
Exploiting Belief Bounds: Practical POMDPs for Personal
Assistant Agents

Pradeep Varakantham, Rajiv Maheswaran, and Milind Tambe
Department of Computer Science
University of Southern California

Los Angeles, CA, 90089
{varakant, maheswar, tambe}@usc.edu

ABSTRACT
Agents or agent teams deployed to assist humans often face the
challenges of monitoring the state of key processes in their envi-
ronment (including the state of their human users themselves) and
making periodic decisions based on such monitoring. POMDPs ap-
pear well suited to enable agents to address these challenges, given
the uncertain environment and cost of actions, but optimal policy
generation for POMDPs is computationally expensive. This paper
introduces three key techniques to speedup POMDP policy genera-
tion that exploit the notion of progress or dynamics in personal as-
sistant domains. Policy computation is restricted to the belief space
polytope that remains reachable given the progress structure of a
domain. We introduce new algorithms; particularly one based on
applying Lagrangian methods to compute a bounded belief space
support in polynomial time. Our techniques are complementary to
many existing exact and approximate POMDP policy generation al-
gorithms. Indeed, we illustrate this by enhancing two of the fastest
existing algorithms for exact POMDP policy generation. The order
of magnitude speedups demonstrate the utility of our techniques in
facilitating the deployment of POMDPs within agents assisting hu-
man users.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Distributed Artificial Intelligence -
Multi Agent Systems

General Terms
Algorithms

Keywords
Task Allocation, Meeting Rescheduling, Partially Observable Markov
Decision Process (POMDP)

1. INTRODUCTION

Recent research has focused on individual agents or agent teams
that assist humans in offices, at home, in medical care and in many

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

other spheres of daily activities [16, 13, 6, 15, 9, 12]. Such agents
must often monitor the evolution of a process or state over time
(including that of the human, the agents are deployed to assist) and
make periodic decisions based on such monitoring. For example,
in office environments, agent assistants may monitor the location
of users in transit and make decisions such as delaying, canceling
meetings or asking users for more information [15]. Similarly, in
assisting with caring for the elderly [13] and therapy planning [9,
12], agents may monitor users’ states/plans and make periodic de-
cisions such as sending reminders.

Unfortunately, such agents (henceforth referred to as personal
assistant agents (PAAs)) must monitor and make decisions despite
significant uncertainty in their observations (as the true state of
the world may not be known explicitly) and actions (outcome of
agents’ actions may be non-deterministic). Furthermore, actions
have costs, e.g., delaying a meeting has repercussions on attendees.
Researchers have turned to decision-theoretic frameworks to reason
about costs and benefits under uncertainty. However, this research
has mostly focused on Markov decision processes (MDPs) [15, 9,
12], ignoring the observational uncertainty in these domains, and
thus potentially degrading agent performance significantly and/or
requiring unrealistic assumptions about PAAs’ observational abil-
ities. POMDPs (Partially Observable Markov Decision Processes)
address such uncertainty, but the long run-times for generating op-
timal policies for POMDPs remains a significant hurdle in their use
in PAAs.

Recognizing the run-time barrier to POMDP usage, previous
work on POMDPs has made encouraging progress using two ap-
proaches. First is an exact approach, where one finds the optimal
solution [1, 4]. However, despite advances, exact algorithms re-
main computationally expensive and currently do not scale to prob-
lems of interest in PAA domains. Second is an approximate ap-
proach, where solution quality is sacrificed for speed [17, 7, 5, 18].
Unfortunately, approximate algorithms often provide loose (or no)
quality guarantees on the solutions, even though such guarantees
are crucial for PAAs to inhabit human environments.

This paper aims to practically apply POMDPs to PAA domains
by introducing novel speedup techniques that are particularly suit-
able for such settings. The key insight is that when monitoring
users or processes over time, large but shifting parts of the belief
space in POMDPs (i.e., regions of uncertainty) remain unreachable.
Thus, we can focus policy computation on this reachable belief-
space polytope that changes dynamically. For instance, consider a
PAA monitoring a user driving to a meeting. Given knowledge of
user’s current location, the reachable belief region is bounded by
the maximum probability of the user being in different locations at
the next time step as defined by the transition function. Similarly, in

a POMDP where decisions are made every 5 minutes, an agent can
exploit the fact that there is zero probability of going from a world
state withTime = 1:00 PM to a world state withTime = 1:30 PM.
Current POMDP algorithms typically fail to exploit such belief re-
gion reachability properties. POMDP algorithms that restrict belief
regions fail to do so dynamically [14, 10].

Our techniques for exploiting belief region reachability exploit
three key domain characteristics: (i) not all states are reachable at
each decision epoch, because of limitations of physical processes
or progression of time; (ii) not all observations are obtainable, be-
cause not all states are reachable; (iii) the maximum probability
of reaching specific states can be tightly bounded. We introduce
polynomial time techniques based on Lagrangian analysis to com-
pute tight bounds on belief state probabilities. These techniques are
complementary to most existing exact and approximate POMDP
algorithms. We enhance two state-of-the-art exact POMDP algo-
rithms [1, 4] delivering over an order of magnitude speedup for
two different PAA domains.

