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Abstract

Agents or agent teams deployed to assist humans of-

ten face the challenge of monitoring state of key processes
in their environment, including the state of their human
users, and making periodic decisions based on such mon-
itoring. The challenge is particularly difficult given the
significant observational uncertainty, and uncertainty in
the outcome of agent’s actions. POMDPs (partially ob-
servable markov decision problems) appear well-suited to
enable agents to address such uncertainties and costs; yet
slow run-times in generating optimal POMDP policies
presents a significant hurdle. This slowness can be at-
tributed to cautious planning for all possible belief states,
e.g., the uncertainty in the monitored process is assumed
to range over all possible states at all times.
This paper introduces three key techniques to speedup
POMDEP policy generation that exploit the notion of
progress or dynamaics in personal assistant domains. The
key insight is that given an initial (possibly uncertain)
starting set of states, the agent needs to be prepared to
act only in a limited range of belief states; most other
belief states are simply unreachable given the dynamics
of the monitored process, and no policy needs to be gen-
erated for such belief states. The techniques we propose
are complementary to most existing exact and approxi-
mate POMDP policy generation algorithms. Indeed, we
illustrate our technique by enhancing generalized incre-
mental pruning (GIP), one of the most efficient exact
algorithms for POMDP policy generation and illustrate
orders of magnitude speedup in policy generation. Such
speedup would facilitate agents’ deploying POMDPs in
assisting human users.

1. Introduction

Several recent research projects are focussing on in-
dividual agents or teams of agents that assist humans
in offices, at home, in medical care and indeed in all

spheres of daily human activities [12, 9, 2, 5]. One ma-
jor area of responsibility for such agents is to monitor
the evolution of some process or state over time, includ-
ing that of the human the agents are deployed to assist,
and to make periodic decisions based on such monitor-
ing [11, 7, 2, 9]. Agents may accomplish such monitor-
ing and decision making fully autonomously or with
adjustable autonomy (dynamically reducing own au-
tonomy for seeking human input). For example, in of-
fice environments, agent assistants have been deployed
to monitor the location of individual users in transit,
and make periodic decisions on delaying or canceling a
meeting, or seeking more information from users [12].
Similarly, in caring for elderly, agent assistants moni-
tor the progress of a plan of activites of the user and
make decisions at regular intervals based on the activ-
ities performed [9]. Such monitoring and periodic deci-
sion making is also seen in therapy planning [11].

Unfortunately, such agents (henceforth referred to as
personal assistant agents) must monitor and make de-
cisions despite significant uncertainty in observations
(so the true state of the world may not be known),
and uncertainty in actions (outcome of agent’s deci-
sions or actions may be uncertain). Furthermore, ac-
tions have costs, e.g., delaying a meeting may have a
cost to the meeting attendees. Researchers have nat-
urally turned to decision-theoretic frameworks to rea-
son about costs and benefits under uncertainty. How-
ever, this research has traditionally focused on markov
decision problems or MDPs and its variants for deci-
sion making [12, 7, 11], ignoring the observational un-
certainty in these domains, and thus potentially signif-
icantly degrading agent performance, and/or requiring
unrealistic assumptions about agent’s ability to moni-
tor the state of the world. POMDPs (Partially Observ-
able Markov Decision Problems) suggest themselves as
natural candidates to address such observational uncer-
tainty, and these have been recognized for some time
as the natural next step[12] in the evolution of soft-



ware assistants. However, the long run-times for gen-
erating optimal policies for POMDPs remains a signif-
icant hurdle in their use in agent assistants.

Recognizing the hurdle in POMDP usage in prac-
tical domains, previous work on POMDPs has made
encouraging progress using two types of approaches.
The first approach is exact algorithms, which try to
find the optimal solution[l, 3]. However, these exact
algorithms remain computationally expensive and cur-
rently do not scale to large-scale problems of interest in
personal assistant domains. The second approach is ap-
proximate algorithms, which tradeoff solution quality
for speed [14, 6, 8, 4, 15]. Unfortunately, while approx-
imate algorithms achieve significant speedups over ex-
act algorithms, they often provide loose (or no) quality
guarantees on the solutions — even though such qual-
ity guarantees are crucial if personal assistants are to
inhabit human environments.

