
Preprocessing Techniques for
Distributed Constraint Optimization

Syed Muhammad Ali⋆, Sven Koenig, and Milind Tambe

USC, CS Department, 941 W 37th Street, Los Angeles, CA 90089-0781, USA
{syedmuha,skoenig,tambe}@usc.edu

Abstract. Although algorithms for Distributed Constraint Optimization Prob-
lems (DCOPs) have emerged as a key technique for distributed reasoning, their
application faces significant hurdles in many multiagent domains due to their
inefficiency. Preprocessing techniques have been successfully used to speed up
algorithms for centralized constraint satisfaction problems. This paper introduces
a framework of very different preprocessing techniques that speed up ADOPT, an
asynchronous optimal DCOP algorithm that significantly outperforms competing
DCOP algorithms by more than one order of magnitude.

1 Introduction

Algorithms for Distributed Constraint Optimization Problems (DCOPs) [1, 2] have
emerged as a key technique for distributed reasoning, giventheir ability to optimize
over a set of distributed constraints. For example, DCOP algorithms have been used
in distributed sensor networks [3] to optimize the allocation of sensors to targets so
as to maximize the value of the tracked targets or the area covered by the sensors [3,
1]. Solving DCOPs optimally is known to be NP-hard, yet one often needs to develop
DCOP algorithms that provide optimal solutions as efficiently as possible. For exam-
ple, researchers have recently developed ADOPT, an asynchronous optimal DCOP al-
gorithm that significantly outperforms competing optimal DCOP algorithms (that do
not allow partial or complete centralization of value assignments) [1]. This paper in-
troduces a framework of preprocessing techniques that makealgorithms like ADOPT
even more efficient. The idea of preprocessing is not new in the context of CSPs, where
arc-consistency, path-consistency and general k-consistency algorithms can speed up
CSP algorithms dramatically [4, 5]. However, preprocessing algorithms have not yet
been investigated in the context of DCOPs. In this paper, we close this gap with prepro-
cessing algorithms that are very different from preprocessing algorithms for CSPs. Our
preprocessing algorithms demonstrate for the first time that preprocessing can indeed
speed up DCOP algorithms. In fact, they can speed up ADOPT by more than one order
of magnitude.

⋆ This research was supported in part by a subcontract from NASA’s Jet Propulsion Laboratory
(JPL) and in part by an NSF award under contract IIS-0350584. The views and conclusions
contained in this document are those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of the sponsoring organizations or the
U.S. government.



2 DCOPs and ADOPT

DCOPs consist of a set of agentsN . D(n) denotes the set of possible values that agent
n ∈ N can assign to itself. The other agents cannot directly read this value, but the
agent can communicate the value to its neighbors.c(d(n), d(n′)) denotes the cost of a
soft binary constraint between agentsn ∈ N andn′ ∈ N if agentn is assigned value
d(n) ∈ D(n) and agentn′ is assigned valued(n′) ∈ D(n′). We refer to these cost
functions simply as constraints. The objective is to assigna value to every agent so that
the sum of the costs of the constraints is minimal.

In this paper, we build on ADOPT, the first optimal DCOP algorithm that uses
only localized asynchronous communication and polynomialspace for each agent [1].
ADOPT constructs a constraint tree, which is a tree of agentswith the property that
any two agents that are involved in some constraint are in a predecessor-successor (but
not necessarily parent-child) relationship in the tree. ADOPT searches the constraint
tree in a way that resembles uninformed and memory-bounded versions of A*, but
does so in a distributed fashion, where every agent sends messages only to its parent
or successors in the constraint tree. ADOPT begins by all agents choosing their values
concurrently. Agents can send their values to those successors they are neighbors with.
When an agent receives a value message, it computes and sends acost message to its
parent in the constraint tree. This cost message is an estimate of the total cost of the
constraints for the best complete assignment of values to the message-sending-agent’s
successors (and to the agent itself) that is: (i) guaranteedto be a lower bound on the
real cost, and (ii) guaranteed to be consistent with the current assignment of values to
its predecessors. The agent calculates this lower bound estimate by adding the exact
costs of all constraints that involve agents with known values (namely its predecessors
with whom it has constraints) and a lower bound estimate of the smallest sum of the
costs of all constraints in the subtree rooted at the agent (received from its children
via cost messages). Initially, all agents use zero as lower bound estimates. The agents
increase these lower bound estimates as they receive cost messages from their children.
The agents set them back to zero whenever they receive a valuemessage that indicates
that one of their predecessors has changed its value.