2. MOTIVATING PERSONAL ASSISTANT
AGENT (PAA) DOMAINS

We present two motivating examples, where teams of software
PAAs assist human users in an office setting[15, 6]. The first is
a meeting rescheduling problem (MRP), as implemented in the
Electric-Elves system [15]. In this large-scale operationalized sys-
tem, agents monitored the location of users and made decisions
such as: (i) delaying the meeting if the user is projected to be
late; (ii) asking user for information if he/she plans to attend the
meeting; (iii) canceling the meeting; (iv) waiting. The agent re-
lied on MDPs to arrive at decisions, as its actions such as asking
had non-deterministic outcomes (e.g. a user may or may not re-
spond) and decisions such as delaying had costs. The MDP state
represented user location, meeting location and time to the meet-
ing (e.g., user@home, meeting@USC, 10 minutes) and a policy
mapped such states to actions. Unfortunately, observational uncer-
tainty about user location was ignored while computing the policy.

A second key example is a task management problem (TMP) do-
main [6]. In this domain, a set of dependent tasks (e.g. T1, T2, T3
in Figure 1) is to be performed by human users (e.g. users U1, U2,
U3 in Figure 1) before a deadline. Agents (e.g. A1, A2, A3 in
Figure 1) monitor progress of humans and make reallocation deci-
sions. Lines connecting agents and users indicate the communica-
tion links. An illustration of reallocation is the following scenario:
suppose T1, T2 and T3 are assigned to U1, U2 and U3 respec-
tively based on their capabilities. However, if U1 is observed to
be progressing too slowly on T1, e.g., U1 may be unwell, then
A1 may need to reallocate T1 to ensure that the tasks finish be-
fore the deadline. A1 may reallocate T1 to U2, if U2’s original
task T2 is nearing completion and U2 is known to be more capable
than U3 for T1. However, if U2 is also progressing slowly, then
T1 may have to be reallocated to U3 despite potential loss in ca-
pability. POMDPs provide a framework to analyze and obtain
policies in domains such as MRP and TMP. In a TMP, a POMDP
policy can take into account the possibly uneven progress of differ-
ent users, e.g., some users may make most of their progress well
before the deadline, while others do the bulk of their work closer to
the deadline. In contrast, an instantaneous decision-maker cannot
take into account such dynamics of progress. For instance, con-
sider a TMP scenario where there are five levels of task progress
x ∈ {0.00, 0.25, 0.50, 0.75, 1.00} and five decision points before

U2

U3U1

A3

A2

A1 T1

T2

T3

Figure 1: Comm. Structure and Task Dependency

the deadlinet ∈ {1, 2, 3, 4, 5}. Observations are five levels of task
progress{0.00, 0.25, 0.50, 0.75, 1.00} and time moves forward in
single steps, i.e.T ([x, t], a, [x̃, t̃]) = 0 if t̃ 6= t + 1. While tran-
sition uncertainty implies irregular task progress, observation un-
certainty implies agent may observe progressx as for instancex or
x + 0.25 (unlessx = 1.00). Despite this uncertainty in observing
task progress, a PAA needs to choose among waiting (W), asking
user for info (A), or reallocate (R). A POMDP policy tree that takes
into account both the uncertainty in observations and future costs
of decisions, and maps observations to actions, for this scenario is
shown in Figure 2 (nodes=actions, links=observations). In more
complex domains with additional actions such as delaying dead-
lines, cascading effects of actions will require even more careful
planning afforded by POMDP policy generation. Such scenarios in
TMP and MRPs are investigated in Section 5.

W

A W W

R W

.......

.....

0.00

0.00 0.25

0.25 0.50 1.00

A W

....

W

0.00 0.25 0.75

W

W

Figure 2: Partial Sample Policy for a TMP

3. POMDPS AND GENERALIZED INCRE-
MENTAL PRUNING

A POMDP can be represented using the tuple{S, A, T, O, Ω, R},
whereS is a finite set of states;A is a finite set of actions;Ω is a
finite set of observations;T (s, a, s′) provides the probability of
transitioning from states to s′ when taking actiona; O(s′, a, o)
is probability of observingo after taking an actiona and reaching
s′; R(s, a) is the reward function. A belief stateb, is a probability
distribution over the set of statesS. A value function over a belief
state is defined as:
V (b) = maxa∈A {R(b, a) + β Σb′∈BT (b, a, b′)V (b′)}.
Currently, the most efficient exact algorithms for POMDPs are value
iteration algorithms, specifically GIP [1] and RBIP [4]. These are
dynamic programming algorithms, where at each iteration the value
function is represented with a minimal set of dominant vectors
called the parsimonious set. Given a parsimonious set at timet,

Vt, we generate the parsimonious set at timet−1, Vt−1 as follows
(notation similar to the one used in [1] and [4]):

1.
{
va,o,i

t−1 (s) = r(s, a)/|Ω|+ β Σs′∈SPr(o, s′|s, a)vi
t(s

′)
}

=:

V̂a,o
t−1 wherevi

t ∈ Vt.

2. Va,o
t−1 = PRUNE(V̂a,o

t−1)

3. Va
t−1 = PRUNE(· · · (PRUNE(Va,o1

t−1 ⊕V
a,o2
t−1) · · ·⊕Va,o|Ω|

t−1)

4. Vt−1 = PRUNE(
⋃

a∈A V
a
t−1)

EachPRUNE call executes a linear program (LP) which is rec-
ognized as a computationally expensive phase in the generation of
parsimonious sets [1, 4]. Our approach effectively translates into
obtaining speedups by reducing the quantity of these calls.

