Automated Assistants for Analyzing Team Behaviors

Ranjit Nair (nair@usc.edu) and Milind Tambe (tambe@usc.edu)
Computer Science Department

University of Southern California
941 W. 87th Place, Los Angeles, CA 90089

Stacy Marsella (marsella@isi.edu) and Taylor Raines

(raines@isi.edu)

Information Sciences Institute

University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292

Abstract. Multi-agent teamwork is critical in a large number of agent applications,
including training, education, virtual enterprises and collective robotics. The com-
plex interactions of agents in a team as well as with other agents make it extremely
difficult for human developers to understand and analyze agent-team behavior. It has
thus become increasingly important to develop tools that can help humans analyze,
evaluate, and understand team behaviors. However, the problem of automated team
analysis is largely unaddressed in previous work. In this article, we identify several
key constraints faced by team analysts. Most fundamentally, multiple types of mod-
els of team behavior are necessary to analyze different granularities of team events,
including agent actions, interactions, and global performance. In addition, effective
ways of presenting the analysis to humans is critical and the presentation techniques
depend on the model being presented. Finally, analysis should be independent of
underlying team architecture and implementation.

We also demonstrate an approach to addressing these constraints by building
an automated team analyst called ISAAC for post-hoc, off-line agent-team analysis.
ISAAC acquires multiple, heterogeneous team models via machine learning over
teams’ external behavior traces, where the specific learning techniques are tailored
to the particular model learned. Additionally, ISAAC employs multiple presentation
techniques that can aid human understanding of the analyses. ISAAC also provides
feedback on team improvement in two novel ways: (i) It supports principled ”what-
if” reasoning about possible agent improvements; (ii) It allows the user to compare
different teams based on their patterns of interactions. This paper presents ISAAC’s
general conceptual framework, motivating its design, as well as its concrete applica-
tion in two domains: (i) RoboCup Soccer; (ii) software agent teams participating in
a simulated evacuation scenario. In the RoboCup domain, ISAAC was used prior to
and during the RoboCup’99 tournament, and was awarded the RoboCup Scientific
Challenge Award. In the evacuation domain, ISAAC was used to analyze patterns
of message exchanges among software agents, illustrating the generality of ISAAC’s
techniques. We present detailed algorithms and experimental results from ISAAC’s
application.®

! This article significantly extends our previous conference paper [25] and our
extended abstract [26].

';‘w © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

ISAAC-final.tex; 13/10/2002; 4:03; p.1

1. Introduction

Teamwork has been a growing area of agent research and development
in recent years, seen in a large number of multi-agent applications,
including autonomous multi-robotic space missions [10], virtual en-
vironments for training [35] and education [17], distributed resource
allocation [19] and software agents on the Internet [34]. With the grow-
ing importance of teamwork, there is now a critical need for tools to help
humans analyze, evaluate, and understand team behaviors. Indeed, in
multi-agent domains with tens or even hundreds of agents in teams,
agent interactions are often highly complex and dynamic, making it
difficult for human developers to analyze agent-team behaviors. The
problem is further exacerbated in environments where agents are de-
veloped by different developers, where even the intended interactions
are unpredictable.

Unfortunately, the problem of analyzing team behavior to aid human
developers in understanding and improving team performance has been
largely unaddressed. Previous work in agent teamwork has largely fo-
cused on guiding autonomous agents in their teamwork [13, 36], but not
on its analysis for humans. Agent explanation systems, such as Debrief
[15], allow individual agents to explain their actions based on internal
state, but do not have the means for a team analysis. Recent work
on multi-agent visualization systems, such as [21], has been motivated
by multi-agent understandability concerns (similar to ours), but it still
leaves analysis of agent actions and interactions to humans.

This article focuses on tools that assist humans to analyze, under-
stand and improve multi-agent team behaviors by:

1. Locating key aspects of team behaviors that are critical in team
success or failures;

2. Diagnosing such team behaviors, particularly, problematic behav-
iors;

3. Suggesting alternative courses of action; and
4. Presenting the relevant information to the user comprehensibly.

Based on our initial efforts at building a team analyst, we arrived
at several important design constraints that should be addressed in
building such team analysts. First, unlike systems that focus on ex-
plaining individual agent behaviors [15, 29], team analysts need to have
multiple perspectives at multiple levels of granularity. It is sometimes
beneficial to analyze the critical actions of single individuals because
failures in these critical actions may have been extremely costly and

ISAAC-final.tex; 13/10/2002; 4:03; p.2

Automated Assistants for Analyzing Team Behaviors 3

hence correcting these failures can significantly improve performance.
In other circumstances it is the collaborative agent interaction within
a small sub-team that is key in team success or failure. Here, analysis
may determine which sequences of agent interactions within the sub-
team contribute to the team’s success or failure. And in some other
circumstances, an analysis of the global behavior trends of the entire
team is important.

The second key constraint is that as assistants to human users and
developers, team analysts must not only be experts in analysis, they
must also be experts in conveying this information to humans. The
constraint of multiple models has strong implications for the type of
presentation as well. Analysis of an agent action can show the action
and highlight features of that action that played a prominent role in its
success or failure, but a similar presentation would be incongruous for
a global analysis, since no single action would suffice. Global analysis
requires a more comprehensive explanation that ties together seemingly
unconnected aspects and trends of team behavior.

The third constraint is that team analysts should ideally be in-
dependent of the underlying team architecture and implementation,
to ensure generality of the analysis across teams and even across do-
mains. In particular, by exploiting external behavior traces of the team,
team analysts can understand team behaviors without necessarily re-
quiring information on team internals. This bottom-up, data-intensive
approach is especially desirable in complex domains where a causal
model is weak or unknown. Furthermore, acquiring such causal informa-
tion can be a significant bottleneck, if agents and teams are developed
by different developers. Finally, such a bottom-up approach can reveal
unexpected patterns of interaction that are often of interest to devel-
opers. This constraint does not imply ignoring “top-down” information
where easily available, but rather it stresses the criticality of bottom-up
analysis.

These constraints on team analysts have shaped the analyst we have
developed, called ISAAC. To address the first constraint, ISAAC relies
on multiple models of team behavior, each covering a different level of
granularity of team behavior. More specifically, ISAAC relies on three
different models that analyze events at three separate levels of granu-
larity: an individual agent action, agent interactions, and overall team
behavior. To address the second constraint, multiple modes of presenta-
tions are used, each suited to the model being presented. For instance,
ISAAC uses a multimedia viewer to highlight individual agent actions,
but uses a natural language summary to explain the overall team per-
formance. The content for the summary is determined by ISAAC’s
automated analysis of key factors determining team performance. To

ISAAC-final.tex; 13/10/2002; 4:03; p.3

4

address the third constraint, ISAAC’s three models are automatically
acquired via machine learning techniques like inductive decision tree
learning and learning of probabilistic finite automata (PFA) based
on external data traces of team behaviors. With multiple models, the
method of acquisition can be tailored to the model being acquired.

An additional novelty in ISAAC is the two techniques it uses to
suggest improvements to a team. First, ISAAC presents alternative
courses of actions using a technique called 'perturbation analysis’. A
key feature of perturbation analysis is that it suggests improvements
using actions within the agent’s skill set, since this analysis mines data
from actions that the team has already performed. Second, ISAAC
also aids in comparing patterns of behaviors of different teams. Such a
comparison also provides suggestions for team improvement.

ISAAC was first extensively applied in the domain of RoboCup
soccer simulation [17, 22] (See Figure 1). RoboCup is a dynamic, multi-
agent environment developed to explore multi-agent research issues,
with agent teams participating in national and international annual
competitions. There are 11 agents in each team that act without any
centralized control and act in a complex, dynamic, noisy environment
managed by a soccer server [22]. Agent-team analysis is posed as a
fundamental challenge in RoboCup since team developers wish to un-
derstand the strengths and weaknesses of teams and understand how
to improve such teams. There are at least 50 such development groups
around the world.

Figure 1. 2-D snapshot of a RoboCup soccer game.

ISAAC has attacked the team analysis challenge in RoboCup: it
has been applied to all of the teams from several RoboCup tourna-

ISAAC-final.tex; 13/10/2002; 4:03; p.4

Automated Assistants for Analyzing Team Behaviors 5

ments in a fully automated fashion. This analysis has revealed many
interesting results including surprising weaknesses of the leading teams
in both the RoboCup-97 and RoboCup-98 tournaments. ISAAC also
provided team analysis and natural language summaries at RoboCup-
99. At RoboCup-99, ISAAC was also awarded the “Scientific Challenge
Award” for outstanding research at a RoboCup tournament. ISAAC is
available on the web at http://coach.isi.edu and is used remotely by
teams preparing for these competitions.

Although ISAAC was initially applied in RoboCup, ISAAC’s tech-
niques are intended to apply in other team domains such as agent-teams
in foraging and exploration [4], distributed resource allocation [19] and
battlefield simulations [35]. For instance, in this article, we demonstrate
the generality of ISAAC’s techniques by applying it to the analysis of
communication actions of a team of software agents [38]. The team is
engaged in the task of the simulated evacuation of civilians trapped in
a hostile territory. Here ISAAC can compare different scenarios based
on the sets of sequences of message exchanged between agents. ISAAC
could potentially be applied to several other domains, which we discuss
in Section 7.

Finally, given the state of the art of team analysis tools, it is impor-
tant at this juncture to actually build working team analysts, to begin
to understand the key principles underlying such systems. This is what
we have embarked upon with this investigation. ISAAC is a concrete
implemented team analyst that was not only used by its developers but
by an entire user community (in this case, the RoboCup simulation
community), which provided valuable feedback, and thus guided its
development. This investigation has already revealed important princi-
ples for building future team analysts, such as multiple granularities of
analysis, multiple techniques of presentation, techniques to suggest im-
provements to agent teams, as discussed in the rest of this paper. These
principles appear to be applicable to other domains, as discussed in
section 7. We expect that principles revealed via such investigations will
eventually serve as a foundation to build general theories for analysis
of agent teams and multi-agent systems in general.

The rest of this paper is organized as follows: Section 2 presents
an overview of ISAAC. Section 3-5 describes the three models used
in ISAAC for analysis. Section 6 presents the evaluation and results.
Section 7 demonstrates the generality of ISAAC’s techniques. Section 8
describes related work. Section 9 presents a summary of the work and
identifies some directions for future work.

ISAAC-final.tex; 13/10/2002; 4:03; p.5

2. Designing a team analyst : An Overview

In order to address the three constraints on the design of team analysts
described in the previous section, we use a two-staged approach to the
team analysis problem. The first stage is acquiring models that will
compactly describe team behavior, providing a basis for analyzing the
behavior of the team. As mentioned earlier, this involves using multiple
models at different levels of granularity to capture various aspects of
team performance. The second stage is to make efficient use of these
models in analyzing the team and presenting this analysis to the user.
Later sections delve into more specifics of these models. An overview
of the entire process is shown in Figure 2.

Multiple Models
Individual Key | cso Individual Perurbation | b dati
pata Mining | Agent Actions Agent Model anaysis ecommendations
Current | Model output
1
Data Trace | bata Mining - . Request anal
Key Patterns ESA Multiple perturbation Near Misses Display to equest analysis
Of |nteract|0n learning Agent Mode| analysis User Presentation
N Model output T
PreV|OUS Data Mining L :
Data Traces Statistics of |50 Global Applytocurent) Natural Language
Engagements Team Model Summary

Figure 2. Flow Chart for ISAAC Model Generation and Analysis.

For acquiring team models, ISAAC relies on a bottom-up approach
using large data traces. These data traces would be extremely difficult
for a human to read and understand much less analyze. There are
significant advantages to relying on a bottom-up approach:

1. The analysis of team behavior will be independent of understanding
the source code of the team, thus increasing ISAAC’s generality by
ensuring that the techniques for obtaining the team models are not
dependent on the specific team being analyzed.

2. Requiring users to enter a causal model that explains agents’ in-
dividual and group behavior would have been extremely tedious
and difficult; indeed, given complex agent interactions in dynamic
environments, the users themselves may not have such a causal
model available.

3. We are particularly interested in discovering novel and surprising
regularities in the data where the developers of the various teams
operating in the domain might be unaware of.

While this bottom-up approach thus offers several advantages, its
one potential drawback is the absence of a causal model. This draw-
back, in some ways, is also a strong point, particularly in domains

ISAAC-final.tex; 13/10/2002; 4:03; p.6

User

Automated Assistants for Analyzing Team Behaviors 7

where causal models may be impoverished or missing. ISAAC can use
a data intensive approach even when it is unclear what factors cause
success. Thus, by design, ISAAC’s analysis and advice relies on strong
correlational patterns seen in the team’s data traces. Although corre-
lational, these patterns may nonetheless enable a user to draw useful
conclusions about different team behaviors. Indeed, the patterns may
uncover interactions with other agents, teams and the world that come
as a surprise to the designers. This is especially relevant in complex
domains with numerous interacting agents.

Input to all models comes in the form of data traces of agent be-
haviors. In the current implementation of ISAAC, these traces have
been uploaded from users around the world through the Internet. As
shown in Figure 2, acquiring the models involves a mix of data mining
and inductive learning but is specific to the granularity of analysis being
modeled. It is important to note that this learning is mainly in service of
explaining observed team behavior to the users rather than predicting
unseen data. Thus, for analysis of an individual agent action (individual
agent model) we use rules obtained from decision trees to explain agent
behavior and also to suggest improvements. For analysis of agent inter-
actions (multiple agent model), critical patterns are learned and their
frequency of occurrence is obtained. To develop rules of team successes
or failures (global team model), game level statistics are mined from
all available previous games and again inductive learning is used to
determine factors that correlate with success and failure.

