Exploiting Belief Bounds: Practical POMDPs for Personal
Assistant Agents

Pradeep Varakantham, Rajiv Maheswaran, and Milind Tambe
Department of Computer Science
University of Southern California
Los Angeles, CA, 90089
{varakant, maheswar, tambe}@usc.edu

ABSTRACT other spheres of daily activities [16, 13, 6, 15, 9, 12]. Such agents

Agents or agent teams deployed to assist humans often face thénust qften monitor the evolution of a process or state over time
challenges of monitoring the state of key processes in their envi- (Including that of the human, the agents are deployed to assist) and
ronment (including the state of their human users themselves) and_make perlod_lc decisions based on such monltorlng. For example,
making periodic decisions based on such monitoring. POMDPs ap- N Office environments, agent assistants may monitor the location
pear well suited to enable agents to address these challenges, giveﬂf users in tranli_lt and maI;e deCISIO_n? SUCh. as dﬁ:layg_g, _?:arlme_llng
the uncertain environment and cost of actions, but optimal policy M€tings or asking users for more information [15]. Similarly, in
generation for POMDPs is computationally expensive. This paper assisting with caring for the elderly [13] and therapy plann_lng_ [°,
introduces three key techniques to speedup POMDP policy genera-l,z],’ agentshmay mo(;!ltor usgrsd states/plans and make periodic de-
tion that exploit the notion of progress or dynamics in personal as- C|sL|Jor}s suc a;s sen 'k':g remin ﬁrs. forth referred |
sistant domains. Policy computation is restricted to the belief space nfortunately, such agents (henceforth referred to as persona

polytope that remains reachable given the progress structure of aassistant agents (PAAs)) must monitor and make decisions despite

domain. We introduce new algorithms: particularly one based on significant uncertainty in their observations (as the true state of
applying Lagrangian methods to compute a bounded belief spacethe world may not be known explicitly) and actions (outcome of

support in polynomial time. Our techniques are complementary to ﬁgents actions rgaly b_e non—detgrm;lnlstlc). Furth_ermore, actlc()jns
many existing exact and approximate POMDP policy generation al- Rave cos;s, e'r?" € aym(gj] a rgegtmg ?}S rept_er(;ussmns ?(n attendees.
gorithms. Indeed, we illustrate this by enhancing two of the fastest RS€archers have turned to decision-theoretic frameworks to reason

existing algorithms for exact POMDP policy generation. The order about costs and benefits under uncertainty. However, this research

of magnitude speedups demonstrate the utility of our techniques in 1S mostly focused on Markov decision processes (MDPs) [15, 9,

facilitating the deployment of POMDPs within agents assisting hu- 12], ignoring the obseryational uncertainty in these. _domains, and
Man USers. thus potentially degrading agent performance significantly and/or

requiring unrealistic assumptions about PAAs’ observational abil-
Categories and Subject Descriptors ities. POMDPs (Partially Observable Markov Decision Processes)

1.2.8 [Artificial Intelligence]: Distributed Artificial Intelligence - ~ 2ddress such uncertainty, but the long run-times for generating op-
Multi Agent Systems timal policies for POMDPs remains a significant hurdle in their use

in PAAs.
General Terms Recognizing the run-time barrier to POMDP usage, previous
Algorithms work on POMDPs has made encouraging progress using two ap-
proaches. First is an exact approach, where one finds the optimal
Keywords solution [1, 4]. However, despite advances, exact algorithms re-
Tasl_< Allocation, Meeting Rescheduling, Partially Observable Markoynain computationally expensive and currently do not scale to prob-
Decision Process (POMDP) lems of interest in PAA domains. Second is an approximate ap-

proach, where solution quality is sacrificed for speed [17, 7, 5, 18].
Unfortunately, approximate algorithms often provide loose (or no)
1. INTRODUCTION quality guarantees on the solutions, even though such guarantees
are crucial for PAAs to inhabit human environments.
This paper aims to practically apply POMDPs to PAA domains
y introducing novel speedup techniques that are particularly suit-
able for such settings. The key insight is that when monitoring
users or processes over time, large but shifting parts of the belief
space in POMDPs (i.e., regions of uncertainty) remain unreachable.
Permission to make digital or hard copies of all or part of this work for Thus, we can focus policy computation on this reachable belief-
personal or classroom use is granted without fee provided that copies aregpace polytope that changes dynamically. For instance, consider a
not made or_dlstrlbuted for profl_t or comme_rual advantage and that copies pap monitoring a user driving to a meeting. Given knowledge of
bear this notice and the full citation on the first page. To copy otherwise, to , - . N
republish, to post on servers or to redistribute to lists, requires prior specific users cgrrent Iocatlo_n', the reachable l_)e“?f reglon IS bour_lded by
permission and/or a fee. the maximum probability of the user being in different locations at
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands. the next time step as defined by the transition function. Similarly, in
Copyright 2005 ACM 1-59593-094-9/05/000%5.00.

Recent research has focused on individual agents or agent team%
that assist humans in offices, at home, in medical care and in many

a POMDP where decisions are made every 5 minutes, an agent can
exploit the fact that there is zero probability of going from a world
state withTime = 1:00 PM to a world state witli'ime = 1:30 PM.
Current POMDP algorithms typically fail to exploit such belief re-
gion reachability properties. POMDP algorithms that restrict belief
regions fail to do so dynamically [14, 10].