4. DYNAMIC BELIEF SUPPORTS

Our approach consists of three key techniques: (i) dynamic state
spaces (DS); (ii) dynamic observation sets (DO); (iii) dynamic be-
lief supports (DB). These ideas may be used to enhance existing
POMDP algorithms such as GIP and RBIP. The key intuition is
that for personal assistant domains,progressimplies a dynamically
changing polytope (of belief states) remains reachable through time,
and policy computation can be speeded up by computing the par-
simonious set over just this polytope. The speedups are due to the
elimination of policies dominant in regions outside this polytope.
DS provides an initial bound on the polytope and DO exploits this
bound to limit the space of possible vectors at the next iteration.
DB (which captures DS) provides tighter bounds on reachable be-
lief states through a polynomial-time technique obtained from La-
grangian analysis.

These techniques do not alter the relevant parsimonious set w.r.t.
reachable belief states and thus,yield an optimal solutionover the
reachable belief states. The resulting algorithms (DS,DO,DB) ap-
plied to enhance GIP are shown in Algorithm 1, where the functions
GET-BOUND and DSDODB-GIP are the main additions, with sig-
nificant updates in other GIP functions (otherwise, the GIP descrip-
tions follows [1,3]). We discuss our key enhancements in Algo-
rithm 1 at the end of each subsection below. Since the enhance-
ments exploit the dynamics (transitions over time), these are appli-
cable only to finite horizon problems.

4.1 Dynamic State Spaces (DS)

A natural method for PAAs to represent a user’s state (such as
in TMP) is with one consisting of a spatial element, (in a TMP,
capturing the progress of each task), and a temporal element, cap-
turing the stage of the decision. The transition matrix is then a
static function of the state. This approach is used in [15] for an
adjustable autonomy problem addressed with MDPs. We note that
in these kinds of domains, one cannot reach all states from a given
state. For example, in the scenario presented in Section 2, if there
are limits on how tasks progress (one cannot advance more than
one progress level in one time step,T ([x, t], a, [x̃, t + 1]) = 0 if
x̃−x > 0.25) and we know that att = 1 we are at eitherx = 0.00
or x = 0.25, then we know att = 2, x /∈ {0.75, 1.00} and at
t = 3, x 6= 1.00. This implies that the state space at each point
in time can be represented more compactly in a dynamic fashion.

Algorithm 1 DSDODB + GIP

Func POMDP-SOLVE (L, S, A, T, Ω, O, R)
1: ({St}, {Ot}, {Bmax

t }) = DSDODB-GIP
(L, S, A, T, Ω, O, R)

2: t← L;Vt ← 0
3: for t = L to 1do
4: Vt−1 = DP-UPDATE(Vt, t)

Func DP-UPDATE (V, t)
1: for all a ∈ A do
2: Va

t−1 ← φ
3: for all ωt ∈ Ot do
4: for all vi

t ∈ V do
5: for all st−1 ∈ St−1 do
6: va,ωt,i

t−1 (st−1) = rt−1(st−1, a)/|Ot| +

γΣst∈StPr(ωt, st|st−1, a)vi
t(st)

7: Va,ωt
t−1 ← PRUNE({va,ωt,i

t−1 }, t)
8: Va

t−1 ← PRUNE(Va
t−1 ⊕ Va,ωt

t−1 , t)
9: Vt−1 ← PRUNE(

⋃
a∈A V

a
t−1, t)

10: returnVt−1

Func POINT-DOMINATE(w, U, t)
1: for all u ∈ U do
2: if w(st) ≤ u(st),∀st ∈ St then return true
3: return false

Func LP-DOMINATE(w, U, t)
1: LP vars:d, b(st)[∀st ∈ St]
2: LP maxd subject to:
3: b · (w − u) ≥ d,∀u ∈ U
4: Σst∈Stb(st)← 1
5: b(st) <= bmax

t (st); b(st) >= 0
6: if d ≥ 0 returnb else return nil

Func BEST(b, U)
1: max← Inf
2: for all u ∈ U do
3: if (b · u > max) or ((b · u = max) and(u <lex w)) then
4: w ← u; max← b · u
5: returnw

Func PRUNE(U, t)
1: W ← φ
2: while U 6= φ
3: u← any element inU
4: if POINT-DOMINATE(u, W, t) = truethen
5: U ← U − u
6: else
7: b←LP-DOMINATE(u, W, t)
8: if b = nil thenU ← U − u
9: elsew ← BEST (b, U);W ←W

⋃
w;U ← U − w

10: returnW

Func DSDODB-GIP(L, S, A, T, Ω, O, R)
1: t← 1; St =Set of starting states
2: for all st ∈ St do
3: bmax

t (st) = 1
4: for t = 1 to L− 1 do
5: for all s ∈ St do
6: ADD-TO(St+1,REACHABLE-STATES(s, T))
7: Ωt+1 = GET-RELEVANT-OBS(St+1, O)
8: C = GET-CONSTRAINTS (st)
9: bmax

t+1 (st+1) = MAX c∈C (GET-BOUND(st+1, c))
10: return ({St}, {Ωt}, {bmax

t })