In order to maximize human comprehension, the presentation of the
models needs to be catered to the granularity of the analysis. ISAAC
uses different presentation techniques for the different levels of analysis.
For the individual agent model, the features that compose a rule pro-
vide implicit advice for improving the team (i.e., some specific features
were seen to correlate with failure). To further elucidate, a multimedia
viewer is used to show cases matching the rule, allowing the user to
better understand the situation and to validate the rules. Figure 3
shows ISAAC’s multimedia viewer which displays the soccer field and
plays from the game. The viewer can highlight key features specific to
ISAAC’s analysis. In particular, the viewer highlights features empha-
sized in a rule. A perturbation analysis is then performed to recommend
changes to the team by changing the rule condition by condition and
mining cases of success and failure for this perturbed rule. These cases
from actual games are also displayed in the multimedia viewer, enabling
the user to verify or refute the analysis.

For the multiple agent model, a finite automaton is learned in order
to characterize the patterns of agent interactions. A perturbation anal-
ysis is also performed here to find patterns that are similar to successful

ISAAC-final.tex; 13/10/2002; 4:03; p.7

' Netscape

Fie Edt View Go Communicator Help

2 ¥ A 4 - B3 & F

Back [opesid Feload Home Seach Metscape Prnt Secuity Clop
% w7 Bookmarks M Location: [hitp://coach siedu/ x| @7 Whats Related

ISI Soccer Automated Assistant Coach
= _ play_on 1482 W i

o [SAAC Overview
* Game Summaries
o ISAAC Analysis of
@ RoboCup '97
@ RoboCup ‘98
@ RoboCup '9%
® Game

Summaries
B Pictures
o Pricai '08
e JapanOpen ‘33
¢ Robocup '98
expenmental = Next Case | Sitgp
* Analyze vour teaml [show Numbers
° WView Analysis Original Rule

* Publications
o Comments on ISAAC Ball Velocity ==1.67371
ey T o Distance 0 Goal =8.625

o Help Angle from Center of Field =22.8034
* Home
1

WP cace I =l
== | Bpplet dppMonitor unning Y
Figure 8. ISAAC’s multimedia viewer: On the right hand side of the field, ISAAC
has highlighted the distance to goal and the angle from the center of field.

Kick Off | Paiier

4 < LI«
|

patterns but were unsuccessful. Both successful patterns and these
“near misses” are displayed to the user as implicit advice. In addition,
two teams can be compared based on the probability distributions of
their critical patterns of agent interactions obtained from the learned
finite automaton. The differences in these distributions may explain the
differences in the team’s performance. For example, if the comparison
between a team that performs poorly and a team that performs well
shows that the distributions of their patterns are significantly different,
then this may suggest to the user techniques to improve the poorly
performing team.

Finally, the global team model also uses decision tree learning, but it
requires a different method of presentation. For the analysis of overall
team performance, the current engagement is matched against previ-
ous rules, and if there are matches, ISAAC presents the conditions
of the matched rule as the likely determining factors in the result of
the engagement. A natural language summary of the engagement is
generated using this rule for content selection and sentence planning.
ISAAC makes use of the multimedia display here as well, linking text
in the summary to corresponding selected highlights.

ISAAC-final.tex; 13/10/2002; 4:03; p.8

Automated Assistants for Analyzing Team Behaviors 9

Of the three models that we have proposed, the multiple agent model
appears to be the most well suited for the comparison of different teams
of agents. In contrast, the individual agent model considers only a
critical action by a single agent. Thus, it concentrates on events at
too fine a granularity to consider it to appropriately characterize a
team. The global team model finds the features that contribute to the
success of teams in general, and is not team specific. The multiple agent
model, on the other hand, considers sequences of collaborative and non-
collaborative actions of different agents in a particular team that result
in the team achieving a goal. These patterns of actions characterize a
team’s behavior better than a single action performed by individual
agents and hence the multiple agent model was selected as a means of
comparing different teams.

We have empirically settled on the three levels of analysis in ISAAC
described above. They appear to cover the spectrum of activities that
are useful to analyze a team, starting with individual actions, to sub-
team interactions, to global team behaviors; and indeed, these levels
appear useful in the RoboCup domain. However, it is not necessary
that all three levels be used in all applications of ISAAC. Indeed, as
discussed in Section 7, we have so far applied one of the three ISAAC
models (the multiple agent model) in analyzing communications within
a team of software agents. A second model (the global team model) is
also potentially applicable.

3. Individual Agent Model

This section examines the first of ISAAC’s three models, which focuses
on key actions taken by individual agents and is specific to each team.
In this and the following two sections, we first provide a conceptual
overview of the model being analyzed and then discuss its instantiation
in RoboCup.

3.1. CONCEPTUAL OVERVIEW OF THE INDIVIDUAL AGENT MODEL

The eventual success or failure of a team is often determined by inter-
mediate successes or failures during critical events — events that may
be widely separated in time and/or loosely connected to each other.
For instance, in a battlefield simulation, there may be many distinct
attacks on enemy units, which are critical to the team’s eventual suc-
cess or failure, that are embedded in a larger history of maneuvering.
The individual agent model focuses on such intermediate successes or
failure, analyzing actions of individual agents that play a critical role

ISAAC-final.tex; 13/10/2002; 4:03; p.9

10

in such intermediate results. The goal is to learn a model of critical
individual actions that is useful for developers and other analysts. Thus,
this model should be both compact and easily understandable for the
human users. Furthermore, since we want to support improvement to
teams, it is desirable to be able to engage in “what-if” analysis to
determine how small changes in the team could affect performance.
Thus, the model should lend itself easily to such modifications. This
could be very useful to a developer who is looking for hints on how to
improve the performance of his/her team.

To construct such a model, symbolic approaches for machine learn-
ing seemed more promising than non-symbolic machine learning ap-
proaches like neural networks since the latter could result in a model
that is difficult for a human to comprehend. Amongst symbolic ap-
proaches, decision trees have often been used for agents’ learning about
own decisions [32] (or for modeling others [8]) in the presence of large
amounts of data. However, unlike these approaches that use decision
trees as a model of prediction of agent behavior in unseen cases, we use
decision trees as a model to explain observed agent behavior. The key
insight here is that we wish to extract key features that discriminate
between success and failure of critical actions — these features are likely
to be of most interest to agent developers. Decision trees enable us to
extract such discriminatory features. We also use rules extracted from
decision trees in “what-if” analysis, as discussed later in this section.

The algorithm for the individual agent model is described in Fig-
ure 4. The user submits logs of the team’s behavior along with what
he/she considers to be critical events and his/her choice of features.
The MineLogs() function of the individual agent model then mines the
logs for positive and negative examples of the critical events. The indi-
vidual agent model then uses C5.0 to come up with rules that explain
these examples. When a user selects a particular rule, all those cases
of examples that satisfy this rule are obtained and user can choose to
display any of these using the multimedia viewer.

This technique appears to result in compact and easily understand-
able rules given a suitable choice of features. These rules and the
cases they represent can be displayed to the user as implicit advice
on how individual agents operate in critical situations. Currently, C5.0
is used to form the rules of success and failure. (Note that C5.0 is used
instead of C4.5, since its ability to assign different costs of misclassifi-
cations enables a user to tailor the analysis, as explained in the next
subsection.)

At present, we assume that the identification of the intermediate
success and failure points is part of the domain specific knowledge
available to the individual agent analysis model. The other domain

ISAAC-final.tex; 13/10/2002; 4:03; p.10

Automated Assistants for Analyzing Team Behaviors 11

IndividualAgentModel (team, logs, choiceOfCriticalEvents, features){
team: team for which the Model is being constructed;
logs: Logs of team’s behavior;
examples <- MineLogs (logs, choiceOfCriticalEvents, features);
rules <- ApplyC5.0 (examples);
original_rule <- null; conditions <- {}; cases <- {};
do{
choice <- GetUserChoice ();
switch (choice) {
case selectRule:
original_rule <- SelectRule (choice, rules);
cases <- GetCasesFromExamples (original_rule, examples);
conditions <- GetConditions (original_rule);
break;
case selectCondition:
condition <- SelectCondition (choice, conditions);
perturbed_rule <- PerturbRule (condition_to_perturb, original_rule);
cases <-GetCasesFromExamples (perturbed_rule, logs);
break;
case selectCase:
selected_case <- SelectCase (choice, cases);
DisplayCase (multiMediaViewer, selected_case);
break;
}
} while (choice != exitModel);
}

MineLogs (logs, choiceOfCriticalEvents, features){
examples <- extract positive and negative examples from logs based on
choiceOfCriticalEvents and features;
return examples;

GetCasesFromExamples (rule, examples){
examples: positive and negative examples of team’s critical event behavior;
cases <- obtain snippets of logs corresponding to each example in examples;
return cases;

PerturbRule (condn_to_perturb, original_rule){
perturbed_rule <- rule obtained by modifying the original_rule by inverting
the test of condn_to_perturb;
return perturbed_rule;

Figure 4. General Algorithm for Individual Agent Model.

ISAAC-final.tex; 13/10/2002; 4:03; p.11

12

specific knowledge that is provided to the individual agent model is
what features to use. The selection of features must be such that they
have the breadth to cover all information necessary for the analysis, but
should also be as independent of each other if possible. In addition,
it is important that the feature be an attribute that can be easily
understood by the team developer. In the future, a semi-automated
attribute selection may be used [7]. These features, along with the
decision on what constitutes intermediate success or failure, are the only
background information or bias given to the individual agent analysis
technique.

In addition to the implicit advice mentioned above, we developed an
automated approach to “what-if” analysis based on the perturbation
of the learned rules, to provide explicit advice for team improvement.
After ISAAC has produced rules determining which circumstances gov-
ern success and failure classifications, it uses a perturbation analysis
to determine which changes would produce the most benefit. Since
each learned rule consists of a number of conditions, several possible
approaches to perturbations could be considered. One approach would
be to add or drop conditions in the rule. Another approach would be
to incrementally modify the tests in each condition, for instance, by
increasing or decreasing the numeric value being tested in a condition.
A third approach is to invert the attribute test in the conditions, i.e., an
attribute test T; in the original rule would be modified to =T to create
a perturbed rule. We use this third approach, since it ensures that the
set of cases satisfying the perturbed rule will have no overlap with the
set of cases satisfying the original rule. Thus, if we invert a condition in
a rule that classifies failure examples, the resulting rule will no longer
satisfy any of these failure examples — it could thus form the basis of
good advice in improving the team. For instance, it is possible that the
resulting rule covers a significant number of success cases.

Our approach to rule perturbations could lead to a large number
of perturbations however. In particular, a rule R can be expressed as
Ty NIy A ... ATy, a conjunction of tests T; where N is the number
of conditions in rule R. There are Y70, (%) (= 2V — 1) different
non-empty subsets of tests that can be inverted. To obtain a perturbed
rule, all the tests in any one such subset should be inverted and hence
2NV 1 perturbed rules can be obtained. However, we restrict the set of
possible perturbations to include only rules that result from reversing
exactly one condition. While changing more than one condition at a
time is not necessarily undesirable, the space of perturbation that can
be done is now exponential. In addition, we are more interested in
showing the effect of making a small change in the present behavior,
for example, how a change to just a single condition of a failure rule

ISAAC-final.tex; 13/10/2002; 4:03; p.12

Automated Assistants for Analyzing Team Behaviors 13

results in transforming it into a success rule. This will tell us how an
improvement in performance can be made with minimal effort. Thus,
a rule with N conditions will result in exactly N perturbed rules. The
successes and failures governed by the perturbations of a rule are mined
from the data and examined to determine which condition has the most
effect in changing the outcome of the original rule, turning a failure into
a success. This perturbed condition provides explicit advice for team
improvement. Since these cases are mined from the original data using
this perturbation technique, the recommended changes must already be
within the agent’s skill set. Furthermore, perturbations are guaranteed
to provide a non-empty set of examples. This is because, if there were
a condition that when reversed led to an empty set of examples, then
C5.0 would not have included that condition in the rule. In particular,
that condition would not discriminate between success and failure cases
and thus would not be part of the rule.

As shown in Figure 4, in order to do “what-if” analysis the user can
choose any one of the conditions of a rule to invert and thus obtains a
perturbed rule. ISAAC then mines through all the positive and negative
examples of the team’s critical event behavior and returns those cases of
examples that satisfy the conditions of this perturbed rule. The user can
use the multi-media viewer to display any of these cases. An example
of applying perturbation analysis is presented in section 3.3.

3.2. APPLICATION OF INDIVIDUAL AGENT MODEL TO RoBOCUP

The first step in applying the approach to RoboCup is identifying the
domain specific information that would be used by ISAAC as bias in
its analysis (in this article we assume that the reader is somewhat fa-
miliar with the game of soccer). In particular, in the RoboCup domain,
success means outscoring the opponent. Shots on goal are therefore key
points of intermediate success or failure as these are situations that can
directly affect the outcome of the game. Thus, the focus of ISAAC’s
individual agent analysis in RoboCup is shots on a team’s goal as well
as shots by the team on an opponent’s goal.

Having defined shots on goal as key events, we need to determine
which domain dependent features might be useful in classifying the
success or failure of a shot on goal. After an initial set of experiments
with a relatively large feature set, ISAAC currently relies on a set of
only 8 features such as velocity of the ball, distance to the goal, etc.
to characterize successes and failures in order to improve understand-
ability. Besides criteria like coverage and independence, an important
criterion for selection of the features to use was the comprehensibility

ISAAC-final.tex; 13/10/2002; 4:03; p.13

14

of the feature to human users. A complete list of features is shown in
Appendix A.

