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Abstract

Distributed Partially Observable Markov Decision
Problems (POMDPs) are emerging as a popular ap-
proach for modeling multiagent teamwork where a group
of agents work together to jointly maximize a reward
function. Since the problem of finding the optimal joint
policy for a distributed POMDP has been shown to be
NEXP-Complete if no assumptions are made about the
domain conditions, several locally optimal approaches
have emerged as a viable solution. However, the use of
communicative actions as part of these locally optimal al-
gorithms has been largely ignored or has been applied only
under restrictive assumptions about the domain. In this
paper, we show how communicative acts can be explic-
itly introduced in order to find locally optimal joint poli-
cies that allow agents to coordinate better through syn-
chronization achieved via communication. Furthermore,
the introduction of communication allows us to develop a
novel compact policy representation that results in sav-
ings of both space and time which are verified empiri-
cally. Finally, through the imposition of constraints on
communication such as not going without communicat-
ing for more than K steps, even greater space and time
savings can be obtained.

1. Introduction

Multiagent systems are increasingly being applied
to domains like disaster rescue where the performance
is linked to critical metrics like loss of property and
human life [8]. Moreover, in these realistic domains,
the agents in the team need to work together in the
presence of uncertainty arising from various sources
like partial observability, imperfect sensing, failure of
agents, etc. Distributed Partially Observable Markov
Decision Problems (POMDPs) are emerging as a popu-
lar approach for modeling multiagent teamwork in such

domains where a groups of agents work together to
jointly maximize a reward function [7, 2, 12, 4, 9].

Unfortunately as shown by Bernstein et al., the
problem of finding the optimal joint policy for a dis-
tributed POMDP is NEXP-Complete if no assump-
tions are made about the domain conditions[2]. There
are two prominent approaches to dealing with this large
complexity. The first approach involves approximating
the domain, e.g., abstracting away from agents’ inter-
actions (transition independence) [1], or approximating
to complete observability of local state [4], or assum-
ing memory-less agents [3].

The second approach involves finding a locally op-
timal joint policy without approximating the domain.
For instance, Peshkin et al. [10] use gradient descent
search to find locally optimal finite-controllers with
bounded memory. Their algorithm finds locally optimal
policies from a limited subset of policies, with an infi-
nite planning horizon. On the other hand, Nair et al. [7]
develop an algorithm called “Joint Equilibrium-based
Search for Policies” (JESP) which finds locally optimal
policies from an unrestricted set of possible policies,
with a finite planning horizon. JESP iterates through
the agents, finding an optimal policy for each agent as-
suming the policies of the other agents are fixed. The
iteration continues until no improvements to the joint
reward is achieved. The work in this paper is described
in the context of JESP but can potentially be applied
to other distributed POMDP approaches.

One key challenge in finding locally (or globally) op-
timal policies for distributed POMDPs is as follows: the
central planner, when generating a policy for one agent
must reason explicitly about the possible observations
that other agents are receiving – since other agents’
observations will determine their actions, and hence
the team’s joint reward. Such reasoning about obser-
vations is a fundamental reason for intractability of
distributed POMDPs. Furthermore, uncertainty about
other agents’ observations can hamper inter-agent co-



ordination.

We take steps in addressing the above challenge by
introducing communicative acts that not only improve
agents’ coordination and consequently their expected
rewards, but also reduce the complexity of the com-
putation of joint policies. The use of communication
to facilitate policy computation has been largely ig-
nored or has been applied only under restrictive as-
sumptions about the domain [12, 4]. The synchroniza-
tion achieved via communication allows us to develop a
novel compact policy representation that results in sav-
ings of both space and time which are verified empiri-
cally. Finally, through the imposition of constraints on
communication such as requiring that agents do not go
for more than K steps without communication, even
greater space and time savings can be obtained.

2. Model

We utilize the Markov Team Decision Prob-
lem (MTDP) [11] as a concrete illustration of a
distributed POMDP model and extend it to in-
clude communication. Our approach can be applied to
other distributed POMDP models [2, 12].