Func GET-BOUND(st, constraint)
1: ymin = MINs∈St−1(constraint.c[s]/constraint.d[s])
2: ymax = MAX s∈St−1(constraint.c[s]/constraint.d[s])
3: INT = GET-INTERSECT-SORTED(constraint, ymin, ymax)
4: for all i ∈ INT do
5: Z = SORT(((i + ε) ∗ constraint.d[s] −

constraint.c[s]),∀s ∈ St−1

6: sumBound = 1, numer = 0, denom = 0
7: /* IN ASCENDING ORDER */
8: for all z ∈ Z do
9: s = FIND-CORRESPONDING-STATE(z)

10: if sumBound− bound[st−1] > 0 then
11: sumBound− = bound[st−1]
12: numer+ = bound[st−1] ∗ constraint.c[st−1]
13: denom+ = bound[st−1] ∗ constraint.d[st−1]
14: if sumBound− bound[st−1] <= 0 then
15: numer+ = sumBound ∗ constraint.c[st−1]
16: denom+ = sumBound ∗ constraint.d[st−1]
17: BREAK-FOR
18: if numer/denom > i andnumer/denom < max then
19: returnnumer/denom

This will require the transition matrix and reward function to be dy-
namic themselves. Given knowledge about the initial belief space
(e.g. possible beginning levels of task progress), we show how we
can obtain dynamic state spaces and also that this representation
does not affect the optimality of the POMDP solution. LetL be
the length of a finite horizon decision process. LetS be the set
of all possible states that can be occupied during the process. At
time t, let St ⊂ S denote the set of all possible states that could
occur at that time. Thus, for any reachable belief state, we have∑

st∈St
bt(st) = 1. Then, we can obtainSt for t ∈ 1, . . . L induc-

tively if we know the setS0 ⊂ S for which s /∈ S0 ⇒ b0(s) = 0,
as follows:

St+1 =
{
s′ ∈ S : ∃ a ∈ A, s ∈ St s.t.Tt(s, a, s′) > 0

}
(1)

The belief probability for a particular statẽs at timet + 1 given a
starting belief vector at timet (bt) action (a) and observation (ω)
can be expressed as follows:

bt+1(s̃) :=
Ot(s̃, a, ω)

∑
st∈St

Tt(st, a, s̃)bt(st)∑
st+1∈St+1

Ot(st+1, a, ω)
∑

st∈St
Tt(st, a, st+1)bt(st)

This implies that the belief vectorbt+1 will have support only on
St+1, i.e. s̃ /∈ St+1 ⇒ bt+1(s̃) = 0, if bt only has support inSt

andSt+1 is generated as in (1). Thus, we can model a process that
migrates among dynamic state spaces{St}Lt=1 indexed by time or
more accurately, the stage of the decision process as opposed to a
transitioning within static global state setS.

PROPOSITION 1. GivenS0, we can replace a static state space
S with dynamic state spaces{St} generated by (1), dynamic tran-
sition matrices and dynamic reward functions in a finite horizon
POMDP without affecting the optimality of the solution obtained
using value function methods.

Proof. If we letPt denote the set of policies available at timet, V p
t

denote the value of policyp at timet and,V ∗
t denote the value of

the optimal policy at timet, we haveV ∗
L (bL) = maxp∈PL bL · αp

L

whereαp
L = [V p

L (s1) · · ·V p
L (s|S|)] for si ∈ S.

Whent = L, we haveV p
L (s) = RL(s, a(p)) whereRL is the re-

ward function at timeL anda(p) is the action prescribed by the pol-
icy p. SincebL(s) = 0 if s /∈ SL, thenV ∗

L (bL) = maxp∈PL b̃L ·

α̃p
L where|b̃L| = |α̃p

L| = |SL| andα̃p
L = [V p

L (s̃1) · · ·V p
L (s̃|SL|)]

for s̃i ∈ SL. Calculating the value function at timeL − 1, we
haveV ∗

L−1(bL−1) = maxp∈PL−1 bL−1 · αp
L−1 whereαp

L−1 =
[V p

L−1(s1) · · ·V p
L−1(s|S|)] for si ∈ S.

Whent = L− 1, we have
V p

L−1(s) = RL−1(s, a(p)) +

γ
∑

s′∈S TL−1(s, a(p), s′)
∑

ω∈Ω O(s′, a, ω)V pω
L (s′),

wherepω ∈ PL is the policy subtree of the policy treep ∈ PL−1

when observingω after the initial action. SincebL−1(s) = 0 if
s /∈ SL−1, thenVL−1(bL−1) = maxp∈PL−1 b̃L−1 · α̃p

L−1 where

|b̃L−1| = |α̃p
L−1| = |SL−1| andα̃p

L−1 = [V p
L (s̃1) · · ·V p

L (s̃|SL−1|])
for s̃i ∈ SL−1. Applying this reasoning inductively, we can show
that we only needV p

t (st) for st ∈ St. Furthermore, ifst ∈ St,
then

V p
t (st) = Rt(st, a(p))+

γ
∑

st+1∈St+1

Tt(st, a(p), st+1)
∑
ω∈Ω

O(st+1, a, ω)V pω
t+1(st+1).