Having determined which features to use in the analysis and the key
events (the cases) to examine, the task is transformed to mining the
raw data and feeding it to the C5.0 decision tree learning algorithm.
From the resulting decision tree, C5.0 forms rules representing distinct
paths in the tree from the root of the tree to a leaf classification of
success (goal-score) or failure (goal not scored). Each rule describes a
class of similar successes or failures. The resulting rules were found to
be compact and few in number. An evaluation of the rules generated
and their compactness is presented in section 6.1.

Figure 5 shows an example success rule, describing a rule where shots
taken on the Windmill Wanderer team will fail to score (Successful
Defense). This rule states that when the closest defender is sufficiently
far away (> 13.6m) and sufficiently close to the shooters path to the
center of the goal (< 8.98°), and the shooter is towards the edges
of the field (> 40.77°), Windmill Wanderer will successfully defend
against this shot. When viewed using ISAAC, the user can see that
the defender is far enough away to have sufficient time to adjust and
intercept the ball in most of these cases. Thus the user is able to validate
ISAAC’s analysis. This rule provides implicit advice to this team to
keep a defender sufficiently distant from the ball, or to try to keep the
ball out of the center of the field.

Distance of Closest Defender > 13.6 m
Angle of Closest Defender wrt Goal < 8.981711
Angle from Center of Field > 40.77474
— class Successful Defense

Figure 5. Sample Rule from shots on Windmill Wanderer team of RoboCup-98.

The application of a decision tree induction algorithm to this anal-
ysis problem must address some special concerns. The goal-shot data
has many more failure cases (failed goal shots) than success cases (goals
scored). However, analyzing such data using a traditional decision tree
induction algorithm such as C4.5 gives equal weight to the cost of mis-
classifying successes and failures. This usually yields more misclassified
success cases than misclassified failure cases. For example, in our analy-
sis of shots by the Andhill team from the RoboCup’97 tournament, our
original analysis misclassified 3 of 306 failure cases (less than 1%), but
misclassified 18 of 68 success cases (26%). Since a much larger portion
of the success cases is incorrectly classified, this produces overly specific
rules that govern success cases. To compensate for this lopsided data
set, the ability of C5.0 to weight the cost of misclassification is used.

ISAAC-final.tex; 13/10/2002; 4:03; p.14

Automated Assistants for Analyzing Team Behaviors 15

Specifically, the cost of misclassifying a success case is set to be greater
than the cost of misclassifying a failure case [40]. ISAAC uses a 3 to 1
ratio by default, but this is adjustable.

More generally, differential weighting of misclassification cost pro-
vides a mechanism for tailoring the level of aggressiveness or defensive-
ness of ISAAC’s analysis. Consider shots on goal against a team. If a
very high cost is assigned to misclassifying a successful shot on goal,
the rules produced will likely cover all successful shots, and quite a few
misclassified failure cases. In this case, the rule conditions are implicitly
advising to make the team very defensive. On the other hand, if a low
cost is assigned, the rules may not cover all of the successful cases.
Therefore, ISAAC would only give “advice” relevant to stopping the
majority of shots on goal. This may not be appropriate if we consider
any goal to be a serious failure. Therefore, we allow the user to adjust
the weight on success case misclassifications.

3.3. PERTURBATION ANALYSIS IN ROBOCUP SOCCER

As explained in section 3.1, we consider perturbations that result from
inverting a single condition in the rule. Analysis of the perturbed rules
and the cases that satisfy these rules, may be useful in identifying rea-
sons for unsuccessful behavior and also to improve successful behavior
further.

Perturbations of a failure rule enable users to see what minimal
modifications could be made to agent behaviors to convert the failures
into success. Mining instances of perturbed failure rules, the developer
determines steps that could be taken to move the agent from failure to
successful behavior.For example, one of ISAAC’s learned rules states
that when taking shots on goal, the Andhill97 team often fails to score
when (i) ball velocity is less than 2.37 meters per time step and (ii) the
shot is aimed at greater than 6.7 meters from the center of goal (which
is barely inside the goal). ISAAC reveals that shots governed by this
rule fail to score 66 times without a successful attempt.

Now consider the perturbations of this rule. In cases where the rule
is perturbed such that ball velocity is greater than 2.37 meters per time
step and the shot aim is still greater than 6.7 meters, Andhill scores
twice and fails to score 7 times. In another perturbation, where ball
velocity is again less than 2.37 meters per time step but now shot aim
is equal to or less than 6.7 meters (i.e. shots more towards the center of
the goal), Andhill is now scoring 51 times and failing to score 96 times
(See Figure 6). These perturbations suggest that improving Andhill97’s
shot aiming capabilities can significantly improve performance, while

ISAAC-final.tex; 13/10/2002; 4:03; p.15

16

trying to improve agents’ shot velocity may not result in a drastic
performance increase.

Kick-Off Falize
; Mext Case 5 Sion
I_ Show Mumbers
Shots more towards the center of goal j
Ball Velocity ==2. 371708125 -
Extrapnalated Goal Ling Fasition ==6.68745
Total Goals: 51

Figure 6. Perturbation analysis showing the Andhill 97 team scoring using a per-
turbed shooting behavior. The rule was perturbed to cover shots taken more towards
the center of the goal.

Perturbations of success rules are also useful. There are two reasons
for this. First, it allows ranking of conditions contributing to success.
In particular, some changes to the rule will take a team further from
success than another. For example, a team may succeed 95% of the time
when all the conditions are met. The percentage of success may drop
to 50% if the first condition is changed and down to 5% if the second
condition is changed. In this case, the developer may decide that even
if the first condition is not met, this is still the correct course of action
while doing so if the second condition is not met is a bad decision.
The second reason why perturbing success rules is useful is that by
allowing the user to see how the team succeeds or fails when conditions
in the success rule are modified, more insight can be drawn as to why
these conditions are important. At this juncture if it important for the
human user to determine if the factors that ISAAC comes up with are
truly the reasons the team is succeeding or failing.

ISAAC-final.tex; 13/10/2002; 4:03; p.16

Automated Assistants for Analyzing Team Behaviors 17

4. Multiple Agent Model

While the previous section focuses on critical actions of individual
agents, it is also important to analyze the sequence of actions (pos-
sibly including actions of multiple agents) that lead up to these critical
actions. Such analysis may for instance reveal that some sequences are
more prone to success than others. Therefore, we also need to model
the patterns of collaborative or non-collaborative interactions of several
agents of the team that lead up to intermediate successes (or failures).
Section 4.1 provides a conceptual overview of our approach to learning
these patterns, while Section 4.2 discusses its application in RoboCup.

4.1. CONCEPTUAL OVERVIEW OF THE AGENT INTERACTION
MODEL

The multiple agent model is a characterization of key aspects of a
team’s interactions where we once again use intermediate goals to
focus our analysis of key interactions. The characterization is in the
form of a set of patterns, each with a probability of occurrence, where
the patterns consist of sequences of abstracted actions of different
agents that result in intermediate successes (or failures). The proba-
bility distributions over patterns can be used in two ways. First, the
probability distributions of these patterns enable developers to check
for surprising, unanticipated patterns. For instance, patterns they had
specifically engineered may have very low likelihood of occurrence and
conversely, unplanned for patterns may have an unexpected high rate of
occurrence. Second, ISAAC can compare the probability distributions
of these patterns across two different teams to determine whether they
are similar. This comparison reveals if the two teams are significantly
dissimilar in their approach to achieving their goals. If the comparison
of a less successful team with a highly successful team shows them
to be dissimilar, then this suggests that the less successful team’s
performance could potentially improve by better emulating the more
successful team’s strategy for agent interaction.

There are some important concerns that must be addressed in ac-
quiring this model. First, the patterns need to support human compre-
hension as well as being able to differentiate teams. In particular, some
differences in agent interactions may be insignificant with respect to
goal achievement. Such differences should not be allowed to complicate
the representation of the patterns or obscure the comparison of teams.
For example, actions that immediately precede (sub)goals are often
far more significant than actions far removed. Further, as we look
farther away from the goal, we might expect increasing variance in

ISAAC-final.tex; 13/10/2002; 4:03; p.17

18

agent actions. Thus we may want at times to use a learning approach
that considers only a limited window of actions prior to (sub)goals. We
refer to the length of this window as window size.

Second, some form of generalization will typically be required that
provides a compact representation which suppresses irrelevant details,
again in support of comprehension and comparative analysis. For ex-
ample, in soccer, if a teammate and scorer pass the ball back and
forth to each other repeatedly, the fact that it may happen 2 times or
3 times is not as significant as the fact that it happened repeatedly.
More generally, it is often important that the pattern or ordering of
causal interactions between actions not be violated whereas the number
of repetitions of the pattern is often less significant. Thus, we would
like the learned patterns to generalize over repetitions, but not over
other (potentially causal) structure. We refer to such generalization as
bounded structural generalization.

A final concern that must be addressed in learning sequences of inter-
actions is to maintain some information about the frequency distribu-
tion of different patterns of agent interactions, without over-generalization.
In particular, it is important to ensure that generalization does not
surprise the developers by creating non-existent patterns of interac-
tions (modulo bounded structural generalization). We refer to this
constraint as frequency distribution accuracy constraint. Among other
implications, one key implication of this discussion is that we need an
approach to learning that can be tailored. Tailoring allows us to err
on the side of conservative learning and then tailor the learning when
the patterns learned are too large or numerous for comprehension or
effective contrast.

Thus, to learn the sequences comprising the agent interaction model,
ISAAC must be able to learn the probability distribution of the patterns
of team interactions based on observation of the team’s actions while
allowing tailoring of window size and structural generalization. One
proposed approach to learning such patterns is to use decision trees as
in section 3.1. However, in our preliminary experiments this approach
failed for two reason. (i) It was difficult to capture temporal sequencing
information in a flexible way; (ii) the goal is to find classes (patterns)
and their frequencies as opposed to identifying features that discrimi-
nate between classes. A natural way to learn these patterns and their
distributions is by learning a probabilistic finite automaton (PFA). A
PFA is a good mechanism for representing a probability distribution
since it can be used to determine the probability of the occurrence
of a sequence of symbols. Several algorithms for learning deterministic
probabilistic finite automata (DPFA) and non-deterministic probabilis-
tic finite automata (NPFA) have been proposed in the literature, e.g.,

ISAAC-final.tex; 13/10/2002; 4:03; p.18

Automated Assistants for Analyzing Team Behaviors 19

the APFA algorithm [28] and Crutchfield algorithm [9] for DPFA and
Bayesian state merging method [31] and Augmented Markov Model
[12] for NPFAs. To arrive at a model of the underlying distribution
they are trying to learn, these algorithms have to perform some gen-
eralization by either merging probabilistically similar states [28, 9, 31]
or by merging all states and then splitting those states that do not
accurately represent the data [12].

Although our approach to learning the agent interaction model was
inspired by the above general work on learning finite automata, our
initial efforts have led us away from general approaches to learning
arbitrary automata. Instead, our initial focus has been on developing
a learning approach that allows the learning to be modulated in ways
consistent with the constraints discussed earlier, specifically window
size, bounded structural generalization and frequency distribution ac-
curacy. To this end, we have found that a representation similar to the
prefix tree automaton representation [1] to be appropriate. However, we
reverse this representation. In particular, we reverse the direction of all
the edges, with the goal state as the root of the tree and add traversals
from a unique start state to all the leaf nodes (Note: This violates the
tree structure of the automaton but only at this unique start state).
In addition, we maintain information about frequency counts of each
edge. We discuss our approach more formally below, and discuss how
this approach could be extended to take into account the factors of
window size and bounded structural generalization.

The finite automaton ISAAC attempts to learn is defined as G = <
S, A, L, ag, g > where,

1. S, a set of symbols s1, s, ..., sy encountered;

2. A, a set of states (or nodes) aq,as,...,ay where each state a;
consists of the following;:

— aj, the symbol recognized by state a;. aj € S;

i, the state number which uniquely identifies the state.
3. ag, the Start State where state number = 0 and af = 0.

4. g, the Goal Symbol where g € S. The state that recognizes g is
referred to as the Goal State;

5. L, a set of directed links l1,1s,...,lp where each link [; consists of
the following:
— llf , state number of source of the link;

It, state number of destination of the link;

ISAAC-final.tex; 13/10/2002; 4:03; p.19

20
— [¥, number of times the link was traversed while adding new
sequences of symbols(frequency of link).

No two links /; and [; are such that llf = l{ # 0.

The frequencies of the patterns learned by the finite automaton are the
frequencies of the links that begin at the start state, i.e., values of I3* for

each link, [; where l{ = aj = 0. It is possible to obtain the probability
distribution of the patterns of interactions from these frequencies.
Window size is defined as follows:

Def: Window size of k indicates that for a string of symbols ¢ =
$182...8;g, where g is a goal symbol, the sequence added to the
finite state automata will be $;_r118;i—g+2...5;9 where s; # g,

S9# g, ...,and s; # g.

Bounded structural generalization is defined as follows:

Def: Bounded structural generalization of k implies that, for a se-
quence of symbols s1s2...s, being added to the finite state au-
tomaton, there does not exist any subsequence $;S;+1 - . . Si4m, such
that SiSi+1---Si+m is identical to Si+m+1Si+m+2 - - - Si+2m and m <
kEand 1 <i < (n—2m).

