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Abstract. Many challenges in multi-agent coordination can be modeled as dis-
tributed constraint optimization problems (DCOPs) but complete algorithms do
not scale well nor respondfectively to dynamic or anytime environments. We
introduce a transformation of DCOPs into graphical games that allows us to de-
vise and analyze algorithms based on local utility and prove the monotonicity
property of a class of such algorithms. The game-theoretic framework also en-
ables us to characterize new equilibrium sets corresponding to a given degree of
agent coordination. A key result in this paper is the discovery of a novel mapping
between finite games and coding theory from which we can deteranpréri
bounds on the number of equilibria in these sets, which is useful in choosing the
appropriate level of coordination given the communication cost of an algorithm.

1 Introduction

A distributed constraint optimization problem (DCOP) [9, 11] is a useful formalism in
settings where distributed agents, each with control of some variables, attempt to op-
timize a global objective function characterized as the aggregation of distributed con-
straint utility functions. DCOPs can be applied for coordination in multi-agent domains,
including sensor nets, distributed spacecraft, disaster rescue simulations, and software
personal assistant agents. For example, sensor agents may need to choose appropriate
scanning regions to optimize targets tracked over the entire network, or personal assis-
tant agents may need to schedule multiple meetings in order to maximize the value of
their users’ time. As the scale of these domains become large, current complete algo-
rithms incur immense computation costs. A large-scale network of personal assistant
agents would require global optimization over hundreds of agents and thousands of
variables, which is currently very expensive. Though heuristics that significantly speed
up convergence have been developed [8], the complexity is still prohibitive in large-
scale domains. On the other hand, if we let each agent or variable react on the basis of
its local knowledge of neighbors and constraint utilities, we create a system that scales
up very easily and is far more robust to dynamic environments.

Recognizing the importance of local search algorithms, researchers initially intro-
duced DBA[12] and DSA[1] for Distributed CSPs, which were later extended to DCOPs
with weighted constraints [13]. While detailed experimental analyses of these algo-
rithms on DCOPs is available[13], we still lack theoretical tools that allow us to un-
derstand the evolution and performance of such algorithms on arbitrary DCOPs. To
provide such tools, this paper decomposes a DCOP into an equivalent grapho&
game which differs from graphical games with general reward functions [4, 10]. DCOP



games not only allow us to analyze existing local search algorithms, they also suggest
an evolution tdk-coordinatedalgorithms, where a collection &fagents coordinate their
actions in a single negotiation round, which leads to new notions of equilibria. For ex-
ample, a 2-coordinated algorithm would be an algorithm in which at most two agents
could coordinate their actions, and a 2-coordinated equilibrium would be a situation in
which no 2-coordinated algorithm could improve the quality of the assignment of values
to variables. A key contribution of this paper is the application of a mapping between
finite games and coding theory to determanpriori bounds on cardinality of equilib-

ria sets ofk-coordinated algorithms. Such bounds could be used to help determine an
appropriate level of coordination for agents to use to reach an assignment of variables
to values, in situations where the cost of coordination between multiple agents must be
weighed against the quality of the solution reached.

2 DCOP Gamesk-Coordinated Equilibria Sets and Bounds

We begin with a formal representation of a distributed constraint optimization problem
and an exposition to our notational structure. Vet {vi}iN: , denote a set of variables,
each of which can take avalvge = x € X, i € N = {1,...N}. Here, X; will be a
domain of finite cardinality/i € N. Interpreting each variable as a node in a graph,
let the symmetric matribE characterize a set of edges between varighdeles such
thatEj; = E; = 1 if an edge exists betweepn andv; andE;; = E; = 0, otherwise

(Eii = 0Vi). For each pairi( j) such that; = 1, letU;;(x, Xj) = U;i(Xj, %) represent a
reward obtained whew = x; andv; = x;. We can interpret this as a utility generated on
the edge betweew andv;, contingent simultaneously on the values of both variables
and hence referred to aganstraint The global or team utilityJ(x) is the sum of the
rewards on all the edges when the variables choose values according to the assignment
x e X = X3 X --- x Xy. Thus, the goal is to choose an assignmgng X, of values to
variables such that

X' € argma(x) = arg mgxl j; 1Uu(>q, X))
SJEij =

wherex; is thei-th variable’s value under an assignment vectar X. This con-
straintoptimizationproblem completely characterized by, €, U), wherel is the col-
lection of constraint utility functions, becomdsistributedin nature when control of the
variables is partitioned among a set of autonomous agents. For the rest of this paper,
we make the simplifying assumption that there ldragents, each in control of a single
variable.