This paper aims to practically apply POMDPs
to personal assistant domains by introducing novel
speedup techniques that are particularly suitable for
such domains. The key insight is that when monitor-
ing users or processes over time, large parts of belief
states in POMDPs — i.e., regions or states of un-
certainty — are fundamentally unreachable. Such
unreachable belief states change over time dy-
namically. However, current POMDP algorithms
do not exploit such unreachable belief state re-
gions, and plan for the entire set of belief states at
each point in time. For instance, when a personal as-
sistant is monitoring a user who may be travelling
to a meeting, the user can only travel a certain dis-
tance within a given time, i.e., the uncertainty over
where the user may be at the next time step is lim-
ited to only a few locations. Current POMDP algo-
rithms would create policies assuming the uncertainty
(belief states) are spread over all locations (which is in-
feasible). Similarly, the state of the world cannot move
forward from five minutes before a meeting to fif-
teen minutes past the meeting time without passing
through a state of the actual meeting time. How-
ever, such information about dynamics of the world
will currently be ignored by the POMDP algo-
rithms.

This paper introduces three key techniques that ex-
ploit the sparseness of the reachable belief space in per-
sonal assistant domains. The enhancements that we
present provide ways of simply avoiding policy gener-
ation for unreachable regions in the belief space. Fol-
lowing characteristics of the domains provide an insight
about the enhancements:

1. Not all states are reachable at each decision epoch,
because of increasing progress or time.

2. Not all observations are observable, because of the
reduced number of states (from 1 above)

3. Belief probability of a state can be tightly bounded
(rather than with just 0 and 1).

These enhancements apart from being tailored to above
kinds of personal assistant domains, are also comple-
mentary to most of the existing algorithms. While the
improvements we suggest could be applied to a vari-
ety of algorithms (see Related Work), we demonstrate
these improvements in the context of generalized in-
cremental pruning[l], for three reasons. First, incre-
mental pruning provides a public domain implementa-
tion, with a well-documented and well-understood al-
gorithm. Second, incremental pruning provides an ex-
tremely efficient baseline algorithm — indeed, except
for a recent report that improves a section of the al-
gorithm, it is recognized as the most efficient exact
algorithm to compare against. Third, the recent im-
provements are orthogonal to the key improvements
discussed in our paper, and they do not change the
basic framework of incremental pruning. Thus, these
recent improvements would only add to the speedups
demonstrated in our paper, although we demonstrate
orders of magnitude improvements in performance al-
ready. Finally, it is critical to note that the same set of
ideas could be applied to other algorithms also.

2. Personal Assistant Domains

Recent research in personal assistant domains has
involved agents monitoring the state of the user or some
other process in the environment and making periodic
decisions based on the status of the user (or the mon-
itored process). Multiple personal assistants may col-
laborate in order to assist collaborative user tasks. We
discuss here two specific example domains from per-
sonal assistants deployed in office environments [12, 5]
illustrating the challenges in such domains. One exam-
ple is from an actual system implemented previously,
and another is from an on-going system under devel-
opment. However, the key challenges outlined arise in
other personal assistant domains as well.

One key example is a meeting rescheduling domain,
as implemented in the Electric-Elves system [12]. In
this large-scale operationalized system, agents moni-
tored the location of users and made decisions such as:
(i) delaying the meeting if the user is projected to be
late; (ii) asking the user for information if he/she plans
to attend the meeting; (iii) canceling the meeting; (iv)
waiting. The agent relied on MDPs to arrive at deci-
sions, as its actions such as asking had nondeterminis-
tic outcomes (e.g., a user may or may not respond) and
decisions such as delaying had costs. The MDP state



represented user location, meeting location and time to
the meeting (e.g., user@home, meeting@USC, 10 min-
utes) and a policy mapped such states to actions. Un-
fortunately, observational uncertainty about user loca-
tion was ignored while computing the policy.

