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Abstract

In many real-world multiagent applications such as dis-
tributed sensor nets, a network of agents is formed based
on each agent’s limited interactions with a small number
of neighbors. While distributed POMDPs capture the
real-world uncertainty in multiagent domains, they fail
to exploit such locality of interaction. Distributed con-
straint optimization (DCOP) captures the locality of in-
teraction but fails to capture planning under uncertainty.
This paper present a new model synthesized from dis-
tributed POMDPs and DCOPs, called Networked Dis-
tributed POMDPs (ND-POMDPSs). Exploiting network
structure enables us to present two novel algorithms
for ND-POMDPs: a distributed policy generation algo-
rithm that performs local search and a systematic policy
search that is guaranteed to reach the global optimal.

I ntroduction

Distributed Partially Observable Markov Decision Probéem
(Distributed POMDPs) are emerging as an important ap-
proach for multiagent teamwork. These models enable mod-
eling more realistically the problems of a team’s coordi-
nated action under uncertainty (Nait al. 2003; Monte-
merlo et al. 2004; Beckeret al. 2004). Unfortunately, as
shown by Bernsteirgt al. (2000), the problem of finding
the optimal joint policy for a general distributed POMDP
is NEXP-Complete. Researchers have attempted two dif-
ferent approaches to address this complexity. First, they
have focused on algorithms that sacrifice global optimal-
ity and instead focus on local optimality (Nait al. 2003;
Peshkiret al. 2000). Second, they have focused on restricted
types of domains, e.g. with transition independence or col-
lective observability (Beckeet al. 2004). While these ap-

proaches have led to useful advances, the complexity of the

distributed POMDP problem has limited most experiments
to a central policy generator planning for just two agents.
This paper introduces a third complementary approach
called Networked Distributed POMDPs (ND-POMDPSs),
that is motivated by domains such as distributed sensor
nets (Lesser, Ortiz, & Tambe 2003), distributed UAV teams
and distributed satellites, where an agent team must co-
ordinate under uncertainty, but agents have strong local-
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ity in their interactions. For example, within a large dis-
tributed sensor net, small subsets of sensor agents must
coordinate to track targets. To exploit such local interac-
tions, ND-POMDPs combine the planning under uncertainty
of POMDPs with the local agent interactions of distrib-
uted constraint optimization (DCOP) (Modt al. 2003;
Yokoo & Hirayama 1996). DCOPs have successfully ex-
ploited limited agent interactions in multiagent systems,
with over a decade of algorithm development. Distributed
POMDPs benefit by building upon such algorithms that en-
able distributed planning, and provide algorithmic guaran
tees. DCOPs benefit by enabling (distributed) planning un-
der uncertainty — a key DCOP deficiency in practical appli-
cations such as sensor nets (Lesser, Ortiz, & Tambe 2003).
Taking inspiration from DCOP algorithms, we provide
two algorithms for ND-POMDPs. First, the LID-JESP al-
gorithm combines the existing JESP algorithm of Netir
al. (2003) and thedBA (Yokoo & Hirayama 1996) DCOP
algorithm. LID-JESP thus combines the dynamic program-
ming of JESP with the innovation that it uses off-line dis-
tributed policy generation instead of JESP’s centralizale p
icy generation. Second, we present a more systematic policy
search that is guaranteed to reach the global optimal on tree
structured agent-interaction graphs; and illustratetikiatx-
ploiting properties from constraint literature, it can ga&
tee optimality in general. Finally, by empirically compagi
the performance of the two algorithms with benchmark al-
gorithms that do not exploit network structure, we illugtra
the gains in efficiency made possible by exploiting network
structure in ND-POMDPs.

[ llustrative Domain

We describe an illustrative problem within the distributed
sensor net domain, motivated by the real-world challenge
in (Lesser, Ortiz, & Tambe 2008)Here, each sensor node
can scan in one of four directions — North, South, East or
West (see Figure 1). To track a target and obtain associated
reward, two sensors with overlapping scanning areas must
coordinate by scanning the same area simultaneously. We
assume that there are two independent targets and that each
target's movement is uncertain and unaffected by the sen-

For simplicity, this scenario focuses on binary interatsio
However, ND-POMDP and LID-JESP allow n-ary interactions.
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Figure 1: Sensor net scenario: If present, targetl is in Locl
1, Locl-2 or Locl-3, and target? is in Loc2-1 or Loc2-2.