The algorithm for obtaining the multiple agent model is shown in
Figure 7. Suppose the window size is set to k1 and the bounded struc-
tural generalization to k2. First, the function ExtractSequences() ex-
tracts a sequence of symbols of length equal to k1 that end with (inter-
mediate) goals from the data traces. Next, to factor in bounded struc-
tural generalization, the function DoStructuralGeneralization() elimi-
nates repeating subsequences of symbols from this sequence, progres-
sively increasing the length of the subsequence being searched for from 1
to k2. The function AddPattern() then adds the resulting sequences to
the finite automaton as follows: ISAAC traverses the finite automaton
backwards from the goal state searching for symbols in the sequence
one at a time and increasing the frequency of each traversed link. Thus,
ISAAC determines the state, a; up to which the sequence is already
learned. ISAAC then proceeds to add the portion of the pattern that is
not yet learned to the finite automata at a;. While adding each symbol
of this portion of the sequence ISAAC creates a new state, a; that
recognizes the current symbol and adds a link connecting a; to aj.
The output of this algorithm is a finite state automaton that stores
the frequencies of all the patterns learned. For obtaining the frequency
of a specific pattern, we first find the path from the start state to
the goal state that matches this pattern. The frequency of the edge

ISAAC-final.tex; 13/10/2002; 4:03; p.20

Automated Assistants for Analyzing Team Behaviors 21

from the start state to the next state on the path is the frequency
of the pattern. Window size determines the size of the pattern or in
other words the number of abstracted actions that are considered as
being responsible for the team achieving its (intermediate) goal. The
choice of window size is application dependent. There are tradeoffs
when choosing window size:

— In many domains, actions that occurred closer to an intermediate
goal are likely to have been more responsible for the outcome than
actions that happened further away from the intermediate goal.
Therefore a large window size may not be beneficial.

— Choosing a very small window size might cause sequences that are
actually very different to appear to be the same while choosing
a very large window size results in sequences that are essentially
similar appearing to be different. Therefore, at very small window
sizes, teams may appear superficially similar, while at very large
window sizes, teams may appear superficially different.

— Increase in window size can make comprehensibility difficult for
the human user.

Bounded structural generalization is used to capture repetitive sub-
sequences within larger sequences. This parameter appears related to
window size. For small window sizes, bounded structural generalization
greater than zero may not be useful, as there are unlikely to be repet-
itive subsequences at small window sizes. However, for larger window
sizes, bounded structural generalization could be used to capture such
repetitive subsequences.

In addition to presenting the results of the learned finite automaton
to the user, ISAAC uses the agent interaction model to suggest improve-
ments in teams using two different techniques. The first technique is
to compare two teams. To this end, ISAAC first obtains frequencies
of patterns of agent interactions that resulted in success, for different
teams. Now, if the distributions of the successful patterns for two teams
can be shown to be different we can conclude that the two teams are
different in the success strategies. In order to determine if the two
distributions being similar, ISAAC treats the distribution with greater
variance as the underlying distribution and the distribution with lesser
variance as the observed distribution. ISAAC then determines whether
the null hypothesis that the observed distribution is drawn from the
underlying distribution, holds. ISAAC uses the standard Chi-Square
goodness of fit method (Figure 8) to determine if this null hypothesis is
true. The observed frequencies O; are frequencies from the distribution

ISAAC-final.tex; 13/10/2002; 4:03; p.21

22

CreateModel (team, logs, choiceOfKeyInteractions, winsize, structgen, goalSym){

team: team for which the Model is being constructed;

logs: Logs of team’s behavior;

choiceofKeyInteractions: symbols to consider as key interactions;

winsize: value for window size;

structgen: value for bounded structural generalization;

goalSym: symbol that indicates intermediate success or failure;

patterns <- DoStructuralGeneralization (ExtractSequences (logs, \
choiceOfKeyInteractions, winsize, goalSym), structgen);

SuffixTreeAutomaton <- CreateSuffixTreeAutomaton(patterns, goalSym);

ExtractSequences (logs, choiceOfKeyInteractions, winsize, goalSym)<{
sequences <- Mine logs for strings of key interactions of length \
winsize starting from goalSym backwards;
return sequences;

}

DoStructuralGeneralization (sequences, structgen){

sequences: strings of symbols extracted from logs;

for each sequence in sequences{
pattern <- sequence;
for i <- 1 to structgen{

pattern <- replace multiple adjacent instances of identical substrings
of length i in pattern by a single instance of the substring;

3
patterns <- Add(pattern);

X

return patterns;

¥

CreateSuffixTreeAutomaton (patterns, goalSym){
patterns: strings of symbols after bounded structural generalization;
for each pattern in patterns
suffixTreeAutomaton <- AddPattern(suffixTreeAutomaton, pattern);
return suffixTreeAutomaton;

AddPattern (suffixTreeAutomaton, pattern){

suffixTreeAutomaton <- add pattern to suffixTreeAutomaton;

/*(1) determine the substring of pattern that is already present by
traversing backwards from goalstate. increment frequencies of all links
traversed.

(ii) add a new branch consisting of states that recognize that substring
of pattern not yet present in the automaton.*/

return suffixTreeAutomaton;

Figure 7. Algorithm for Building Multiple Agent Model.

ISAAC-final.tex; 13/10/2002; 4:03; p.22

Automated Assistants for Analyzing Team Behaviors 23

with less variance and expected E; is calculated by considering the
underlying distribution to be the one with greater variance. If the y?2
valued obtained is greater than the y? value for 95% certainty limit,
ISAAC discards the null hypothesis.

X* =0 (0i = E)/E;
where O; is the observed frequency for pattern i and
E; is the expected frequency for pattern .

Figure 8. Chi-Square Goodness of Fit Test

The Chi-Square Goodness of Fit Test is a valid choice for com-
paring teams. Clearly, parametric tests like the t-test and analysis of
variance would be difficult to apply because they assume the underly-
ing distribution is normal. The Chi-Square Goodness of Fit Test is a
non-parametric alternative.Furthermore, unlike other non-parametric
methods like the Kolmogorov-Smirnov and Anderson-Darling tests,
which are restricted to continuous distributions, the chi-square test
can be applied to discrete distributions.

Using this method it is possible to determine if two teams are dis-
similar under the assumption that the environment they operated in
was the same. (Alternatively, it is also possible to determine if the
environments are dissimilar given that the same team is being com-
pared under different settings.) If a team that performs poorly is found
to be dissimilar to a team that performs well, the probability distri-
butions of the patterns of these two teams may suggest techniques
to improve the poorly performing team. The following subsection will
provide examples of applications of this technique.

The second technique that ISAAC uses to suggest improvement in
teams is perturbation analysis. The goal of perturbation analysis in the
agent interaction model is to find unsuccessful patterns of subteam in-
teraction from the data traces that are similar to the successful patterns
learnt by the finite automaton. These unsuccessful patterns, which we
refer to as "near misses”, help the user scrutinize the difference between
successful and unsuccessful patterns of interaction. In order to do this
perturbation analysis, ISAAC begins with the patterns learned as part
of the finite automata (which lead up to success). It then mines new
patterns from the behavior traces that are very similar, and yet end in
failure. For instance given an n-step pattern learned as part of the finite
automaton, ISAAC may mine new n-step patterns, where the first n
-1 steps are "similar” to the pattern from the finite state automata
but where the last step is dissimilar. By ”similar” we mean that the
values of the attributes of the step from the new pattern lie in the

ISAAC-final.tex; 13/10/2002; 4:03; p.23

24

same range as the attributes of the step of the successful patterns in
the finite automata. The perturbations are restricted to the last step
where ISAAC explicitly makes sure that one of the attributes of the
state are not in the range of attribute values for that step in successful
patterns. For instance, if "angle” is one attribute of the state, then the
perturbation ensures that the "angle” range is kept the same for all the
steps, except for the last step where the angle range is not enforced,
thus leading to a perturbation.

Since these "near misses” are almost the same as the successful
patterns but for the last step, team developers can determine what
attributes are useful in the last step to make an unsuccessful pattern
into a successful pattern.

4.2. APPLICATION OF METHOD TO ROBOCUP SOCCER

In RoboCup soccer a goal occurs as a result of a sequence of kicks by
one or more players. It is not only the last kick that is responsible for
the goal but the actions of the different agents who interacted just prior
to the goal. Thus, in order to analyze the performance of a team, the
multiple agent model is important.

The first step necessary to apply the agent interaction model to the
RoboCup domain is the determination of the patterns to examine and a
notion of success or failure of these patterns. We again use a soccer goal
as a notion of success. We consider the sequence of actions (kicks) before
the ball enters the goal to be the pattern. The feature of the action
that is considered important is the player who performed the action.
The player can be one of shooter (the last player, from the team which
scored the goal, to kick the ball), teammate (any other player, from the
team which scored the goal, who kicked the ball), opponent (any player
from the team against whom the goal was scored who kicked the ball).
This feature selection is one important aspect of generalization. We do
not consider self goals (when the player kicks the ball into his/her own
goal) because such goals are presumably unintentional.

Before applying the learning algorithm we have to determine values
for both window size and bounded structural generalization. We can
then use the learning algorithm described in Section 4.1 to learn a finite
state automaton that recognizes all the successful patterns along with
their frequencies of occurrence. Looking at the probability distributions
of scoring patterns of teams reveals more about the team’s scoring strat-
egy. This can be beneficial to developers of this team and as well as for
opposition teams. It is also possible to compare the scoring strategy of
different teams based on the probability distribution of these patterns.

ISAAC-final.tex; 13/10/2002; 4:03; p.24

Automated Assistants for Analyzing Team Behaviors 25

Window size in the case of RoboCup is the number of kicks we
consider to be in the pattern. It would appear that in a sequence of kicks
that result in a goal, the kicks that happened earlier are less responsible
for the eventual goal taking place. This suggests that increasing window
size too much will not be useful.

The user can choose any value of window size that satisfies his/her
needs better. We have selected window size to be 3 based on the number
of patterns generated, the comprehensibility to a human user and the
fact that the effect that a kick had on a goal lessens with the temporal
distance of that kick from the resulting goal. Figure 9 shows the number
of different patterns obtained (Y-axis) as the window size is increased
(X-axis), for the top eight teams at RoboCup-98. A window size of two
gives only a maximum of 3 different patterns — opponent — shooter —
goal (opponent kicks the ball to the shooter, who scores the goal),
teammate — shooter — goal (teammate passes the ball to the shooter,
who scores the goal) and shooter — shooter — goal (shooter kicks
the ball to himself before scoring the goal). This is clearly too little
to analyze teams based on their interactions. Yet as can be seen in
the figure, for window size equal to 5, the teams have an average of
16.75 different sequences while one of the teams has as many as 29
different patterns. This may make the analysis difficult to comprehend
for a human. With an average of 6.63 different patterns per team, the
window size of 3 appears to be a reasonable choice.

35

30

25 /

20 /
‘ —A— average
—& -maximum

15

Number of Patterns

10

Window Size

Figure 9. Number of Patterns vs. Window Size for the top 8 teams of RoboCup-98.

ISAAC-final.tex; 13/10/2002; 4:03; p.25

26

In the case of RoboCup Soccer we choose bounded structural gen-
eralization to be 0 because it seems unlikely that subsequences will be
encountered within sequences when window size is equal to 3. Also, if
bounded structural generalization were greater than 0 we might have
a situation where it becomes difficult to differentiate between two very
different patterns.

From the finite automaton of each team we can obtain all the learned
scoring patterns along with their frequencies. With this information,
we can first examine teams by themselves. Consider the example of
the Windmill Wanderer team from RoboCup-98. Windmill Wanderer
scored 17 goals where the shooter dribbled in before the shot (shooter —
shooter — shooter — goal) and another 9 goals where a teammate con-
trolled the ball before passing to the shooter (teammate — teammate —
shooter — goal), out of a total 37 goals. Thus, this team scores more
often when they control the ball all the way in to the goal. Unfortu-
nately, for Windmill Wanderer, 27 near misses were found similar to the
17 goals from the shooter — shooter — shooter — goal, suggesting
this pattern was well defended or the team was making some mistakes.
Contrasting this to 4 near misses similar to the 9 goals from the pattern
teammate — teammate — shooter — goal suggests that this pattern
sets the agent up for a better or easier shot. Windmill Wanderer placed
third in the tournament, and the 27 near misses may have been a crucial
factor in its third place finish.

In addition, we can use the method described in Section 4.1 to com-
pare teams two at a time. For example, comparing AT _Humboldt97 and
AT _Humboldt98 — two entries from Humboldt University at RoboCup-
98 — we obtain a y? value of 81.34 for a window size of 3, while
the threshold is 15.51. This suggests that the two teams are very
dissimilar. Looking at the frequencies of the scoring patterns shows
that AT _Humboldt97 scored only 1 goal when it controlled the ball all
the way into the goal (opponent team’s player did not kick the ball
before it was shot) while AT _Humboldt98 scored 51 of its 88 goals this
way. This suggests that AT _Humboldt97 was extremely opportunistic
in its approach and relied on the opponent making a mistake near the
goal, while AT _Humboldt98 was good at passing and dribbling the ball
into the goal. The results of RoboCup-98 show that AT_Humboldt98
finished in second place in RoboCup-98 while AT Humboldt97 was
ranked lower than 16th. This seems to suggest that the changes in the
scoring patterns of AT _Humboldt98 were a key factor in its improved
performance. While this analysis does not conclusively establish the
reasons for the improved performance of AT _Humboldt98, it at least
points us in a fruitful direction for understanding differences in team
performance.

ISAAC-final.tex; 13/10/2002; 4:03; p.26

Automated Assistants for Analyzing Team Behaviors 27

5. Automated Engagement Summary — Team Model

The third ISAAC model attempts to address success or failure as a
team. In designing this model we had two options possible. One was to
tailor the analysis to specific teams. In particular, by analyzing data
traces of past behaviors of a specific team, it would be possible to
explain why this team tends to succeed or fail. This approach would be
similar to the one followed in Section 3, which explained why agents’
critical actions tend to succeed or fail in a team specific manner. A
second option was to analyze teams in terms of why teams succeed or
fail in the domain in general, in a non-team-specific manner (which
does not require data traces from the particular team being analyzed,
but from other teams in this domain). Despite the advantages of option
1 (team specific explanations), this option was rejected due to the lack
of large amounts of team specific engagement (team activity) data,
and option 2 was used. In particular, unlike the individual agent model
in Section 3, which can obtain lots of individual action data points
even from a single engagement, a single engagement is just one data
point for the global team model. For instance, even a single RoboCup
game provides a large number of shots on the goal to begin learning
the individual agent model; yet this single game provides just a single
instance and is not enough to begin learning a global team model. Thus
unlike previous models, the team model is not specific to a particular
team. We use all available data of every engagement in the domain,
such that the model provides general explanations in terms of why
engagements in a particular domain result in success or failure.