We present a decomposition of the DCOP into a game as follows;; lbet called a
neighborof v; if Ejj = 1 and letV; = {j : j € N, Ej; = 1} be the indices of all neighbors
of thei-th variable. Let us defing; = [x;, --- xj, ], hereby referred to as@ntext be
a tuple which captures the values assigned td<ihe |Nj| neighboring variables of the
i-th variable, i.evj, = x;, whereU", jx = M.

In a DCOP game, for an assignmeqive define a utility functionur (x) for a team
of agents;T C N to be the sum of the utilities on all constraint links for which at least



one vertex represents an agent in the team, i.e.

UT(X)=Z Z Uij(Xi,Xj)—Z Z Uij (%, Xj).

i€T JiEj=1 i€T jeT,j>i,Ej=1

The utility for a single agenfl{ = {i}) is
ui(x) = Z Uij (%, X))

iEN:
Thus, in a DCOP game, team utilities are not the sums of individual utilities. We now
have @DCOP gamalefined by K, E, ur) whereur is a collection of the utility functions
for all teams.

In current local algorithms, agents change values based on anticipatefiispafyo
only their own utilities. Since DCOPs are inherently cooperative, it is natural for agents
to coordinate in order to improve global solution quality. DCOP games provide a frame-
work to analyze, categorize and evaluate such multi-agent coordination. Let us define a
k-concurrent deviatiofrom an assignment to be an assignmemntwhere exactiyk of
theN variables (agents) have valueffdient fromx, i.e.d(x, X) = [{i : X # %}| = k. We
now introduce the notion oflecoordinated equilibriunndefined to be an assignmexit
such that ifk < k,anyR—concurrent deviation from x*, i.e.d(x", X) < k, cannot improve
the team utility for the set of agents which deviatBdx*,X) = {i : X' # X} S N. A 1l-
coordinated equilibrium is identical to a Nash equilibrium@éc, X)| = d(x*, X) = 1is
a unilateral deviation and the team utility reduces to the utility; for a single agent.

Let Xke € X be the subset of the assignment space which captur&scabrdinated

equilibrium assignments:
Xee={XeX:XeX 1< d(X, )N() <k= UD(X;()(X) > UD()Q;)()?)}.

Proposition 1. If x* optimizes a DCOP characterized B, E, U), then X € Xy V Kk €
N.

Proof. Let us assume that* optimizes the DCOPX, E,U) and x* ¢ X« for some
k € N. Then, there exists somes"X such thatipx 5 (X*) < Upe,5(X). By adding

Ui, x)= > > U(%,. %)
igD(x*,%) jgD(x*,%),j>i igD(x",%) jgD(x*,%),j>i

to both sides, we can sha(x*) < U(X), which is a contradictiorm

Simply put, the proposition states that the optimal solution to the DCOPkis a
coordinated equilibrium for ak up to the number of variables in the system. In our
DCOP framework, we are optimizing over a finite set. Thus, we are guaranteed to have
an assignment that yields a maximum. By the previous proposition, this assignment is
an element oKye Yk € N, includingk = 1. Thus, we are guaranteed the existence of a
pure-strategy Nash equilibrium. This claim cannot be made for any arbitrary graphical
game [4, 10]. Furthermore, from the definition above we see tha&t fod,...,N — 1,
we haveXy.1)e € Xke because ik € Xy.1)e, we have

d(X7 )?) <k+1l1= UD(X,;()(X) > uD(x,)”()()?)



which impliesd(x,X) < k = upxg(X) = Upxy(X) and thus,x € Xce. Thus, ask
increases, the sets kfcoordinated equilibria can be pictured as a series of smaller and
smaller concentric circles, culminating in a single point, representing-to®rdinated
equilibrium fork = N, which is also the optimal solution to the DCOP.