The reward function,R, is defined asR(s,a)
Yo Ri(sis s Sk Sus (@i, - - -, ax)), Where eachi could
refer to any sub-group of agents ahd= [I|. In the sen-
sor grid example, the reward function is expressed as the
sum of rewards between sensor agents that have overlapping
areas k = 2) and the reward functions for an individual
agent’s cost for sensing: (= 1). Based on the reward func-
tion, we construct amteraction hypergraph where a hyper-
link, [, exists between a subset of agents fofalthat com-
prise R. Interaction hypergraph is defined a7 = (Ag, E),
where the agentsdy, are the vertices and = {i|I C
Ag A Ry is a component of} are the edge$leighborhood

sor agents. Based on the area it is scanning, each sensor reof ; is defined asV; = {j € Ag|j #iA (3l € E, i €
ceives observations that can have false positives and false; A j ¢ 1)}. 5y, = x jen,S; refers to the states 6% neigh-

negatives. Each agentincurs a cost for scanning whether theporhood. Similarly we definedy, = X jen,; A

target is present or not, but no cost if it turns off.
As seen in this domain, each sensor interacts with only a
limited number of neighboring sensors. For instance, sen-

sors 1 and 3's scanning areas do not overlap, and cannot

effect each other except indirectly via sensor 2. The sen-

g QNi =
XJENin’ PNi (SNwan 83\[1) = HjeNi Pj (Sj7 as, S;’)’ and
ONi(SNi7 aNivai) = HjeNi Oj (Sj7 aj’”j)'

b, the distribution over the initial state, is defined as
b(s) = bu(su) - [1;<i<, bi(si) whereb, andb; refer to

sors’ observations and transitions are independent of each the distributions over initial unaffectable state aiglini-

other’s actions. Existing distributed POMDP algorithms ar
unlikely to work well for such a domain because they are
not geared to exploit locality of interaction. Thus, theyl wi
have to consider all possible action choices of even non-
interacting agents in trying to solve the distributed POMDP
Distributed constraint satisfaction and distributed ¢raist
optimization (DCOP) have been applied to sensor nets but
they cannot capture the uncertainty in the domain.

ND-POMDPs

We define an ND-POMDP for a groufg of n agents as a
tuple(S, A, P,Q, O, R,b), whereS = x1<;<pS; XS, isthe
set of world statesS; refers to the set of local states of agent
1 and S, is the set of unaffectable states. Unaffectable state
refers to that part of the world state that cannot be affected
by the agents’ actions, e.g. environmental factors likgagr
locations that no agent can contrdl. = x;<;<,4; is the
set of joint actions, wherd,; is the set of action for agent

We assume #&ransition independent distributed POMDP
model, where the transition function is defined as
P(s,a,8") = Py(su,s),) - [11<;<n Pi(Sis Su, ai, 5;), Where
a=(a1,...,ay) is the joint action performed in state=
(815, 8n, 8y) @nds’=(s], ..., s, s!,)is the resulting state.
Agents’s transition function is defined &3 (s;, s., a;, ;) =
Pr(s}|si, su, a;) and the unaffectable transition function is
defined asP,(s., s),) = Pr(s]|s.). Beckeret al. (2004)
also relied on transition independence, and Goldman and
Zilberstein (2004) introduced the possibility of uncomtro

lable state features. In both works, the authors assuméd tha

the state isollectively observable, an assumption that does
not hold for our domains of interest.

) = X1<i<nf); isthe set of joint observations wheigis
the set of observations for agent&Ve make an assumption
of observational independence, i.e., we define the joint ob-
servation function aé)(s, a,w)=[], «;<,0i(5i, su, ai,w;),
wheres = (s1,...,8n,84), a = {(a1,...,ap), W
(W1, ..., wn), @andO;(s;, Su, i, w;) = Pr(w;|s;, Su, a;).

tial state, respectively. We defing, = [];.y, b;(s;). We
assume that b is available to all agents (although it is pos-
sible to refine our model to make available to ageahly

b, b; andby;,). The goal in ND-POMDP is to compute joint
policyr = (m,...,m,) thatmaximizes the team’s expected
reward over a finite horizof starting fromb. 7; refers to the
individual policy of agent and is a mapping from the set of
observation histories afto A;. mx, andm, refer to the joint
policies of the agents itV; and hyper-link respectively.