5.1. CONCEPTUAL OVERVIEW OF TEAM MODEL

The global team model focuses on the analysis of why teams succeed
or fail over the course of an engagement (overall team activity). The
assumption of this model is that there can be many different factors
that impact a team’s overall success or failure. In a complex environ-
ment, a team may have to perform many actions well in order to be
successful. These actions may involve entirely different sub-teams, and
very different kinds of events, perhaps widely separated in time, may
be implicated in success or failure. Nevertheless, there may be patterns
of these factors that, although not strongly related in the behavioral
trace, do in fact correlate with whether a team succeeds in a domain.
The global team analysis attempts to find these patterns.

Acquiring the team model involves techniques similar to the previous
models as discussed above, except that rather than searching for points
of intermediate success or failure, overall features that lead to the final

ISAAC-final.tex; 13/10/2002; 4:03; p.27

28

outcome over an entire engagement are more useful. These outcomes
may be classified as success, failure, tie, etc. It is again up to the
domain expert to choose these features and to provide the classes of the
final outcomes. The C5.0 induction algorithm is used on these features,
classifying the engagement for each team, and learning the dominant
features that lead to that particular outcome. Just as in section 3.1,
our use of decision trees is for explaining the outcome of an encounter
rather than for prediction of the outcome.

A different approach from section 3.1 is taken for using these rules.
When analyzing a specific engagement, we mine the features from the
engagement and determine which learned rule the current engagement
most closely matches. This rule then provides key features that corre-
late with team success or failure [37, 42]. ISAAC uses natural language
generation to create a summary to ease human understanding of the
engagement as a whole. While the rule is a model of the engagement,
further explanation of this rule to the human comes from generating
the summary.

Thus, with the current method, ISAAC generates a natural language
summary of each engagement employing the rule that matched the
engagement as the basis for content selection and sentence planning in
accordance with Reiter’s architecture of natural language generation
[27]. Reiter’s proposal of an emerging consensus architecture is widely
accepted in the NL community. Reiter proposed that natural language
generation systems use modules in content determination, sentence
planning, and surface generation. ISAAC’s NL generation can be easily
explained in terms of these modules.

The algorithm for building the global team model is presented in
Figure 10. Each engagement (team activity) is considered to be a
single data item.The function BuildTeamModel() mines the logs to
obtain training data and using C5.0 with this data it obtains rules that
describe global team behavior. The CreateTemplate() function creates
templates for generating summaries using these rules. ISAAC uses the
rules for content determination since each rule contains the feature
values that were pertinent to the result of the engagement it classifies.
Furthermore, the conditions of each rule also have some ordering con-
straints, since the rules come from a decision tree learning algorithm,
and we use this to form our sentence planning. We consider branches
closer to the root of the tree to have more weight than lower branches,
and as such should be stated first. Each condition is associated with
a single sentence, and ordered accordingly. Surface generation of the
text is done by a template instantiation process. Every rule has one
(or more) templates that obey the content determination and sentence

ISAAC-final.tex; 13/10/2002; 4:03; p.28

Automated Assistants for Analyzing Team Behaviors 29

planning specified. The creation of these templates, specifically the use
of connectives, pronouns, etc. is currently done manually.

In order to generate a summary for a particular engagement, the
function GenerateSummary() starts with the raw data of the engage-
ment and mines the features it needs, and matches it to a pre-existing
rule with the function ObtainBestMatchingRule(). This function finds
those rules whose conditions are satisfied by the statistics of the en-
gagement. In the event that there are multiple rules that match the
given engagement, the rule that classifies the most training examples
is used. If none of the rules that are satisfied by the engagement have
the same outcome as the engagement, the rule whose outcome matches
the outcome of the engagement most closely, is selected. The template,
corresponding to this matched rule, is instantiated with specific feature
values (statistics) from the engagement. Finally hyper-links to examples
of those features are added, for display in the multimedia viewer.

5.2. APPLICATION OF TEAM MODEL TO ROBOCUP

To learn rules of why teams succeeded or failed in previous engage-
ments, ISAAC reviews statistics of previous games. The domain expert
must provide the domain knowledge of what statistics to collect, such
as possession time and number of times called off-side. A complete
list of statistics collected is presented in Appendix B. ISAAC uses this
information to create a base of rules for use in analysis of future games.

ISAAC learns and uses seven classes of rules covering the concepts
of big win (a victory by 5 goals or more), moderate win (a victory
of 2-4 goals difference), close win (1 goal victory), tie, close loss (by
1 goal), moderate loss (2-4 goals), and big loss (5 or more goal loss).
The motivation for such subdivision is that factors leading to a big
win (e.g., causing a team to out-score the opponent by 10 goals) would
appear to be different from ones leading to a close win (e.g., causing a
one goal victory) and should be learned about separately. While this
fine subdivision thus has some advantages, it also has a disadvantage,
particularly when the outcome of the game is at the border of two of the
concepts above. For instance a 2-0 game (moderate win) could very well
have been a 1-0 game (close win). Thus, we anticipate that the learned
rules may not be very precise, and indeed as discussed below, we allow
for a “close match” in rule usage.

To use these rules, ISAAC first matches the statistics of a new (yet
to be analyzed) game with the learned rules. If there is a successful
match, ISAAC checks the score of the game against that predicted by
the matching rule before writing the summary. If the match is exact or
close (e.g. the actual game statistic matched a close win rule, although

ISAAC-final.tex; 13/10/2002; 4:03; p.29

30

BuildTeamModel (logs, classes, features){
logs: Logs of team’s behavior;
classes: Classes for classification of engagements (team activity);
features: Features used in the classification;
for each engagement in Logs{
modelData <- Add (ExtractDataPoint (engagement, features, classes));
+
teamModelRules <- ApplyC5.0(modelData, features, classes);
summaryTemplates <- CreateTemplates (teamModelRules);

CreateTemplates (teamModelRules){/*currently with user assistance*/
teamModelRules: Rules of Global Team Activity obtained by applying C5.0;
for each rule in teamModelRules{

for each condition in rule in order of appearance{/*sentence planning*/
generate sentence corresponding to condition;
template <- Add(summaryTemplate, sentence)
3
summaryTemplates <- Add (summaryTemplates, template);
b
return summaryTemplates;

¥

GenerateSummary (engagement, teamModelRules, summaryTemplates, classes, features){

engagement: Data trace of a single team activity;

teamModelRules: rules of global team model obtained by running BuildTeamModel (
summaryTemplates: templates for summary generation obtained by BuildTeamModel(

dataPoint <- ExtractDataPoint (engagement, features, classes);
matchingRule <- ObtainingBestMatchingRule (teamModelRules, dataPoint);
summary <- fillTemplate (summaryTemplates[matchingRule], dataPoint);
return summary;

ObtainBestMatchingRule (teamModelRules, dataPoint){
dataPoint: the feature values and outcome corresponding to an engagement;
satisfiedRules <- rules from teamModelRules that satisfy dataPoint;

matchedRules <- rules from satisfiedRules that have same outcome as dataPoint;

if (matchedRules is empty)
matchedRules <- rules from satisfiedRules whose outcomes are closest to
outcome of dataPoint;
bestMatchingRule <- rule from matchedRules covering most training examples;
return bestMatchingRule;

Figure 10. Algorithm for Global Team Model.

ISAAC-final.tex; 13/10/2002; 4:03; p.30

Automated Assistants for Analyzing Team Behaviors 31

the game had an outcome of 2-0), the template is used as is. If there
are multiple matches, the matching frequency is used to select the best
rule. However, if no match is close to the actual score, ISAAC still uses
the rule, but changes the template to reflect surprise that the score did
not more closely match the rule.

Once a rule is matched, ISAAC now has an associated template
to shape the game summary. The template orders components of the
rule according to their depth in the original decision tree, in accordance
with our sentence planning technique. ISAAC then fills in the template,
mining the features of this particular game to create a summary based
on the rule. An example rule is shown in Figure 11.

Ball in Opposition Half > 69%

Average Distance of Opponent Defender > 15 m
Bypass Opponent Last Defender > 0
Possession time > 52%

Distance from Sideline to Opponents Kicks > 19 m
— class Big Win

Figure 11. Example team rule for big wins.

To see how this rule is used in creating a natural language summary,
we examine one summary generated using this rule as a template,
shown in Figure 12. In this case, ISAAC is presenting a summary
explaining the reasons for which 11Monkeys was able to defeat the
HAARLEM team. The underlined sentences above correspond directly
to the rule, with some augmentation by actual statistics from the game.
By using the rule for content determination and sentence planning,
ISAAC is able to present the user the reasons for the outcome of the en-
gagement, and avoid presenting irrelevant data consisting of irrelevant
features. !

6. Evaluation and Results

To evaluate ISAAC, we evaluate each of its models in isolation and then
the effectiveness of the integrated ISAAC system. Section 6.1 presents
the evaluation of the individual agent model, Section 6.2 describes
the evaluation of the multiple agent key interaction model, Section

! The headline and the first sentence of the summaries were created based on
headlines and first sentences of the press reports for the World Cup’98 (Human)
Soccer games in Paris. An appropriate headline was chosen at random from a selected
set to avoid repetitions.

ISAAC-final.tex; 13/10/2002; 4:03; p.31

32

HAARLEM Offense Collapses in Stunning Defeat at
the hands of 11Monkeys!

11Monkeys displayed the offensive and defensive prowess,
shutting out their opponents 7-0. 11Monkeys pressed
the attack very hard against the HAARLEM defense,
keeping the ball in their half of the field for 84% of the game
and allowing ample scoring opportunities. HAAR-
LEM pulled their defenders back to stop the onslaught,
but to no avail. To that effect, 11Monkeys was
was able to get past HAARLEM's last defender, creating
2 situations where only the goalie was left to de-
fend the net. 11Monkeys also handled the ball better,
keeping control of the ball for 86% of the game. HAARLEM
had a tendency to keep the ball towards the center of the field
as well, which may have helped lead them to ruin given teh
ferocity of the 11Monkeys attack .

Figure 12. Game Summary for HAARLEM-vs-11Monkeys. The lines underlined
correspond to conditions in the rule used to generate the summary. These link to
cases of that condition that can be viewed in the multimedia viewer.

6.3 presents the evaluation of the global team model, and Section 6.4
describes the evaluation of the overall ISAAC system.

6.1. EVALUATION OF THE INDIVIDUAL AGENT MODEL

We evaluate along several dimensions: (i) bottom-up discovery of novel
patterns; (ii) ability to perform global analysis; (iii) compactness and
understandability of model; and (iv) pattern accuracy.

A key measure of ISAAC’s individual agent model is the effectiveness
of the analysis, specifically the capability to discover novel patterns.
Section 3.3 highlighted a rule learned about the Andhill97 team con-
cerning their aiming behavior. This rule was one instance of ISAAC’s
surprising revelation to the human observers; in this case, the surprise
was that Andhill97, the 2nd place winner of RoboCup-97, had so many
goal-shot failures, and that poor aim was at least a factor. Not only
was this intriguing to other observers, this was also intriguing to the
developer of the team, Tomohito Andou. After hearing of this result,
and witnessing it through ISAAC’s multimedia interface, he told[2] us
that he “was surprised that Andhill’s goal shooting behavior was so poor

.7 and ¢ ... this result would help improve Andhill team in the fu-
ture.” Some other teams that used ISAAC in preparation for RoboCup

ISAAC-final.tex; 13/10/2002; 4:03; p.32

Automated Assistants for Analyzing Team Behaviors 33

included CMUnited99, Headless Chickens, Gongeroos and others, all of
which provided positive feedback about ISAAC’s capabilities. Indeed,
Peter Stone of CMUnited99 pointed out[33]: "I particularly like the
way that you can change the rules and see how that affects the cases
that are covered. Being able to cycle through the covered cases is also
a great feature.”

Another interesting result from the individual agent analysis model
comes from the number of rules governing shooting behavior and defen-
sive prowess. Figure 13 shows that in each year, the number of rules for
defense decreased for the top 4 teams, perhaps indicating more refined
defensive structures as the teams progress. Also, the number of rules
necessary to capture the behavior of a team’s offense is consistently
more than that necessary for defense, possibly due to the fact that no
single offensive rule could be effective against all opponent defenses.
The key here is that such global analysis of team behaviors is now
within reach with team analyst tools like ISAAC.

RoboCup97
5 RoboCup98
0 RoboCup99

Number of Rules

Offense Defense

Figure 13. Number of Rules by Year for Top 4 Teams

In order to evaluate if the individual agent model meets it’s goals
of understandability and compactness we consider the number of rules
generated per team and the number of conditions per rule for RoboCup-
98 teams. The Figure 14 shows the number of rules of offense for the
top 8 teams at RoboCup-98. As this figure clearly indicates, the num-
ber of rules that characterize a team’s offense are few enough to be
comprehensible to a human user. The average number of of rules of
offense is 10.875. In addition, these rules are very compact as can be
seen in Figure 15, which shows the number of conditions in a rule for

ISAAC-final.tex; 13/10/2002; 4:03; p.33

34

the top 8 teams at RoboCup-98. All of these teams had fewer than 3
conditions in a rule on average. Although Figures 14 and 15 focus on
the top 8 teams at RoboCup-98, the observations from these figures
are true for all RoboCup teams. Owing to the manageable number of
rules per team, the comprehensibility of the features selected and the
compact nature of the rules generated, the goals of understandability
and compactness of the individual model are met. The data used to
generate Figures 14 and 15 is presented in Appendix C.