In our notationX;g characterizes the set of all Nash equilibria (no unilateral devi-
ations) andXye characterizes the set of assignments that maximize global utility (no
N-agent deviations).

We exploit the set¥g in the design of a new class of DCOP local algorithms, and
analysis of their equilibrium points. In particular, for a given algorittaptet Z, denote
the set of assignments at which the algorithm will remain stationary, i.e. the terminal
states. An algorithna is k-coordinatedif Z, € X¢e andZ, ¢ X1 for k < N or
Z, C Xne for k = N.

Example 1.Meeting Scheduling.Consider two agents trying to schedule a meeting at
either 7:00 AM or 1:00 PM with the constraint utility as follows(7,7) = 1, U(7,1) =
U(1,7)=-100U(1,1) = 10. Ifthe agents started at, (%), any 1-coordinated algorithm
would not be able to reach the global optimum, while 2-coordinated algorithms would.

Section 3 illustrates that existing local DCOP algorithms are special cases of such
k-coordinated algorithms with = 1, andk > 2 may improve solution quality but at a
higher communication cost.

Choosing an appropriate level kfcoordination given the higher communication
cost is thus a critical question, similar to the choice of neighborhood size in large-
neighborhood search in centralized constraint satisfaction. We assurketiatinated
algorithms are capable of searching any neighborhood ofistzempletely, although
the price for this completeness must be paid in the increasing number of messages re-
quired to ensure k-equilibrium for increasing.

To begin answering this question, we proviaeriori bounds on the number of
equilibria in setsXkg, €.g. a significant reduction in number of equilibria may justify a
jump fromk-coordination to K + 1) coordination.

We first consider games, where each player (agent) can choose grstrategies
(values), i.e]X| = g, Vi € N. We assume that the pa¥ystructure is such that the
optimalk-concurrent response to any context of cardinadlity k is unique. Otherwise,
any bound can be violated in the case where all assignments yield identical utilities
and every assignment is an optimal equilibrium point. Furthermore, we assume that
agents have the ability to communicate with all other agents to facilitatecalhcurrent
deviations (although such communication may be indirect, requiring message relay).

To find upper bounds for the numberletoordinated equilibria in such games, we
discovered a correspondence from games to coding theory [6, 5]. A fundamental prob-
lem in the theory of error-correcting codes is the determination of appropriate code-
words to use in a code. The code designer must balance the need for brevity, expres-
siveness, and error-correctability of the code, determined, respectively, by the length,
maximum number, and distinctiveness of the allowed codewords. A common measure
of the distinctiveness of two codewords is the Hamming distance, which is defined as
the number of places at which the codewordgedi

For our purposes, an assignment is analogous to a codeword of Hrfgtim an
alphabet of cardinality (Each variable in the DCOP maps to a place in a codeword,



and each member of the domain of the variables maps to a member of the alphabet from
which the codewords are created). An assignnxamhicth is ak-concurrent deviation
from an assignmenmt, can also be interpreted as two codewords with a Hamming dis-
tance ofk, whered(x,X) = |{i : x # X}| = k as stated earlier. IX; is ak-coordinated
equilibrium andxj is ak-concurrent deviation fronx;, X; cannot be &-coordinated
equilibrium point becausenxx (X) > Upxz(X) since there is a unique optimal response
to the contex{x; : i € N'\ D(x, X). Thus, ifx, is a diferentk-coordinated equilibrium,
thenx, cannot be reachable frora via ak-concurrent deviation (and vice-versa). In the
language of coding theory; andx, must be separated by a Hamming distance greater
thank. The problem of finding the maximum possible numbek-abordinated equilib-
ria can then be reduced to finding the maximum number of codewords in a codespace
of sizeg" such that the the minimum distance among any two codeworis ik + 1.