Given a team of n agents, an MTDP [11] is defined
as a tuple: 〈S, A, P, Ω, O, R〉. S is a finite set of world
states {s1, . . . , sm}. A = ×1≤i≤nAi, where A1, . . . , An,
are the sets of action for agents 1 to n. A joint action is
represented as 〈a1, . . . , an〉. P (si, 〈a1, . . . , an〉 , sf ), the
transition function, represents the probability that the
current state is sf , if the previous state is si and the
previous joint action is 〈a1, . . . , an〉. Ω = ×1≤i≤nΩi is
the set of joint observations where Ωi is the set of ob-
servations for agents i. O(s, 〈a1, . . . , an〉 , ω), the ob-
servation function, represents the probability of joint
observation ω ∈ Ω, if the current state is s and
the previous joint action is 〈a1, . . . , an〉. For the pur-
pose of this paper, we assume that observations of
each agent is independent of each other’s observa-
tions. Thus the observation function can be expressed
as O(s, 〈a1, . . . , an〉 , ω) = O1(s, 〈a1, . . . , an〉 , ω1) · . . . ·
On(s, 〈a1, . . . , an〉 , ωn). The agents receive a single, im-
mediate joint reward R(s, 〈a1, . . . , an〉) which is shared
equally.

Each agent i chooses its actions based on its local
policy, Πi, which is a mapping of its observation his-
tory to actions. Thus, at time t, agent i will perform ac-
tion Πi(~ω

t
i ) where ~ωt

i = ω1
i , . . . , ωt

i . Π = 〈Π1, . . . , Πn〉
refers to the joint policy of the team of agents. The im-
portant thing to note is that in this model, execution
is distributed but planning is centralized. Thus agents
don’t know each other’s observations and actions at
run time but they know each other’s policies.

Agents start with the same probability distribution
over the start state. However, they will receive different
observations. As a result, although agent i knows the
policies of other agents, considerable uncertainty can
arise about what other agents are going to do, since the
actions of other agents depend on the observation his-
tories of these agents, which are not accessible to agent
i. If agents communicate and exchange their observa-
tion histories, such uncertainty disappears. However,
communication requires certain cost. To act optimally,
an agent needs to estimate the benefit of communica-
tion and should communicate only when the benefit ex-
ceeds the communication cost.

Hence, we extend MTDP by introducing a new com-
municative action, Sync, that can be initiated by any
agent. Unlike other models, like COM-MTDP [11] and
Dec POMDP Com [4], where there are alternate com-
munication and action phases, we do not assume a sep-
arate communication phase. In a particular epoch an
agent can either choose to communicate or act. This as-
sumption models the missed opportunity cost that oc-
curs when the agents communicate instead of acting.
However, it is not central to this paper and the algo-
rithms can be easily modified for models with alternat-
ing communication and action phases.

If one agent initiates a Sync, the other agents are
forced to communicate with it, ignoring the action that
they would otherwise have performed. On performing
a Sync, or on receiving notification that another agent
has performed a Sync, the agents exchange all their
observation histories since the last Sync action. Given
that the agents know each other’s policies, a Sync ac-
tion results in all agents knowing exactly what action
each agent will perform in the next epochin, thus pre-
venting miscoordination.

We assume that the entire process of one agent initi-
ating a Sync followed by all the agents sharing their ob-
servation histories takes place in a single epoch. At a
finer granularity, we can think of every domain-level ac-
tion as having two phases – an arbitrarily small “wait-
for-interrupt” phase followed by an action phase. Simi-
larly, a Sync action is comprised of a “send-interrupt”,
followed by a communication. If an agent receives a
Sync interrupt during its “wait-for-interrupt” phase,
it is forced to communicate instead of acting. We fur-
ther assume that Sync never fails and has no effect on
the world state.

3. Domain

For illustrative purposes, we consider a multia-
gent adaptation of the classic tiger problem used in
illustrating single-agent POMDPs[5]. In our mod-



ified version, two agents are in a corridor fac-
ing two doors:“left” and “right”. Behind one door
lies a hungry tiger, and behind the other lies un-
told riches. The state, S, takes values {SL, SR}, indi-
cating the door behind which the tiger is present. In
the initial state, the tiger is equally likely to be be-
hind each door. The agents can jointly or individually
open either door. In addition, the agents can inde-
pendently listen for the presence of the tiger. Thus,
A1 = A2 = {‘OpenLeft′, ‘OpenRight′, ‘Listen′}.
The transition function P specifies that the prob-
lem is reset whenever an agent opens one of the doors.
However, if both agents listen, the state remains un-
changed. After every action each agent receives an
observation about the new state. The observation func-
tion, O1 or O2, shown in Table 1, are identical and
will return either HL or HR with different proba-
bilities depending on the joint action taken and the
resulting world state. For example, if both agents lis-
ten and the tiger is behind the left door (state is
SL), each agent independently receives the observa-
tion HL with probability 0.85 and HR with probabil-
ity 0.15.