Our techniques for exploiting belief region reachability exploit
three key domain characteristics: (i) not all states are reachable at
each decision epoch, because of limitations of physical processes
or progression of time; (ii) not all observations are obtainable, be-
cause not all states are reachable; (iii) the maximum probability
of reaching specific states can be tightly bounded. We introduce Figure 1: Comm. Structure and Task Dependency
polynomial time techniques based on Lagrangian analysis to com-
pute tight bounds on belief state probabilities. These techniques are .)]
complementary to most existing exact and approximate POMDP the deadling € {1,2,3,4,5}. Observatlon_'s are five levels of ta_lsk
algorithms. We enhance two state-of-the-art exact POMDP algo- Progress{0.00, 0.25,0.50,0.75, 1.00} and time moves forward in

rithms [1, 4] delivering over an order of magnitude speedup for Single steps, i.-eT(.[x,t],a,.[o”c,f]) = 0if ¢ # ¢t + 1. While tran-
two different PAA domains. sition uncertainty implies irregular task progress, observation un-

certainty implies agent may observe progress for instance: or
x 4 0.25 (unlessz = 1.00). Despite this uncertainty in observing
task progress, a PAA needs to choose among waiting (W), asking
2. MOTIVATING PERSONAL ASSISTANT user for info (A), or reallocate (R). A POMDP policy tree that takes
AGENT (PAA) DOMAINS into account both the uncertainty in observations and future costs
of decisions, and maps observations to actions, for this scenario is
shown in Figure 2 (nodes=actions, links=observations). In more
We present two motivating examples, where teams of software complex domains with additional actions such as delaying dead-
PAAs assist human users in an office setting[15, 6]. The first is lines, cascading effects of actions will require even more careful
a meeting rescheduling problem (MRP), as implemented in the planning afforded by POMDP policy generation. Such scenarios in
Electric-Elves system [15]. In this large-scale operationalized sys- TMP and MRPs are investigated in Section 5.
tem, agents monitored the location of users and made decisions
such as: (i) delaying the meeting if the user is projected to be
late; (ii) asking user for information if he/she plans to attend the
meeting; (iii) canceling the meeting; (iv) waiting. The agent re-
lied on MDPs to arrive at decisions, as its actions such as asking
had non-deterministic outcomes (e.g. a user may or may not re-
spond) and decisions such as delaying had costs. The MDP state
represented user location, meeting location and time to the meet-
ing (e.g., user@home, meeting@USC, 10 minutes) and a policy
mapped such states to actions. Unfortunately, observational uncer-
tainty about user location was ignored while computing the policy.
A second key example is a task management problem (TMP) do-
main [6]. In this domain, a set of dependent tasks (e.g. T1, T2, T3 Figure 2: Partial Sample Policy for a TMP
in Figure 1) is to be performed by human users (e.g. users U1, U2,
U3 in Figure 1) before a deadline. Agents (e.g. Al, A2, A3 in
Figure 1) monitor progress of humans and make reallocation deci-
sions. Lines connecting agents and users indicate the communica-
tion links. An illustration of reallocation is the following scenario: 3. POMDPS AND GENERALIZED INCRE-
suppose T1, T2 and T3 are assigned to U1, U2 and U3 respec- MENTAL PRUNING
tively based on their capabilities. However, if Ul is observed to
be progressing too slowly on T1, e.g., U1 may be unwell, then
Al may need to reallocate T1 to ensure that the tasks finish be- APOMDP can be represented using the tidleA, T', O, Q, R},
fore the deadline. Al may reallocate T1 to U2, if U2’s original WhereS is a finite set of statesd is a finite set of actions(is a
task T2 is nearing completion and U2 is known to be more capable finite set of observationsT'(s, a, s") provides the probability of
than U3 for T1. However, if U2 is also progressing slowly, then transitioning from state to s" when taking actioru; O(s’, a, 0)
T1 may have to be reallocated to U3 despite potential loss in ca- iS probability of observing after taking an action and reaching
pability. POMDPs provide a framework to analyze and obtain s'; R(s,a) is the reward function. A belief state is a probability
policies in domains such as MRP and TMP. In a TMP, a POMDP distribution over the set of statés A value function over a belief
policy can take into account the possibly uneven progress of differ- state is defined as:
ent users, e.g., some users may make most of their progress wellV (b) = maxaeca {R(b,a) + 8 Xy epT(b,a,b")V (')}
before the deadline, while others do the bulk of their work closer to Currently, the most efficient exact algorithms for POMDPs are value
the deadline. In contrast, an instantaneous decision-maker cannotteration algorithms, specifically GIP [1] and RBIP [4]. These are
take into account such dynamics of progress. For instance, con-dynamic programming algorithms, where at each iteration the value
sider a TMP scenario where there are five levels of task progressfunction is represented with a minimal set of dominant vectors
z € {0.00,0.25,0.50,0.75,1.00} and five decision points before called the parsimonious set. Given a parsimonious set atttime

T1

T3

T2

V:, we generate the parsimonious set at ttmel, V;_; as follows Algorithm 1 DSDODB + GIP