In coding theory literature, g-ary (n, M, d) code refers to a collection of length
words constructed over an alphalfeof cardinalityq whereM codewords are chosen
such that the minimum Hamming distance between any two codewords is at.|east
Aq(n,d) = maxM : Jan [, M, d) code over alphabet}. Three well-known bounds
for A¢(n, d) are the Hamming bound:

(CNE _
A.d) < q /{ > (i)(q—l)]
the Singleton bound:
Aq(n, d) < qn—dJrl

and the Plotkin bound:

Aq(n.d) < | d |

d-rn

Note that the Plotkin bound is only valid whem < d, wherer = 1-g*, andAg(n, d) =
g™ %1 [5]. For the special case of binarg € 2) codes, we can use the relation

Ag(n, 2r — 1) = Ag(ny, 2r)

[6] to obtain tighter bounds for even distances using the Hamming bounds for odd
distances. Thus, the numberletoordinated equilibria for a given, g andd = k+ 1
can be bounded by the tightest of the bounds mentioned above.

For non-binary codes, we note that the Hamming bound is identicdldodd + 1
whend is odd. The Hamming bound is derived by using a sphere packing argument
that states that the number of womglsmust be greater than the number of codewords
Aq(n, d) times the size of a sphere centered around each codeword. A spi{ere)
with centeru and radiug is the sefv e A" : d(u, V) < r}. It can be shown theBa(u,r)
in A" contains exactly_, g?)(q— 1) words. Ifd is odd, the tightest packing then occurs
with spheres of radiugl(- 1)/2 and each word can be uniquely assigned to the sphere of
a codeword closest to it. tf is even, it is possible for a word to be equidistant from two
codewords and it is unclear how to assign this word to a sphere. The Hamming bound



addresses this issue by simply using the bound obtained with the smaller didtahce

which leads to smaller spheres and hence a larger bound than necessary. In essence, this
ignores the contribution of a word that lies on the “boundary” to the volume of a sphere.
We show one can appropriately partition these boundary assignments to achieve tighter
bounds.

Proposition 2. For even d,

0 (a1 ¢
ZL(d 1)/2J< )(q 1) ZL(d 1)/2J( )(q —1) + (df/lz)(q _ 1)d/2(%) ’

Proof. It is clear that any word that has Hamming distah@e— 1)/2] or less from a
codeword belongs in the sphere of that codeword, because belonging to more than one
sphere under those conditions would violate the distance requirement of the code. Given
an even distance, each codeword will (sgg)(q— 1)%/2 words that arel/2 away from it.

It cannot claim all those words as other codewords may be seeing the same words. We
do know however that each of the words on the boundary can be seen by atendst

words as a word of length can be on the boundary of at messpheres. Furthermore,

each word on a boundary can be seen by at gt d) codewords, i.e. the number of
codewords in the space. Thus, each codeword can safely incorppraie(h, Aq(n, d)}

of each boundary word into its sphere. Aggregating over all the words on the boundary,
we can increase the volume of the spher¢ fy)(q - 1)2/ min{n, Ay(n, d)}. Using the
sphere packing argument,A§(n, d) < n, we have

[(d-1)/2] . n (q_l)d/z
@2 Al d)[ ()q‘l)'+(d/i<n ) }
q" - (o) - 1)2
SHED2 (M) - 1) =G

Ag(n,d) < min{

= Aq(n,d) <
and if Aq(n, d) > n, we have

L@-1y72] (Mg 12
d'>amd) Y (a1 %]

i=0

qn
ISV (M@- 1) + (gp)@—1)¥2(E)
Now, we have®g(n, d) < n = A¢(n, d) < Gy andAq(n, d) > n = Ay(n, d) < G,. We can
show thaiG; o n © G, o n, Yo € {<, >, =}. FurthermoreG; o n,G, 6 n & G; 6 G,.
Thus, wherG; < n, G, < n, we have both thab; is invalid andG; is the tighter bound
and wherG; > n,G; > n, G; isinvalid andG; is the tighter bound. We can then express
the bound as

= A4(n,d) <

Ag(n, d) < min{Gy, Go}.m

We refer to this as thmodified Hamming boundhe new bound appears to domi-
nate other bounds for fiiciently largen, for evend andq > 2. In Figure 1, we illustrate
the usefulness of our new bound.
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Fig. 1. Modified Hamming Bound

3 DCOP Algorithms: Analysis and Design

The DCOP gameperspective also aids in the analysis of existing local-utility based
algorithms and design of key new algorithms. Among existing DCOP algorithms, the
firstis the MGM (Maximum Gain Message) algorithm which is a modification of DBA
(Distributed Breakout Algorithm) [12] focused solely on gain message passing. DBA
cannot be directly applied because there is no global knowledge of solution quality
which is necessary to detect local minima. The second is DSA (Distributed Stochastic
Algorithm) [1], which is a homogeneous stationary randomized algorithm.