18

16 M

14

12

No. of non-scoring Rules
B No. of scoring rules
O Total no. of rules

10

No. of Rules

LT
INNSRRERERARAANN
TTTTTTTTITTITT

72 SN

7=
o 7=
\ S & > o & © o
O B 'S) o $ XS &
%b N Q§& S o (ﬁ? 6? e
N4 % 5 N &
A7 X § S
(S (@) <& S
&
S\Q
Teams

Figure 14. Number of Rules in Individual Model. Scoring rules refer to rules that
describe success in shots on goal; Non-scoring rules describe failed goal shots

Another point of evaluation is understanding how well the model
captures the shooting behaviors. To this end, ISAAC models were ap-
plied to predict game scores at RoboCup-99, a rather difficult problem
even for humans. ISAAC used rules describing a team’s defense and
matched them with the raw averaged data of the shots taken by the
other team to produce an estimate of how many goals would be scored
against that team in the upcoming game. Performing this analysis for
both teams produced a predictive score for the outcome of the game.
This prediction obviously ignores many critical factors, including the
fact that some early games were unrepresentative and that teams were
changed by hand during the competition. Yet in practice, ISAAC’s

ISAAC-final.tex; 13/10/2002; 4:03; p.34

Automated Assistants for Analyzing Team Behaviors 35

Avg. no. of conditions in a
rule

B Max. conditions in a rule

O Min. conditions in a rule

No. of Conditions

?
?
2.

Figure 15. Number of Conditions in a Rule in Individual Model.

predictive accuracy was 70% with respect to wins and losses, indicating
it had managed to capture the teams’ defenses quite well in its model.

Finally, in addition to the analysis, the multi-media viewer was also
quite helpful to developers as seen from comments by another devel-
oper, Helmut Myritz of AT Humboldt who said “I have to say that
we know some weaknesses of the AT_Humboldt98, like a not optimal
kick, and a sometimes strange goal kick behavior or a static defense.
All these things could be realized well by watching your analysis of our
games.” [20]. Note that ISAAC’s users — for instance, Andou in Japan
and Myritz in Germany — were able to view ISAAC’s analysis overseas
on the web.

6.2. EVALUATION OF THE MULTIPLE AGENT MODEL

We have already evaluated the multiple agent model to some extent in
Section 4.2. There, we showed how the probability distribution obtained
for the Windmill Wanderer team of RoboCup-98 could be analyzed
and also how the teams, AT _Humboldt97 and AT _Humboldt98 were
compared. It is possible to perform such analysis on any RoboCup
team and also to compare any two RoboCup teams. The comparison of
teams suggests methods for improving the performance of teams that
did not perform well.

ISAAC-final.tex; 13/10/2002; 4:03; p.35

36

To illustrate how this comparison is useful, we use the method of
comparison from in Section 4.1 to compare the top 8 teams of RoboCup-
98 with each other. In Figure 16, the X-axis shows the top 8 teams at
RoboCup-98 and the Y-axis shows the y? values obtained by comparing
the probability distributions of the scoring patterns of these teams to
each other. Values that lie above the threshold line indicate that we
can state with a confidence limit of 95% that the two distributions are
dissimilar. Some of the observations that can be made from this figure
are:

1. The teams AT _Humboldt, CMUnited, Gemini and WindmillWan-
derer are significantly dissimilar from ISIS while Andhill98, Rolling-
Brains and CAT Finland are not as dissimilar.

2. All the remaining seven teams are significantly different from CMU-
nited, the winner of RoboCup-99!

3. Andhill and CAT Finland are not significantly different from each
other.

Observation 1 can be explained by looking at the frequencies of
scoring patterns. This revealed that indeed, CMUnited, AT _Humboldt
and WindmillWanderer laid more emphasis on ball control and drib-
bling while ISIS was more opportunistic in its strategy and tried to
capitalize on its opponents’ mistakes. The results of RoboCup-98 also
show that the teams CMUnited, AT _Humboldt and WindmillWanderer
finished in the top 3 positions. Observation 2 suggests that CMUnited
scoring patterns were very different from the other teams. Looking at
the shooting patterns and their frequencies reveal that unlike other
teams, CMUnited relied heavily on good dribbling skills and good ball
control. This probably accounted for why CMUnited finished in first
place in RoboCup-98. Observation 3 is not that surprising given that
both teams relied on opportunistic patterns for most of their goals. It is
interesting to note that Gemini finished in 5th place and CAT _Finland
in 7th place. The data used to generate this graph is shown in Appendix
C.

Thus, the multiple agent team interaction model is able to appro-
priately discriminate between teams and suggest methods of improve-
ments, e.g., ISIS’s performance might be improved by giving the team
the necessary skills and strategies to use scoring patterns similar to
these top three teams.

ISAAC-final.tex; 13/10/2002; 4:03; p.36

Automated Assistants for Analyzing Team Behaviors 37

200

190
- X
180 |
170 |
160 |
150 |
140 |
130 © 1 Andhill
20 | O 2 AT_Humboldt
- A A 3 CAT_Finland
110 .
. - X X o> X 4 CMUnited
» 100 X 51ISIS
90 O 6 Gemini
(e) X + 7 RollingBrains
80 = 8 Windmillwanderers
70 L % X + ISZZI + o} o — — — Threshold
60 X
- +
50 X x A o
a0 | o o X
+ u}
S0y A O
20 b 2 < - % X
1 ¥ 3 4 *)
o .
0 1 2 3 4 5 6 7 8 9
Teams

Figure 16. x*? values for the top 8 RoboCup-98 teams when compared to each other
for window size=3. Threshold = 15.51 represents the x? value for 95% certainty
limit.

6.3. EVALUATION OF THE GLOBAL TEAM MODEL

For the global team model, three different evaluations were performed.
In the first, we distributed a survey to twenty of the participants at
the RoboCup-99 tournament, who were witnessing game summaries
just after watching the games. Figure 17 shows the breakdown of the
survey, showing that 75% of the participants thought the summaries
were very good.

In the second evaluation, we compared natural language summaries
generated without a global team model with summaries generated di-
rectly from the original feature set of 12 features, without using C5.0
to pinpoint the justifications of a team’s success or failure. Comparison
between the two summaries revealed the following. On average, ISAAC
uses only about 4 features from its set of 12 statistics in the summaries,
resulting in a 66% reduction from a natural language generator not
based on ISAAC’s machine learning based analysis. Thus, ISAAC’s
approach was highly selective in terms of content. Furthermore, sum-
maries generated without ISAAC were much longer, lacked variety, and
failed to emphasize the key aspects of the game.

Finally, we measured ISAAC’s use of the team model for natural
language generation by viewing the error rates from the machine learn-

ISAAC-final.tex; 13/10/2002; 4:03; p.37

38

o
&g
ES

~
3
B3

2
g
E3

@
&g
ES

Very Good
5 Good

£ Fair

O Poor

Very Poor

a
5
E3

@
&
B3

Percentage of Participants
g

"
S
B3

0%

Ratings by Participants

Figure 17. Automated Game Summary Survey Results.

ing algorithm used. These error rates tell us how accurately ISAAC’s
learned rules reflected the game. On the original set of games for which
ISAAC’s rules were learned, 87% of the games were classified correctly
(70% exact match, 17% close match), resulting in an error rate of 13%.
Our test set of (unseen) RoboCup ’99 games produced 72% classified
correctly (39% exact match, 33% close match), for an error rate of 28%.
If an error does occur, ISAAC still produces a summary, but it reflects
its surprise at the outcome, thus explaining the error. The error rate
on our test data could indicate that a better feature set is possible or
that the data may be noisy.

6.4. EVALUATION OF THE OVERALL ISAAC SYSTEM

Evaluating ISAAC as an integrated system is more difficult. However,
some observations can still be made. ISAAC was awarded the “Sci-
entific Challenge Award” for outstanding research by the RoboCup
Federation. ISAAC was used extensively at the RoboCup-99 tourna-
ment in Stockholm, Sweden (held in conjunction with IJCAI'99), where
received a great deal of praise and other feedback. While visualization
tools like the 3-D visualization tools [14] by Bernard Jung (see figure
19) were available, what was missing was the kind of analysis provided
by ISAAC. ISAAC was continuously running throughout RoboCup-99
with its analysis continually projected on the screen. Developers used
ISAAC to analyze opponent teams after the early round matches to get
a feel for the skill of upcoming opponents. Spectators and developers

ISAAC-final.tex; 13/10/2002; 4:03; p.38

Automated Assistants for Analyzing Team Behaviors 39

alike were able to view ISAAC’s game summaries just minutes after
a game, and there was also a great deal of speculation concerning
ISAAC’s predictions on future games. As mentioned earlier, ISAAC
was also used in preparation for RoboCup-99; Figure 18 shows ISAAC
in use at RoboCup-99.

L ."..:'-.I."‘. <

1S Sceer Automated Cuach
e o e et
L b P

- 15 !
Figure 18. ISAAC in use — RoboCup-99, Stockholm. ISAAC was continuously run-
ning throughout the RoboCup-99 tournament with its analysis continually projected
on the screen as shown in the figure. This tournament lasted several days and ISAAC
analyzed dozens of games of teams. Here, ISAAC’s predictions are shown on the right
of the screen.

7. Generality of ISAAC

To illustrate the generality of ISAAC’s team analysis techniques, this
section discusses their applicability in very different domains. We begin
by applying ISAAC’s analysis techniques to an agent team performing
mission rehearsal simulations to evacuate civilians stranded in a hos-
tile location [38]. The team comprises of 11 different heterogeneous
agents, viz. a multi-modal user interface agent, a route-planner, a web-
querying information-gathering agent and 8 synthetic helicopter pilots.

ISAAC-final.tex; 13/10/2002; 4:03; p.39

40

Figure 19. 3-D snapshot of a RoboCup soccer game.

The system must dynamically plan routes avoiding obstacles and enemy
threats. The helicopters have to fly a coordinated mission to evacuate
the civilians.

Tacticians and agents developers of these mission rehearsal simula-
tions are often interested in understanding the impact of changes in
the environment on agent-team performance. For instance, changes in
evacuation tactics, threat profiles, and position of civilians may have
different impact on team performance; and mission rehearsal simu-
lations could help tacticians select the tactics leading to improved
team performance. Here, to analyze team performance, we focus on
the sequences of messages exchanged by the agents during a single
evacuation rehearsal. In particular, given that these agents are highly
heterogeneous, it is difficult to extract their actions as in RoboCup
(e.g., user-interface agents’ actions are to communicate with a user,
while helicopters’ actions are to fly, while a web-querying agent issues
queries). However, the agents communicate in a common language —
indicating commitment to plans or sub-plans and completion of plans
and sub-plans — so that sequences of messages between agents can
be more easily used for team analysis. Here, changes in the environ-
ment that impact team performance are often reflected as changes in
the sequences of messages exchanged. For instance, some evacuation
tactics may result in increased frequency of message sequences dealing
with ground-based missile threats; while other tactics may result in
few such sequences. Thus, these other tactics may be determined to be
more successful in preempting missile threats.

ISAAC’s multiple agent model seems well suited for this analysis.
Interactions are considered to be the messages exchanged and are rep-
resented by the content of the message. A message, which says that
the task has been completed, indicates that the goal of evacuating
the civilians has been achieved. APPENDIX D describes two examples

ISAAC-final.tex; 13/10/2002; 4:03; p.40

Automated Assistants for Analyzing Team Behaviors 41

of messages exchanged in this domain. Using the learning algorithm
described in Section 4.1, we obtain probability distributions of the
different patterns of message exchanges that result in the goal being
achieved. It is possible to compare different environments based on the
probability distributions of these patterns.

In this domain, all messages exchanged are important as they relate
to the execution of critical team plans and sub plans, which has a direct
bearing on the outcome of the mission. It is, therefore, not desirable to
specify a window size of interactions that are responsible for the goal.
For the purpose of the algorithm we specify window size to be infinity
so as to include all messages in the sequence of symbols learned by the
finite automaton. Several messages can be repeated at multiple times
during the message logs, which corresponds to the team repeating the
execution of a sub plan. If bounded structural generalization is set to
zero the resulting finite automaton is extremely large. Figure 20 shows
the number of states in the finite automata on the Y-axis and the value
of bounded structural generalization on the X-axis. Each data point in
this graph corresponds to the size of the finite automata after learning
all the logs that we have in this domain. As can be seen from the
figure, increasing structural generalization beyond 2 does not decrease
the number of states. This suggests that no repeating subsequence of
messages of length greater than two was seen in the message logs.

To test ISAAC’s application in this domain, we compared two sets of
runs. The first set was reported by Gal Kaminka[16]. He had obtained a
set of 10 logs of message exchanges among agents. We recently created
a new set of runs. We wished to understand if ISAAC’s analysis would
reveal any similarities or dissimilarities in the patterns seen in the two
runs, and possibly the causes for such dissimilarities. These dissimilari-
ties could be due to changes in the composition of the evacuation agent
team, changes in our computational environment, etc. It is difficult to
answer the question purely by examining the message logs, because
each log contains approximately 1000 messages. ISAAC can abstract
out the detail and is critical for understanding the activities of the
system.