Action State HL HR

<Listen,Listen> SL 0.85 0.15

<Listen,Listen> SR 0.15 0.85

Table 1. Observation function for each agent

If either agent opens the door behind which the tiger
is present, they are both attacked (equally) by the tiger
(see Table 2). However, the injury sustained if they
jointly opened the door to the tiger is less severe than if
only one agent opens the door. Similarly, if both agents
open the door to the riches, the amount of wealth re-
ceived is twice what they would have received if only
one of them opened that door. The agents incur a small
cost for performing the ‘Listen′ action.

Clearly, acting jointly is beneficial (e.g. A1 = A2 =
‘OpenLeft′) because the agents receive more riches and
sustain less damage by acting together. However, be-
cause the agents receive independent observations and
cannot share these observations without explicit com-
munication, to act optimally, each agent must consider
all possible observation histories of the other agent to
determine which action its teammate is likely to per-
form. This can result in mis-coordinated actions, such
as one agent opening the left door while the other agent
opens the right door. In order to reduce the likelihood
of mis-coordination, we introduce the Sync action, al-
lowing the agents to share their observation histories.

Action/State SL SR

<OpenRight,OpenRight> +20 -50

<OpenLeft,OpenLeft> -50 +20

<OpenRight,OpenLeft> -100 -100

<OpenLeft,OpenRight> -100 -100

<Listen,Listen> -2 -2

<Listen,OpenRight> +9 -101

<OpenRight,Listen> +9 -101

<Listen,OpenLeft> -101 +9

<OpenLeft,Listen> -101 +9

<Sync,*> -2 -2

<*,Sync> -2 -2

Table 2. Reward function

In keeping with the constraints of real-world communi-
cation, the Sync action is given a cost, SyncCost, which
is incurred every time an agent chooses to communi-
cate.

4. JESP

As shown by Bernstein et al. [2] the complexity of
the decision problem corresponding to finding the glob-
ally optimal policy for a distributed POMDP is NEXP-
complete if no assumptions are made about the do-
main conditions. Given this high complexity, locally
optimal approaches [10, 3, 7] have emerged as viable
solutions. In this paper, we concentrate on “JESP”
(Joint Equilibrium-Based Search for Policies) [7], an
approach where the solution obtained is a Nash equi-
librium. Algorithm 1 describes the JESP approach for
2 agents. The algorithm can be easily modified for n
agents. The key idea is to find the policy that max-
imizes the joint expected reward for one agent at a
time, keeping the policies of the other agent fixed. This
process is repeated until an equilibrium is reached (lo-
cal optimum is found). The problem of which optimum
the agents should select when there are multiple local
optima is not encountered since planning is central-
ized. DP-JESP is a dynamic programming approach
for finding the optimal policy for a single agent rela-
tive to the fixed policies of its n-1 teammates(line 4).
We briefly describe the DP-JESP algorithm in the fol-
lowing sub-section before introducing communication.

4.1. DP-JESP

If we examine the single-agent POMDP literature
for inspiration, we find algorithms that exploit dynamic
programming to incrementally construct the best pol-
icy, rather than simply searching the entire policy
space [6, 5]. The key insight in the multiagent case is



Algorithm 1 DP-JESP()

1: prev ← default joint policy, prevV al ← value of prev,
conv ← 0

2: while conv 6= 2 do
3: for i← 1 to 2 do
4: val, Πi ←OptimalPolicyDP(b, Π

(i+1)Mod2
, T )

5: if val = prevV al then
6: conv ← conv + 1
7: else
8: prev ←

D

Πi, Π(i+1)Mod2

E

, prevV al ← val,

conv ← 0
9: if conv = 2 then

10: break
11: return new

that if the policies of all other agents are fixed, then
the free agent faces a complex but normal single-agent
POMDP. However, a belief state that stores the distri-
bution, Pr(st|~ωt), as in the single-agent POMDP case,
is not a sufficient statistic because the agent must also
reason about the action selection of the other agents
and hence about the observation histories of the other
agents. Thus, at each time t, agent 1 reasons about the
tuple et

1 = 〈st, ~ωt
2〉, where ~ωt

2 is the observation his-
tory of the other agent. By treating et

1 as the state of
agent 1 at time t, we can define the transition function
and observation function for the single-agent POMDP
for agent 1 as follows:

