
DCOP Games for Multi-agent Coordination

Jonathan P. Pearce, Rajiv T. Maheswaran and Milind Tambe

University of Southern California, Los Angeles, CA 90089, USA
{jppearce, maheswar, tambe}@usc.edu

Abstract. Many challenges in multi-agent coordination can be modeled as dis-
tributed constraint optimization problems (DCOPs) but complete algorithms do
not scale well nor respond effectively to dynamic or anytime environments. We
introduce a transformation of DCOPs into graphical games that allows us to de-
vise and analyze algorithms based on local utility and prove the monotonicity
property of a class of such algorithms. The game-theoretic framework also en-
ables us to characterize new equilibrium sets corresponding to a given degree of
agent coordination. A key result in this paper is the discovery of a novel mapping
between finite games and coding theory from which we can determinea priori
bounds on the number of equilibria in these sets, which is useful in choosing the
appropriate level of coordination given the communication cost of an algorithm.

1 Introduction

A distributed constraint optimization problem (DCOP) [9, 11] is a useful formalism in
settings where distributed agents, each with control of some variables, attempt to op-
timize a global objective function characterized as the aggregation of distributed con-
straint utility functions. DCOPs can be applied for coordination in multi-agent domains,
including sensor nets, distributed spacecraft, disaster rescue simulations, and software
personal assistant agents. For example, sensor agents may need to choose appropriate
scanning regions to optimize targets tracked over the entire network, or personal assis-
tant agents may need to schedule multiple meetings in order to maximize the value of
their users’ time. As the scale of these domains become large, current complete algo-
rithms incur immense computation costs. A large-scale network of personal assistant
agents would require global optimization over hundreds of agents and thousands of
variables, which is currently very expensive. Though heuristics that significantly speed
up convergence have been developed [8], the complexity is still prohibitive in large-
scale domains. On the other hand, if we let each agent or variable react on the basis of
its local knowledge of neighbors and constraint utilities, we create a system that scales
up very easily and is far more robust to dynamic environments.

Recognizing the importance of local search algorithms, researchers initially intro-
duced DBA[12] and DSA[1] for Distributed CSPs, which were later extended to DCOPs
with weighted constraints [13]. While detailed experimental analyses of these algo-
rithms on DCOPs is available[13], we still lack theoretical tools that allow us to un-
derstand the evolution and performance of such algorithms on arbitrary DCOPs. To
provide such tools, this paper decomposes a DCOP into an equivalent graphicalDCOP
game, which differs from graphical games with general reward functions [4, 10]. DCOP

games not only allow us to analyze existing local search algorithms, they also suggest
an evolution tok-coordinatedalgorithms, where a collection ofk agents coordinate their
actions in a single negotiation round, which leads to new notions of equilibria. For ex-
ample, a 2-coordinated algorithm would be an algorithm in which at most two agents
could coordinate their actions, and a 2-coordinated equilibrium would be a situation in
which no 2-coordinated algorithm could improve the quality of the assignment of values
to variables. A key contribution of this paper is the application of a mapping between
finite games and coding theory to determinea priori bounds on cardinality of equilib-
ria sets ofk-coordinated algorithms. Such bounds could be used to help determine an
appropriate level of coordination for agents to use to reach an assignment of variables
to values, in situations where the cost of coordination between multiple agents must be
weighed against the quality of the solution reached.

2 DCOP Games,k-Coordinated Equilibria Sets and Bounds

We begin with a formal representation of a distributed constraint optimization problem
and an exposition to our notational structure. LetV ≡ {vi}

N
i=1 denote a set of variables,

each of which can take a valuevi = xi ∈ Xi , i ∈ N ≡ {1, . . .N}. Here,Xi will be a
domain of finite cardinality∀i ∈ N . Interpreting each variable as a node in a graph,
let the symmetric matrixE characterize a set of edges between variables/nodes such
that Ei j = E ji = 1 if an edge exists betweenvi andv j andEi j = E ji = 0, otherwise
(Eii = 0 ∀i). For each pair (i, j) such thatEi j = 1, letUi j (xi , x j) = U ji (x j , xi) represent a
reward obtained whenvi = xi andv j = x j . We can interpret this as a utility generated on
the edge betweenvi andv j , contingent simultaneously on the values of both variables
and hence referred to as aconstraint. The global or team utilityU(x) is the sum of the
rewards on all the edges when the variables choose values according to the assignment
x ∈ X ≡ X1 × · · · × XN. Thus, the goal is to choose an assignment,x∗ ∈ X, of values to
variables such that

x∗ ∈ arg max
x∈X

U(x) = arg max
x∈X

∑
i, j:Ei j=1

Ui j (xi , x j)

wherexi is the i-th variable’s value under an assignment vectorx ∈ X. This con-
straintoptimizationproblem completely characterized by (X,E,U), whereU is the col-
lection of constraint utility functions, becomesdistributedin nature when control of the
variables is partitioned among a set of autonomous agents. For the rest of this paper,
we make the simplifying assumption that there areN agents, each in control of a single
variable.