A second key example is a task management prob-
lem (TMP) domain [5]. In this domain, a set of de-
pendent tasks (e.g., T1, T2, T3 in Figure 2) is to be
performed by human users (e.g,. users Ul, U2, U3 in
Figure 2). Agents (e.g., Al, A2, A3 in Figure 2) mon-
itor the progress of humans and make reallocation de-
cisions. The lines connecting agents and users indicate
the lines of communication. An illustration of reallo-
cation is the following scenario: suppose T1, T2 and
T3 are assigned to Ul, U2 and U3 respectively based
on their initial capabilities. However, if Ul is observed
to be progressing too slowly on T1, e.g., Ul may be
unwell, then A1l may need to reallocate T1 to ensure
that the three tasks finish before a given deadline. Al
may reallocate T1 to U2, if U2’s original task T2 is
nearing completion and U2 is known to be more capa-
ble than U3 for T1. However, if U2 is also progressing
slowly, then T1 may have to be be reallocated to U3 de-
spite the potential loss in capability. Agents monitoring
progress of dependent tasks is important. One reason
for this can be seen in the following situation. When T1
is not progressing A1l needs to reason about the com-
promise of allocating T1 to U3 instantly, or waiting for
U2 (a more capable user) to finish.

Unfortunately, this task of monitoring involves a lot
of transitional (progress made by users might not be
the same in all time steps) and observational uncer-
tainty (it may be difficult to monitor the exact progress
made during a time step). However, agents can ask the
human to make a decision when there is lot of uncer-
tainty about the progress. Human assistance, on the
other hand, involves a cost for disturbing the user. The
user also might not always be present, i.e. the problem
cannot be solved by just transferring control to user. It
requires a sequence of decisions to be made. The model
of the problem should then capture the sequential de-
cision making in the presence of observational uncer-
tainty. The necessity of a sequence of decisions can be
seen in the TMP model because a users progress on a
task may not be uniform. Some users may make most
of their progress well before the deadline and others
may do the bulk of their work closer to the deadline.
Thus, an instantaneous assessment may not take into
account the dynamics of progress. For example, con-
sider an action space where an agent can observe P
(progress) or NP (no progress) and can take three ac-
tions: W (wait), A (Ask user), R (reallocate). A sequen-
tial decision model could yield a policy tree as shown

in Figure 1. A policy such as this takes into account
both the uncertainty of observation but also includes
the costs of decisions that will be made at later stages of
the management problem in the analysis. In more com-
plex domains with additional actions such as delaying
the task deadline at some cost or choosing the appro-
priate user to whom a task will be reallocated, the cas-
cading affects of these actions will require planning into
time. POMDPs provide us the the framework to ana-
lyze and obtain policies in these domains, where simple
rule-based strategies fail [17].
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Figure 1. Sample POMDP TMP Policy

In the TMP domain, each state in the POMDP rep-
resents the progress of various tasks it is monitoring
(its task and dependent tasks) and the time to the
deadline. The policy provides a mapping from the ob-
served progress of the task to the action. Employing
a POMDP to solve a TMP problem can be very help-
ful. If this problem were modelled using an MDP, then
the negligence of observational uncertainties could be
disastrous in some circumstances. The following situ-
ations in the example of Figure 2 make the problem
clear:

e Al gets noisy information about Ul being com-
plete with T1 and thus ignores a possible reallo-
cation decision which might have been prudent.

e Al gets noisy information about Ul not having
started T1 and reallocates the task prematurely.

