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Abstract

The Distributed Constraint Optimization Problem (DCOP) is a promising approach
for modeling distributed reasoning tasks that arise in multiagent systems. Unfortunately,
existing methods for DCOP are not able to provide theoretical guarantees on global solu-
tion quality while allowing agents to operate asynchronously. We show how this failure can
be remedied by allowing agents to make local decisions based on conservative cost estimates
rather than relying on global certainty as previous approaches have done. This novel ap-
proach results in a polynomial-space algorithm for DCOP named Adopt that is guaranteed
to find the globally optimal solution while allowing agents to execute asynchronously and
in parallel. Detailed experimental results show that on benchmark problems Adopt obtains
speedups of several orders of magnitude over other approaches. Adopt can also perform
bounded-error approximation – it has the ability to quickly find approximate solutions and,
unlike heuristic search methods, still maintain a theoretical guarantee on solution quality.

1. Introduction

Several researchers have proposed the Distributed Constraint Optimization Problem (DCOP)
for modeling a wide variety of multiagent coordination problems such as distributed plan-
ning, distributed scheduling, distributed resource allocation and others [13, 14, 18, 24].
Satellite constellations [2], disaster rescue [15], multiagent teamwork [29], human/agent or-
ganizations [5], intelligent forces [4], distributed and reconfigurable robots [26] and sensor
networks [28] are a just a few examples of multiagent applications where distributed rea-
soning problems arise. DCOP provides a useful framework for investigating how agents can
coordinate their decision-making in such domains.

A DCOP includes a set of variables, each variable is assigned to an agent who has control
of its value, and agents must coordinate their choice of values so that a global objective
function is optimized. The global objective function is modeled as a set of constraints, and
each agent knows about the constraints in which its variables are involved. In this paper, we
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model the global objective function as a set of valued constraints, that is, constraints that
are described as functions that return a range of values, rather than predicates that return
only true or false. DCOP significantly generalizes the Distributed Constraint Satisfaction
Problem (DisCSP) framework [20, 27, 30] in which problem solutions are characterized
with a designation of “satisfactory or unsatisfactory” and so do not model problems where
solutions have degrees of quality or cost.

DCOP demands techniques that go beyond existing methods for finding distributed sat-
isfactory solutions and their simple extensions for optimization. We argue that a DCOP
method for the types of real-world applications previously mentioned must meet three key
requirements. First, since the domains are distributed, we require a method where agents
can optimize a global function in a distributed fashion using local communication (com-
munication with neighboring agents). Methods where all agents must communicate with a
single central agent who does all the computation are unacceptable. Second, we require a
method that is able to find solutions quickly by allowing agents to operate asynchronously.
A synchronous method where an agent sits idle while waiting for a particular message
from a particular agent is unacceptable because it is wasting time when it could poten-
tially be doing useful work. For example, Figure 1 shows groups of loosely connected
agent subcommunities which could potentially execute search in parallel rather than sit-
ting idle. Finally, provable quality guarantees on system performance are needed. For
example, mission failure by a satellite constellation performing space exploration can re-
sult in extraordinary monetary and scientific losses. Thus, we require a method that not
only efficiently finds provably optimal solutions whenever possible but also allows principled
solution-quality/computation-time tradeoffs when time is limited.

A solution strategy that is able to provide quality guarantees, while at the same time
meeting the requirements of distribution and asynchrony, is currently missing from the re-
search literature. In previous work Yokoo, Durfee, Ishida, and Kuwabara have developed
the Asynchronous Backtracking (ABT) algorithm for DisCSP [30] [31] but this algorithm
is limited to satisfaction-based problems. Simple extensions to ABT for optimization have
relied on converting an optimization problem into a sequence of DisCSPs using iterative
thresholding [14]. This approach has applied only to limited types of optimization prob-
lems (e.g. Hierarchical DisCSPs, Maximal DisCSPs), but has failed to apply to more general
DCOP problems, even rather natural ones such as minimizing the total number of constraint
violations (MaxCSP). Another existing algorithm that can provide quality guarantees for
optimization problems, the Synchronous Branch and Bound (SynchBB) algorithm [13] dis-
cussed later, is prohibitively slow since it requires synchronous, sequential communication.
Other fast, asynchronous solutions, such as variants of local search [13, 32], cannot provide
guarantees on the quality of the solutions they find.