We present a decomposition of the DCOP into a game as follows. Letv j be called a
neighborof vi if Ei j = 1 and letNi ≡ { j : j ∈ N ,Ei j = 1} be the indices of all neighbors
of the i-th variable. Let us definex−i ≡ [x j1 · · · x jKi

], hereby referred to as acontext, be
a tuple which captures the values assigned to theKi ≡ |Ni | neighboring variables of the
i-th variable, i.e.v jk = x jk where∪Ki

k=1 jk = Ni .
In a DCOP game, for an assignmentx, we define a utility functionuT(x) for a team

of agents,T ⊆ N to be the sum of the utilities on all constraint links for which at least

one vertex represents an agent in the team, i.e.

uT(x) =
∑
i∈T

∑
j:Ei j=1

Ui j (xi , x j) −
∑
i∈T

∑
j∈T, j>i,Ei j=1

Ui j (xi , x j).

The utility for a single agent (T = {i}) is

ui(x) ≡
∑
j∈Ni

Ui j (xi , x j)

Thus, in a DCOP game, team utilities are not the sums of individual utilities. We now
have aDCOP gamedefined by (X,E,uT) whereuT is a collection of the utility functions
for all teams.

In current local algorithms, agents change values based on anticipated payoffs of
only their own utilities. Since DCOPs are inherently cooperative, it is natural for agents
to coordinate in order to improve global solution quality. DCOP games provide a frame-
work to analyze, categorize and evaluate such multi-agent coordination. Let us define a
k-concurrent deviationfrom an assignmentx to be an assignment ˜x where exactlyk of
theN variables (agents) have values different fromx, i.e.d(x, x̃) ≡ |{i : xi , x̃i}| = k. We
now introduce the notion of ak-coordinated equilibrium, defined to be an assignmentx∗

such that if̂k ≤ k,anyk̂-concurrent deviation ˜x from x∗, i.e.d(x∗, x̃) ≤ k̂, cannot improve
the team utility for the set of agents which deviated,D(x∗, x̃) ≡ {i : x∗i , x̃i} ⊆ N . A 1-
coordinated equilibrium is identical to a Nash equilibrium as|D(x∗, x̃)| = d(x∗, x̃) = 1 is
a unilateral deviation and the team utilityuT reduces to the utilityui for a single agent.
Let XkE ⊆ X be the subset of the assignment space which captures allk-coordinated
equilibrium assignments:

XkE ≡ {x ∈ X : x̃ ∈ X,1 ≤ d(x, x̃) ≤ k⇒ uD(x,x̃)(x) ≥ uD(x,x̃)(x̃)}.

Proposition 1. If x∗ optimizes a DCOP characterized by(X,E,U), then x∗ ∈ XkE ∀ k ∈
N .

Proof. Let us assume thatx∗ optimizes the DCOP (X,E,U) and x∗ < XkE for some
k ∈ N . Then, there exists some ˜x ∈ X such thatuD(x∗,x̃)(x∗) < uD(x∗,x̃)(x̃). By adding∑

i<D(x∗,x̃)

∑
j<D(x∗,x̃), j>i

Ui j (x
∗
i , x
∗
j) =

∑
i<D(x∗,x̃)

∑
j<D(x∗,x̃), j>i

Ui j (x̃i , x̃ j)

to both sides, we can showU(x∗) < U(x̃), which is a contradiction.�
Simply put, the proposition states that the optimal solution to the DCOP is ak-

coordinated equilibrium for allk up to the number of variables in the system. In our
DCOP framework, we are optimizing over a finite set. Thus, we are guaranteed to have
an assignment that yields a maximum. By the previous proposition, this assignment is
an element ofXkE ∀k ∈ N , includingk = 1. Thus, we are guaranteed the existence of a
pure-strategy Nash equilibrium. This claim cannot be made for any arbitrary graphical
game [4, 10]. Furthermore, from the definition above we see that fork = 1, . . . ,N − 1,
we haveX(k+1)E ⊆ XkE because ifx ∈ X(k+1)E, we have

d(x, x̃) ≤ k+ 1⇒ uD(x,x̃)(x) ≥ uD(x,x̃)(x̃)

which impliesd(x, x̃) ≤ k ⇒ uD(x,x̃)(x) ≥ uD(x,x̃)(x̃) and thus,x ∈ XkE. Thus, ask
increases, the sets ofk-coordinated equilibria can be pictured as a series of smaller and
smaller concentric circles, culminating in a single point, representing thek-coordinated
equilibrium fork = N, which is also the optimal solution to the DCOP.

In our notationX1E characterizes the set of all Nash equilibria (no unilateral devi-
ations) andXNE characterizes the set of assignments that maximize global utility (no
N-agent deviations).