We applied the learning algorithm described in Section 4.1 (See
Figure 7) to learn the probability distribution of the patterns of each
environment for bounded structural generalization equal to 2 and win-
dow size equal to infinity. The pattern of symbols needs to be abstracted
abstracted out of the message logs to get rid of irrelevant messages and
unnecessary details in the message. One immediate surprise here was
the number of different sequences/patterns of execution learned. With
ISAAC’s abstraction, it is possible to see that the different patterns
arise because: (i) some agents may fail during execution, requiring

ISAAC-final.tex; 13/10/2002; 4:03; p.41

Number of States

42

180

170

160

150

140

130

120

110

100 | | | | | |
0 2 4 6 8 10 12
Structural Generalization

Figure 20. Structural Generalization vs. Number of States in finite automaton.

other agents to work around such failures; (ii) enemy reaction may
vary requiring agents to sometimes engage in failure recovery. The
combinations of which agents fail and how enemy reactions vary, lead
to different patterns.

Is the new set of runs very different from Kaminka’s set of runs?
Comparing the probability distributions of the two sets of runs, we
obtain a x? value of 150.0 while the threshold for 95% confidence limit is
21.3. This indicates that the two teams are very dissimilar, a somewhat
surprising result, since we did not anticipate a significant change in this
team.

However, observation of the patterns learned reveals the following:

— In Kaminka’s set of runs, helicopter pilot agents explicitly syn-
chronize before landing to evacuate civilians. In the new runs, the
helicopters do not synchronize explicitly.

— One of the agents in our set of runs, which does route planning
appeared to fail more frequently in the new set of runs, compared
with Kaminka’s set of runs.

ISAAC-final.tex; 13/10/2002; 4:03; p.42

14

Automated Assistants for Analyzing Team Behaviors 43

Thus by applying ISAAC’s technique, differences between two teams
can be detected more easily and the reasons for these differences can be
found more easily. Tacticians can potentially use tools such as ISAAC
to change evacuation simulation parameters and gauge their impact on
team performance.

There are several other similar domains where ISAAC could be
useful. For example, in team domains like agent teams in foraging
and exploration [4], ISAAC could be used for exploring actions, in-
teractions, and global trends such as target hit rate and friendly fire
damage, ISAAC could produce a similar analysis of military tactics in
the battlefield simulation domain [35] (see Figure 23), and use simi-
lar presentation techniques as well. Indeed, ISAAC’s techniques could
apply to analysis of many types of teams and their actions.

Team analysis would also be valuable in problems requiring dis-
tributed, dynamic resource allocation [19], e.g., Figure 21 shows a
domain where a set of sensor agents must collaborate to track multiple
targets. Here, each sensor agent controls a hardware node (as shown in
Figure 22), and must make decisions on which other agent to assist in
tracking targets, when to turn on/off to conserve power, which of its
multiple radar heads to turn on, what messages to send other agents
and when to send (despite the limited bandwidth) etc. As we scale
up the number of sensor nodes, analysis of performance of individual
nodes, teams and subteams is crucial. The analysis is complicated by
problems like noise and sensor failures. We may wish to understand
for instance when a sensor team succeeds or fails in tracking particular
types of targets. Given the data traces of agent’s actions, ISAAC could
be used to determine patterns that result in success. It could help in
contrasting different strategies for tracking particular types of targets.
Furthermore, the global team model could be used to explain to a user
why tracking succeeded or failed over an entire set of targets using NL.

8. Related Work

The research presented in this article concerns areas of multi-agent
team analysis and comprehensible presentation techniques. We have al-
ready discussed some related work in previous sections. In this section,
we compare some specific highly related research. Section 8.2 discusses
research outside the RoboCup domain, while Section 8.1 focuses on
related research within the RoboCup domain itself.

ISAAC-final.tex; 13/10/2002; 4:03; p.43

44

_Feadaimn

Hadsim | rame [=

o

DirnTirne 11950,

(e, ar)

Z0naal

Otatius Running, Déh_ll_ﬁ; 1 mwel Blnne

Figure 21. Sensor Agents collaborating to track moving targets, shown in red.

it

Figure 22. Left: Moving target being sensed; Right: Hardware Sensor

8.1. RoBOCUP-SPECIFIC RELATED WORK

In this section, we discuss some of the related work conducted within
the RoboCup community. A novelty of ISAAC here is that it is not
confined to RoboCup, but is intended to be more general-purpose, and
indeed it has been applied to other domains, such as the evacuation
rehearsal domain discussed in Section 7.

André et al have developed an automatic commentator system for

RoboCup games, called ROCCO, to generate TV-style live reports for
matches of the simulator league [3]. ROCCO attempts to recognize
events occurring in the domain in real time, and generates correspond-

ISAAC-final.tex; 13/10/2002; 4:03; p.44

Automated Assistants for Analyzing Team Behaviors 45

Figure 23. Helicopter agents in a battlefield simulation.

ing speech output. While both ROCCO and ISAAC use multimedia
presentations, ROCCO attempts to analyze events quickly to produce
live reports. However, the ROCCO analysis does not use multiple mod-
els of behavior for multi-perspective analysis as in ISAAC, and its
analysis is not designed to help users and developers understand teams’
abilities. ROCCO also has no capability to perform perturbation anal-
ysis.

Similarly, Tanaka-Ishii et al developed a commentator system, MIKE
[39] that presents real-time analysis of a RoboCup soccer game, high-
lighting the statistics relevant to the game as they happen. ISAAC’s
global team model provides a summary of the game to explain the key
aspects of the game responsible for the outcome, while MIKE looks at
games as they happen. Unlike ISAAC’s global model, MIKE’s focus
is on determining what features to tell the human audience during
the course of the game. ISAAC also analyzes individual actions and
subteam interactions.

Among other related work, Tomoichi Takahashi attempted to eval-
uate teams based on the collaboration among agents and not just from
scores [41]. Some of the key differences between ISAAC and Taka-
hashi’s work are: (i) ISAAC’s presentation of its analysis, for instance,
using techniques such as natural language generation; (ii) ISAAC’s
perturbation analysis; (iii) ISAAC’s capability to compare teams.

ISAAC-final.tex; 13/10/2002; 4:03; p.45

46

The designers of the KULRot RoboCup team used inductive logic
programming to validate the programming of their multi-agent team
[11]. Thus, they knew what they were looking for in their agents and
could incorporate all the background knowledge that the agents were
using. In contrast, ISAAC is knowledge-lean, but has more different
types of analysis and presentation techniques and is capable of analyz-
ing any RoboCup team.

Stone and Veloso have also used a decision tree to control some
aspects of agents throughout an entire game, also using RoboCup as
their domain [32]. However, this work pertains to execution of agents
rather than analysis of agent teams, and since it is internal to the agent,
their work has no means of presentation.

There is of course great general interest in analysis of (human) Soc-
cer games, e.g., see [30]. Human soccer games are much more complex
compared to RoboCup and currently require complex analysis including
factors such as personalities of star players, any injuries they may have
sustained etc., that are beyond the scope of RoboCup. Nonetheless,
we expect that techniques for analysis developed for RoboCup soccer
games would eventually apply to analysis of human soccer games (and
other games as well). One key hindrance at present is the unavailabil-
ity of raw data in a machine-readable form for analysis tools such as
ISAAC.

8.2. GENERAL RELATED WORK

Bhandari et al’s Advanced Scout uses data mining techniques on NBA
basketball games to help coaches find interesting patterns in their play-
ers and opponents’ behaviors [5]. Advanced Scout also enables coaches
to review the relevant footage of the games. Advanced Scout is able
to capture statistical anomalies of which coaches can take advantage.
However, Advanced Scout does not have some of ISAAC’s extensions
including the use of multiple models to analyze different aspects of
teams, perturbations to make recommendations, and game summaries
for an analysis of overall team performance.

Ndumu et al’s system for visualization and debugging multi-agent
systems comprises a suite of tools, with each tool providing a different
perspective of the application being visualized [21]. However, the tools
do not perform any in-depth analysis on the multi-agent system, and
the system has no capability for perturbing this analysis. ISAAC also
uses a visualization component, but only as an aid to understanding
its analysis.

Johnson’s Debrief system enables agents to explain and justify their
actions [15]. This work focuses on agents’ understanding the rationales

ISAAC-final.tex; 13/10/2002; 4:03; p.46

Automated Assistants for Analyzing Team Behaviors 47

for the decisions they make and being able to recall the situation. De-
brief also has a capability for agent experimentation to determine what
alternatives might have been chosen had the situation been slightly
different. ISAAC performs something similar in its perturbation anal-
ysis however ISAAC focuses on an entire team, not just an individual,
necessarily.

Marsella and Johnson’s PROBES [18] is a system for assessing both
agent and human teams in multi-agent simulated training environments
for battle-tank crews. In contrast to ISAAC, PROBES was designed to
assist instructors controlling the exercise as opposed to the developers
of the agents. Further, it approached the analysis problem top-down,
in contrast ISAAC’s bottom-up approach. That is, it had pre-built
expectations about a trainee team’s acceptable behaviors in particular
training situations (encoded in what are called “situation-space mod-
els”). It matched these expectations against observed behaviors of the
trainee crews to locate problematic trainee team behaviors and provide
appropriate feedback.

SEEK (and its progeny, SEEK2) is an approach to knowledge base
refinement, an important aspect of knowledge acquisition [23]. Knowl-
edge base refinement is characterized by the addition, deletion, and
alteration of rule-components in an existing knowledge base, in an at-
tempt to improve an expert system’s performance. While the alteration
of a rule may seem comparable to ISAAC’s perturbation analysis, the
goals are varied. The refinement done by systems such as SEEK are
used to increase performance of the system to correctly classify future
cases. ISAAC’s goal is not that of increased performance in terms of
cases classified but that of increased understandability of the causes
of team failure or success. By looking at the changes to the automat-
ically produced rules, the user gains insight as to the effects of each
component of a rule.

9. Summary and Future Work

Multi-agent teamwork is a critical capability in a large number of
applications including training, education, entertainment, design, and
robotics. The complex interactions of agents in a team with their team-
mates as well as with other agents make it extremely difficult for human
developers to understand and analyze agent-team behavior. It is thus
increasingly critical to build automated assistants to aid human de-
velopers in analyzing agent team behaviors. However, the problem of
automated team analysts is largely unaddressed in previous work. It

ISAAC-final.tex; 13/10/2002; 4:03; p.47

48

is thus important to understand the key principles that underlie the
development of such team analysts.

In terms of these general principles, one key contribution of this
article is an understanding of the the key constraints faced by team
analysts:

1. It is necessary to have multiple models of team behavior at different
levels of granularity. In particular three different useful granularities
appear to be: (i) individual agent’s critical actions, (ii) subteam
interactions and (iii) global team behavior trends.

2. Multiple presentation techniques are necessary each suited to the
model being presented.

3. A bottom-up data-intensive approach is particularly critical to team
analyses in complex domains where causal models are difficult to
understand, input, etc. Such bottom-up analysis should also be
independent of underlying team architecture and implementation
to improve generality.

A second key contribution is presentation of general techniques to
build team analysts that satisfy these constraints. First, ISAAC, our
team analyst, uses multiple models of team behavior to analyze dif-
ferent granularities of agent actions: (i) Individual agent model to
analyze critical actions of individual agents, (ii) Multiple agent model
to analyze interactions within subteams that result in success or fail-
ure, (iii) Global team model to analyze an entire engagement. Second,
ISAAC combines multiple presentation techniques to aid humans in
understanding the analysis, where presentation techniques are tailored
to the model at hand. Third, ISAAC uses learning techniques to build
models bottom-up from data traces, enabling the analysis of differing
aspects of team behavior. It is thus capable of discovering unexpected
team behaviors.

A third key contribution are the techniques to provide feedback
about team improvement: (i) ISAAC supports perturbations of mod-
els, enabling users to engage in “what-if” reasoning about the agents
and providing suggestions for improvements in agents’ actions that are
already within the agents’ skill set; (ii) It allows the user to compare
different teams based on the patterns of their interactions.

ISAAC is available on the web for remote use at hitp://coach.isi.edu.
It has found surprising results from top teams of previous tournaments
and was used extensively at the RoboCup-99 tournament. ISAAC was
awarded the “Scientific Challenge Award” at RoboCup-99 where its
analysis and natural language game summaries drew a crowd through-
out the tournament.

ISAAC-final.tex; 13/10/2002; 4:03; p.48

Automated Assistants for Analyzing Team Behaviors 49

Although ISAAC was initially applied in the context of the RoboCup
soccer simulation, it is intended for application in a variety of agent
team domains. We demonstrated the generality of ISAAC’s techniques
by applying them to a team of agents involved in the simulated evacua-
tion of civilians trapped in hostile enemy territory. Given the promising
results in applying ISAAC’s techniques to domains beyond RoboCup,
we hope and expect to apply ISAAC to other domains, mentioned in
section 7, more thoroughly.

Another direction of future work is to make the multimedia pre-
sentation more intelligent by exploiting standard reference models for
intelligent multimedia presentations such as [6]. It would be interesting
to use this model to decide on the layout and media-allocation for the
data that should be conveyed to the human user.

Acknowledgements

This research was made possible by a generous gift from Intel Corpo-
ration. We would like to thank Bill Swartout for interesting discussions
related to ISAAC, and support of this work at USC/ISI. We also thank
several members of the RoboCup community for their valuable feedback
about ISAAC, including Peter Stone, Itsuki Noda and Paul Scerri. Fi-
nally, we would like to thank the reviewers for their excellent comments
for improving this article.

APPENDIX A: Features used in Individual Agent Model for
RoboCup Soccer

The following are the eight features used in the Individual Agent Model
for RoboCup Soccer:
1. Ball Velocity: Velocity with which the ball was kicked.

2. Distance to goal: Distance of kicker to goal.

3. Number of Defenders: Number of defenders between kicker and
goal.

4. Extrapolated Goal Line Position: Aim of kick, i.e. Distance of the
center of goal to the point where the ball would have crossed the
end-line if not intercepted.