(notation similar to the one used in [1] and [4]): Func POMDP-SOLVE (., S, A, T,Q, O, R)
w0 ; 1: ({S:}, {0}, {Bma= = DSDODB-GIP
L {25 (9) = (s, o)1+ 8 ZesPrio s api()) = Y (TG LAT)
V,>% wherev; € Vi. 2.t LV, <0
o - 3: fort=Ltoldo
2. Vi, = PRUNE(V/™%) 4: 'V, , =DP-UPDATHV,,t)
. ot s w00, FUNC DP-UPDATE (v, 1)
3. Vi, = PRUNE(-- (PRUNE(V: S @VE?) @V ™) | torall a e Ado
_ a 2. Vi, ¢
4. V-1 = PRUNE(U,cs Vi“1) 3: forall w; € O; do
EachPRUNE call executes a linear program (LP) whichisrec- 4 forall v; € V' do
ognized as a computationally expensive phase in the generation of 5: forall s, € S,y do
parsimonious sets [1, 4]. Our approach effectively translates into 6: v (st-1) = ri-1(se-1,0)/|0 +
obtaining speedups by reducing the quantity of these calls. Vs e, Pr(we, st|se—1, a)vi(st)
7. Ve PRUNE({v™*t'}, 1)

8 Vi, PRUNE(V{,® V"% t)
9: Vi1 — PRUNE(U, o, Vi1,1t)
4. DYNAMIC BELIEF SUPPORTS 10: returnV;,_,

Func POINT-DOMINATE(w, U, t)

Our approach consists of three key techniques: (i) dynamic state 1: forall u € U do
spaces (DS); (i) dynamic observation sets (DOY; (iii) dynamic be- 20 if w(s:) < u(s:),Vs: € S, then return true
lief supports (DB). These ideas may be used to enhance existing 3: return false
POMDP algorithms such as GIP and RBIP. The key intuition is Func LP-DOMINATE(w, U, t)
that for personal assistant domaipmgressmplies a dynamically 1: LP vars:d, b(s¢)[Vs: € S]
changing polytope (of belief states) remains reachable through time, 2: LP maxd subject to:
and policy computation can be speeded up by computing the par- 3: b-(w—u)>dVYuelU
simonious set over just this polytope. The speedups are due to the 4: Yses,b(st) — 1
elimination of policies dominant in regions outside this polytope. 5: b(sy) <= b"**(s1); b(st) >=0
DS provides an initial bound on the polytope and DO exploits this 6: if d > 0 returnbd else return nil
bound to limit the space of possible vectors at the next iteration. gync BEST(, U)
DB (which captures DS) provides tighter bounds on reachable be-
lief states through a polynomial-time technique obtained from La-
grangian analysis. 3:
These techniques do not alter the relevant parsimonious set w.r.t. 4j
reachable belief states and thyigld an optimal solutiorover the 5: returnw
reachable belief states. The resulting algorithms (DS,DO,DB) ap-
plied to enhance GIP are shown in Algorithm 1, where the functions FUN¢ PRUNEU, ?)
GET-BOUND and DSDODB-GIP are the main additions, with sig- 1: W — ¢
nificant updates in other GIP functions (otherwise, the GIP descrip- 2: While U # ¢
tions follows [1,3]). We discuss our key enhancements in Algo- 3: u < any element i/
rithm 1 at the end of each subsection below. Since the enhance- 4: if POINT-DOMINATE(u, W, t) = truethen
ments exploit the dynamics (transitions over time), these are appli- 1 U<~ U —u
cable only to finite horizon problems. 6: else
7. b <—LP-DOMINATE(u, W,t)
8. ifb=nilthenU «— U —u
4.1 Dynamic State Spaces (DS) 9 elsew — BEST(b,U);W « W{JwU < U —w
10: returnWW
A natural method for PAAs to represent a user's state (such as Func DSDODB-GIP(, S, A, T, 9, O, R)
in TMP) is with one consisting of a spatial element, (in a TMP, 1.t < 1; S; =Set of starting states
capturing the progress of each task), and a temporal element, cap-2: for all s; € S; do
turing the stage of the decision. The transition matrix is then a 3: b**%(s¢) =1
static function of the state. This approach is used in [15] for an 4: for ¢t =1to L — 1 do
adjustable autonomy problem addressed with MDPs. We note that 5: forall s € S; do
in these kinds of domains, one cannot reach all states from a given 6: ADD-TO(S:+1,REACHABLE-STATESE, T'))

1. max «— Inf

2: forall w € U do

if (b-u>mazx)or((b-u=mazx)and(u <, w)) then
w<—u,maxr —b-u

state. For example, in the scenario presented in Section 2, if there 7: Qi+1 = GET-RELEVANT-OBS(S;+1, O)

are limits on how tasks progress (one cannot advance more than 8: C = GET-CONSTRAINTS £;)

one progress level in one time stéf[z, t], a, [Z,¢ + 1]) = 0 if 9: b (st41) = MAX cec(GET-BOUND(s¢+1, ¢))
Z —x > 0.25) and we know that at = 1 we are at eithet = 0.00 10: return S}, {0}, {6"*"})

orz = 0.25, then we know at = 2, = ¢ {0.75,1.00} and at
t = 3, x # 1.00. This implies that the state space at each point
in time can be represented more compactly in a dynamic fashion.