These algorithms work as follows: For synchronous running, let us defmendas
the duration between a change in assignment for a particular algorithm. A single round
could involve multiple broadcasts afessagesEvery time a messaging phase occurs
in a round, we will count that as orggycleand cycles will be our performance metric
for speed, as is common in DCOP literature. k& e X denote the assignments at the
beginning of then-th round. We assume that every algorithm will broadcast its current
value to all its neighbors at the beginning of the round taking up one cycle. Once agents
are aware of their current contexts, they will go through a process as determined by the
specific algorithm to decide which of them will be able to modify their value. For MGM,
each agent broadcasts a gain message to all its neighbors that represents the maximum
change in its local utility if it is allowed to act under the current context. An agent is
then allowed to act if its gain message is larger than all the gain messages it receives
from all its neighbors (ties can be broken through variable ordering or other methods).
For DSA, each agent generates a random number from a uniform distributionidn [0
and acts if that number is less than some threspdltie agent will only change value
if there is a local utility gain). We note that MGM has a cost of two cycles per round
while DSA has a cost of only one cycle per round.

Given the game-theoretic perspective introduced earlier, we recognize that MGM
and DSA are in fectk-coordinated algorithms, wheie= 1. In particular, these al-
gorithms allow only unilateral actions by single agents in a given context. One method
to improve the solution quality is for agents to coordinate actions with their neigh-
bors, thus giving rise t&-coordinated algorithm classes. We define two such classes
as MGMk and SCAKk (Stochastic Coordination Algorithm), which facilitate mono-
tonic and randomized evolution, respectively. DSA is in the SCA family of algorithms,



namely SCA-1. In thesk-coordinated algorithms, teams of upkagents can coor-
dinate value updates in order to maximizg(x) whereT is the set of agents in the
team.

Instantiating this concept in SCA-2, we allow agents to makers to neighboring
agents to perform a joint change of value, such that the sum of the utilities of the two
agents will increase. They become committed partners if ffez ceceiver determines
that team utility yields a greater gain than its unilateral move. To determine the roles of
offerer or receiver, each agent generates a random number from a uniform distribution
on [0,1] and becomes anfierer if that number is less than some threshmlénd a
receiver otherwise.

Let M c A denote the set of agents allowed to modify the values imttie
round. In SCA-2,M®™ includes all members of committed teams and uncommitted
agents who update with probability In MGM-2, additional rounds of message ex-
changes ensures thatiife M®™, theni belongs to a team (possibly a team of one)
whose gain is larger than the gains of the teams of all its neighbors.

MGM, DSA, and MGM-2 are presented in full in the appendix.

Through our game-theoretic framework, we are able to prove the following mono-
tonicity property of MGMK, where teams of up thagents can be formed.

Proposition 3. When applying MGM, the global utilit/(xX™) is strictly increasing
with respect to the round (n) untif% € Xye.

Proof. We assumeM® # 0, otherwise we would be at a Nash equilibrium. When
utilizing MGM, if i € M™ andE;; = 1, thenj ¢ M®™. If the i-th variable is allowed

to modify its value in a particular round, then its gain is higher than all its neighbors
gains. Consequently, all its neighbors would have received a gain message higher than
their own and thus, would not modify their values in that round. Because there exists at
least one neighbor for every variable, the set of agents who cannot modify their values
is not empty:M™° % 0. We havex™ % x™ vi € M® andx™? = X vi ¢ MO,

Also, u (XM ; XDy > u (" X) vi e M®, otherwise the-th player's gain message
would have been zero. Looking at the global utility, we have