We exploit the setsXkE in the design of a new class of DCOP local algorithms, and
analysis of their equilibrium points. In particular, for a given algorithmα, let Zα denote
the set of assignments at which the algorithm will remain stationary, i.e. the terminal
states. An algorithmα is k-coordinatedif Zα ⊆ XkE andZα * X(k+1)E for k < N or
Zα ⊆ XNE for k = N.

Example 1.Meeting Scheduling.Consider two agents trying to schedule a meeting at
either 7:00 AM or 1:00 PM with the constraint utility as follows:U(7,7) = 1,U(7,1) =
U(1,7) = −100,U(1,1) = 10. If the agents started at (7,7), any 1-coordinated algorithm
would not be able to reach the global optimum, while 2-coordinated algorithms would.

Section 3 illustrates that existing local DCOP algorithms are special cases of such
k-coordinated algorithms withk = 1, andk ≥ 2 may improve solution quality but at a
higher communication cost.

Choosing an appropriate level ofk-coordination given the higher communication
cost is thus a critical question, similar to the choice of neighborhood size in large-
neighborhood search in centralized constraint satisfaction. We assume thatk-coordinated
algorithms are capable of searching any neighborhood of sizek completely, although
the price for this completeness must be paid in the increasing number of messages re-
quired to ensure ak-equilibrium for increasingk.

To begin answering this question, we providea priori bounds on the number of
equilibria in setsXkE, e.g. a significant reduction in number of equilibria may justify a
jump fromk-coordination to (k+ 1) coordination.

We first consider games, where each player (agent) can choose amongq strategies
(values), i.e.|Xi | = q, ∀i ∈ N . We assume that the payoff structure is such that the
optimalk-concurrent response to any context of cardinalityN− k is unique. Otherwise,
any bound can be violated in the case where all assignments yield identical utilities
and every assignment is an optimal equilibrium point. Furthermore, we assume that
agents have the ability to communicate with all other agents to facilitate allk-concurrent
deviations (although such communication may be indirect, requiring message relay).

To find upper bounds for the number ofk-coordinated equilibria in such games, we
discovered a correspondence from games to coding theory [6, 5]. A fundamental prob-
lem in the theory of error-correcting codes is the determination of appropriate code-
words to use in a code. The code designer must balance the need for brevity, expres-
siveness, and error-correctability of the code, determined, respectively, by the length,
maximum number, and distinctiveness of the allowed codewords. A common measure
of the distinctiveness of two codewords is the Hamming distance, which is defined as
the number of places at which the codewords differ.

For our purposes, an assignment is analogous to a codeword of lengthN from an
alphabet of cardinalityq (Each variable in the DCOP maps to a place in a codeword,

and each member of the domain of the variables maps to a member of the alphabet from
which the codewords are created). An assignment ˜x which is ak-concurrent deviation
from an assignmentx, can also be interpreted as two codewords with a Hamming dis-
tance ofk, whered(x, x̃) ≡ |{i : xi , x̃i}| = k as stated earlier. Ifx1 is ak-coordinated
equilibrium and ˜x1 is a k-concurrent deviation fromx1, x̃1 cannot be ak-coordinated
equilibrium point becauseuD(x,x̃)(x) > uD(x,x̃)(x̃) since there is a unique optimal response
to the context{xi : i ∈ N \ D(x, x̃). Thus, if x2 is a differentk-coordinated equilibrium,
thenx2 cannot be reachable fromx1 via ak-concurrent deviation (and vice-versa). In the
language of coding theory,x1 andx2 must be separated by a Hamming distance greater
thank. The problem of finding the maximum possible number ofk-coordinated equilib-
ria can then be reduced to finding the maximum number of codewords in a codespace
of sizeqN such that the the minimum distance among any two codewords isd = k+ 1.

In coding theory literature, aq-ary (n,M,d) code refers to a collection of lengthn
words constructed over an alphabetA of cardinalityq whereM codewords are chosen
such that the minimum Hamming distance between any two codewords is at leastd. Let
Aq(n,d) ≡ max{M : ∃ an (n,M,d) code over alphabetA}. Three well-known bounds
for Aq(n,d) are the Hamming bound:

Aq(n,d) ≤ qn/

b(d−1)/2c∑
i=0

(
n
i

)
(q− 1)i


the Singleton bound:

Aq(n,d) ≤ qn−d+1

and the Plotkin bound:

Aq(n,d) ≤
⌊ d
d − rn

⌋
Note that the Plotkin bound is only valid whenrn < d, wherer = 1−q−1, andAS

q (n,d) =
qn−d+1 [5]. For the special case of binary (q = 2) codes, we can use the relation

Aq(n,2r − 1) = Aq(n1,2r)

[6] to obtain tighter bounds for even distances using the Hamming bounds for odd
distances. Thus, the number ofk-coordinated equilibria for a givenn,q andd = k + 1
can be bounded by the tightest of the bounds mentioned above.