ND-POMDP can be thought of as arary DCOP where
the variable at each node is an individual agent’s police Th
reward componenk; where|l| = 1 can be thought of as a
local constraint while the reward componédtitwherel > 1
corresponds to a non-local constraint in the constrairgtyra
In the next section, we push this analogy further by taking
inspiration from the DBA algorithm (Yokoo & Hirayama
1996), an algorithm for distributed constraint satisfafi
to develop an algorithm for solving ND-POMDPs.

The following proposition shows that given a factored re-
ward function and the assumptions of transitional and ob-
servational independence, the resulting value function ca
be factored as well into value functions for each of the edges
in the interaction hypergraph.

Proposition 1 Given transitional and ob-
servational independence  and  R(s,a) =
Yoer Ri(si, ., Stk Sy (i, - -, aw)),

V;(Sta@‘t) = Z VTI’?l (Sflv ceey kaa 827("7;17 o ﬁfk) (1)

ek

where V(s!,d) is the expected reward from the state s’
and joint observation history ¢ for executing policy 7, and
VE(slys -8 8t @], ... @), is the expected reward for
executing m; accruing from the component R;.

Proof: Proof is by mathematical induction. Proposition
holds fort = T — 1 (no future reward). Assume it holds



fort = 7 wherel <7 < T — 1. Thus,

VIi(s",&d") = E VﬂTl(slTl, ey STy SL Oy D)
IeE
We introduce the following abbreviations:
A - -
plzE P'(853827W1(wt)752+1) Oi(sz+1a Z+177Ti(w€)7w§+1)
A
pu = Pisy, s0)
t & Ri(st t ot —t —t
7= Ri(Si1s - - o5 Sigey Sus M (G115 - - -5 Tk (W)

t Dttt t ot -t —t
v = Vm(sll,...,slk,su,wll,...wlk)

We show that proposition holds for= r — 1,

B Zpr lp‘{ L

Vﬂ:r—l( T— 1 a7 1

T—1 T
n E Ul
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We defindocal neighborhood utility of agenti as the ex-
pected reward for executing joint poliey accruing due to
the hyper-links that contain ageht

ValNil = D bulsu) b, (sw,) - bilsi):

Si,SN;»Su

Z VQL(SH,...

l€E s.t. i€l

() ()

sSlks Sus <> P

Proposition 2 L ocality of interaction: Thelocal neighbor-
hood utilities of agent ¢ for joint policies  and 7’ are equal
(VF[Nl] =V [Nz]) |f7Tl = 7T§ and TN, = 7T§Vi.
Proof sketch: Equation 2 sums ovdre E such that € [,
and hence any change of the policy of an agedti U N;
cannot affect/;.[V;]. Thus, any such policy assignment,
that has different policies for only non-neighborhood dgen
has equal value &8, [N;]. O
Thus, increasing the local neighborhood utility of agent
1 cannot reduce the local neighborhood utility of aggiit
j ¢ N;. Hence, while trying to find best policy for agent
i given its neighbors’ policies, we do not need to consider
non-neighbors’ policies. This is the property lotality of
interaction that is used in later sections.

L ocally Optimal Policy Generation

The locally optimal policy generation algorithm called
LID-JESP (Locally interacting distributed joint equilibm
search for policies) is based on the DBA algorithm (Yokoo
& Hirayama 1996) and JESP (Naat al. 2003). In this al-
gorithm (see Algorithm 1), each agent tries to improve its
policy with respect to its neighbors’ policies in a distried
manner similar to DBA. Initially each agentstarts with a
random policy and exchanges its policies with its neighbors
(lines 3-4). It then computes its local neighborhood util-
ity (see Equation 2) with respect to its current policy and