(2)

Thus, we only need{V ω(p)
t+1 (st+1) : st+1 ∈ St+1}. �

The value functions expressed for beliefs over dynamic state
spacesSt have identical expected rewards as when usingS. The
advantage in this method is that in generating the set of value vec-
tors which are dominant at some underlying belief point (i.e. the
parsimonious set) at a particular iteration, we eliminate vectors that
are dominant over belief supports that are not reachable. This re-
duces the set of possible policies that need to be considered at
the next iteration. Line 6 of DSDODB-GIP function and the DP-
UPDATE function of Algorithm 1 provide the algorithm for finding
the dynamic states.

4.2 Dynamic Observation Spaces (DO)

We note that in some domains, certain observations can only be
obtained from certain states. Consequently, dynamic state spaces
imply that the observations capable of being obtained at a particular
time will also be dynamic. For instance, consider the TMP scenario
presented in Section 2, with the conditions on transition probabili-
ties from Subsection 4.1. Because the dynamic state space att = 1
limits us to being in one of two progress levels,(0.00or0.25), then
we will not be able to get the observations0.75 or 1.00 regardless
of the action we take at this time. We now show how to obtain these
dynamic observation sets and prove that they do not affect the value
iteration process.

PROPOSITION 2. Given dynamic state spaces{St}, we can re-
place a static observation spaceΩ with a dynamic observation
spacesΩt := {ω ∈ Ω : ∃a ∈ A, s ∈ St+1 s.t.O(s′, a, ω) > 0}
in a finite horizon POMDP without affecting the optimality of the
solution obtained using value function methods.

Proof. Given (2) from Subsection 4.1, we can rewriteV p
t (st) as

Rt(st, a(p)) + γ
∑

st+1∈St+1

Tt(st, a(p), st+1)

·

 ∑
ω∈Ωt

O(st+1, a, ω)V pω
t+1(st+1) +

∑
ω∈ΩC

t

O(st+1, a, ω)V pω
t+1(st+1)


whereΩC

t is the set complement ofΩ. Because of the dynamic
observations, the second part of the sum goes to zero. This implies

that only the observations inΩt are relevant to the value of a strat-
egy at timet. Thus, when creating policy trees, the subtreespω are
not necessary ifω /∈ Ωt. �

This further reduces the set of policies/vectors being generated
before pruning which reduces the number of LP calls during prun-
ing. For consistency, we now index the observation probability ma-
trix with time as it depends on a dynamic state. Line 7 in DSDODB-
GIP function and the DP-UPDATE function of Algorithm 1 provide
the procedure utilizing DO.

4.3 Dynamic Belief Spaces (DB)

By introducing dynamic state spaces, we are attempting to more
accurately model the support on which reachable beliefs will occur.
We can make this process more precise by using information about
the initial belief distribution, the transition and observation proba-
bilities to bound belief dimensions with positive support. For ex-
ample, if we know that our initial belief regarding task progress can
have at most 0.10 probability of being at 0.25 with the rest of the
probability mass on being at 0.00, we can find the maximum prob-
ability of being at 0.25 or 0.50 at the next stage, given a dynamic
transition matrix. Below we outline a polynomial-time procedure
by which we can obtain such bounds on belief support.

LetBt ⊂ [0 1]|St| be a space such thatP (bt /∈ Bt) = 0. That is,
there exists no initial belief vector and action/observation sequence
of lengtht−1 such that by applying the standard belief update rule,
one would get a belief vectorbt not captured in the setBt. Then,
we have

bt+1(st+1) ≥ min
a∈A,o∈Ot,bt∈Bt

F (st+1, a, o, bt) =: bmin
t+1(st+1)

bt+1(st+1) ≤ max
a∈A,o∈Ot,bt∈Bt

F (st+1, a, o, bt) =: bmax
t+1 (st+1)

whereF (st+1, a, o, bt) :=

Ot(st+1, a, o)
∑

st∈St
Tt(st, a, st+1)bt(st)∑

s̃t+1∈St+1
Ot(s̃t+1, a, o)

∑
st∈St

Tt(st, a, s̃t+1)bt(st)

Thus, if

Bt+1 = [bmin
t+1(s1)b

max
t+1 (s1)]× · · · × [bmin

t+1(s|St+1|)b
max
t+1 (s|St+1|)],

then we haveP (bt+1 /∈ Bt+1) = 0.
We now show howbmax

t+1 (st+1) (and similarlybmin
t+1(st+1)) can

be generated through a polynomial-time procedure deduced from
Lagrangian methods. Given an actiona and observationω, we can
express the problem as

max
bt∈Bt

ba,ω
t+1(st+1) s.t. ba,ω

t+1(st+1) = cT bt/dT bt

wherec(s) = Ot(st+1, a, ω)Tt(st, a, st+1) and
d(s) =

∑
st+1∈St+1

Ot(st+1, a, ω)Tt(st, a, st+1). We rewrite
the problem in terms of the new variables as follows:

min
x

(
−cT x/dT x

)
s.t.

∑
i

xi = 1, 0 ≤ xi ≤ bmax
t (si) =: x̄i − (3)

where
∑

i bmax
t (si) ≥ 1 to ensure existence of a feasible solution.

Expressing this problem as a Lagrangian, we have

L =
(
−cT x/dT x

)
+ λ(1−

∑
i

xi) +
∑

i

µ̄i(xi − x̄i)−
∑

i

µixi

from which the KKT conditions imply

xk = x̄k λ =[(cT x)dk − (dT x)ck]/(dT x)2 + µ̄k

0 < xk < x̄k λ =[(cT x)dk − (dT x)ck]/(dT x)2

xk = 0 λ =[(cT x)dk − (dT x)ck]/(dT x)2 − µk.