As we can see from the above, one of the main obstacles for solving DCOP is combining
quality guarantees with asynchrony. Previous approaches have failed to provide quality
guarantees in DCOP using a distributed, asynchronous model because it is difficult to en-
sure a systematic backtrack search when agents are asynchronously changing their variable
values. We argue that the main reason behind these failures is that previous approaches
insist on backtracking only when they conclude, with certainty, that the current solution
will not lead to the optimal solution. For example, SynchBB [13] is an algorithm for DCOP
where an agent concludes with certainty that the current partial solution will not lead to
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Figure 1: Loosely connected subcommunities of problem solvers

a globally optimal solution by comparing cost with a global upper bound. This approach
to DCOP fails to be asynchronous and parallel because computing a global upper bound
requires that all costs in the constraint network be accumulated within a single agent before
decisions can be made. An alternative approach to DCOP relies on repeated application
of a DisCSP algorithm like ABT. An agent executing the ABT algorithm concludes with
certainty that the current partial solution being explored will not lead to a global satisfac-
tory solution whenever it locally detects an unsatisfiable constraint. This approach fails to
generalize to DCOP because it relies on the limited representation of DisCSP, where only
one constraint needs to be broken for a candidate solution to be globally inconsistent.

To solve this challenging problem, we propose a new distributed constraint optimiza-
tion algorithm, called Adopt (Asynchronous Distributed OPTimization)1. Adopt, to the
best of our knowledge, is the first algorithm for DCOP that can find the optimal solution,
or a solution within a user-specified distance from the optimal, using only localized asyn-
chronous communication and polynomial space at each agent. Communication is local in
that an agent does not send messages to every other agent, but only to neighboring agents.
Adopt relies on a unique root agent to aggregate global cost bounds and detect termination.
While this feature adds a degree of centralization to the algorithm, Adopt also has many
distributed characteristics including that all agents do computation in parallel. Thus, while
Adopt is not as distributed as an algorithm could possibly be, it is also not a centralized
algorithm.

The main idea behind Adopt is to obtain asynchrony by allowing each agent to change
variable value whenever it detects there is a possibility that some other solution may be bet-
ter than the one currently under investigation. This search strategy allows asynchronous
computation because an agent does not need global information to make its local decisions –
it can go ahead and begin making decisions with only local information. Because this search
strategy allows partial solutions to be abandoned before suboptimality is proved, partial
solutions may need to be revisited however. The second key idea in Adopt is to efficiently
reconstruct previously considered partial solutions (using only polynomial space) through
the use of backtrack threshold – an allowance on solution cost that prevents backtracking.
We will show in this paper that these two key ideas together yield efficient asynchronous
search for optimal solutions. Finally, the third key idea in Adopt is to provide a termination
detection mechanism built into the algorithm – agents terminate whenever they find a com-
plete solution whose cost is under their current backtrack threshold. Previous asynchronous
search algorithms have typically required a termination detection algorithm to be invoked
separately, which can be problematic since it requires additional message passing.

Adopt’s ability to provide quality guarantees and built-in termination detection nat-
urally leads to a practical technique for bounded-error approximation. A bounded-error

1. Additional details may also be found in the first author’s PhD thesis [23]. This article is an extension of
an earlier conference paper [21]. Additional exposition, examples and experiments are presented here.
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approximation algorithm is guaranteed to deliver a solution whose quality is within a user-
specified distance from the optimal, and usually in much less time than is required to
deliver the optimal solution. Finding the optimal solution to a DCOP can be very costly
for some problems where sufficient resources (e.g. time) may not be available. Therefore,
bounded-error approximation is a crucial capability needed for making effective solution-
quality/computation-time tradeoffs in the real world. Approaches that use incomplete
search to find solutions quickly have thus far lacked the capability of providing a theo-
retical guarantee on solution quality.