Func GET-BOUND(s;, constraint) ab where|b| = |a% | = |S¢| anda? = [VF(51)--- VE(51s,))]
1: Ymin = MINscs, , (constraint.c[s]/constraint.d[s]) for 5, € Si. Calculating the value function at time — 1, we
2! Ymaz = MAX s¢s,_, (constraint.c[s]/constraint.d[s]) haveVy_,(br—1) = maxpep, , br—1 - af_, wherea? | =

3: INT = GET-INTERSECT-SORTEDpnstraint, Ymin, Ymaz)

4: forall ¢ € INT do

5. Z = SORT((i + ¢ =
constraint.c[s])Vs € Si—1

[VLpfl(Sl) ce V571(8‘5|)] fors; € S.

Whent = L — 1, we have

VE_1(s) = Rp—1(s,a(p)) +
’YZS’GSTLfl(Saa(p%S’) zweﬁ O(Sl,a7u})Vfu (Sl)'

constraint.d[s] —

6: sumBound = 1,numer = 0,denom =0 wherep,, € Py, is the policy subtree of the policy treec Pr,_4
7: /*IN ASCENDING ORDER */ when observingv after the initial action. Sincér_1(s) = 0 if
8: forall z € Zdo s ¢ Sp—1, thenVp_(br_1) = maxpep, , br_1 - &, , where
10 if sumBownd - boundls 2] = 0 then | = 3] = S5l ane, = VG- Vi G,)
or §; € Sr—1. Applying this reasoning inductively, we can show
11: sumBound— = bound|s:—1]) that we only need/?(s;) for s; € S;. Furthermore, ifs; € S;,
12: numer+ = bound[si—1] * constraint.c[s;—1] then
13: denom+ = bound[s¢—1] * constraint.d[s¢—1]
14: if sumBound — bound[s;—1] <= 0then VP (st) = Ri(se, a(p))+
15: numer+ = sumBound * constraint.c[st_l]
16: denom+ = sumBound * constraint.d[s¢—1] Y Z Ti(st, a(p), st+1) Z O(st+1,a,w) VS (St41).
17: BREAK-FOR $141€5041 weQ
18: if numer/denom > i andnumer/denom < max then (2
19: returnnumer /denom

Thus, we only nee@\/’[ﬂlp)(stﬂ) 15t41 € Seq1}. M

The value functions expressed for beliefs over dynamic state
This will require the transition matrix and reward function to be dy- SPacesS; have identical expected rewards as when usingrhe
namic themselves. Given knowledge about the initial belief space @dvantage in this method is that in generating the set of value vec-
(e.g. possible beginning levels of task progress), we show how we t©Or'S }Nhlch are dominant at some und_erlylng bt_allt_af point (i.e. the
can obtain dynamic state spaces and also that this representatioff@rsimonious set) ata_partlcular iteration, we eliminate vectors_ that
does not affect the optimality of the POMDP solution. Lebe are dominant over belief supports that are not reachable. This re-
the length of a finite horizon decision process. ISebe the set duces thg set. of pqssible policies that need to. be considered at
of all possible states that can be occupied during the process. Atthe next iteration. Line 6 of DSDODB-GIP function and the DP-
time ¢, let S, C S denote the set of all possible states that could UPDATE function of Algorithm 1 provide the algorithm for finding

occur at that time. Thus, for any reachable belief state, we have the dynamic states.

> . es, be(st) = 1. Then, we can obtaify; fort € 1,... Linduc-
tively if we know the setS, C S for whichs ¢ So = bo(s) =0,
as follows:

S ={s’€S:3ac A secSistTi(s,as)>0} (1)

The belief probability for a particular stageat timet + 1 given a
starting belief vector at time (b;) action @) and observationu)
can be expressed as follows:

0:(5,a,w) 3, 5, Te(st,a,8)bi(st)
Dsiiresis, Otlstrn,a,w) 3o e, Ti(se, a, se41)bi(st)

bt+1 (§) =

This implies that the belief vectdr 1 will have support only on
Stt1,1.6. 8 ¢ Sip1 = ber1(8) = 0, if b, only has support irb;

4.2 Dynamic Observation Spaces (DO)

We note that in some domains, certain observations can only be
obtained from certain states. Consequently, dynamic state spaces
imply that the observations capable of being obtained at a particular
time will also be dynamic. For instance, consider the TMP scenario
presented in Section 2, with the conditions on transition probabili-
ties from Subsection 4.1. Because the dynamic state space at
limits us to being in one of two progress leve8,00010.25), then
we will not be able to get the observatioh§'s or 1.00 regardless
of the action we take at this time. We now show how to obtain these
dynamic observation sets and prove that they do not affect the value

andS; 1 is generated as in (1). Thus, we can model a process thatiteration process.

migrates among dynamic state spa¢fs} <, indexed by time or

more accurately, the stage of the decision process as opposed to a PROPOSITION 2. Given dynamic state spacés: }, we can re-

transitioning within static global state sgt

PrROPOSITION 1. GivensSy, we can replace a static state space
S with dynamic state spacds:;} generated by (1), dynamic tran-
sition matrices and dynamic reward functions in a finite horizon
POMDP without affecting the optimality of the solution obtained
using value function methods.