P ′(et
1, a

t
1, e

t+1
1 ) =Pr(et+1

1 |et
1, a

t
1)

=P (st, (at
1, π2(~ω

t
2)), s

t+1)

·O2(s
t+1, (at

1, π2(~ω
t
2)), ω

t+1
2 ) (1)

O′(et+1
1 , at

1, ω
t+1
1 ) =Pr(ωt+1

1 |et+1
1 , at

1)

=O1(s
t+1, (at

1, π2(~ω
t
2)), ω

t+1
1 )(2)

We now define the multiagent belief state for an
agent i given the distribution over the initial state,
b(s) = Pr(S1 = s):

Bt
1 = Pr(et

1|~ω
t
1,~a

t−1
1 , b) (3)

In other words, when reasoning about an agent’s pol-
icy in conjunction with its teammate agent, we main-
tain a distribution over et

1, rather than simply over
the current state. However, since the agent does not
know exactly what observations the other agent has
received at run time, it will not be able to know pre-
cisely which action the other agent will execute. Hence,
we introduce Sync action, allowing the agents to peri-
odically synchronize, thus reducing the likelihood of
mis-coordination.

5. Communicative DP-JESP

When one of the agents performs Sync, the agents
share their observation histories with each other. The

agents are now said to have a synchronized belief state.
(The distribution over initial state is considered the
first synchronized belief state). As described in the pre-
vious section, in order to reason about agent 1’s pol-
icy in the context of agent 2, we maintain a distribu-
tion over et

1, rather than simply over the current state.
When agents are in a synchronized belief state, they
can discard their observation histories. Figure 1 shows
a sample progression of belief states for agent 1 in the
tiger domain. For instance, B2

1 , shows probability dis-
tributions over e2

1. In e2
1 = (SL, (HR)), (HR) is the

history of agent 2’s observations while SL is the cur-
rent state. If the action specified in B2

1 is Sync, then
the agents reach a synchronized belief state and can
get rid of their observation histories.

B1
1

a1

: HL1
1w

B1
2

(SL (HL) 0.1275)
(SR (HR) 0.7225)
(SR (HL) 0.1275)

(SL (HR) 0.0225)
(SL (HL) 0.7225)
(SR (HR) 0.1275)
(SR (HL) 0.0225)

(SL (HR) 0.1275)

B1
3

a1

2
1: HRmsg w

: Sync

t = 3
(SL () 0.5)
(SR () 0.5)

t = 3

t = 1
(SL () 0.5)
(SR () 0.5)

:Listen

t = 2t = 2

(SR () 0.0302)
(SL () 0.9698)

2
1: HLmsg w

: HR1
1

1
2

w’

B’

1
3B’

Figure 1. Trace of Tiger Scenario

Because agents can discard their observation histo-
ries after synchronization, we introduce a novel com-
pact policy representation. We now refer to the pol-
icy of an agent 1 as Π1. π1 = Π1(b) refers to agent
1’s sub-policy indexed by the last synchronized belief
state, b and π1(~ω1, T − t) is the action agent 1 will per-
form at time t. Algorithm 8 shows how a policy using
this representation can be obtained.

Having fixed the policy of agent 2, the optimal pol-
icy for agent 1 can be computed using Algorithm 2.

Algorithm 2 OptimalPolicyDP(b, Π2, T )

1: val← GetValue(b, b, Π2, 1, T )
2: initialize Π1

3: FindPolicy(b, b, 〈〉 , Π2, 1, T )
4: return val,Π1

Following the model of the single-agent value-
iteration algorithm, central to our dynamic program
is the value function over a T -step finite hori-
zon. The value function, Vt(B

t, b) (see Algorithm 3),



represents the expected reward that the team will re-
ceive, starting from the most recent synchronized
belief state, b, and with agent 1 following an opti-
mal policy from the t-th step onwards. We start at the
end of the time horizon (i.e. t = T ), and then work
our way back to the beginning. Along the way, we con-
struct the optimal policy by maximizing the value
function over possible action choices:

Vt(B
t
1, b) = max

a1∈A1

V a1

t (Bt
1, b) (4)

Algorithm 3 GetValue(Bt, b, Π2, t, T )