3. An Overview of POMDPs

A POMDP can be represented using the tu-
ple {S, A, Tr,0,Q, R}, where S is a finite set of states;
A is a finite set of actions; Q is a finite set of ob-
servations; T(s,a,s’) provides the probability of
transitioning from state s to s’ when taking ac-
tion a; O(s',a,0) is probability of observing o af-
ter taking an action a and reaching s’; R(s,a)
is the reward function. A belief state is a prob-
ability distribution over the set of states S. A



Figure 2. Communication Structure and Task Depen-
dency Diagram

value function over a belief state is defined as:
V(b) = maxeea {R(b,a)+ B ZpepT(b,a,b)V ()}
Currently, the most efficient exact algorithms for
POMDPs are value iteration algorithms, specifically
GIP [1] and RBIP [3]. These are dynamic program-
ming algorithms, where at each iteration the value
function is represented with a minimal set of dom-
inant vectors called the parsimonious set. Given a
parsimonious set at time ¢, V; we generate the parsi-
monious set at time ¢t — 1, V;_1 as follows:

1 {0f5 (5) = r(5,0)/190 + B SwesPrio, o|s,a)vi(s) }

\ya,0

=:V, where ’u,f € V.
2. V% = PRUNE(V"9)

3. V* = PRUNE(--- (PRUNE(V®° @ V*°2)... @
Va,0‘9|)

4. V' = PRUNE({J,ca V)

Each PRUNE call executes a linear program (LP)
which is recognized as a computationally expensive
phase in the generation of parsimonious sets in exact
algorithm. Our approach is to obtain speedups by re-
ducing the quantity of these calls.

4. Approaches

Our approach named Belief Support based Value It-
eration (BSVI) consists of three enhancements to GIP.
They include introducing ideas and algorithms that
enable dynamic state (DS) spaces, dynamic observa-
tion (DO) sets, and dynamic belief (DB) supports. The
key is the realization that for many domains for per-
sonal assistant agents interacting with users on tasks,
the idea of progress implies properties of state transi-
tions and observation generations that restrict states
through time. We provide algorithms to extract these
states and the corresponding viable algorithms. We also
use these ideas to better calculate an accurate belief
support over which to apply GIP. The theoretical bases,

proofs of validity are provided below along with Algo-
rithm 1 which details the implementation.

4.1. Dynamic State Spaces (DS)

A natural method for personal assistant agents to
represent a user’s state (such as in a TMP) is with
one consisting of a spatial element, (in a TMP, cap-
turing the progress of each task), and a temporal ele-
ment, capturing the stage of the decision. The transi-
tion matrix is then a static function of the state. This
approach is used in [12] for an adjustable autonomy
problem addressed with MDPs. We note that in our do-
main due to the nature of how task progress and time
evolve, one cannot reach all states from a given state.
Consider a scenario where there are five levels of task
progress x € {0.00,0.25,0.50,0.75,1.00} and five de-
cision points before the deadline ¢ € {1,2,3,4,5}. A
static state space model would have states S = [x,¢].
However, in our domain, time can only move forward
in single steps, i.e. T([z,t],[%,%]) = 0 if  # ¢ + 1. Thus
a dynamic state model would have at time ¢ would only
have states S;-g where ¢ = £. Furthermore, if there are
limits on how tasks progress, such as one cannot ad-
vance more than one progress level in one time step
(T([x,t], [z, t +1]) = 0 if & — 2 > 0.25), and we know
that at t = 1 we are at either z = 0.00 or z = 0.25,
then we know at ¢t = 2, x ¢ {0.75,1.00} and at ¢t = 3,
x # 1.00. This implies that the state space at each
point in time can be represented more compactly in a
dynamic fashion. This will require the transition ma-
trix and reward function to be dynamic themselves.
Dynamic state spaces, transition matrices and reward
functions do not affect the dynamic programming pro-
cess in a finite horizon problem because the value func-
tions generated at a particular stage do not depend on
the transition and reward functions of other states once
the value function of the previous stage is known. Given
knowledge about the initial belief space (e.g. possible
beginning levels of task progress), we show how we can
obtain dynamic state spaces and also that this repre-
sentation does not affect the optimality of the POMDP
solution. Line 7 in ‘GEN-D-POMDP’ function and the
‘DP-UPDATE’ function of Algorithm 1 provides the al-
gorithm for DS. In this part of the algorithm, we de-
scribe how we use information from the transition ma-
trix to extract the appropriate compact dynamic state
spaces.