Becauseλ is identical in all three conditions and̄µk andµk are
non-negative for allk, the statek with a lowest value of(dT x)λ =
[(cT x)/(dT x)]dk − ck must receive a maximal allocation (assum-
ing x̄k < 1) or the entire allocation otherwise. Using this reasoning
recursively, we see that ifx∗ is an extremal point (i.e. a candidate
solution), then the values of its components{xk} must be con-
structed by giving as much weight possible to components in the
order prescribed byzk = ydk − ck, wherey = (cT x∗)/(dT x∗).
Given a value ofy, one can construct a solution by iteratively giv-
ing as much weight as possible (without violating the equality con-
straint) to a component that is not already at its bound with the
lowestzk.

Here is an example to illustrate the method introduced above.
If the size of state space is three (k = 1,2,3) and the values of the
expression[(cT x)/(dT x)]dk − ck for different states,k are 5, 6,
7. Sinceλ (over all xk) is identical, the above values need to
be made equal by deciding on the allocations for each of thexk.
Since

∑
k xk = 1, it cannot be the case that all these values are

reduced, since reduction happens only in the third equation forλ
wherexk = 0 (since there is a subtraction of non negative variable
µk). Thus, it is imperative that smaller of these values increase. As
can be observed from the equations ofλ (for a particular k), values
can be increased only in the case ofxk = x̄k (since there is a non
negative variablēµk in the equation), and hence full allocation for
smaller values of(dT x)λ = [(cT x)/(dT x)]dk − ck i.e value for
state 1 (5), can be increased, by assigningx1 = x̄1. Further, if
(1− x̄1) ≥ x̄2, then value for state 2 (6), can also increase, since it
also gets a full assignment. However, if(1− x̄1) < x̄2, then value
for state 2 should remain the same, while value for state 3 can de-
crease, since it gets a zero allocation. Based on this reasoning of
making the values ofλ equal (over all statesk), the allocation of
bounds is done.

The question then becomes finding the maximum value ofy
which yields a consistent solution. We note thaty is the value we
are attempting to maximize, which we can bound withymax =
maxi ci/di andymin = mini ci/di. We also note that for each
componentk, zk describes a line over the support[ymin, ymax]. We
can then find the set of all points where the set of lines described
by {zk} intersect. There can be at most(N − 1)N/2 intersec-
tions points. We can then partition the support[ymin, ymax] into
disjoint intervals using these intersection points yielding at most
(N − 1)N/2 + 1 regions. In each region, there is a consistent or-
dering of{zk}which can be obtained in polynomial time. An illus-
tration of this can be seen in Figure 4.3. Beginning with the region
furthest to the right on the real line, we can create the candidate so-
lution implied by the ordering of{zk} in that region and then calcu-
late the value ofy for that candidate solution. If the obtained value
of y does not fall within region, then the solution is inconsistent
and we move to the region immediately to the left. If the obtained
value ofy does fall within the region, then we have the candidate
extremal point which yields the highest possible value ofy, which
is the solution to the problem. By using this technique we can dy-
namically propagate forward bounds on feasible belief states. Line
12 and 13 of the DSDODB-GIP function in Algorithm 1 provide
the procedure for DB. The GET-CONSTRAINTS function on Line
12 gives the set ofcT anddT vectors for each state at timet for
each action and observation. 2

y

z

z

z

z

y ymin max

z

1

2

3

4

Figure 3: Partition Procedure for Solving Belief Maximization
Lagrangian

While the Lagrangian method introduced above works in any
general case, there are special cases where simpler methods are
feasible to obtain belief bounds. For instance, in the belief maxi-
mization equation, ifbmax

t (si) is equal to 1 for all statessi, then
it can be easily proved that the maximum value is equal tomaxk

ck/dk. Thus this special case does not even require the complex-
ity of the lagrangian method, and can be solved in O(|S|log(|S|)).
However, if the maximum possible value of belief probability in
the previous stage is not equal to 1,maxk ck/dk can serve only as
a bound and not the exact maximum. A simple improvement to the
above method is assigningxk their maximum value (until the sum
is 1) based on the order ofck/dk. However, as can be observed in
the example below, this method doesn’t yield the maximum.

max ((0.06x1 + 0.02x2 + 0.07x3) / (0.2x1 + 0.09x2 + 0.15x3))

s.t. 0 < x1 < 0.8, 0 < x2 < 0.6, 0 < x3 < 0.8,
∑

i

xi = 1

In the above example, if the bounds are allocated based on the order
of ratios of coefficients, then the value of the expression would be
0.44, while there exists an allocations (0.8 tox3, and 0.2 tox2),
that gives a value of 0.45.

By using dynamic beliefs, we increase the costs of pruning by
adding some constraints. However, there is an overall gain because
we are looking for dominant vectors over a smaller support and
this reduces the cardinality of the parsimonious set, leaving fewer
vectors to consider at the next iteration.