1: if t > T then
2: return 0
3: if Vt(B

t, b) is already recorded then
4: return Vt(B

t, b)
5: best← −∞
6: for all a1 ∈ A ∪ {Sync} do
7: value← GetValueAction(Bt, a1, b, Π2, t, T )
8: record V

a1
t

(Bt, b) as value
9: if value > best then

10: best← value

11: record Vt(B
t, b) as best

12: return best

The function, V a1

t , can be computed using Algo-
rithm 4. This procedure can be defined separately for
the cases of a1 = Sync (lines 1-7) and for all other do-
main actions (lines 8-24). If a1 = Sync:

V a1=Sync
t (Bt

1, b) = SyncCost +
∑

~ω2

Pr(~ω2|B
t
1)

·Vt+1 (b′, b′) ,

where b’ is the belief state after msg ~ω2(5)

The quantity Pr(~ω2|B
t
1) refers to the probability of re-

ceiving a message ~ω2 from agent 2 as a result of a Sync.
This value and the resulting synchronized belief state
b′ is obtained using Algorithm 5.

In the case where a1 6= Sync, it is possible that agent
2 chooses to perform a Sync. Taking this into consid-
eration while defining the action value function for the
case where the action a1 6= Sync, we get:

V a1 6=Sync
t (Bt

1, b) = V a1 6=Sync,a2=Sync
t (Bt

1, b)

+V no Sync
t (Bt

1, b) (6)

The first term in Equation 6 is the vlaue obtained
when agent 2 does a Sync, thus over-riding agent 1’s ac-
tion while the second term is the value obtained when
neither agent performs Sync. When agent 2 does a
Sync, the value function is:

V a1 6=Sync,a2=Sync
t (Bt

1, b) =
∑

~ω2 s.t. π2(~ω2)=Sync

Pr(~ω2|B
t
1)

· (SyncCost + Vt+1 (b′, b′)) ,

where b’ is the belief state after msg ~ω2 (7)

Algorithm 6 is used for computing the probability that
agent 2 communicates the message ~ω2, Pr(~ω2|B

t
1)), and

the synchronized belief state b′ that results from this
communication.

In the case where neither agent 1 nor agent 2 per-
forms a Sync, the value function is defined as follows:

V no Sync
t (Bt

1, b) =
∑

et=〈st,~ω2〉 s.t. π2(~ω2) 6=Sync

Bt(et) · (R
(

st, 〈a1, π2(~ω2, T − t)〉
)

+
∑

ωt+1

1
∈Ω1

Pr(ωt+1
1 |Bt

1, a1) · Vt+1

(

Bt+1
1

)

) (8)

The first term (computed in lines 13-16 of Algo-
rithm 4) in equation 8 refers to the expected imme-
diate reward, while the second term (computed in lines
17-24 of Algorithm 4) refers to the expected future re-
ward. Bt+1

1 is the belief state updated after perform-
ing action a1 and observing ωt+1

1 and is computed us-
ing Algorithm 7.

Finally, Algorithm 8 shows us how we can convert
the value function from Equation 4 into the correspond-
ing policy in the compact representation.

5.1. Communication with constraints

The algorithm presented in Section 5 shows how to
find the locally optimal joint policy with no restrictions
imposed on how often the agents should communicate.
In the current sub-section, we impose constraints on
the communication policy, forcing the agents to not go
more than K steps without communicating. Thus no
policy π1 ∈ Π1 can be indexed by an observation his-
tory of length greater than K. In computing the value
function too, no episode can have a observation his-
tory of length greater than K. Thus by fixing K, we
can limit the space requirements of the program.

Such constraints on K can be imposed by making
small changes to the Algorithm 3 so that a count is
maintained of the number of steps without a Sync. Sec-
tion 6 shows detailed empirical results to justify the use
of such constraints by highlighting the savings in run
time and the increase in the complexity of the prob-
lems that can be solved.