its neighbors’ policies. Agent then tries to improve upon
its current policy by calling function 6TVALUE (see Al-
gorithm 3), which returns the local neighborhood utility of
agenti's best response to its neighbors’ policies. This algo-
rithm is described in detail below. Agentthen computes
the gain (always> 0 because at worst &5VALUE will re-
turn the same value agevV al) that it can make to its local
neighborhood utility, and exchanges its gain with its neigh
bors (lines 8-11). If’s gain is greater than any of its neigh-
bors’ gairf, i changes its policy (lRkDPoLicy) and sends
its new policy to all its neighbors. This process of trying
to improve the local neighborhood utility is continued uinti
termination. Termination detection is based on using a ter-
mination counter to count the number of cycles whera,;
remains= 0. If its gain is greater than zero the termina-
tion counter is reset. Agenthen exchanges its termination
counter with its neighbors and set its counter to the mini-
mum of its counter and its neighbors’ counters. Agentll
terminate if its termination counter becomes equal to the di
ameter of the interaction hypergraph.

Algorithm 1 LID-JESHi, ND-POMDP)

: Compute interaction hypergraph aig

d «— diameter of hypergrapherminationCtr; < 0

m; < randomly selected policyyrevVal <+ 0

: Exchanger; with V;

whileterminationCtr; < d do

for al s;, sn;, s« do

BY((sus 81555, () — bulsu) - bi(si) - b, (sn;)
prevVal & BY ((su, si,5n:, ()
EVALUATE (3, Si, Su, SN, , Ti, TN, () 5 (), 0, T)

9:  gain; «+ GETVALUE(i, BY, 7n;,,0,T) — prevVal

© NogdgRrwdhRE

10:  if gain; > 0 then terminationCtr; < 0

11: dseterminationCtr; ]

12:  Exchanggain;,terminationCtr; with N;

13:  terminationCtr; < min;en, iy terminationCtr;
14:  maxGain < max;en,u{i} 9ain;

15 winner — argmaxc y. ;3 9ain;

16:  if maxGain > 0 and i = winner then

17: RNDPoLICY(i,b, () ,7N,;,0,T)

18: Communicater; with N;

19: dseif maxGain > 0 then

20: Receiveryinner from winner and updatery,
21: return

Finding Best Response

The algorithm, GTVALUE, for computing the best response
is a dynamic-programming approach similar to that used in
JESP. Here, we define &pisode of agenti at timet ase!

(s, st, sl &%, ). Treating episode as the state, results in
a single agent POMDP, where the transition function and
observation function can be defined as:

P'(et,al,el™) =P, (s, sith) - Py(sh, st al, s571) - P, (sly,,

17 77 1 u?’ u 17 u? 17 K2
t ot tf1 tH1 1t t+1
Sus AN, SN, ) - On;, (SN s S0 AN WN )
rpotl bt 1 1 bt
(ei aazaw ) Oz(sz » Su aazaw )

2The function argmax; disambiguates between multiple
corresponding to the same max value by returning the loyvest



Algorithm 2 EVALUATE (i, s}, st,, s, , mi, TN, , &f, &Gy, , £, T)

a; — m(w ), an; < TN, (wﬁvl)

val «— ZZEE R; (sll,...
ift<T —1then

t t
y Slks Suy BlLy - - - 7alk)

for all st*! sﬁ\,“,sfjl do
for all witt Wi do
N;
+ t o t+1 t41
val & P,(sh, st P;(st, st ai, st )
t+1 t+1 _t+1 it
PN(sN,su,aNT,sN ) - Oi(s;T, 80 s ai,w; ) -

t+1 t+1
ON(SJ 7Su+ y AN, »

— 1 t+1
s]\t ,7ri,7rNi,<wi,wi+> <u}N,u}1\;r >,t—|—1,T)
7: return val

t+1 t+1 t+1
w;) EVALUATE (4, s/ ,su+,

A multiagent belief state for an ageiiven the distribution
over the initial statef(s) is defined as:

Bz( ) PI‘( Sus z’SN"D?V |_’iE a; ! b)

’L’ l

The initial multiagent belief state for agent BY, can be
computed frond as follows:

B?(<Suv Sis SNy» <>>) — bu(Su) ’ bl(sl) ) bNi(SNi)

We can now compute the value of the best response pol-

icy via GETVALUE using the following equation (see Algo-
rithm 3):
V(B! 3)

K2 3

a;,t t
)= max Vi(B;)