U(X(n+l))
— U _(n+l)’ X(n+1)
i’j%:l " (X, i )
— U (n+l)’ X(_n+1) U (n+1)’ X(n+l)
i,i:%/ll(”), ’ (XI : ) ’ i,j:%/ll(“), ! (XI : )
jeM® Ej=1 jEM® Ejj=1
+ U (n+l), X(n+l) + U X§n+1), X(n+1)
i,,%;(m, 1 (x] j ) i’j:iQZM(n), 'J( i j )
jeM® Ejj=1 jeM® ;=1
= Z Uy (x™, xﬁ”)) + Z U;; (X, xﬁ”*l)) + Z Us; (X", xgn))
ijieM®, ijigM®, i,jiigM®,

jeM® E;j=1 jeM® Ej=1 jEMO Ejj=1



S b ¢ 3w ()« 3w (0)

ieM® jeM® i'j:i%Mm)’
jeM® E;j=1
> Z U (xi(”);x(_r})) + Z uj (xﬁ”);x(_“j)) + Z Uij (xi(”),x(j”))
ieM® jeM® -i’j:i(g)'\é(n)’l
jeM® Ejj=
= XU ¢ 3 ) 3 )
ijiieM®, ijigM®, i,jigM®,
jeM® E;=1 jeM® E;=1 jEM® E;=1
=U(x(”)).

The second equality is due to a partition of the summation indexes. The third equality
utilizes the properties that there are no neighbotd @ and that the values for variables
corresponding to indexes not M™ in the (1 + 1)-th round are identical to the values

in the n-th round. The strict inequality occurs because agent{h must be making

local utility gains. The remaining equalities are true by definition. Thus, MGM yields
monotonically increasing global utility until equilibriurm.

Furthermore, it is clear that an equilibrium will be reached because this algorithm
can be mapped to a discrete Hopfield model in which agents act as neurons which
"fire” by choosing a value. It has been shown that such networks always reach local
equilibrium [3].

But why is monotonicity important? In anytime domains where communication may
be halted arbitrarily and existing strategies must be executed, randomized algorithms
risk being terminated at highly undesirable assignments. Given a starting condition with
a minimum acceptable global utility, monotonic algorithms guarantee lower bounds on
performance in anytime environments.
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Fig. 2. MGM and DSA for a High-Stakes Scenario



Consider the example in Figure 2 which displays a sample trajectory for both MGM
and DSA with identical starting conditions for a high-stakes scenario with 40 variables
with three values each. Here, if two neighboring agents take the same value, a penalty of
-1000 is incurred. If they take fierent values, they obtain a reward ranging from 10 to
100. To allow for a “safe” starting point for such a dangerous scenario, if two neighbor-
ing agents choose zero as their values, neither a reward nor a penalty is obtained. The
figure is cropped to highlight the oscillation that occurs with DSA. In domains such as
independent path planning of trajectories for UAVS or rovers, in environments where
communication channels are unstable, bad assignments could lead to crashes whose
costs preclude the use of methods without guarantees of monotonicity.

In addition, monotonicity provides insight as to why coordination might lead to
better solution quality. Ik, > ki, we know that for all assignmertswherex € Xy, g, X ¢
X, there exists an assignment Xy,e reachable fronx such thatJ (%) > U(x). This
can be seen simply by running MGM-with initial assignmenk.

Example 2.The Traffic Light Game. Consider two variables, both of which can take
on the valuesed or green with a constraint that takes on utilities as follows:

U(red,red) = 0,U(red, green = U(greenred) = 1, U(greengreen = —100Q

Turning this DCOP into a game would require the agent for each variable to take the
utility of the single constraint as its local utility. Ifé€d, red) is the initial condition,

each agent would choose to alter its valugteenif given the opportunity to move. If

both agents are allowed to alter their value in the same round, we would end up in the
adverse stategteengreer). When using DSA, there is always a positive probability
for any time horizon thatgreen green will be the resulting assignment.

4 Experiments

We considered two domains. The first was a standard graph-coloring scenario, in which
a cost of one is incurred if two neighboring agents choose the same color, and no cost is
incurred otherwise. Real-world problems involving sensor networks, in which it may be
undesirable for neighboring sensors to be observing the same location, are commonly
mapped to this type of graph-coloring scenario. The second was a fully randomized
DCOP, in which every combination of values on a constraint between two neighboring
agents was assigned a random reward chosen uniformly from tfi set 10}.