6. Experimental Results

For the experiments in this section, we considered
the scenario in Section 3. For our very first experiment,



Algorithm 4 GetValueAction(Bt, a, b, Π2, t, T )

1: if a = Sync then
2: value← SyncCost

3: reachable(Bt)← ComUpdate(Bt)
4: for all

˙

Bt+1, prob
¸

∈ reachable(Bt) do

5: value
+
← prob ·GetValue(Bt+1, Bt+1, Π2, t + 1, T )

6: return value

7: else
8: π2 ← Π2(b)
9: value← 0

10: reachable(Bt)← ComUpdateOther(Bt, π2)
11: for all

˙

Bt+1, prob
¸

∈ reachable(Bt) do

12: value
+
← prob · [SyncCost +

GetValue(Bt+1, Bt+1, Π2, t + 1, T )]
13: for all et =

˙

st, ~ω2

¸

s.t. Bt(et) > 0 do
14: a2 ← π2(~ω2, T − t)
15: if a2 6= Sync then

16: value
+
← Bt(st, ~ω2) · R

`

st, 〈a1, π2(~ω2, T − t)〉
´

17: for all ω1 ∈ Ω1 do
18: Bt+1 ← Update(Bt, a, ω1, π2)
19: prob← 0
20: for all st, et+1 =

˙

st+1, ~ω2

¸

s.t. Bt+1(et+1) > 0 do
21: a2 ← π2(~ω2, T − t)
22: if a2 6= Sync then

23: prob
+
← Bt(st, ~ω2) · P (st, 〈a1, a2〉 , s

t+1) ·
O1(s

t+1, 〈a1, a2〉 , ω1)

24: value
+
← prob ·GetValue(Bt+1, b, Π2, t + 1, T )

25: return value

Algorithm 5 ComUpdate(Bt)

1: reachable(Bt)← ∅
2: for all et =

˙

st, ~ω2

¸

s.t. Bt(et) > 0 do

3: prob(~ω2)
+
← Bt(st, ~ω2)

4: for all ~ω2 do
5: for all et =

˙

st, ~ω2

¸

s.t. Bt(et) > 0 do
6: st+1 ← st

7: Bt+1(st+1, 〈〉)
+
← Bt(st, ~ω2)

8: normalize Bt+1

9: reachable(Bt)
∪

←
˙

Bt+1, prob(~ω2)
¸

10: return reachable(Bt)

Algorithm 6 ComUpdateOther(Bt, π2)

1: reachable(Bt)← ∅
2: for all et =

˙

st, ~ω2

¸

s.t. Bt(et) > 0 do

3: prob(~ω2)
+
← Bt(st, ~ω2)

4: for all ~ω2 do
5: if π2(~ω2, T − t) = Sync then
6: for all et =

˙

st, ~ω2

¸

s.t. Bt(et) > 0 do
7: st+1 ← st

8: Bt+1(st+1, 〈〉)
+
← Bt(st, ~ω2)

9: normalize Bt+1(st+1, 〈〉)

10: reachable(Bt)
∪

←
˙

Bt+1, prob(~ω2)
¸

11: return reachable(Bt)

Algorithm 7 Update(Bt, a, ω1, π2)

1: for all et+1 =
˙

st+1, 〈~ω2, ω2〉
¸

do
2: Bt+1(et+1)← 0
3: a2 ← π2(~ω2, T − t)
4: if a2 6= Sync then
5: for all st ∈ S do
6: Bt+1(et+1)

+
← Bt(st, ~ω2) · P (st, 〈a1, a2〉 , s

t+1) ·
O1(s

t+1, 〈a1, a2〉 , ω1) ·O2(s
t+1, 〈a1, a2〉 , ω2)

7: normalize Bt+1

8: return Bt+1

Algorithm 8 FindPolicy(Bt, b, ~ω1, Π2, t, T )

1: if t > T then
2: return
3: a∗ ← arg maxa1

V t

a1
(Bt, b)

4: π1 ← Π1(b)
5: π1( ~ω1, T − t)← a∗

6: if a∗ = Sync then
7: Bt+1 ← ComUpdate(Bt)
8: FindPolicy(Bt+1, Bt+1, 〈〉 , Π2, t + 1, T )
9: else

10: π2 ← Π2(b)
11: Bt+1 ← ComUpdateOther(Bt, π2)
12: FindPolicy(Bt+1, Bt+1, 〈〉 , Π2, t + 1, T )
13: for all ω1 ∈ Ω1 do
14: Bt+1 ← Update(Bt, a∗, ω1, π2)
15: FindPolicy(Bt+1, b, 〈 ~ω1, ω1〉 , Π2, t + 1, T )
16: Π1(b)← π1

