neighboring agents are drawn from the integers from 1 to lil@umiform probability.
We follow other researchers and use cycles to measure tlimasg) where every agent
is allowed to process all of its messages in each cycle. Eifyleft) shows the overall
number of cycles of ADOPT and our three new versions of ADOB® éunction of
the number of agents. When we report cycles, we penalize ADG#T ADOPT2
for their larger messages in the preprocessing phase bgasiag their cycle count
in the preprocessing phase by a factor that equals the nuohibeuristic values they
send per message, namely 3. ADOPT2 outperforms all otheiover of ADOPT and
its speedups increase with the number of agents. For exa®apl@PT2 speeds up
ADOPT by a factor of 9.8 for 12 agents.

To illustrate the advantage of our preprocessing algosthrigure 1 (right) com-
pares the number of cycles taken by DP1 and the number ofsciraé ADOPT would
need if it were used in the preprocessing phase on the DC@Padifof its constraints
that are not in a parent-child relationship in the constrage are deleted. These two

Cycles in Graph Coloring Preprocessing Cycles in Graph Coloring
aooon _i 1200
0000 1500 —
w 40000 1200
k= 5
£ 30000 &, P00
20000 M1 ® so0 __
R e . . g = I
8 1a 11 12 8 10 n ©
enis
Agents 8 ADCPT =
B ADCPT mADOFTO OADOFTI OADOFTZ | ®DP | One Heuristic Vahe Sent pex Cycle
ODP1: All Hewistic Values Sent in One Cyele

Fig. 1. Total Cycles (left) and Preprocessing Cycles (right)

Acomracy in Graph Coloing Repeated Comtexts in Graph Coloring
%0 1 120000
L= 100000]
T -
60 E z0000
g b
5 as S 6oooo
2 E
n] — — g 40000 B
B
15 — — —_— &2 20000
0 g O
& L " 12 8 1o n 12
Agents Agents
||:| ADOPT m ADOPTO 0 &DCPT1 OADORT2 |

Fig. 2. Accuracy (left) and Regenerated Contexts (right)

preprocessing algorithms calculate the same heuristiegaHowever, the number of
cycles of DP1 is smaller than the one of ADOPT by a factor o53%@r 12 agents. If we
did not penalize DP1 for its larger messages by increasingyitle count, its number
of cycles would even be smaller than the one of ADOPT by a fauft@57.4.

To understand better why the speedups depend on the prepimgalgorithm, re-
member that the heuristic values computed by the preprioncealgorithms are used to
seed lower bounds of ADOPT for the main phase. ADOPT can tlags® lower bounds
during its operation. We therefore computed the average ehthe lower bounds pro-
vided by the preprocessing algorithms and the lower boufids ADOPT terminated.
We refer to this ratio as the accuracy. The larger the acgutihe more informed the
lower bounds are. An accuracy of O percent means that the loatends provided by
the preprocessing phase were zero and thus no better thdowthebounds used by
ADOPT itself. In this case, the preprocessing algorithmsdus speed up ADOPT. On
the other hand, an accuracy of 100 percent means that thelbowads provided by the
preprocessing algorithm were so good that ADOPT was nottalise them. Figure 2

(left) shows the accuracies of DPO, DP1 and DP2. The accafddf0 is 45.1 percent
for 12 agents, the accuracy of DP1 is 53.4 percent, and thaawc of DP2 is 81.6
percent. Figure 2 (left) shows that the accuracies arelgloserelated with the number
of cycles from Figure 1 (left). The overall number of cyclexrbases as the accuracies
and thus the informedness of the heuristic values increase.

ADOPT is a memory-bounded DCOP algorithm and thus has toergte partial
solutions (contexts) when it backtracks to a previously@nqal part of the search space.
We therefore measured the average number of regenerateisoat each agent, where
a context assigns a value to each predecessor of the aghetéorstraint tree. Thus, a
regenerated context is in effect a regenerated partidisolUFigure 2 (right) shows that
the numbers of regenerated contexts are indeed closelylatd with the accuracies
from Figure 2 (left) as well as the number of cycles from Feglir(left). It appears that
more informed heuristic values reduce the amount of backimg and thus the number
of regenerated partial solutions, resulting in a smalleniber of cycles. For example,
ADOPT2 uses far more informed heuristic values than ADOPQ thuis repeats far
fewer contexts and, correspondingly, provides high spegdu

References

1. Modi, P., Shen, W., Tambe, M., Yokoo, M.: An asynchronousgiete method for distributed
constraint optimization. In: AAMAS. (2003) 161-168

2. Maliller, R., Lesser, V.: Solving distributed constraint optimization f@wois using cooperative
mediation. In: AAMAS. (2004) (to appear)

3. Lesser, V., Ortiz, C., Tambe, M., eds.: Distributed sensor n&svér multiagent perspective.
Kluwer (2003)

4. Dechter, R., Meiri, I.: Experimental evaluation of preprocessinbrtgues in constraint sat-
isfaction problems. In: IJCAI. (1989) 271-277

5. Bistarelli, S., Gennari, R., Rossi, F.: Constraint propagation focsastraints: generalization
and termination conditions. In: CP. (2000) 83—97