Proof. If we let P, denote the set of policies available at timé&;”
denote the value of policy at timet and,V;* denote the value of
the optimal policy at time, we havel; (b)) = maxpep, br - off
wherea], = [V](s1)--- V[(s)5))] fors; € S.

Whent = L, we haveV? (s) = R (s, a(p)) whereR, is the re-
ward function at timd_ anda(p) is the action prescribed by the pol-
icy p. Sincebr(s) = 0if s ¢ Sy, thenV;* (br) = maxycp, bz -

place a static observation spadée with a dynamic observation
spaces); ;= {w € Q:3Ja € A;s € Sy1151.0(s',a,w) > 0}

in a finite horizon POMDP without affecting the optimality of the
solution obtained using value function methods.

Proof. Given (2) from Subsection 4.1, we can rewfitg(s;) as

>

St41€St41

Ri(se,a(p)) +7 Ty (st, a(p), se+1)

D O(se41,0,0)VES (s001) + Y O(si41,a,w)VES (s641)

we weqf

where QY is the set complement &®. Because of the dynamic
observations, the second part of the sum goes to zero. This implies

that only the observations @, are relevant to the value of a strat- from which the KKT conditions imply

egy at timet. Thus, when creating policy trees, the subtregsre ~ ~

not necessary it ¢ Q. B Ty = Tk A =[(c"w)dy, — (d"w)er] /(d"x)? + fir
This further reduces the set of policies/vectors being generated o < », <z, A =[(cTa)di — (AT 2)ck]/(d")?

before pruning which reduces the number of LP calls during prun- . T _

ing. For consistency, we now index the observation probability ma- & = 0 A =[(c" z)dr — (d" x)ex]/(d") — pur.

trix with time as it depends on a dynamic state. Line 7in DSDODB-

GIP function and the DP-UPDATE function of Algorithm 1 provide

the procedure utilizing DO.

Because\ is identical in all three conditions and, and ., are
non-negative for alk, the statek with a lowest value ofd” z)\ =
[(c"z)/(d" x)]d, — c,, must receive a maximal allocation (assum-
ing Z5 < 1) or the entire allocation otherwise. Using this reasoning
recursively, we see that if* is an extremal point (i.e. a candidate
solution), then the values of its compone#ts, } must be con-
structed by giving as much weight possible to components in the

By introducing dynamic state spaces, we are attempting to more order prescribed by, = ydi — cx, wherey = (¢Tz*)/(d"z*).
accurately model the support on which reachable beliefs will occur. Given a value ofy, one can construct a solution by iteratively giv-
We can make this process more precise by using information abouting as much weight as possible (without violating the equality con-
the initial belief distribution, the transition and observation proba- straint) to a component that is not already at its bound with the
bilities to bound belief dimensions with positive support. For ex- |owestzy,.
ample, if we know that our initial belief regarding task progress can Here is an example to illustrate the method introduced above.
have at most 0.10 probability of being at 0.25 with the rest of the |f the size of state space is three (k = 1,2,3) and the values of the
probability mass on being at 0.00, we can find the maximum prob- expressior{(c”'z)/(d"z)])d), — cx for different statesk are 5, 6,
ability of being at 0.25 or 0.50 at the next stage, given a dynamic 7. Since\ (over all ;) is identical, the above values need to
transition matrix. Below we outline a polynomial-time procedure be made equal by deciding on the allocations for each oftihe
by which we can obtain such bounds on belief support. Since}", zx = 1, it cannot be the case that all these values are

Let B, [01]'**! be aspace such thB(b, ¢ B,) = 0. Thatis, reduced, since reduction happens only in the third equation for
there exists no initial belief vector and action/observation sequencewherez;, = 0 (since there is a subtraction of non negative variable
of lengtht —1 such that by applying the standard belief update rule, ;). Thus, it is imperative that smaller of these values increase. As

4.3 Dynamic Belief Spaces (DB)

one would get a belief vectdr not captured in the se8;. Then, can be observed from the equations\dfor a particular k), values
we have can be increased only in the caserpf = z; (since there is a non
negative variablgi;, in the equation), and hence full allocation for

min

F(st41,a,0,b¢) =: b1 (se41) smaller values ofd”z)\ = [(¢"z)/(d" z)]d), — cx i.e value for
state 1 (5), can be increased, by assigning= z,. Further, if
(1 —zZ1) > Z2, then value for state 2 (6), can also increase, since it
also gets a full assignment. However(if— 1) < Z», then value

beyi(Se+1) >

bey1(se+1) <

min
a€A,0€0¢,bt Bt

max
max F(sty1,a,0,b;) =: b St41
a€A,0€0¢,b€By (T) t+1(+)