Let L be the length of a finite horizon decision pro-
cess. Let S be the set of all possible states that can
be occupied during the process. At time ¢, let S; C S
denote the set of all possible states that could occur
at that time. Thus, for any reachable belief state, we



Algorithm 1 BSVI Func GEN-DPOMDP(T, S, 4, Tr, O, Ob, R)

Func POMDP-SOLVE (L, S, A, T,Q, O, R) 1t 1
1: ({S:},{0:}, {B"**}) - GEN-D-POMDP 2: Sy =Set of starting states
(L,S,A,T,Q,0,R) 3: for alls; € S; do
2: t— L;V; <0 4 b () =1
3: fort =Ltoldo 5: end for
4 Vi_1 = DP-UPDATE(V, t) 6: fort =1toT —1do
5: end for 7. for alls € S; do
Fune DP-UPDATE (V. 1 8  ADD-TO(S:+1,REACHABLE-STATES(s, T'r))
| for allac Ado 9:  Ou41 = GET-RELEVANT-OBS(S+1, Ob)
a 10: b;rialz (St+1) :GET—BOUND(SH_1)
22 Vi< 9¢
3: for allw:; € O; do 11 endfor
4: for all vz € Vdo 12: end for max
5 for alls,_, € 5,1 do 13: return ({S¢}, {O:}, {b7***})
6 v (54-1) = re-1(se-1,a)/|0¢]  +
VEsies, Pr(we, sefsi—1, a)vi(se) have ) g bi(s;) = 1. Then, we can obtain S; for
T anfl for t € 1,...L inductively if we know the set Sy C S for
S; ?/Z‘lia‘fto: PRUNE({v““}, ) which s ¢ Sy = by(s) = 0, as follows:
10:  end for Siy1={s'eS:Jac A seS st Tis,a,s) >0}
11: V&, «— PRUNE(V*, ® V27 t) (1)
12: end for
13: Vioy «— PRUNE(U,c, Vi1, 1) The belief probability for a particular state 5 at time
14: return Vi, t + 1 given a starting belief vector at time ¢ (b;) action
Func POINT-DOMINATE (w, U, ) (a) and observation (w) can be expressed as follows:
1: for allu € U do
2:  ifw(s:) < u(st), Vst € Sy then return true b (3) O4(3,a,w) Y, s, Ti(5t, a, 3)bi(st)
i f;irf:]fralse o Dosiiresips Or(st41,a,w) 3o e, Telse, @, se1)be(s1)
Func LP-DOMINATE (w, U, t) This implies that the belief vector b;11 will have sup-
1: LP vars: d, b(s)[Vs, € Si] port only on Siyi, ie. § ¢ Sy = by1(5) = 0, if by
2: LP max d subject to: only has support in S; and Si41 is generated as in (1).
3: b-(w—u)>dvVYuelU Thus, we can model a process that migrates among dy-
4: Ysies:b(se) « 1 namic state spaces {S; }~_; indexed by time or more ac-
5: b(st) <= """ (st); b(s¢) >=0 curately, the stage of the decision process as opposed
6: if d > O return b else return nil to a transitioning within static global state set S.
Func BEST(b,U) Modeling the process in this manner does not ef-
1: max « Inf fect the optimality of the solution obtained using value
2: for allu € U do function methods. Let V;(b;) be the value of the opti-
3: ii(b -u > maz) or ((b-u = maz) and (v <iex w)) mal policy at time ¢ (or equivalently at the L — ¢+ 1-th
en

stage of dynamic programming). If we let P; denote the

g 1.1;)1 ? wmaz — b-u set of policies available at time ¢, V¥ denote the value of
6 en?infml* policy p at time ¢ and, V;* denote the value of the opti-
7. return w mal policy at time ¢, we have V}*(b) = max,cp, br-af

Func PRUNE(U, ) where o) = [VF(s1)--- V[ (s)s))] for s; € S.
LW ’ When ¢ = L, we have V}(s) = Rp(s,a(p)) where

: — . . . .