we compared the run times for finding a locally opti-
mal policy for various time horizons using various dif-
ferent communication policies. In Figure 2(a), X-axis
shows the time horizon T , while the Y-axis shows the
run time in milliseconds on a logarithmic scale. When
K is equal to the time horizon, T , the communication
is said to be unrestricted. As can be seen by compar-
ing No Comm (No Communication) with unrestricted
communication (K = T ), introducing communication
results in substantial savings in terms of run time. For
instance at K = T = 7, there is more than a two-
fold speedup for unrestricted communication over No
Comm. These speed-ups become even more significant
when we impose a constraint that the agents cannot go
for more than K epochs without communicating. Also
note that the gradients of the curves in Figure 2(a) are
different, so the differences become exponentially large
as T increases. Figure 2(b) shows that the run time
(Y-axis) for finding the joint policy increases as K is
increased(X-axis) for T = 7. Thus, we find that the run
time increases as the amount of communication is re-
duced. The speed-ups in terms of run time are more
pronounced for low K, e.g. at T = 7, there is a 37-fold
speed-up for K = 3 over No Comm. All the run time
values in Figure 2 are averaged over five runs to ac-
count for any variability in the run time environment.



Introduction of communication, also has a signif-
icant impact on memory requirements. This is evi-
denced by the fact that the program runs out of mem-
ory for T > 7 using No Comm but can run for T = 10
using K = 4.
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Figure 2. Run time(ms) for finding optimal joint
policy for differentK andnocommunicationwith
Athlon, 1.8GHz, 4GBmemory, LinuxRedhat 7.3,
AllegroCommonLisp 6.2, a) (top) varyingT (log
scale), b) (bottom) T=7

In our next experiment, we tried to determine the
impact that the communication strategy has on the
value of the joint policy that the program settles on.
As explained in Section 4, the value of the joint pol-
icy at equilibrium depends on the starting policy that
the JESP loop starts with. In Figure 3, we show the
value obtained for various communication policies over
a finite horizon of 7 using two different starting poli-
cies. Figure 3(a) has a policy with Sync when t =
K +1, 2K +2, 3K +3, etc. and Listen at all other deci-
sion epoch as the default starting policy, while Fig-
ure 3(b) uses a policy which we call reasonable de-

fault policy. The only difference between the two de-
fault policies is that in the reasonable policy the agent
will choose to open a door after synchronization if it be-
lieve that the tiger is behind the other door with prob-
ability greater than some threshold value(set at 5/6
for this experiment). The first thing to notice in Fig-
ures 3(a) and 3(b) is that the value of the policy is
increased through the introduction of communication.
This is because there is less mis-coordination arising
from situations where agents open different doors or
one opens the wrong door while the other agent per-
forms Listen. We would expect that as K is reduced the
value of the policy found should reduce too since the
communication is more contrained with lower K. How-
ever, this is not always the case as evidenced in Fig-
ure 3(a), where the value of the joint policy found actu-
ally drops slightly when K is increased. This is because
having a bigger constraint on communication (lower K)
can sometimes cause the search to terminate at a dif-
ferent higher equilibrium.

Through the first two experiments we can conclude
that introducing communication often results in an im-
provement in value as well as savings in space and time.
In addition by imposing constraints on how often com-
munication must be performed, we can obtain further
improvements in terms of space and time although this
might be at the expense of expected value.

In our third experiment (see Figure 4), we varied
the cost of synchronization (X-axis) and determined
the optimal value of K (Y-axis). We defined the op-
timal value of K as the value of K such that increas-
ing K further does not yield any increase in value. As
seen in the figure, as synchronization becomes more
and more expensive the optimal K value increases.

7. Conclusion

Distributed POMDPs provide a rich framework to
model uncertainties and utilities in complex multiagent
domains, leading to significant recent research in ap-
plying these models in multiagent systems. The pro-
hibitive computational complexity in finding optimal
policies has led to a two pronged approach in the field:
(i) restrict the POMDP model and find a truly op-
timal policy for this restricted model; (ii) maintain
the rich model, but focus on local rather than global
optimality. While significant research has focused on
the first approach, including detailed investigation of
communication[12, 4], we pursue the second approach.
The key contribution of this paper is to investigate
the impact of communication within the completely
general distributed POMDP framework. We show how
communicative acts can be explicitly introduced in or-
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der to find locally optimal joint policies that allow
agents to coordinate better through synchronization
achieved via communication. Furthermore, the intro-
duction of communication allows us to develop a novel
compact policy representation that results in savings of
both space and time which are analyzed theoretically
and verified empirically. Finally, through the imposi-
tion of constraints on communication such as requir-
ing communication at least once every K steps, even
greater space and time savings can be obtained.
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