Algorithm 3 GETVALUE (4, B!, 7w, , ¢, T)
cift > T thenreturn0
s if ViH(BY) is already recordethen return V£ (B})
best «— —o0
for all a; € A; do
value — GETVALUEACTION(Z', B! a;, 7w, ,t,T)
recordvalue asV,""* (BY)
if value > best then best «— value
. recordbest asV;' (B!)
. return best

CoNouhlrwNnE

The function,Vi““t, can be computed usingeGVALUE-
AcTION(see Algorithm 4) as follows:

Va“ ( E? ZR[ Sll,...,Slk,Su,<a11,...,alk>)
e'! leEst i€l
+ Zpr t+1|B ‘/zt+1 (Bt+1) (4)
witlem

Bf“ is the belief state updated after performing action

a; and observinguf+1 and is computed using the function
UPDATE (see Algorithm 5). Agent’s policy is determined

from its value functionV*""* using the function RDPOL-
ICY (see Algorithm 6).

Correctness Results

Proposition 3 When applying LID-JESP, the global utility
isgtrictly increasing until local optimumis reached.

Algorithm 4 GETVALUEACTION(i, B, ai, 7N, , t, T)
1. value < 0
2: for all ef = (s}, s}, sk, ,@n, ) st. B (ef) > 0do
3: aN; < TN; (‘3?\71)
reward — Y, p Ri (spi, .

4 7kavszyal1,...,alk)
5 walue <~ Bl(el) - reward

6: |ft<T—1then

7 foralw!™ € Q;do

8 Berl — UPDATE(i:nyanwarlﬂTNi)

9

: prob «— 0
10: for all si,, s, sk, do
11: for all e”l = <sff1,st+1 s’ﬁl, <<D§V 7w§\;r1>> s.t.
Bt (e!™) > 0do

12: aN; < TN; (LUN)

13: p7"ob<i Bi(eh)-Pu(st, siTY) - Pi(st, sty aq, s -
PNv(s'}V, u,aNl,sxrl) Oz(sfﬂ,st+1 az,wtﬂ)
On;, (sﬁl,sffl,awl,wﬁl)

14: valueiprobGETVALUE(z, Bt nn, t+1,T)

15: return value

Algorithm 5 UpDATE(4, Bf, a;,w! !, )
1: for all t*! = <sz+1,s§+1 s, <u7§\;i,w
2 B S 0,an, — my, @)

3 forall si,si, sk, do
t+1/ t+1 + to ot
4 B; - (e z+ ) — B (ei)

P (Sz7su7al7 :+1)

P, (smstjl)

PN (87}\; ) uvavaswl)

t+1 _t+1 t+1 t+1 _t+41 t+1
Oi(s;™ s,y ai,w; ) - On, (sN s Su AN, W )
5: normalizeB; ™"
6: return B!

Proof sketch By construction, only non-neighboring agents
can modify their policies in the same cycle. Ageshooses
to change its policy if it can improve upon its local neigh-
borhood utility V7 [V;]. From Equation 2, increasirig [V;]
results in an increase in global utility. By locality of imée-
tion, if an ageny ¢ i U N; changes its policy to improve its
local neighborhood utility, it will not affec; [V;] but will
increase global utility. Thus with each cycle global uyili
strictly increasing until local optimum is reached. O

Proposition 4 LID-JESP will terminate within d (=
diameter) cyclesiff agent arein alocal optimum.

Proof: Assume that in cyclec, agent : terminates
(terminationCtr; = d) but agents are not in a local op-
timum. In cyclec — d, there must be at least one aggmtho
can improve, i.e.gain; > 0 (otherwise, agents are in a lo-
cal optimum in cycle: — d and no agent can improve later).
Let d,; refer to the shortest path distance between agents
andj. Then, in cyclec — d + d;; (< ¢), terminationCtr;
must have been set @ However,terminationCtr; in-
creases by at most one in each cycle. Thus, in cycle
terminationCtr; < d — d;;. If dj; > 1, in cyclec,
terminationCtr; < d. Also, if d;; = 0, i.e., in cyclec — d,



Algorithm 6 FINDPoLicY (4, B!, it 7w, , t, T) Algorithm 7 GO-JoINTPOLICY (i, 7, terminate)