For non-binary codes, we note that the Hamming bound is identical ford andd+ 1
whend is odd. The Hamming bound is derived by using a sphere packing argument
that states that the number of wordsqn must be greater than the number of codewords
Aq(n,d) times the size of a sphere centered around each codeword. A sphereSA(u, r)
with centeru and radiusr is the set{v ∈ An : d(u, v) ≤ r}. It can be shown thatSA(u, r)
in An contains exactly

∑r
i=0

(
n
i

)
(q−1)i words. Ifd is odd, the tightest packing then occurs

with spheres of radius (d−1)/2 and each word can be uniquely assigned to the sphere of
a codeword closest to it. Ifd is even, it is possible for a word to be equidistant from two
codewords and it is unclear how to assign this word to a sphere. The Hamming bound

addresses this issue by simply using the bound obtained with the smaller distanced−1,
which leads to smaller spheres and hence a larger bound than necessary. In essence, this
ignores the contribution of a word that lies on the “boundary” to the volume of a sphere.
We show one can appropriately partition these boundary assignments to achieve tighter
bounds.

Proposition 2. For even d,

Aq(n,d) ≤ min

 qn −
(

n
d/2

)
(q− 1)d/2∑b(d−1)/2c

i=0

(
n
i

)
(q− 1)i

,
qn∑b(d−1)/2c

i=0

(
n
i

)
(q− 1)i +

(
n

d/2

)
(q− 1)d/2(1

n)

 .
Proof. It is clear that any word that has Hamming distanceb(d − 1)/2c or less from a
codeword belongs in the sphere of that codeword, because belonging to more than one
sphere under those conditions would violate the distance requirement of the code. Given
an even distance, each codeword will see

(
n

d/2

)
(q−1)d/2 words that ared/2 away from it.

It cannot claim all those words as other codewords may be seeing the same words. We
do know however that each of the words on the boundary can be seen by at mostn code-
words as a word of lengthn can be on the boundary of at mostn spheres. Furthermore,
each word on a boundary can be seen by at mostAq(n,d) codewords, i.e. the number of
codewords in the space. Thus, each codeword can safely incorporate 1/min {n,Aq(n,d)}
of each boundary word into its sphere. Aggregating over all the words on the boundary,
we can increase the volume of the sphere by

(
n

d/2

)
(q− 1)d/2/min {n,Aq(n,d)}. Using the

sphere packing argument, ifAq(n,d) ≤ n, we have

qn ≥ Aq(n,d)

[b(d−1)/2c∑
i=0

(
n
i

)
(q− 1)i +

(
n

d/2

)
(q− 1)d/2

Aq(n,d)

]

⇒ Aq(n,d) ≤
qn −

(
n

d/2

)
(q− 1)d/2∑b(d−1)/2c

i=0

(
n
i

)
(q− 1)i

≡ G1,

and if Aq(n,d) ≥ n, we have

qn ≥ Aq(n,d)

[b(d−1)/2c∑
i=0

(
n
i

)
(q− 1)i +

(
n

d/2

)
(q− 1)d/2

n

]
⇒ Aq(n,d) ≤

qn∑b(d−1)/2c
i=0

(
n
i

)
(q− 1)i +

(
n

d/2

)
(q− 1)d/2(1

n)
≡ G2.

Now, we haveAq(n,d) ≤ n⇒ Aq(n,d) ≤ G1 andAq(n,d) ≥ n⇒ Aq(n,d) ≤ G2.We can
show thatG1 � n⇔ G2 � n, ∀� ∈ {<, >,=}. Furthermore,G1 � n,G2 � n⇔ G1 �G2.
Thus, whenG1 < n,G2 < n, we have both thatG2 is invalid andG1 is the tighter bound
and whenG1 > n,G2 > n, G1 is invalid andG2 is the tighter bound. We can then express
the bound as

Aq(n,d) ≤ min{G1,G2}.�

We refer to this as themodified Hamming bound. The new bound appears to domi-
nate other bounds for sufficiently largen, for evend andq > 2. In Figure 1, we illustrate
the usefulness of our new bound.

Fig. 1.Modified Hamming Bound

3 DCOP Algorithms: Analysis and Design

The DCOP gameperspective also aids in the analysis of existing local-utility based
algorithms and design of key new algorithms. Among existing DCOP algorithms, the
first is the MGM (Maximum Gain Message) algorithm which is a modification of DBA
(Distributed Breakout Algorithm) [12] focused solely on gain message passing. DBA
cannot be directly applied because there is no global knowledge of solution quality
which is necessary to detect local minima. The second is DSA (Distributed Stochastic
Algorithm) [1], which is a homogeneous stationary randomized algorithm.