5. Distance of Closest Defender: Distance of kicker to the closest
defender.

ISAAC-final.tex; 13/10/2002; 4:03; p.49

50

. Angle of Closest Defender wrt to Center of Goal: Angle of closest

defender’s position with respect to the line connecting the centers
of the two goals.

. Angle from Center of Field: Angle of kicker’s position with respect

to the line connecting the centers of the two goals.

. Angle of Defender from shot: Angle of closest defender’s position

with respect to the direction of kick.

APPENDIX B: Features used in Global Team Model for

RoboCup Soccer

The following are the twelve features used in the Global Team Model
for RoboCup Soccer:

1.

10.

Possession time: Percentage of time that the ball was in the first
team’s possession.

. Ball in Opponent half: Percentage of time ball was in the opposition

team’s side of the field.

. Successful off-side traps: Number of successful off-side traps laid by

first team.

. Caught in off-side trap: Number of times the opposition’s off-side

traps succeeded.

. Defense was bypassed: Number of times the first team’s last de-

fender was bypassed.

. Bypassed opponent defense: Number of times the opposition team’s

last defender was bypassed.

. Distance from sideline: Average distance of ball from the sideline

when ball was in first team’s possession.

. Distance from sideline for opponent: Average distance of ball from

the sideline when ball was in opposition team’s possession.

. Distance kept between own players: Average distance kept between

players of the first team.

Distance kept between opponent players: Average distance kept be-
tween players of the opposition team.

ISAAC-final.tex; 13/10/2002; 4:03; p.50

Automated Assistants for Analyzing Team Behaviors

51

11. Distance of last defender: Average distance of the first team’s last
defender from the goal.

12. Distance of opponent last defender: Average distance of the oppo-

sition team’s last defender from the goal.

APPENDIX C: Data for Figures 14 and 15

Tables I, IT and III show the data used to generate Figures 14, 15

and 16.

Table I. Data for figure 14

Team	No. of non-scoring Rules	No. of scoring rules	Total no. of rules
Andhill	10	6	16
AT_Humboldt	8	4	12
CAT_Finland	4	4	8
CMUnited	6	2	8
ISIS	7	6	13
Gemini	6	6	12
RollingBrains	8	2	10
WindmillWanderers	6	2	8

Table II. Data for figure 15

| Team | Avg. no. of conditions in a rule | Max. conditions in a rule | Min. conditions in a rule |
| Andhill | 2.625 | 6 | 1

| AT_Humboldt | 2.75 | 5 | 2

| CAT_Finland | 2.375 | 4 | 1

| CMUnited | 2.125 | 5 | 1

| ISIS | 2.692307692 | 5 | 1

| Gemini | 2.833333333 | 4 | 1

| RollingBrains | 1.9 | 7 | 1

| WindmillWanderers | 1.625 | 2 | 1

| Average | 2.436781609 | 4.75 | 1.125

ISAAC-final.tex; 13/10/2002; 4:03; p.51

52

Table III. Data for figure 16

| Team | Andhill | AT_Humb. | CAT_Fin. | CMUnited | ISIS | Gemini | R_Brains | W_Wanderers |
| Andhill | 0 | 21.4934 | 13.6993 | 67.2912 | 14.8278 | 12.1384 | 21.0962 | 105.8628

| AT_Humb. | 21.4934 | 0 | 267541 | 721392 | 46.7939 | 10.1018 | 35.5333 | 15.3181

| CAT_Fin. | 13.6993 | 26.7541 | 0 | 50.5455 | 12.5778 | 39.5714 | 70.6 | 115.2244

| CMUnited | 67.2912 | 72.1392 | 50.5455 | 0 | 106.5482 | 84.5932 | 62.8619 | 18.4048

| ISIS | 14.8278 | 46.7939 | 125778 | 106.5482 | 0 | 41.0625 | 15.6448 | 185.6138

| Gemini | 12.1384 | 10.1018 | 39.5714 | 84.5932 | 41.0625 | 0 | 70.2857 | 71.3586

| R_Brains | 21.0962 | 355333 | 70.6 | 62.8619 | 15.6448 | 70.2857 | 0 | 54.0238

| W_-Wanderers | 105.8628 | 15.3181 | 115.2244 | 18.4048 | 185.6138 | 71.3586 | 54.0238 | 0

APPENDIX D: Example Messages Exchanged in Evacuation
Domain

Figure 24 shows two examples of messages exchanged between agents in
the evacuation domain described in section 7. In example 1, a helicopter

1)Log Message Received; Fri Sep 17 13:37:03 1999:

Logging Agent: TEAM_trans2

Message==

tell

:content TEAM_ trans2 establish-commitment evacuate 41 kgml_string
:receiver TEAM-EVAC 9 kgml_word

:reply-with nil 3 kgml_word

:team TEAM-EVAC 9 kgml_word

:sender TEAM_trans2 11 kqml_word

:kgml-msg-id 22151+sangat.isi.edu+7 22 kgml_word

2)Log Message Received; Fri Sep 17 13:37:14 1999:
Logging Agent: teamquickset

Message==

tell

:content teamquickset terminate-jpg constant determine-number-of-helos
number-of-helos-determined *yes* 4 4 98 kgml_string
:receiver TEAM-EVAC 9 kgml_word

:reply-with nil 3 kqml_word

:team TEAM-EVAC 9 kgml_word

:sender teamquickset 12 kgml_word

:kgml-msg-id 19476+tsevet.isi.edu+7 22 kgml_word

Figure 2j. Examples of messages exchanged between agents in the evacuation
domain

ISAAC-final.tex; 13/10/2002; 4:03; p.52

Automated Assistants for Analyzing Team Behaviors 53

agent, TEAM trans2, sends a message to the team, TEAM-EVAC, ask-
ing its members to initiate a joint goal to execute the evacuate plan.
Example 2 is a message sent by another agent teamquickset to the
entire team TEAM-EVAC to let the members know that the joint goal
to execute sub-plan determine-number-of-helos ended successfully. As
can be seen these messages are fairly complex and the relevant features
of each message needs to be abstracted out so that analysis can be
easily done.

10.

11.

12.

13.

14.

References

Aho, A., Hopcroft, J., Ullman, J.: Data Structures and Algorithms. Addison-
Wesley, 1983.

Andou, T.: Personal Communication. 1998.

André, E., Herzog, G., Rist, T.: Generating Multimedia Presentations for
RoboCup Soccer Games. RoboCup-97: Robot Soccer World Cup I, 1997.
Balch, T.: The Impact of Diversity on Performance in Multi-robot Foraging.
Proceedings of the Third Annual Conference on Autonomous Agents, 1999.
Bhandari, 1., Colet, E., Parker, J., Pines, Z., Pratap, R., Ramanujam, K.:
Advanced Scout: Data Mining and Knowledge Discovery in NBA Data. Data
Mining and Knowledge Discovery, 1997.

Bordegoni, M., Faconti, G., Maybury, M. T., Rist, R., Ruggieri, S., Trahanias,
P. and Wilson, M.: A Standard Refernece Model for Intelligent Multimdeia
Presentation Systems. Journal of Computer Standards and Interfaces, pp. 477-
496, 1997.

Caruana, R., Freitag, D.: Greedy Attribute Selection. 11th Proceedings of the
11th International Conference on Machine Learning (ICML), 1994.

Chiu, B. and Webb, G.: Using Decision Trees for Agent Modeling. Improving
Prediction Performance, User Modeling and User-Adapted Interaction, Kluwer
Academic Publisher Group, “Dordrecht, Netherlands”, 8, pp. 131-152, 1988.
Crutchfield, J. P. and Young, K.: Inferring Statistical Complexity. Physical
Review Letters,63(2):105-108, 1989.

Dorais, G., Bonasso, R., Kortenkamp, D., Pell, B., Schreckenghost, D.: Ad-
justable Autonomy for Human-Centered Autonomous Systems. Working notes
of the Sixteenth International Joint Conference on Artificial Intelligence
Workshop on Adjustable Autonomy Systems, 1999

Driessens, K., Jacobs, N., Cossement, N. Monsieur, P., DeRaedt, L.: Inductive
Verification and Validation of the KULRot RoboCup Team. Proceedings of the
Second RoboCup Workshop, 1998.

Goldberg, D. and Matari¢: Coordinating Mobile Robot Group Behavior Us-
ing a Model of Interaction Dynamics. Proceedings of The Third International
Conference on Autonomous Agents, 1999.

Jennings, N.: Controlling Cooperative Problem Solving in Industrial Multi-
agent System Using Joint Intentions. Artificial Intelligence, Vol. 75, 1995.

3D images from RoboCup soccer. http://www.techfak.uni-
bielefeld.de/techfak/ags/wbski/3Drobocup/3DrobocupPics.html,

1999.

ISAAC-final.tex; 13/10/2002; 4:03; p.53

54

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.
34.

Johnson, W. L.: Agents that Learn to Explain Themselves. Proceedings of
AAAT-94, 1994.

Kaminka, G.: Execution Monitoring in Multi-Agent Environments. Ph.D. Dis-
sertation, University of Southern California, Computer Science Department,
2000.

Kitano, H., Tambe, M., Stone, P., Veloso, M., Noda, I., Osawa, E. and Asada,
M.: The RoboCup synthetic agent’s challenge. Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 1997.

Marsella, S.C. and Johnson, W.L.: An instructor’s assistant for team training
in dynamic multi-agent virtual worlds. Goettl, Halff, Redfield and Shute (eds)
Intelligent Tutoring Systems, Proceedings of the 4th International Conference
on Intelligent Tutoring Systems, Springer, pp 464-473, 1998.

Modi, J., Jung, H., Tambe, M., Shen, W., Kulkarni, S.: Dynamic Distributed
Resource Allocation: A Distributed Constraint Satisfaction Approach. Intel-
ligent Agents VIII Proceedings of the International workshop on Agents,
theories, architectures and languages (ATAL’01)

Myritz, H.: Personal Communication. 1999.

Ndumu, D., Nwana, H., Lee, L., Haynes, H.: Visualization and debugging of
distributed multi-agent systems. Applied Artificial Intelligence Journal, Vol 13
(1), 1999.

Noda, I., Matsubara, H., Hiraki, K. and Frank, I.: Soccer Server: A Tool for
Research on Multi-agent Systems. Applied Artificial Intelligence, Volume 12,
Number 2-3, 1998.

Politakis, P. and Weiss, S.: Using Empirical Analysis to Refine Expert System
Knowledge Bases. Artificial Intelligence(22), pp 23-48, 1984.

Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, 1994.
Raines, T., Tambe, M., Marsella, M.: Automated Agents that Help Hu-
mans Understand Agent Team Behaviors. Proceedings of the International
Conference on Autonomous Agents (Agents), 2000.

Raines, T., Tambe, M., Marsella, M.: Agent Assistants for Team Analysis. Al
Magazine, Vol 21, Num 3, pp 27-31, Fall 2000.

Reiter, E.: Has a Consensus NL Generation Architecture Appeared, and is
it Psycholinguistically Plausible? Proceedings of the Seventh International
Workshop on Natural Language Generation, 1994

Ron, D., Singer, Y., Tishby, N.: On the Learnability and Usage of Acyclic Prob-
abilistic Finite Automata. Journal of Computer and System Sciences 56(2),
1998.

Sengers, P.: Designing Comprehensible Agents. Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 1999.

SoftSport Inc.: http://www.softsport.com.

Stolcke, A. and Omohundro, S.M.: Hidden Markov Model Induction by
Bayesian Model Merging. Advances in Neural Information Processing Systems,
Volume 5, S. J. Hanson, J. D. Cowan and C. L. Giles, editors, Morgan Kaufman,
pp. 11-18, 1992.

Stone, P., Veloso, M.: Using Decision Tree Confidence Factors for Multi-agent
Control. Proceedings of the International Conference on Autonomous Agents,
1998.

Stone, P.: Personal Communication. 1999.

Sycara, K., Decker, K., Pannu, A., Williamson, M., Zeng, D.: Distributed
Intelligent Agents. IEEE Expert, 1996.

ISAAC-final.tex; 13/10/2002; 4:03; p.54

35.

36.

37.

38.

39.

40.

41.

42.

Automated Assistants for Analyzing Team Behaviors 55

Tambe, M. Johnson, W. L., Jones, R., Koss, F., Laird, J. E., Rosenbloom, P.S.,
Schwamb, K.: Intelligent Agents for Interactive Simulation Environments. Al
Magazine, 16(1) (Spring), 1995.

Tambe, M.: Towards Flexible Teamwork. Journal of Artificial Intelligence
Research, Vol. 7, 1997.

Tambe, M. and Jung, H.: The benefits of arguing in a team. AI Magazine
Vo120, Num 4, Winter, 1999.

Tambe, M., Pynadath, D. and Chauvat, N.: Building dynamic agent orga-
nizations in cyberspace. IEEE Internet Computing Volume 4, Number 2,
2000.

Tanaka-Ishii, K., Noda, I., Frank, I., Nakashima, H., Hasida, K., Matsub-
ara, H.: MIKE: An Automatic Commentary System for Soccer. International
Conference on Multi-Agent Systems, 1998.

Ting, K.: Inducing Cost-Sensitive Trees via Instance Weighting. Principles of
Data Mining and Knowledge Discovery (PKDD 98), 1998.

Tomoichi, T.: LogMonitor: from player’s action analysis to collaboration anal-
ysis and advice on formation. Proceedings of the Third RoboCup Workshop,
1999.

Toulmin, S.: The uses of argument. Cambridge University Press, 1958.

ISAAC-final.tex; 13/10/2002; 4:03; p.55

ISAAC-final.tex; 13/10/2002; 4:03; p.56