9 while U # ¢ Ry, is the reward function at time L and a(p) is the
3 u  any element in U/ action prescribed by the policy p. Since br(s) = 0
4: if POINT-DOMINATE(u, W, t) = true then if s ¢ S, then Vi (by) = maxpep, br, - &7 where
5. Ue—U-u lbr] = |aL| = [Sc] and a7 = [VE(51)--- V[(5)s,))] for
6: else $; € Sp. Calculating the value function at time L — 1,
7: b «—LP-DOMINATE(u, W, t) we have V}_(bp—1) = maxyep, , br—1 - af | where
8: if b = nil then ai_l = [Vf—l(sl).‘.vf—l(slsl)] for Si GS

9: IU‘_U_“ When ¢t = L—1, we have V}'_(s) = Rp—1(s,a(p))+
10: w

11: ¢ S;(_ BEST(b U) VZS/GS TL*I(Saa(p)ﬂs/) ZwGQ O(S/,a7w)V£ (S/)

12: W—WwWJw

13: U—U-w

14:  end if

15: end if

16: return W

Func GET-BOUND(s;)



where p, € Pp is the policy subtree of the policy
tree p € Pr,_1 when observing w after the initial ac-
tion. Since by, _1(s) = 0if s ¢ Sp_1, then Vi, _1(bp—1) =
maxpep, , br—1-&4 ; where |by 1| = |a] | = [Sp—1]
and &7 _ = [VP(51) -V} (3s,_,)]) for 5; € Sp_1. Ap-
plying this reasoning inductively, we can show that we
only need VP (s) for s € S;. Furthermore, if s € Sy, then

Vi (s) = Ri(s, a(p))+
0 Z Ti(s,a(p /ZOS a,w)VEe (s ————(1).
s'€Sty1 weN

Thus, we only need {V, w(p)(s )+ s € Sy} The
value functions expressed for beliefs over dynamic state
spaces S; have identical expected rewards as when us-
ing S. The advantage in this method is that in generat-
ing the set of value vectors which are dominant at some
underlying belief point (i.e. the parsimonious set) at a
particular iteration, we eliminate vectors that are dom-
inant over belief supports that are not reachable, which
further reduces the set of possible policies at the pre-
vious time.

4.2. Dynamic State and Observation

Spaces(DS+DO)

We note that in some domains, certain observations
can only be obtained from certain states. Consequently,
dynamic state spaces imply that the observations ca-
pable of being obtained at a particular type will also
be dynamic. Consider a situation where there are five
progress levels: S := {0.00,0.25,0.50,0.75.1.00} and
five observations € := {0.00,0.25,0.50,0.75.1.00}. Fur-
thermore, let us assume first, that one can move up
at most one progress level in one stage (e.g. you can-
not go to 0.75 or 1.00 from 0.25 in one step) and sec-
ond, if one has reached a state s € S by taking some
action, the only viable observations are progress lev-
els at or below the current level of progress (e.g. if you
are at 0.50, you can only get observations 0.00, 0.25, or
0.50). Now, if we assume that the dynamic state space
for a particular stage limits us to being in one of two
progress levels, (0.00 or 0.25), then we will not be able
to get the observations 0.750r1.00 regardless of the ac-
tion we take at this time. We now show how to ob-
tain these dynamic observation sets and that they do
not affect the value iteration process. Line 8 in ‘GEN-
D-POMDP’ function and the ‘DP-UPDATE’ function
of Algorithm 1 provides the algorithm for DS+DO.

Let © be the set of all possible observations.
Let us define € {w € Q da € As €
Sit1 8.t O(s’',a,w) > 0}. Given (I) from 4.1, we

can rewrite V' (s;) as

Ri(s¢,a(p)) + Z Ti(s¢,a(p), Se41)

St41€St41

D Olsesr,a,w)Vi (se41) +

wENy oJEQtC

where Q¢ is the set complement of Q. Because of the
dynamic observations, the second part of the sum goes
to zero. This implies that only the observations in €2,
are relevant to the value of a strategy at time ¢. Thus
when creating policy trees, subtrees p, are not neces-
sary if w ¢ ;. This further reduces the set of poli-
cies being generated before pruning. This improves our
performance by reducing the number of vectors that
need to be considered by the linear program. For con-
sistency, we now index the observation probability ma-
trix with time as it depends on a dynamic state.