These algorithms work as follows: For synchronous running, let us define aroundas
the duration between a change in assignment for a particular algorithm. A single round
could involve multiple broadcasts ofmessages. Every time a messaging phase occurs
in a round, we will count that as onecycleand cycles will be our performance metric
for speed, as is common in DCOP literature. Letx(n) ∈ X denote the assignments at the
beginning of then-th round. We assume that every algorithm will broadcast its current
value to all its neighbors at the beginning of the round taking up one cycle. Once agents
are aware of their current contexts, they will go through a process as determined by the
specific algorithm to decide which of them will be able to modify their value. For MGM,
each agent broadcasts a gain message to all its neighbors that represents the maximum
change in its local utility if it is allowed to act under the current context. An agent is
then allowed to act if its gain message is larger than all the gain messages it receives
from all its neighbors (ties can be broken through variable ordering or other methods).
For DSA, each agent generates a random number from a uniform distribution on [0,1]
and acts if that number is less than some thresholdp (the agent will only change value
if there is a local utility gain). We note that MGM has a cost of two cycles per round
while DSA has a cost of only one cycle per round.

Given the game-theoretic perspective introduced earlier, we recognize that MGM
and DSA are in effect k-coordinated algorithms, wherek = 1. In particular, these al-
gorithms allow only unilateral actions by single agents in a given context. One method
to improve the solution quality is for agents to coordinate actions with their neigh-
bors, thus giving rise tok-coordinated algorithm classes. We define two such classes
as MGM-k and SCA-k (Stochastic Coordination Algorithm), which facilitate mono-
tonic and randomized evolution, respectively. DSA is in the SCA family of algorithms,

namely SCA-1. In thesek-coordinated algorithms, teams of up tok agents can coor-
dinate value updates in order to maximizeuT(x) whereT is the set of agents in the
team.

Instantiating this concept in SCA-2, we allow agents to make offers to neighboring
agents to perform a joint change of value, such that the sum of the utilities of the two
agents will increase. They become committed partners if the offer receiver determines
that team utility yields a greater gain than its unilateral move. To determine the roles of
offerer or receiver, each agent generates a random number from a uniform distribution
on [0,1] and becomes an offerer if that number is less than some thresholdq, and a
receiver otherwise.

Let M(n) ⊆ N denote the set of agents allowed to modify the values in then-th
round. In SCA-2,M(n) includes all members of committed teams and uncommitted
agents who update with probabilityp. In MGM-2, additional rounds of message ex-
changes ensures that ifi ∈ M(n), then i belongs to a team (possibly a team of one)
whose gain is larger than the gains of the teams of all its neighbors.

MGM, DSA, and MGM-2 are presented in full in the appendix.
Through our game-theoretic framework, we are able to prove the following mono-

tonicity property of MGM-k, where teams of up tok agents can be formed.

Proposition 3. When applying MGM, the global utilityU(x(n)) is strictly increasing
with respect to the round (n) until x(n) ∈ XNE.

Proof. We assumeM(n) , ∅, otherwise we would be at a Nash equilibrium. When
utilizing MGM, if i ∈ M(n) andEi j = 1, then j < M(n). If the i-th variable is allowed
to modify its value in a particular round, then its gain is higher than all its neighbors
gains. Consequently, all its neighbors would have received a gain message higher than
their own and thus, would not modify their values in that round. Because there exists at
least one neighbor for every variable, the set of agents who cannot modify their values
is not empty:M(n)C , ∅. We havex(n+1)

i , x(n)
i ∀i ∈ M(n) andx(n+1)

i = x(n)
i ∀i < M(n).

Also, ui(x
(n+1)
i ; x(n)

−i) > ui(x
(n)
i ; x(n)

−i) ∀i ∈ M(n), otherwise thei-th player’s gain message
would have been zero. Looking at the global utility, we have

U
(
x(n+1)

)
=

∑
i, j:Ei j=1

Ui j

(
x(n+1)

i , x(n+1)
j

)
=

∑
i, j:i∈M(n),

j∈M(n),Ei j=1

Ui j

(
x(n+1)

i , x(n+1)
j

)
+

∑
i, j:i∈M(n),

j<M(n),Ei j=1

Ui j

(
x(n+1)

i , x(n+1)
j

)

+
∑

i, j:i<M(n),
j∈M(n),Ei j=1

Ui j

(
x(n+1)

i , x(n+1)
j

)
+

∑
i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(
x(n+1)

i , x(n+1)
j

)

=
∑

i, j:i∈M(n),
j<M(n),Ei j=1

Ui j

(
x(n+1)

i , x(n)
j

)
+

∑
i, j:i<M(n),

j∈M(n),Ei j=1

Ui j

(
x(n)

i , x
(n+1)
j

)
+

∑
i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(
x(n)

i , x
(n)
j

)