1: af — argmay, V""" (BY), () — af 1: if terminate = yesthen
2:ift < T — 1then 2:  m « bestResponse{m;}
3 foralw!™ € Q;do 3:  for al k € children; do .
4 BI*' — UPDATE(i, B!, a},w!tt, ;) ‘51 ret(jron'-b'NTPOUCY(kJi ,yes
o FINDPoLICY(i, B, (i, wi ™) v, ¢ 4+ 1,T) 6: TI; — enumerate all possible policies
6: return 7: bestPolicyVal < -00,j < parenti)
8: for all m; € I1; do
. . . . 9:  jointPolicyVal < 0, childVal < 0
gain; > 0, thenin cyclec — d + 1, terminationCtr; = 0, 10:  if i # rootthen
thus, in cyclec, terminationCtr; < d. In either case, 11: for all s, s;, s, do
terminationCtr; # d. By contradiction, if LID-JESP ter- 12: jointPolicyVal & bi(s)) - b, (sn,) - bulsa)
minates then agents must be in a local optimum. EVALUATE (4, 51, 5u, SJWW] 0, 0,0,7) L
In the reverse direction, if agents reach a local optimum, 13: i bestChildValMap{m:} # nuli then
gain; = 0 henceforth. ThuserminationCtr; is never re- 4 joint PolicyVal <& bestChildValMap{m:}
set to 0 and is incremented by 1 in every cycle. Hence, after 15.  gée '
d cycles,terminationCtr; = d and agents terminate. O 16: for all k € children; do
. . +
Proposition 3 shows that the agents will eventually reach };; begfggg;é; A%;{ﬁl?fgggd\/‘%lm,m)

a local optimum and Proposition 4 shows that the LID-JESP . ) T
; : : . : . 19: jointPolicyV al « childV al
will terminate if and only if agents are in a local optimum. 20 if jointPolicoVal > best PolicuVal th
Thus, LID-JESP will correctly find a locally optimum and o Moot Folicy T ab > bestoucyl av INEn
’ y y 21: bestPolicyVal < jointPolicyVal, w; < m;

will terminate. 22: if i = root then
. . 23:  for al k € children; do
Global Optimal Algorithm (GOA) 24: GO-DINTPOLICY(K, 7} yes)

The global optimal algorithm (GOA) exploits network struc- ~ 22: if i 7# root then best Response{m;} = 7}
ture in finding the optimal policy for a distributed POMDP. ~ 26: return bestPolicyVal
Unlike LID-JESP, at present it requires binary interacsion
i.e. edges linking two nodes. We start with a description of
GOA applied to tree-structured interaction graphs, and the By using cycle-cutset algorithms (Dechter 2003), GOA
discuss its application to graphs with cycles. In treegj&al  can be applied to interaction graphs containing cycless&he
for a policy at an agent is the sum of best response values algorithms are used to identify a cycle-cutset, i.e., a subs
from its children and the joint policy reward associatechwit  of agents, whose deletion makes the remaining interaction
the parent policy. Thus, given a fixed policy for a parent graph acyclic. After identifying the cutset, joint polisiéor
node, GOA requires an agent to iterate through all its poli- the cutset agents are enumerated, and then for each of them,
cies, finding the best policy and returning the value to the we find the best policies of remaining agents using GOA.
parent — where to find the best policy, an agent requires its
children to return their best responses to each of its @dici _ Experimental Results
An agent also stores the sum of best response values from its
children, to avoid recalculation at the children. This s For our experiments, we use the sensor domain in Fig-
is repeated at each level in the tree, until the root exhalists  ure 1. We consider three different configurations of increas
its policies. This method helps GOA take advantage of the ing complexity (see Appendix). The first configuration is a
interaction graph and prune unnecessary joint policy evalu chain with 3 agents (sensors 1-3). Here targetl is either ab-
ations (associated with nodes not connected directly in the sent orin Loc1-1 and target2 is either absent or in Loc2-1 (4
tree). Since the interaction graph captures all the reward i  unaffectable states). Each agent can perform either tfirnOf
teractions among agents and as this algorithm goes throughscanEast or scanWest. Agents receive an observationt-targe
all the joint policy evaluations possible with the inteiant Present or targetAbsent, based on the unaffectable state an
graph, this algorithm yields an optimal solution. its last action. The second configuration is a 4 agent chain
Algorithm 7 provides the pseudo code for the global opti- (sensors 1-4). Here, target2 has an additional possibde loc
mal algorithm at each agent. This algorithm is invoked with tion, Loc2-2, giving rise to 6 unaffectable states. The num-
the procedure calsO-JoINTPoLICY (root, () , no). Line 8 it- ber of individual actions and observations are unchanged.
erates through all the possible policies, where as line820-  The 3rd configuration is the 5 agent P-configuration (named
work towards calculating the best policy over this entire se  for the P shape of the sensor net) and is identical to Fig-
of policies using the value of the policies calculated indsn ure 1. Here, targetl can have two additional locations, Locl
9-19. Line 21 stores the values of best response policies ob- 2 and Loc1-3, giving rise to 12 unaffectable states. We add
tained from the children. Lines 22-24 starts the termimatio a new action called scanVert for each agent to scan North
of the algorithm after all the policies are exhausted at the and South. For each of these scenarios, we ran the LID-
root. Lines 1-4 propagate the termination message to lower JESP algorithm. Our first benchmark, JESP, uses a central-
levels in the tree, while recording the best policy, ized policy generator to find a locally optimal joint policy
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Figure 2: Run times (a, b, ¢), and value (d).