whereF (si11,a,0,b:) 1= for state 2 should remain the same, while value for state 3 can de-
crease, since it gets a zero allocation. Based on this reasoning of
Ot(st41,a,0) 32, c5, Te(st,a,8041)be(s1) making the values of equal (over all statek), the allocation of
D siiresisy Ot(Sir1,0,0) 30 g, Ti(se, a5 Se1)be(se) bounds is done. o .
The question then becomes finding the maximum valug of
Thus, if which yields a consistent solution. We note thas the value we
_) are attempting to maximize, which we can bound wjth.x =
Bi1 = [b31(s1)bET (51)] X - -+ X (b33 (815,5, 0T (515,11 1)]s max; ¢;/d; andymin = min; ¢;/d;. We also note that for each
componenk, z; describes a line over the suppffhin, Ymax). We
then we haveP (b1 ¢ Biy1) = 0. ' can then find the set of all points where the set of lines described
We now show howb;"" (s¢+1) (and similarlyb}y; (si+1)) can by {1} intersect. There can be at mgsV — 1)N/2 intersec-
be generated through a polynomial-time procedure deduced fromtions points. We can then partition the SUPP@kLin, Ymax] iNtO
Lagrangian methods. Given an actieand observatiow, we can disjoint intervals using these intersection points yielding at most
express the problem as (N —1)N/2 + 1 regions. In each region, there is a consistent or-
- - T T dering of{ zx } which can be obtained in polynomial time. Anillus-
nea, biii(serr) St bii(serr) = ¢ be/d by tration of this can be seen in Figure 4.3. Beginning with the region
furthest to the right on the real line, we can create the candidate so-
wherec(s) = O¢(s¢+1,a,w)Ti(st, a, s4+1) and lution implied by the ordering ofzx } in that region and then calcu-
d(s) = Zsf+1est+1 Oi(st4+1,a,w)Ti(st,a, s¢41). We rewrite late the value ofy for that candidate solution. If the obtained value
the problem in terms of the new variables as follows: of y does not fall within region, then the solution is inconsistent

and we move to the region immediately to the left. If the obtained
. T T max = value ofy does fall within the region, then we have the candidate
— d)S.t. i=1,0< i < b i) =:%; — (3 Y X X . g ’ X .
. (¢ wfdw ; v Sa s b () = 3= (3) extremal point which yields the highest possible valug,ofrhich
is the solution to the problem. By using this technique we can dy-
where}", bi***(s;) > 1 to ensure existence of a feasible solution. namically propagate forward bounds on feasible belief states. Line
Expressing this problem as a Lagrangian, we have 12 and 13 of the DSDODB-GIP function in Algorithm 1 provide
the procedure for DB. The GET-CONSTRAINTS function on Line
L=(-"z/d"x) + A1 —)+ > fi(wi —) — piz; 12 gives the set of” andd” vectors for each state at tintefor
(/) Z) XZ: () XZ: each action and observation. 2

A

DSDO+GIP, DSDODB+GIP, DS+RBIP, DSDO+RBIP, DSDODB
+ RBIP). Each problem had pre-specified run-time upper limit of
20000 seconds.

In our experiments, the sizes of the problem instances tested are
as follows. For the TMP domain, the number of states, actions and
observations for the smallest problem A were 65, 3, and 16 respec-
tively, whereas for the largest problem G the numbers were 217, 3,
and 37 respectively. For the MRP domain, the number of states, ac-
tions and observations for the smallest problem A were 109, 4, 10
respectively, whereas for the largest problem G, the numbers were
252, 4, and 17 respectively.

Figure 4(a)-(c) present results for the TMP domain. Experimen-
tal setup consisted of seven problems of increasing complexity (A
Figure 3: Partition Procedure for Solving Belief Maximization through G). In all the graphs, theaxis denotes the problem name,
Lagrangian and they-axis denotes the run-time for a problem. GIP and RBIP
finished before the time limit only in Problem A, as shown in Fig-
ure 4(a). DS+GIP provides 100-fold speedup in Problem B, and
r10-fo|d speedup in Problems C and D (the actual speedup, which
e expect to be even larger cannot be seen due to the cutoff).

DSDO+GIP and DSDODB+GIP have same run-time as DS in A-
C. Figure 4(b) provides comparisons among our enhancements on
GIP. For Problems D-G that are complex than A-C, DSDODB dom-
inates other enhancements providing approximately 5-fold speedup
over DS. GIP and RBIP did not even terminate within time limit
and hence not shown. The key point of Figure 4(c) is to show that
DS+GIP provides 10-fold speedup (with cut-off) over DS+RBIP,
even though RBIP is faster than GIP. This is also the reason for
providing the results of enhancements on GIP instead of RBIP in

While the Lagrangian method introduced above works in any
general case, there are special cases where simpler methods a
feasible to obtain belief bounds. For instance, in the belief maxi-
mization equation, ib***(s;) is equal to 1 for all states;, then
it can be easily proved that the maximum value is equahta:,
ck/di. Thus this special case does not even require the complex-
ity of the lagrangian method, and can be solved ihSPeg(|S])).
However, if the maximum possible value of belief probability in
the previous stage is not equal torkqxy, cx/di can serve only as
a bound and not the exact maximum. A simple improvement to the
above method is assigning, their maximum value (until the sum
is 1) based on the order of /d,. However, as can be observed in

the example below, this method doesn’t yield the maximum. Figure 4(b).
max ((0.06x1 + 0.02x2 + 0.07x3) / (0.221 + 0.0922 + 0.1523)) 8 -
74 " |
St 0<z1 <080<x2<06,0<xs <08y 2 =1 i

k3

In the above example, if the bounds are allocated based on the order
of ratios of coefficients, then the value of the expression would be