=
∑

i∈M(n)

ui

(
x(n+1)

i ; x(n)
−i

)
+

∑
j∈M(n)

u j

(
x(n+1)

j ; x(n)
− j

)
+

∑
i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(
x(n)

i , x
(n)
j

)

>
∑

i∈M(n)

ui

(
x(n)

i ; x(n)
−i

)
+

∑
j∈M(n)

u j

(
x(n)

j ; x(n)
− j

)
+

∑
i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(
x(n)

i , x
(n)
j

)

=
∑

i, j:i∈M(n),
j<M(n),Ei j=1

Ui j

(
x(n)

i , x
(n)
j

)
+

∑
i, j:i<M(n),

j∈M(n),Ei j=1

Ui j

(
x(n)

i , x
(n)
j

)
+

∑
i, j:i<M(n),

j<M(n),Ei j=1

Ui j

(
x(n)

i , x
(n)
j

)

= U
(
x(n)

)
.

The second equality is due to a partition of the summation indexes. The third equality
utilizes the properties that there are no neighbors inM(n) and that the values for variables
corresponding to indexes not inM(n) in the (n+ 1)-th round are identical to the values
in then-th round. The strict inequality occurs because agents inM(n) must be making
local utility gains. The remaining equalities are true by definition. Thus, MGM yields
monotonically increasing global utility until equilibrium.�

Furthermore, it is clear that an equilibrium will be reached because this algorithm
can be mapped to a discrete Hopfield model in which agents act as neurons which
”fire” by choosing a value. It has been shown that such networks always reach local
equilibrium [3].

But why is monotonicity important? In anytime domains where communication may
be halted arbitrarily and existing strategies must be executed, randomized algorithms
risk being terminated at highly undesirable assignments. Given a starting condition with
a minimum acceptable global utility, monotonic algorithms guarantee lower bounds on
performance in anytime environments.

Fig. 2.MGM and DSA for a High-Stakes Scenario

Consider the example in Figure 2 which displays a sample trajectory for both MGM
and DSA with identical starting conditions for a high-stakes scenario with 40 variables
with three values each. Here, if two neighboring agents take the same value, a penalty of
-1000 is incurred. If they take different values, they obtain a reward ranging from 10 to
100. To allow for a “safe” starting point for such a dangerous scenario, if two neighbor-
ing agents choose zero as their values, neither a reward nor a penalty is obtained. The
figure is cropped to highlight the oscillation that occurs with DSA. In domains such as
independent path planning of trajectories for UAVs or rovers, in environments where
communication channels are unstable, bad assignments could lead to crashes whose
costs preclude the use of methods without guarantees of monotonicity.

In addition, monotonicity provides insight as to why coordination might lead to
better solution quality. Ifk2 > k1, we know that for all assignmentsx wherex ∈ Xk1E, x <
Xk2E, there exists an assignment ˜x ∈ Xk2E reachable fromx such thatU(x̃) > U(x). This
can be seen simply by running MGM-k2 with initial assignmentx.

Example 2.The Traffic Light Game. Consider two variables, both of which can take
on the valuesred or green, with a constraint that takes on utilities as follows:

U(red, red) = 0,U(red,green) = U(green, red) = 1,U(green,green) = −1000.

Turning this DCOP into a game would require the agent for each variable to take the
utility of the single constraint as its local utility. If (red, red) is the initial condition,
each agent would choose to alter its value togreenif given the opportunity to move. If
both agents are allowed to alter their value in the same round, we would end up in the
adverse state (green,green). When using DSA, there is always a positive probability
for any time horizon that (green,green) will be the resulting assignment.

4 Experiments

We considered two domains. The first was a standard graph-coloring scenario, in which
a cost of one is incurred if two neighboring agents choose the same color, and no cost is
incurred otherwise. Real-world problems involving sensor networks, in which it may be
undesirable for neighboring sensors to be observing the same location, are commonly
mapped to this type of graph-coloring scenario. The second was a fully randomized
DCOP, in which every combination of values on a constraint between two neighboring
agents was assigned a random reward chosen uniformly from the set{1, . . . ,10}.

In both domains, we used ten randomly generated graphs with 40 variables with
three values each, and 120 constraints. We ran: MGM, DSA withp ∈ {.1, .3, .5, .7, .9},
MGM-2 with q ∈ {.1, .3, .5, .7, .9} and SCA-2 with all combinations of the above values
of p andq (whereq is the probability of being an offerer andp is the probability of
an uncommited agent acting). Each graph shows an evolution of global solution quality
averaged over 100 runs (with random start-states) each for ten examples with selected
values ofp andq.

We used communication cycles as the metric for our experiments, as is common
in the DCOP literature, since it is assumed that communication is the speed bottleneck.
However, we note that, as we move from 1-coordinated to 2-coordinated algorithms, the

Fig. 3.Experimental results

computational cost each agenti must incur can increase by a factor of as much as
∑

j |X j |

as the agent can now consider the combination of its and all its neighbors’ moves.
However, in the 2-coordinated algorithms we present, each agent randomly picks a
single neighborj to coordinate with, and so its computation is increased by a factor of
only |X j |. Although each run was 256 cycles, the graphs display a cropped view to show
the important phenomena.