4.3. Dynamic Belief Spaces (DB)

By introducing dynamic state spaces, we are at-
tempting to more accurately model the support on
which reachable beliefs will occur. We can make
this process more precise by incorporating infor-
mation about the initial belief distribution, the
transition and observation probabilities. For exam-
ple, if we know that our initial belief regarding task
progress can have at most 0.10 probability of be-
ing one quarter done with the rest of the probability
mass on being not started, what is the highest prob-
ability of being one quarter or one half done at the
next stage, given a dynamic transition matrix? Be-
low we outline a polynomial-time procedure by which
we can obtain bounds on belief support which an-
swer that question. Line 9 of “GEN-DPOMDP” func-
tion of Algorithm 1 provides the algorithm for DB.

Let B; C [0 1]1% be a space such that P(b; ¢ B;) =
0. That is, there exists no initial belief vector and ac-
tion/observation sequence of length ¢ — 1 such that by
applying the standard belief update rule, one would get
a belief vector b; not captured in the set B;. Then, we
have

> . F . min
beti(se41) > e i (St41,@,0,by) =: b (s141)
b < F b B
t+1( ) = aeA,oIélgfthBt (5t+17070» t) t+1( +1)

where F(s¢11,0a,0,b;) :=

O4(8t+1,4a,0) Zstest Ty (st, @y St41)be(st)
D osiiresis Ot8i41,0,0) 3o e Ti(se, a; Sep1)be(se)
Thus, if

Bi1 = [ (s)b (s1)] % -+ -

> Olsti1,0,0)VE (s041)

S LA TR L R



then we have P(biy1 ¢ Bi+1) = 0. We now show how
b2 (s441) (and similarly b%% (s;11)) can be generated
through linear programming. Given an action a and ob-

servation w, we can express the problem as

where c¢1(s) = O(St+1,0,w)Ti(st,a,st41) and
c2(s) = 22, esy, Ot(st41,0,w)Ti(5¢, @, 5¢41).

It can be shown that the max; ¢1[i]/co[i] is an up-
per bound for the expression in (1). This proof is done
using mathematical induction on the number of vari-
ables n.However, to obtain b (s;41), we further opti-
mize by}’ (s¢41) over each A and O; combination. The
set By must be chosen such that it can be modeled with
a set of linear constraints over b;. The sets{B;}~_, can
be represented with linear constraints using ™ and
b**. By using dynamic beliefs, we increase the costs
of the LP by adding some constraints. However, there
is an overall gain because we are looking for dominant
vectors over a smaller support and this reduces the car-
dinality of the parsimonious set, leaving fewer vectors
to consider at the next iteration.

5. Experimental Results

Experiments were conducted on TMP domain ex-
plained in Section 2. As explained earlier, each agent
uses a POMDP to reason about reallocation and trans-
fer of control to humans. Complexity of these POMDPs
can be increased/decreased by increasing/decreasing
the number of progress steps (for tasks) and/or moni-
toring steps(deadline). The criterion used for compar-
ing various approaches (GIP, DS, DS+DO, DS + DO
+ DB) are time taken, vectors before and after prun-
ing. Vectors before pruning is an important criterion for
experiments involving DS+DQO, since the main contri-
bution of DS+DO is in reducing the number of vectors
before pruning at each iteration. Number of vectors af-
ter pruning serves as an indicator of the planned belief
space. If one approach gives more number of vectors af-
ter pruning than another approach in finding an equal
quality solution for a problem, then it implies that the
former is planning for some unreachable belief space.
DS, and DS+DO are fully implemented, while DB is
only partially implemented and hence only initial re-
sults with DS+DO+DB. Our experimental setup con-
sisted of 10 problems (A..J) in order of increasing com-
plexity.