3 Preprocessing Framework

Our preprocessing framework consists of a preprocessing phase followed by the main
phase which just runs ADOPT. The preprocessing phase supplies ADOPT with non-
zero lower bound estimates to focus its search. They are calculated by solving a relaxed
version of the DCOP, which is why we refer to them in the following as heuristic val-
ues. The heuristic values can be calculated by using either ADOPT itself to solve the
relaxed DCOP or specialized preprocessing algorithms. Ourspecialized preprocessing
algorithms DP0, DP1 and DP2 are dynamic programming algorithms that assign heuris-
tic values to the agents, starting at the leaves of the constraint tree and then proceeding
from each agent to its parent. We use the following additional notation to describe them
formally: C(n) ∈ N denotes the set of children of agentn ∈ N . A(n) denotes the
set of predecessors of agentn ∈ N with which the agent has constraints. Finally, the



heuristic valueh(d(n)) is a lower bound estimate of the smallest sum of the costs of all
constraints in the subtree rooted at the agentn ∈ N , provided that agentn is assigned
the valued(n) ∈ D(n). DP0, DP1 and DP2 seth(d(n)) := 0 for all d(n) ∈ D(n) and
n ∈ N with C(n) = ∅, that is, the heuristic values of all leaves to zero. They calculate
the remaining heuristic valuesh(d(n)) for all d(n) ∈ D(n) andn ∈ N with C(n) = ∅

as follows:

DP0 h(d(n)) :=
∑

n′∈C(n)

∑
n′′∈A(n′)

mind(n′)∈D(n′) mind(n′′)∈D(n′′) c(d(n′), d(n′′))

DP1 h(d(n)) :=
∑

n′∈C(n)
mind(n′)∈D(n′)(h(d(n′)) + c(d(n′), d(n)))

DP2 h(d(n)) :=
∑

n′∈C(n)
(mind(n′)∈D(n′)(h(d(n′)) + c(d(n′), d(n))

+
∑

n′′∈A(n′)\{n}
mind(n′′)∈D(n′′) c(d(n′), d(n′′))))

DP0, DP1 and DP2 calculate different heuristic values and differ in their compu-
tation and communication overhead. Each heuristic value ofDP2 is guaranteed to be
at least as large as the corresponding heuristic value of both DP0 and DP1. Thus, the
heuristic values of DP2 are at least as informed as the ones ofDP0 and DP1.

4 Experimental Results

In the following, we refer to ADOPT0, ADOPT1 and ADOPT2 as thecombination
of DP0, DP1 and DP2, respectively, in the preprocessing phase and ADOPT in the
main phase. It is obvious that these versions solve DCOPs optimally since they use
lower bound estimates as heuristic values. Since the processing times of DP0, DP1,
and DP2 per iteration are polynomial and their number of iterations is polynomial as
well, their runtimes are polynomial. Since solving DCOPs isNP-hard, the runtimes of
the preprocessing algorithms do not contribute to the overall runtime in a major way.
However, it is not immediately obvious whether the preprocessing algorithms are able
to reduce the total runtime, that is, the sum of the runtimes of the preprocessing phase
and the main phase. Hence, it is crucial to perform an experimental investigation of the
different preprocessing algorithms.