Figure 3A shows a comparison between MGM and DSA for several values ofp.
For graph coloring, MGM is dominated, first by DSA withp = 0.5, and then by DSA
with p = 0.9. For the randomized DCOP, MGM is completely dominated by DSA with
p = 0.9. MGM does better in the high-stakes scenario as all DSA algorithms have a
negative solution quality (not shown in the graph) for the first few cycles. This hap-
pens because at the beginning of a run, almost every agent will want to move. As the
value ofp increases, more agents act simultaneously, and thus, many pairs of neighbors
are choosing the same value, causing large penalties. Thus, these results show that the
nature of the constraint utility function makes a fundamental difference in which algo-
rithm dominates. Results from the high-stakes scenario contrast with [13] and show that
DSA is not necessarily the algorithm of choice compared with DBA across all domains.

Figure 3B shows a comparison between MGM and MGM-2, for several values ofq.
In all domains, MGM-2 eventually reaches a higher solution quality after about thirty
cycles, despite the algorithms’ initial slowness. The stair-like shape of the MGM-2
curves is due to the fact that agents are changing values only once out of every five
cycles, due to the cycles used in communication. Of the three values ofq shown in
the graphs, MGM-2 rises fastest whenq = 0.5, but eventually reaches its highest aver-
age solution quality whenq = 0.9, for each of the three domains. We note that, in the
high-stakes domain, the solution quality is positive at every cycle, due to the monotonic
property of both MGM and MGM-2. Thus, these experiments clearly verify the mono-
tonicity of MGM and MGM-2, and also show that MGM-2 reaches a higher solution
quality as expected.

Figure 3C shows a comparison between DSA and SCA-2, forp = 0.9 and several
values ofq. DSA starts out faster, but SCA-2 eventually overtakes it. The result of the
effect of q on SCA-2 appears inconclusive. Although SCA-2 withq = 0.9 does not
achieve a solution quality above zero for the first 65 cycles, it eventually achieves a
solution quality comparable to SCA with lower values ofq.

Figure 3D shows a probability mass function (PMF) of solution quality for three
sets of assignments: the set of all assignments in the DCOP (X), the set of 1-coordinated
(Nash) equilibria (X1E), and the set of 2-coordinated equilibria (X2E). Here we consid-
ered smaller scenarios with twelve variables, 36 constraints, and three values per vari-
able in order to investigate tractably explorable domains. In both domains, the solution
quality of the set of 2-coordinated equilibria (the set of equilibria to which MGM-2 and
SCA-2 must converge) is, on average, higher than the set of 1-coordinated equilibria,
potentially explaining the higher solution quality of the experimental runs. Even though
a higher level of coordination yields better solution quality, the relationship between
magnitude of improvement and the difference in solution qualities of the equilibrium
sets is not obvious. Trajectories may not be uniformly distributed over the equilibrium
sets. Investigating these effects is a ripe area for further investigation.

5 Related Work and Summary

Research in general graphical games has focused on centralized algorithms for finding
mixed-strategy Nash equilibria [4, 10]. DCOP games not only guarantee pure-strategy
Nash equilibria but also introducek-coordination and hencek-coordinated equilibria.
In [2], coordination was achieved by forming coalitions represented by amanagerwho
made the assignment decisions for all variables within the coalition. These methods
require high-volume communication to transfer utility function information and the ab-
dication of authority which is often infeasible or undesired in many distributed decision-
making environments. Furthermore, the cost of forming a coalition discourages rapid
commitment and detachment from teams. MGM-k and SCA-k allow for coordination
while maintaining the underlying distributed decision-making process and allowing dy-
namic teaming in each round.

A fundamental novelty of our approach is our analysis of distributedk-coordination
algorithms as well ask-coordinated equilibria. The key contributions of this paper in-
clude: (i) an introduction ofDCOP gamesfor analysis of DCOP algorithms, (ii) devel-
opment ofk-coordinated DCOP algorithms, (iii) identification of a mapping between
finite games and coding theory leading toa priori bounds on cardinality of equilibria
sets ofk-coordinated algorithms, (iv) improvement on the tightness of current bounds,
(v) proof of monotonicity of the MGM-k class of algorithms and (vi) an investigation
of the equilibria sets of algorithms of differing degrees of coordination.

We provided key experimental results, verifying our conclusions about monotonic-
ity and equilibria bounds. This paper is a significant extension of the authors’ previous
work in DCOP games [7], in whichk-coordinated algorithms and equilibria were intro-
duced. Our results comparing 1-coordinated and 2-coordinated algorithms illustrate the
need to develop efficientk-coordination algorithms for higherk in the future.