Table 1 provides time results for GIP, DS, and DS
+ DO. 7-7 indicates no results obtained. As can be
seen from the table DS provides orders of magnitude

Experiment GIP DS | DS+DO
A 0.75 0.02 0.02
B | 10000 0.04 0.04
C | 10000 0.06 0.06
D | 10000 0.07 0.07
E - 34.4 45.17
F - 55.62 121.22
G - 56.16 124.34
H - | 182.84 283.9

I - | 239.34 417.77
J — | 2883.37 | 4335.63

Table 1. Comparing time taken (in seconds)

Comparision of maximum number of vectors generated at any
iteration for D5+D0 and DS
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Figure 3. Comparison of DS+DO with DS

Algorithm | Time After Before
Taken | Pruning | Pruning

DS + DO + DB 0.29 71 1136
DS + DO 3.89 382 6112

DS 6.33 382 18366

Table 2. lllustrating advantages of DB

speedup over GIP. As can be seen DS+DO takes less
time when compared to DS, with the difference be-
coming more apparent as the problem complexity in-
creases. Fig.3 compares number of maximum number of
a-vectors generated before pruning in DS+DO, to DS.
As can be seen, number of vectors before pruning in
DS+DO is far less than the number in DS. Table 2 pro-
vides results comparing performance of DS+DO+DB
to DS+DO and DB in a specific problem. It can be seen
that for all the criterion, DS+DO+DB outperforms
DS+DO and DS. The number of vectors after prun-
ing in DS+DO+DB gives an indication of the unreach-
able belief region removed by putting better bounds on
belief probabilities of states.



6. Related Work and Conclusions

Techniques for solving POMDPs can be categorized
as either exact and approximate. GIP [1] and RBIP
[3] are the existing exact algorithms complementary to
our work. Other exact algorithms attempt to exploit
domain-specific properties to speedup POMDPs. For
instance, [10] presents a hybrid framework that com-
bines MDPs with POMDPs to take advantage of per-
fectly observable components of the model. They also
focus on reachable belief spaces, but: (i) their analysis
does not capture dynamic changes in belief space reach-
ability; (ii) their analysis is limited to factored tate
POMDPs; (iii) the extent of speedup provided is not
measured. This contrasts with this work which focuses
on dynamic changes in belief space reachability and its
application to both flat and factored state POMDPs.

Approximate algorithms are faster than exact algo-
rithms, but at the cost of solution quality. There has
been a significant amount of work in this area, but
point-based [14, 6], and grid [4, 15] dominate other
algorithms. Though these approaches can solve larger
problems, most of them provide loose (or no) quality
guarantees on the solution. It is critical to have qual-
ity guarantees in PAA domains, for an agent to gain
the trust of a human user. Another recently developed
technique uses state space dimensionality reduction us-
ing E-PCA, but it does not provide any guarantee on
quality of the solution [13]. Point Based Value Itera-
tion (PBVI)[6] provides the best quality guarantees,
but to obtain good results it needs to increase sam-
pling, consequently increasing the run-time. Nonethe-
less, our techniques can also benefit approximate algo-
rithms, e.g., PBVI can benefit from our DO technique.

This paper provides techniques to make the ap-
plication of POMDPs in personal assistant agents
a reality. In particular, we provide three key tech-
niques to speedup POMDP policy generation that ex-
ploit the notion of progress or dynamics in PAA
domains. The key insight is that given an ini-
tial (possibly uncertain) starting set of states, the
agent needs to be prepared to act only in a lim-
ited range of belief states. All other belief states are
unreachable given the dynamics of the monitored pro-
cess, and no policy needs to be generated for such
belief states. The techniques we propose are com-
plementary to most existing exact and approximate
POMDP policy generation algorithms. Indeed, we il-
lustrate our technique by enhancing Generalized Incre-
mental Pruning (GIP), one of the most efficient exact
algorithms for POMDP policy generation and ob-
tain orders of magnitude speedup in policy generation.
We present a detailed algorithm illustrating enhance-

ments (in Algorithm 1), and proofs of correctness
of our techniques. The techniques presented facili-
tate agents’ utilizing POMDPs when assisting humans.
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