Our test domains are three-coloring problems with a link density of two. The values
of the agents correspond to the colors, and the costs of all pairs of values of any two
neighboring agents are drawn from the integers from 1 to 100 with uniform probability.
We follow other researchers and use cycles to measure the runtimes, where every agent
is allowed to process all of its messages in each cycle. Figure 1 (left) shows the overall
number of cycles of ADOPT and our three new versions of ADOPT as a function of
the number of agents. When we report cycles, we penalize ADOPT1 and ADOPT2
for their larger messages in the preprocessing phase by increasing their cycle count
in the preprocessing phase by a factor that equals the numberof heuristic values they
send per message, namely 3. ADOPT2 outperforms all other versions of ADOPT and
its speedups increase with the number of agents. For example, ADOPT2 speeds up
ADOPT by a factor of 9.8 for 12 agents.

To illustrate the advantage of our preprocessing algorithms, Figure 1 (right) com-
pares the number of cycles taken by DP1 and the number of cycles that ADOPT would
need if it were used in the preprocessing phase on the DCOP after all of its constraints
that are not in a parent-child relationship in the constraint tree are deleted. These two



Fig. 1. Total Cycles (left) and Preprocessing Cycles (right)

Fig. 2. Accuracy (left) and Regenerated Contexts (right)

preprocessing algorithms calculate the same heuristic values. However, the number of
cycles of DP1 is smaller than the one of ADOPT by a factor of 52.5 for 12 agents. If we
did not penalize DP1 for its larger messages by increasing its cycle count, its number
of cycles would even be smaller than the one of ADOPT by a factor of 157.4.

To understand better why the speedups depend on the preprocessing algorithm, re-
member that the heuristic values computed by the preprocessing algorithms are used to
seed lower bounds of ADOPT for the main phase. ADOPT can raisethese lower bounds
during its operation. We therefore computed the average ratio of the lower bounds pro-
vided by the preprocessing algorithms and the lower bounds after ADOPT terminated.
We refer to this ratio as the accuracy. The larger the accuracy, the more informed the
lower bounds are. An accuracy of 0 percent means that the lower bounds provided by
the preprocessing phase were zero and thus no better than thelower bounds used by
ADOPT itself. In this case, the preprocessing algorithm does not speed up ADOPT. On
the other hand, an accuracy of 100 percent means that the lower bounds provided by the
preprocessing algorithm were so good that ADOPT was not ableto raise them. Figure 2



(left) shows the accuracies of DP0, DP1 and DP2. The accuracyof DP0 is 45.1 percent
for 12 agents, the accuracy of DP1 is 53.4 percent, and the accuracy of DP2 is 81.6
percent. Figure 2 (left) shows that the accuracies are closely correlated with the number
of cycles from Figure 1 (left). The overall number of cycles decreases as the accuracies
and thus the informedness of the heuristic values increase.

ADOPT is a memory-bounded DCOP algorithm and thus has to regenerate partial
solutions (contexts) when it backtracks to a previously explored part of the search space.
We therefore measured the average number of regenerated contexts at each agent, where
a context assigns a value to each predecessor of the agent in the constraint tree. Thus, a
regenerated context is in effect a regenerated partial solution. Figure 2 (right) shows that
the numbers of regenerated contexts are indeed closely correlated with the accuracies
from Figure 2 (left) as well as the number of cycles from Figure 1 (left). It appears that
more informed heuristic values reduce the amount of backtracking and thus the number
of regenerated partial solutions, resulting in a smaller number of cycles. For example,
ADOPT2 uses far more informed heuristic values than ADOPT and thus repeats far
fewer contexts and, correspondingly, provides high speedups.

References

1. Modi, P., Shen, W., Tambe, M., Yokoo, M.: An asynchronous complete method for distributed
constraint optimization. In: AAMAS. (2003) 161–168

2. Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using cooperative
mediation. In: AAMAS. (2004) (to appear)

3. Lesser, V., Ortiz, C., Tambe, M., eds.: Distributed sensor networks: A multiagent perspective.
Kluwer (2003)

4. Dechter, R., Meiri, I.: Experimental evaluation of preprocessing techniques in constraint sat-
isfaction problems. In: IJCAI. (1989) 271–277

5. Bistarelli, S., Gennari, R., Rossi, F.: Constraint propagation for soft constraints: generalization
and termination conditions. In: CP. (2000) 83–97