0.44, while there exists an allocations (0.8t and 0.2 toxs), 2 Rl e
that gives a value of 0.45. 1 Th -

Expected Yalue
-
il

By using dynamic beliefs, we increase the costs of pruning by 0 —
adding some constraints. However, there is an overall gain because b B2 AE 0d 05 0 07 S0 i M
. . Belief Points (for two states)
we are looking for dominant vectors over a smaller support and [—+——HDP -~ POMDP - & - Wodfied HDP |

this reduces the cardinality of the parsimonious set, leaving fewer
vectors to consider at the next iteration.
Figure 5: POMDP policy dominates MDP policy

5. EXPERIMENTAL RESULTS Figure 4(d) presents results for the MRP domain. Experimental

setup for MRP consisted of a set of seven problems(A through G).
The figure does not show results for GIP and RBIP, because they
Experiments were conducted on the TMPs and MRPs explained did not finish before our cutoff for any of the problems. DSDO+GIP
in Section 2. Each agent uses a POMDP for decision making in is not present in the figure, since it had run-times identical to DS +
both domains. Our enhancements, DS (Dynamic States), DO (Dy- GIP. DSDODB+GIP provides approximately 6-fold speedup over
namic Observations) and DB (Dynamic Beliefs), were impleménted DS. DS+RBIP seems comparable with the other three methods in
over both GIP and RBIP [4|(RBIP is itself a recent enhancement A-C, but for D-G, it fails to even finish before the cutoff. Both
to GIP). All the experimenfscompare the performance (run-time) — domains provide similar conclusions: DSDODB+GIP dominates
of GIP, RBIP and our enhancements over GIP and RBIP. For both other techniques (with around 100 fold speedup over GIP and RBIP
domains, we ran 7 problems over all methods (GIP, RBIP, DS+GIP, in some cases) and this dominance becomes significant in larger

10ur enhancements were implemented on Anthony Cassandra’spmt.)lems' . Y . .
POMDP solver “http://pomdp.org/pomdp/code/index.shtml” Figure 5 provides a quantitative reason for using POMDPs in-
?Since RBIP code was not available, we implemented RBIP pre- stead of MDPs for policy generation in the PAA domains. As in
sented in [4] on Anthony Cassandra’s POMDP solver [15], MDPs can be used for obtaining policies, but they suffer from
3Machine specs for all experiments: Intel Xeon 2.8 GHZ processor, nNot handling observational uncertainty. Figure 5 emphasizes this
2GB RAM, Linux Redhat 8.1 point quantitatively, by comparing the expected values of optimal

Comparison of GIP, RBIP, and DSGIP

20000
~ 18000
o 16000
¥ 100
< 12000
£ 10000
8000

6000
4000
2000

Time Tak

(A//km'“‘
A

B c D
Experiments

Comparison of DS, DSDO, DSDODB

10000

9000 Y
8000 ’
7000 A

¢ 7/
5000 [
5000 /f s o
4000 7

Time Taken (in sec)

3000 e

wo | W

1000

04 : .

D E F G
Experiments

[~ GIP—# -RBIP ~#~DS+GIP|

[—#= DS+GIP~#DSDO+GIP-~#~DSDODB+GIR

Comparison of DSRBIP and DSGIP

20000 SRS

< 12000

Time Taken

2

10000 :
8000
6000
4000

s
2000 ‘//.,.._....
0+ i o T

Experiments

= 4 - DS+RBIP =~ DS+GIP|

Time Taken (in sec)

MRP Results

Experiments

[—+—DS+RBIP~#~DS+GIP - # -DSDODB+GIF|

Figure 4: TMP: (a) DS+GIP gives orders of magnitude speedup over GIP and RBIP (b) DSDODB+GIP dominates other enhance-
ments over GIP (c) DS+GIP dominates DS+RBIP; MRP: (d) DSDODB+GIP dominates

policies generated using an MDP and a POMDP on a small TMP in [14]. This work applies E-PCA (an improvement to Principal
problem. The MDP policy was evaluated in the presence of uncer- Component Analysis) on a set of belief vectors, to obtain a low di-
tainty by assuming the state (at any point in policy execution) to mensional representation of the original state space. Though this
be the one with highest belief probability in the belief state (at that work provides reduction of dimension (state space), it doesn't pro-
point). Modified-MDP policy is where the MDP policy is modified vide any guarantees on the quality of solutions. Nonetheless, our
to take asafeaction (“Ask User”), when there is high uncertainty techniques can also benefit approximate algorithms, e.g., PBVI can
in the belief state.z-axis denotes belief points (for two states), benefit from our DO technique.

while the y-axis denotes the expected value of a policy. The ex-
pected value of a POMDP policy dominates the MDP policy by
approximately 5 in a problem where expected values of policies
vary from -2 (the value for always choosing the “Wait” action) to 7.
7 (the highest reward under the POMDP policy). Thus, there could

be significant quality loss incurred with a MDP policy.