and does not consider the network structure of the inter-
action, while our second benchmark (LID-JESP-no-nw) is
LID-JESP with a fully connectethteraction graph. For 3
and 4 agent chains, we also ran the GOA algorithm.

Figure 2 compares the performance of the various algo-

rithms for 3 and 4 agent chains and 5 agent P-configuration.

Graphs (a), (b), (c) show the run time in seconds on a
logscale on Y-axis for increasing finite horiz@hon X-axis.
Run times for LID-JESP, JESP and LID-JESP-no-nw are
averaged over 5 runs, each run with a different randomly
chosen starting policy . For a particular run, all algorithm
use the same starting policies. All three locally optimal al
gorithms show significant improvement over GOA in terms
of run time with LID-JESP outperforming LID-JESP-no-nw
and JESP by an order of magnitude (for high T) by exploit-
ing locality of interaction. In graph (d), the values obtained
using GOA for 3 and 4-Agent casg (= 3) are compared to
the ones obtained using LID-JESP over 5 runs (each with
a different starting policy) fofl' = 3. In this bar graph,

Config. Algorithm C G W
LID-JESP 34 | 13.6 | 1.412

4-chain [ LID-JESP-no-nw| 4.8 | 19.2 1
JESP 7.8 7.8 | 0.436
LID-JESP 4.2 21 1.19

5-P LID-JESP-no-nw| 5.8 29 1
JESP 10.6 | 10.6 | 0.472

Table 1: Reasons for speed up. C: no. of cycles, G: no. of
GETVALUE calls, W: no. of winners per cycle, for T=2.

Summary and Related Work

In a large class of applications, such as distributed sen-
sor nets, distributed UAVs and satellites, a large network
of agents is formed from each agent’s limited interactions
with a small number of neighboring agents. We exploit
such network structure to present a new distributed POMDP
model called ND-POMDP. Our distributed algorithms for
ND-POMDPs exploit such network structure: the LID-JESP
local search algorithm and GOA that is guaranteed to reach
global optimal. Experimental results illustrate the sfgpaint

run time gains of the two algorithms when compared with
previous algorithms that are unable to exploit such stnectu

Among related work, we have earlier discussed the rela-
tionship of our work to key DCOP and distributed POMDP
algorithms, i.e., we synthesize new algorithms by exploit-
ing their synergies. We now discuss some other recent al-
gorithms for locally and globally optimal policy generatio
for distributed POMDPs. For instance, Hangeal. (2004)
present an exact algorithm for partially observable stetiba
games (POSGs) based on dynamic programming and iter-
ated elimination of dominant policies. Emery-Montemerlo
et al. (2004) approximate POSGs as a series of one-step
Bayesian games using heuristics to find the future dis-
counted value for actions. We have earlier discussed Nair
et al. (2003)’s JESP algorithm that uses dynamic program-
ming to reach a local optimal. In addition, Beclatral.’s
work (2004) on transition-independent distributed MDPs is
related to our assumptions about transition and observabil

the first bar represents value obtained using GOA, while ji independence in ND-POMDPs. These are all centralized
other bars correspond to LID-JESP. This graph emphasizes ,jicy generation algorithms that could benefit from the key
the fact that with random restarts, LID-JESP converges o a jgeas in this paper — that of exploiting local interaction

higher local optima — such restarts are afforded given that
GOA is orders of magnitude slower compared to LID-JESP.