In both domains, we used ten randomly generated graphs with 40 variables with
three values each, and 120 constraints. We ran: MGM, DSA with{.1, .3, .5, .7, .9},
MGM-2 with g € {.1, .3,.5,.7, .9} and SCA-2 with all combinations of the above values
of p andq (whereq is the probability of being anfeerer andp is the probability of
an uncommited agent acting). Each graph shows an evolution of global solution quality
averaged over 100 runs (with random start-states) each for ten examples with selected
values ofp andaq.

We used communication cycles as the metric for our experiments, as is common
in the DCOP literature, since it is assumed that communication is the speed bottleneck.
However, we note that, as we move from 1-coordinated to 2-coordinated algorithms, the
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computational cost each agemust incur can increase by a factor of as much agx|

as the agent can now consider the combination of its and all its neighbors’ moves.
However, in the 2-coordinated algorithms we present, each agent randomly picks a
single neighbojj to coordinate with, and so its computation is increased by a factor of
only [Xj|. Although each run was 256 cycles, the graphs display a cropped view to show
the important phenomena.

Figure 3A shows a comparison between MGM and DSA for several valups of
For graph coloring, MGM is dominated, first by DSA wigh= 0.5, and then by DSA
with p = 0.9. For the randomized DCOP, MGM is completely dominated by DSA with
p = 0.9. MGM does better in the high-stakes scenario as all DSA algorithms have a
negative solution quality (not shown in the graph) for the first few cycles. This hap-
pens because at the beginning of a run, almost every agent will want to move. As the
value ofp increases, more agents act simultaneously, and thus, many pairs of neighbors
are choosing the same value, causing large penalties. Thus, these results show that the
nature of the constraint utility function makes a fundament@édénce in which algo-
rithm dominates. Results from the high-stakes scenario contrast with [13] and show that
DSA is not necessarily the algorithm of choice compared with DBA across all domains.

Figure 3B shows a comparison between MGM and MGM-2, for several valugs of
In all domains, MGM-2 eventually reaches a higher solution quality after about thirty
cycles, despite the algorithms’ initial slowness. The stair-like shape of the MGM-2
curves is due to the fact that agents are changing values only once out of every five
cycles, due to the cycles used in communication. Of the three valugsioéwn in
the graphs, MGM-2 rises fastest whers= 0.5, but eventually reaches its highest aver-
age solution quality wheqg = 0.9, for each of the three domains. We note that, in the
high-stakes domain, the solution quality is positive at every cycle, due to the monotonic
property of both MGM and MGM-2. Thus, these experiments clearly verify the mono-
tonicity of MGM and MGM-2, and also show that MGM-2 reaches a higher solution
quality as expected.

Figure 3C shows a comparison between DSA and SCA-2pfer0.9 and several
values ofg. DSA starts out faster, but SCA-2 eventually overtakes it. The result of the
effect of g on SCA-2 appears inconclusive. Although SCA-2 with= 0.9 does not
achieve a solution quality above zero for the first 65 cycles, it eventually achieves a
solution quality comparable to SCA with lower valuesyof

Figure 3D shows a probability mass function (PMF) of solution quality for three
sets of assignments: the set of all assignments in the DEPEhe set of 1-coordinated
(Nash) equilibria Xig), and the set of 2-coordinated equilibrié:€£). Here we consid-
ered smaller scenarios with twelve variables, 36 constraints, and three values per vari-
able in order to investigate tractably explorable domains. In both domains, the solution
quality of the set of 2-coordinated equilibria (the set of equilibria to which MGM-2 and
SCA-2 must converge) is, on average, higher than the set of 1-coordinated equilibria,
potentially explaining the higher solution quality of the experimental runs. Even though
a higher level of coordination yields better solution quality, the relationship between
magnitude of improvement and theffdrence in solution qualities of the equilibrium
sets is not obvious. Trajectories may not be uniformly distributed over the equilibrium
sets. Investigating theséects is a ripe area for further investigation.



5 Related Work and Summary

Research in general graphical games has focused on centralized algorithms for finding
mixed-strategy Nash equilibria [4, 10]. DCOP games not only guarantee pure-strategy
Nash equilibria but also introdudecoordination and hendecoordinated equilibria.