SUMMARY

This paper provides techniques to make the application of POMDPs
in personal assistant agents a reality. In particular, we provide three
key techniques to speedup POMDP policy generation that exploit
the key properties of the PAA domains. The key insight is that
given an initial (possibly uncertain) starting set of states, the agent
needs to generate a policy for a limited range of dynamically shift-

We have already discussed some related work in Section 1. Asing belief states. The techniques we propose are complementary
discussed there, techniques for solving POMDPs can be catego-10 most existing exact and approximate POMDP policy generation
rized as exact and approximate. GIP [1] and RBIP [4] are exact algorithms. Indeed, we illustrate our technique by enhancing GIP
algorithms, which we have enhanced. There has been work by [2] and RBIP, two of the most efficient exact algorithms for POMDP
and [10] on ways of compactly representing dynamics of a domain. Policy generation and obtain orders of magnitude speedup in pol-
These compact representations however do not seem to have advariCy generation. We provide a detailed algorithm illustrating our
tages in terms of the speedups [8]. Other exact algorithms attempteénhancements in Algorithm 1, and present proofs of correctness of
to exploit domain-specific properties to speedup POMDPs. For our techniques. Techniques presented here facilitate agents’ utiliz-
instance, [10] presents a hybrid framework that combines MDPs ing POMDPs for policies when assisting human users.
with POMDPs to take advantage of perfectly and partially observ-
able components of the model. They also focus on reachable belief Acknowledgements. This material is based upon work sup-
spaces, but: (i) their analysis does not capture dynamic changes inPorted by DARPA, through the Department of the Interior, NBC,
belief space reachability; (i) their analysis is limited to factored Acquisition Services Division, under Contract No. NBCHD030010.
POMDPSs; (iii) no speedup measurements are shown. This con- Thanks to Eric Hansen, Nicholas Roy and Joelle Pineau for their
trasts with this work which focuses on dynamic changes in belief valuable comments.
space reachability and its application to both flat and factored state
POMDPs. _ _ 8. REFERENCES

Approximate algorithms are faster than exact algorithms, but at .
the cost of solution quality. There has been a significant amount [1] M. L. Littman A. R. Cassandra and N. L. Zhang. Incremental
of work in this area, but point-based [17, 7], grid [5, 18], and pol- pruning: A simple, fast, exact method for partially
icy search approaches [3, 11] dominate other algorithms. Though observable markov decision processedJAd, 1997.
these approaches can solve larger problems, most of them provide [2] C. Boutilier and D. Poole. Computing optimal policies for
loose (or no) quality guarantees on the solution. It s critical to have partially observable decision processes using compact
quality guarantees in PAA domains, for an agent to gain the trust representations. IAAAI 1996.
of a human user. Point Based Value Iteration (PBVI)[7] provides [3] D. Braziunas and Craig Boutilier. Stochastic local search for
quality guarantees, but to obtain good results, it needs to increase POMDP controllers. IAAAI 2004.
sampling, consequently increasing in run-time. Other approach that [4] Z. Feng and S. Zilberstein. Region based incremental
works with big problems is the dimensionality reduction technique pruning for POMDPs. IiJAI, 2004.

6. RELATED WORK

[5] M. Hauskrecht. Value-function approximations for
POMDPsJAIR, 13:33-94, 2000.

[6] http://www.ai.sri.com/project/CALO, http://calo.sri.com.
CALO: Cognitive Agent that Learns and Organiz2803.

[7] G. Gordon J. Pineau and S. Thrun. PBVI: An anytime
algorithm for POMDPs. InJCAI, 2003.

[8] M. L. Littman L. P. Kaelbling and A. R. Cassandra. Planning
and acting in partially observable stochastic domahis.
Journal 1998.

[9] T.Y.Leong and C. Cao. Modeling medical decisions in
DynaMoL: A new general framework of dynamic decision
analysis. InWorld Congress on Medical Informatics
(MEDINFO), pages 483-487, 1998.

[10] H. Fraser M. Hauskrecht. Planning treatment of ischemic
heart disease with partially observable markov decision
processesAl in Medicine 18:221—-244, 2000.

[11] L. P. Kaelbling N. Menleau, K. E. Kim and A. R. Cassandra.
Solving POMDPs by searching the space of finite policies. In
UAI, 1999.

[12] F. Locatelli: P. Magni, R. Bellazzi. Using uncertainty
management techniques in medical therapy planning: A
decision-theoretic approach. Applications of Uncertainty
Formalisms pages 38-57, 1998.

[13] M. E. Pollack, L. Brown, D. Colbry, C. E. McCarthy,

C. Orosz, B. Peintner, S. Ramakrishnan, and |. Tsamardinos.
Autominder: An intelligent cognitive orthotic system for
people with memory impairmenRobotics and Autonomous
Systems44:273-282, 2003.

[14] N. Roy and G. Gordon. Exponential family PCA for belief
compression in POMDPs. NIPS 2002.

[15] P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable
autonomy for the real-worldlAIR, 17:171-228, 2002.

[16] D. Schreckenghost, C. Martin, P. Bonasso, D. Kortenkamp,
T.Milam, and C.Thronesbery. Supporting group interaction
among humans and autonomous agentdAAl, 2002.

[17] N. L. Zhang and W. Zhang. Speeding up convergence of
value iteration in partially observable markov decision
processeslAIR, 14:29-51, 2001.

[18] R. Zhou and E. Hansen. An improved grid-based
approximation algorithm for POMDPs. IdCAl, 2001.