structure among agents to (i) enable distributed policy gen
eration; (ii) limit policy generation complexity by congid

Table 1 helps to better explain the reasons for the speed ing only interactions with “neighboring” agents. Gues#in

up of LID-JESP over JESP and LID-JESP-no-nw. LID-JESP

al. (2002), present “coordination graphs” which have simi-

allows more than one (non-neighboring) agent to change its larities to constraint graphs. The key difference in thei a

policy within a cycle (W), LID-JESP-no-nw allows exactly

proach is that the “coordination graph” is obtained from the

one agent to change its policy in a cycle and in JESP, there value function which is computed in a centralized manner.
are several cycles where no agent changes its policy. This The agents then use a distributed procedure for onlineractio

allows LID-JESP to converge in fewer cycles (C) than LID-
JESP-no-nw. Although LID-JESP takes fewer cycles than
JESP to converge, it required more calls teT&FALUE (G).
However, each such call is cheaper owing to the locality of
interaction. LID-JESP will out-perform JESP even more on
multi-processor machines owing to its distributedness.

selection based on the coordination graph. In our approach,
the value function is computed in a distributed manner. Dol-
gov and Durfee’s algorithm (2004) exploits network struc-
ture in multiagent MDPs (not POMDPs) but assume that
each agent tried to optimize its individual utility insteaf

the team’s utility.



5-P: This scenario consists of 5 agents arranged as in
Figure 1.S;4,e1 = {absentLocl-1 Locl-2 Locl-3} and
Stargetz = {absentLoc2-1 Loc2-2}. Actions for agent,

A; = {turnOff scanWestScanEastScanVer}. Tables 5
and 4 give the transition functions for target1 and target2.
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Appendix

In this section, we provide the details about the 3 configura-
tions of the sensor domain. In all three scenarios, locé sta
of each agent is emptys{ = (). Let S;4rget1 @NASiarger2
denote the locations of the two independent targets. The set
of unaffectable states is given Y, = Starget1 X Starget2-

The transition functions for unaffectable states are shown
below. For each sensor, the probability of a false negagive i
0.2 and the probability of a false positive(sl. We assume
that if two sensors scan the same target location with the

target present, then they are always successful. The reward

for two agents successfully scanning targetd# and for
successfully scanning target24<0. The reward for scan-
ning a location with no target is5 for each agent that scans
unsucessfully. Reward isis sensor turns off.

3-chain: This scenario consists of 3 agents
in a chain. Siurgen {absentLoc1-1} and
Siargetz = {absentLoc2-1}. Actions for agentyi,

;= {turnOff scanWestScanEagt The transition
functions for targetl and target2 are given in Tables 2 and 3.

absent| Locl-1
absent| 0.5 0.5
Locl-1 0.2 0.8

Table 2: targetl’s transition function (3-chain and 4-chai

absent| Loc2-1
absent 0.6 0.4
Loc2-1| 0.25 0.75

Table 3: target2'’s transition function (3-chain).

4-chain: This scenario consists of 4 agents in a
chain. Siargett {absentLocl-1} and Sigrgerz =
{absentLoc2-1 Loc2-2}. Actions for agenti, 4, =
{turnOff, scanWestScanEagt The transition functions for
targetl and target2 are given in Tables 2 and 4.

absent| Loc2-1 | Loc2-2
absent 0.4 0.35 0.25
Loc2-1 0.2 0.5 0.3
Loc2-2 0.3 0.25 0.45

Table 4: target2’s transition function (4-chain and 5-P).

absent| Locl-1]| Locl-2 | Loc 1-3
absent| 0.15 0.5 0.2 0.15
Locl-1 0.1 0.5 0.3 0.1
Locl-2 0.2 0.1 0.45 0.25
Locl-3| 0.35 0.05 0.1 0.5

Table 5: target1’s transition function (5-P).
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