In [2], coordination was achieved by forming coalitions representedrbgrzgagemwho

made the assignment decisions for all variables within the coalition. These methods
require high-volume communication to transfer utility function information and the ab-
dication of authority which is often infeasible or undesired in many distributed decision-
making environments. Furthermore, the cost of forming a coalition discourages rapid
commitment and detachment from teams. M&Mnd SCAk allow for coordination

while maintaining the underlying distributed decision-making process and allowing dy-
namic teaming in each round.

A fundamental novelty of our approach is our analysis of distriblitedordination
algorithms as well ak-coordinated equilibria. The key contributions of this paper in-
clude: (i) an introduction oDCOP gamegor analysis of DCOP algorithms, (ii) devel-
opment ofk-coordinated DCOP algorithms, (iii) identification of a mapping between
finite games and coding theory leadingagriori bounds on cardinality of equilibria
sets ofk-coordinated algorithms, (iv) improvement on the tightness of current bounds,
(v) proof of monotonicity of the MGMk class of algorithms and (vi) an investigation
of the equilibria sets of algorithms offtiring degrees of coordination.

We provided key experimental results, verifying our conclusions about monotonic-
ity and equilibria bounds. This paper is a significant extension of the authors’ previous
work in DCOP games [7], in whick-coordinated algorithms and equilibria were intro-
duced. Our results comparing 1-coordinated and 2-coordinated algorithms illustrate the
need to developficientk-coordination algorithms for highécrin the future.
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Appendix A: Algorithms

Algorithm 1 MGM (allNeighbors, currentValue)

1:

ONOU A WN

SendValueMessage(allNeighbors, currentValue)
;. currentContext GetValueMessages(allNeighbors)
. [gain,newValuel BestUnilateralGain(currentContext)
: SendGainMessage(allNeighbors,gain)
. neighborGains: ReceiveGainMessages(allNeighbors)
: if gain> max(neighborGainghen
currentValue= newValue
end if

Al

gorithm 2 DSA (allNeighbors, currentValue)

1

2:

3

4.
5:
6:

. SendValueMessage(allNeighbors, currentValue)
currentContext GetValueMessages(allNeighbors)
. [gain,newValue}l BestUnilateralGain(currentContext)
if Random(0,1x thresholdthen

currentValue= newValue
end if




Algorithm 3 MGM-2 (allNeighbors, currentValue)

13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:

1
2
3
4
5:
6: end if
7: [gain,newValuel BestUnilateralGain(currentContext)
8:
9
10
11
12

. SendValueMessage(allNeighbors, currentValue)
: currentContext GetValueMessages(allNeighbors); committedo
: if Random(0,1x offererThresholdhen

committed= yes; partnee= RandomNeighbor(allNeighbors)
Send@rerMessage(partner,allCoordinatedMoves(partner))

offers= ReceiveGrers(allNeighbors); ferReplySet U {offers.neighbdr

. if committed= nothen

best@er = FindBestQfer(offers)
if bestQfer.gain> gainthen
oferReplySet offerReplySet { bestQrer.neighboy
committed= yes; partnere bestQfer.neighbor
newValue= bestQfer.myNewValue; gais bestQter.gain
Send@erReplyMessage(partner, commit, beSe@partnerNewValue, gain)
end if
for all neighbore offerReplySetio
Send@erReplyMessage(neighbor, noCommit)
end for
end if
if committed= yesthen
reply= ReceiveGferReplyMessage(partner)
if reply= committhen
newValue= reply.myNewValue; gais- reply.gain
else
committed= no
end if
end if
SendGainMessage(allNeighbors,gain)
neighborGains: ReceiveGainMessages(allNeighbors); changeVaioe
if committed=yesthen
if gain> max(neighborGainghen
SendConfirmMessage(partner, go)
else
SendConfirmMessege(partner, noGo)
end if
confirmed= ReceiveConfirmMessage(partner)
if confirmed:-yesthen
changeValueyes
end if
else
if gain> max(neighborGainghen
changeValueyes
end if
end if
if changeValueyesthen
currentValue= newValue
end if