5. EXPERIMENTAL RESULTS

Experiments were conducted on the TMPs and MRPs explained
in Section 2. Each agent uses a POMDP for decision making in
both domains. Our enhancements, DS (Dynamic States), DO (Dy-
namic Observations) and DB (Dynamic Beliefs), were implemented1

over both GIP and RBIP [4]2 (RBIP is itself a recent enhancement
to GIP). All the experiments3 compare the performance (run-time)
of GIP, RBIP and our enhancements over GIP and RBIP. For both
domains, we ran 7 problems over all methods (GIP, RBIP, DS+GIP,
1Our enhancements were implemented on Anthony Cassandra’s
POMDP solver “http://pomdp.org/pomdp/code/index.shtml”
2Since RBIP code was not available, we implemented RBIP pre-
sented in [4] on Anthony Cassandra’s POMDP solver
3Machine specs for all experiments: Intel Xeon 2.8 GHZ processor,
2GB RAM, Linux Redhat 8.1

DSDO+GIP, DSDODB+GIP, DS+RBIP, DSDO+RBIP, DSDODB
+ RBIP). Each problem had pre-specified run-time upper limit of
20000 seconds.

In our experiments, the sizes of the problem instances tested are
as follows. For the TMP domain, the number of states, actions and
observations for the smallest problem A were 65, 3, and 16 respec-
tively, whereas for the largest problem G the numbers were 217, 3,
and 37 respectively. For the MRP domain, the number of states, ac-
tions and observations for the smallest problem A were 109, 4, 10
respectively, whereas for the largest problem G, the numbers were
252, 4, and 17 respectively.

Figure 4(a)-(c) present results for the TMP domain. Experimen-
tal setup consisted of seven problems of increasing complexity (A
through G). In all the graphs, thex-axis denotes the problem name,
and they-axis denotes the run-time for a problem. GIP and RBIP
finished before the time limit only in Problem A, as shown in Fig-
ure 4(a). DS+GIP provides 100-fold speedup in Problem B, and
10-fold speedup in Problems C and D (the actual speedup, which
we expect to be even larger cannot be seen due to the cutoff).

DSDO+GIP and DSDODB+GIP have same run-time as DS in A-
C. Figure 4(b) provides comparisons among our enhancements on
GIP. For Problems D-G that are complex than A-C, DSDODB dom-
inates other enhancements providing approximately 5-fold speedup
over DS. GIP and RBIP did not even terminate within time limit
and hence not shown. The key point of Figure 4(c) is to show that
DS+GIP provides 10-fold speedup (with cut-off) over DS+RBIP,
even though RBIP is faster than GIP. This is also the reason for
providing the results of enhancements on GIP instead of RBIP in
Figure 4(b).

Figure 5: POMDP policy dominates MDP policy

Figure 4(d) presents results for the MRP domain. Experimental
setup for MRP consisted of a set of seven problems(A through G).
The figure does not show results for GIP and RBIP, because they
did not finish before our cutoff for any of the problems. DSDO+GIP
is not present in the figure, since it had run-times identical to DS +
GIP. DSDODB+GIP provides approximately 6-fold speedup over
DS. DS+RBIP seems comparable with the other three methods in
A-C, but for D-G, it fails to even finish before the cutoff. Both
domains provide similar conclusions: DSDODB+GIP dominates
other techniques (with around 100 fold speedup over GIP and RBIP
in some cases) and this dominance becomes significant in larger
problems.

Figure 5 provides a quantitative reason for using POMDPs in-
stead of MDPs for policy generation in the PAA domains. As in
[15], MDPs can be used for obtaining policies, but they suffer from
not handling observational uncertainty. Figure 5 emphasizes this
point quantitatively, by comparing the expected values of optimal

GIP RBIP DS+GIP

Comparison of GIP, RBIP, and DSGIP Comparison of DS, DSDO, DSDODB

DS+GIP DSDO+GIP DSDODB+GIP DS+RBIP DS+GIP

Comparison of DSRBIP and DSGIP MRP Results

DS+RBIP DS+GIP DSDODB+GIP

Figure 4: TMP: (a) DS+GIP gives orders of magnitude speedup over GIP and RBIP (b) DSDODB+GIP dominates other enhance-
ments over GIP (c) DS+GIP dominates DS+RBIP; MRP: (d) DSDODB+GIP dominates

policies generated using an MDP and a POMDP on a small TMP
problem. The MDP policy was evaluated in the presence of uncer-
tainty by assuming the state (at any point in policy execution) to
be the one with highest belief probability in the belief state (at that
point). Modified-MDP policy is where the MDP policy is modified
to take asafeaction (“Ask User”), when there is high uncertainty
in the belief state.x-axis denotes belief points (for two states),
while they-axis denotes the expected value of a policy. The ex-
pected value of a POMDP policy dominates the MDP policy by
approximately 5 in a problem where expected values of policies
vary from -2 (the value for always choosing the “Wait” action) to
7 (the highest reward under the POMDP policy). Thus, there could
be significant quality loss incurred with a MDP policy.

6. RELATED WORK

We have already discussed some related work in Section 1. As
discussed there, techniques for solving POMDPs can be catego-
rized as exact and approximate. GIP [1] and RBIP [4] are exact
algorithms, which we have enhanced. There has been work by [2]
and [10] on ways of compactly representing dynamics of a domain.
These compact representations however do not seem to have advan-
tages in terms of the speedups [8]. Other exact algorithms attempt
to exploit domain-specific properties to speedup POMDPs. For
instance, [10] presents a hybrid framework that combines MDPs
with POMDPs to take advantage of perfectly and partially observ-
able components of the model. They also focus on reachable belief
spaces, but: (i) their analysis does not capture dynamic changes in
belief space reachability; (ii) their analysis is limited to factored
POMDPs; (iii) no speedup measurements are shown. This con-
trasts with this work which focuses on dynamic changes in belief
space reachability and its application to both flat and factored state
POMDPs.