6 Acknowledgment

This material is based upon work supported by the Defense Advanced Research Projects
Agency (DARPA), through the Department of the Interior, NBC, Acquisition Services
Division, under Contract No. NBCHD030010.

References

1. S. Fitzpatrick and L. Meertens. Distributed coordination through anarchic optimization. In
V. Lesser, C. L. Ortiz Jr., and M. Tambe, editors,Distributed Sensor Networks: A Multiagent
Perspective, pages 257–295. Kluwer Academic Publishers, 2003.

2. K. Hirayama and J. Toyoda. Forming coalitions for breaking deadlocks. InProc. ICMAS,
pages 155–162, 1995.

3. J. J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79:2554–8, 1982.

4. M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. InProc. UAI,
pages 253–260, 2001.

5. S. Ling and C. Xing.Coding theory: A first course. Cambridge University Press, 2004.

6. F. J. MacWilliams and N. J. A. Sloane.The theory of error-correcting codes. North-Holland,
1977.

7. R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed algorithms for DCOP: A
graphical-game-based approach. InPDCS 2004, San Francisco, CA, September 2004.

8. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. Taking DCOP
to the real world: efficient complete solutions for distributed multi-event scheduling. In
AAMAS 2004, New York, NY, July 2004.

9. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete method for
distributed constraint optimization. InProceedings of the Second International Conference
on Autonomous Agents and Multi-Agent Systems, Sydney, Australia 2003.

10. D. Vickrey and D. Koller. Multi-agent algorithms for solving graphical games. InProc.
AAAI, pages 345–351, 2002.

11. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfac-
tion problem: formalization and algorithms.IEEE Transactions on Knowledge and Data
Engineering, 10(5):673–685, 1998.

12. M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed constraint
satisfaction and optimization problems. InProc. ICMAS, pages 401–408, 1996.

13. W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis and application of distributed
constraint satisfaction and optimization algorithms in sensor networks. InAAMAS 2003,
pages 185–192, Melbourne, Australia, July 2003.

Appendix A: Algorithms

Algorithm 1 MGM (allNeighbors, currentValue)
1: SendValueMessage(allNeighbors, currentValue)
2: currentContext= GetValueMessages(allNeighbors)
3: [gain,newValue]= BestUnilateralGain(currentContext)
4: SendGainMessage(allNeighbors,gain)
5: neighborGains= ReceiveGainMessages(allNeighbors)
6: if gain> max(neighborGains)then
7: currentValue= newValue
8: end if

Algorithm 2 DSA (allNeighbors, currentValue)
1: SendValueMessage(allNeighbors, currentValue)
2: currentContext= GetValueMessages(allNeighbors)
3: [gain,newValue]= BestUnilateralGain(currentContext)
4: if Random(0,1)< thresholdthen
5: currentValue= newValue
6: end if

Algorithm 3 MGM-2 (allNeighbors, currentValue)
1: SendValueMessage(allNeighbors, currentValue)
2: currentContext= GetValueMessages(allNeighbors); committed= no
3: if Random(0,1)< offererThresholdthen
4: committed= yes; partner= RandomNeighbor(allNeighbors)
5: SendOfferMessage(partner,allCoordinatedMoves(partner))
6: end if
7: [gain,newValue]= BestUnilateralGain(currentContext)
8: offers= ReceiveOffers(allNeighbors); offerReplySet= ∪ {offers.neighbor}
9: if committed= no then

10: bestOffer= FindBestOffer(offers)
11: if bestOffer.gain> gainthen
12: offerReplySet= offerReplySet\{ bestOffer.neighbor}
13: committed= yes; partner= bestOffer.neighbor
14: newValue= bestOffer.myNewValue; gain= bestOffer.gain
15: SendOfferReplyMessage(partner, commit, bestOffer.partnerNewValue, gain)
16: end if
17: for all neighbor∈ offerReplySetdo
18: SendOfferReplyMessage(neighbor, noCommit)
19: end for
20: end if
21: if committed= yesthen
22: reply= ReceiveOfferReplyMessage(partner)
23: if reply= commit then
24: newValue= reply.myNewValue; gain= reply.gain
25: else
26: committed= no
27: end if
28: end if
29: SendGainMessage(allNeighbors,gain)
30: neighborGains= ReceiveGainMessages(allNeighbors); changeValue=no
31: if committed=yesthen
32: if gain> max(neighborGains)then
33: SendConfirmMessage(partner, go)
34: else
35: SendConfirmMessege(partner, noGo)
36: end if
37: confirmed= ReceiveConfirmMessage(partner)
38: if confirmed=yesthen
39: changeValue=yes
40: end if
41: else
42: if gain> max(neighborGains)then
43: changeValue=yes
44: end if
45: end if
46: if changeValue=yesthen
47: currentValue= newValue
48: end if