Approximate algorithms are faster than exact algorithms, but at
the cost of solution quality. There has been a significant amount
of work in this area, but point-based [17, 7], grid [5, 18], and pol-
icy search approaches [3, 11] dominate other algorithms. Though
these approaches can solve larger problems, most of them provide
loose (or no) quality guarantees on the solution. It is critical to have
quality guarantees in PAA domains, for an agent to gain the trust
of a human user. Point Based Value Iteration (PBVI)[7] provides
quality guarantees, but to obtain good results, it needs to increase
sampling, consequently increasing in run-time. Other approach that
works with big problems is the dimensionality reduction technique

in [14]. This work applies E-PCA (an improvement to Principal
Component Analysis) on a set of belief vectors, to obtain a low di-
mensional representation of the original state space. Though this
work provides reduction of dimension (state space), it doesn’t pro-
vide any guarantees on the quality of solutions. Nonetheless, our
techniques can also benefit approximate algorithms, e.g., PBVI can
benefit from our DO technique.

7. SUMMARY

This paper provides techniques to make the application of POMDPs
in personal assistant agents a reality. In particular, we provide three
key techniques to speedup POMDP policy generation that exploit
the key properties of the PAA domains. The key insight is that
given an initial (possibly uncertain) starting set of states, the agent
needs to generate a policy for a limited range of dynamically shift-
ing belief states. The techniques we propose are complementary
to most existing exact and approximate POMDP policy generation
algorithms. Indeed, we illustrate our technique by enhancing GIP
and RBIP, two of the most efficient exact algorithms for POMDP
policy generation and obtain orders of magnitude speedup in pol-
icy generation. We provide a detailed algorithm illustrating our
enhancements in Algorithm 1, and present proofs of correctness of
our techniques. Techniques presented here facilitate agents’ utiliz-
ing POMDPs for policies when assisting human users.

Acknowledgements. This material is based upon work sup-
ported by DARPA, through the Department of the Interior, NBC,
Acquisition Services Division, under Contract No. NBCHD030010.
Thanks to Eric Hansen, Nicholas Roy and Joelle Pineau for their
valuable comments.

8. REFERENCES
[1] M. L. Littman A. R. Cassandra and N. L. Zhang. Incremental

pruning: A simple, fast, exact method for partially
observable markov decision processes. InUAI, 1997.

[2] C. Boutilier and D. Poole. Computing optimal policies for
partially observable decision processes using compact
representations. InAAAI, 1996.

[3] D. Braziunas and Craig Boutilier. Stochastic local search for
POMDP controllers. InAAAI, 2004.

[4] Z. Feng and S. Zilberstein. Region based incremental
pruning for POMDPs. InUAI, 2004.

[5] M. Hauskrecht. Value-function approximations for
POMDPs.JAIR, 13:33–94, 2000.

[6] http://www.ai.sri.com/project/CALO, http://calo.sri.com.
CALO: Cognitive Agent that Learns and Organizes, 2003.

[7] G. Gordon J. Pineau and S. Thrun. PBVI: An anytime
algorithm for POMDPs. InIJCAI, 2003.

[8] M. L. Littman L. P. Kaelbling and A. R. Cassandra. Planning
and acting in partially observable stochastic domains.AI
Journal, 1998.

[9] T. Y. Leong and C. Cao. Modeling medical decisions in
DynaMoL: A new general framework of dynamic decision
analysis. InWorld Congress on Medical Informatics
(MEDINFO), pages 483–487, 1998.

[10] H. Fraser M. Hauskrecht. Planning treatment of ischemic
heart disease with partially observable markov decision
processes.AI in Medicine, 18:221–244, 2000.

[11] L. P. Kaelbling N. Menleau, K. E. Kim and A. R. Cassandra.
Solving POMDPs by searching the space of finite policies. In
UAI, 1999.

[12] F. Locatelli: P. Magni, R. Bellazzi. Using uncertainty
management techniques in medical therapy planning: A
decision-theoretic approach. InApplications of Uncertainty
Formalisms, pages 38–57, 1998.

[13] M. E. Pollack, L. Brown, D. Colbry, C. E. McCarthy,
C. Orosz, B. Peintner, S. Ramakrishnan, and I. Tsamardinos.
Autominder: An intelligent cognitive orthotic system for
people with memory impairment.Robotics and Autonomous
Systems, 44:273–282, 2003.

[14] N. Roy and G. Gordon. Exponential family PCA for belief
compression in POMDPs. InNIPS, 2002.

[15] P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable
autonomy for the real-world.JAIR, 17:171–228, 2002.

[16] D. Schreckenghost, C. Martin, P. Bonasso, D. Kortenkamp,
T.Milam, and C.Thronesbery. Supporting group interaction
among humans and autonomous agents. InAAAI, 2002.

[17] N. L. Zhang and W. Zhang. Speeding up convergence of
value iteration in partially observable markov decision
processes.JAIR, 14:29–51, 2001.

[18] R. Zhou and E. Hansen. An improved grid-based
approximation algorithm for POMDPs. InIJCAI, 2001.