Our evaluation results show that Adopt obtains several orders of magnitude speed-up
over SynchBB, the only existing complete algorithm for DCOP. The speedups are shown
to be partly due to the novel search strategy and partly due to the asynchrony and paral-
lelism allowed by the search strategy. Also, although distributed constraint optimization is
intractable in the worst case, our experiments demonstrate that some classes of problems
exhibit special properties in which optimal algorithms can perform very well. In particular,
Adopt is able to guarantee optimality at low cost for large problems when the constraint
network is sparse – a typical feature of many real world problems. We also present em-
pirical results demonstrating an important feature of the algorithm, namely, the ability to
perform bounded-error approximation. We present experimental results demonstrating that
time-to-solution decreases as the given error-bound is allowed to increase.

2. Problem Definition

A Distributed Constraint Optimization Problem (DCOP) consists of n variables V = {x1,x2,

...xn}, each assigned to an agent, where the values of the variables are taken from finite,
discrete domains D1,D2,...,Dn, respectively. Only the agent who is assigned a variable
has control of its value and knowledge of its domain. The goal for the agents is to choose
values for variables such that a given global objective function is minimized. The objective
function is described as the summation over a set of cost functions. A cost function for
a pair of variables xi, xj is defined as fij : Di × Dj → N . The cost functions in DCOP
are the analogue of constraints from DisCSP and are sometimes referred to as “valued”
or “soft” constraints. For convenience in this paper, we will refer to cost functions simply
as constraints. Figure 2.a shows an example DCOP with four agents where each has a
single variable with domain {0, 1}. Two agents xi, xj are neighbors if they have a constraint
between them. In Figure 2.a, x1 and x3 are neighbors but x1 and x4 are not. All four
constraints are identical in this example but this is not required.

The objective is to find an assignment A∗ of values to variables such that the aggregate
cost F is minimized. Stated formally, we wish to find A (= A∗) such that F (A) is mini-
mized, where the objective function F is defined as

F (A) =
∑

xi,xj∈V

fij(di, dj) , where xi ← di,

xj ← dj in A

In Figure 2.a, F ({(x1, 0),(x2, 0), (x3, 0), (x4, 0)}) = 4 and F ({(x1, 1),(x2, 1), (x3, 1),
(x4, 1)}) = 0. In this example, A∗ = {(x1, 1),(x2, 1), (x3, 1), (x4, 1)}.

The scope of our DCOP representation and our modeling assumptions can be understood
along three key dimensions discussed next:
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Figure 2: (a) Constraint graph. (b) Adopt communication graph.

Aggregation operator. We make some assumptions about properties of the summation
operator which is used to aggregate costs from the component constraints. In particular,
the techniques we will present apply only to aggregation operators that are associative,
commutative, and monotonic. This class of optimization functions is described formally by
Schiex, Fargier and Verfaillie as Valued CSPs [25] and by Bistarelli, Montanari and Rossi as
Semi-Ring CSPs [3]. Monotonicity requires that the cost of a solution can only increase as
more costs are aggregated. For example, summation over the natural numbers is monotonic
but summation over the integers is not.

Arity of component constraints. We assume that constraints are at most binary, i.e.,
involve no more than two variables. This assumption can impose difficulties on representing
some problems. For example, a requirement stating that “2 out of 3 agents” are needed
for a task is most naturally represented as a ternary constraint over all three agents rather
than as an aggregation of pairwise binary constraints. We note however that algorithms for
DisCSP were first developed assuming binary constraints and later successfully generalized
to n-ary constraints. Thus, we take a similar approach for DCOP and first assume binary
constraints in this paper and propose extensions for n-ary constraints in future work.

Number of variables per agent. We will assume each agent is assigned a single vari-
able.2 This assumption can be problematic in domains where agents have complex local
subproblems that are more appropriately modeled using multiple variables. Yokoo et al.
[30] describe some methods for dealing with multiple variables per agent in DisCSP. For
example, one can convert a constraint reasoning problem involving multiple variables into a
problem with only one variable by defining a new variable whose domain is the cross prod-
uct of the domains of each of the original variables. Another method is to create multiple
virtual agents within a single real agent and assign one local variable to each virtual agent.
Both of these approaches allow the use of the techniques presented in this paper to apply
when agents have multiple local variables.

2. Because of this assumption, we’ll use the terms “agent” and “variable” interchangeably in this paper.
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Finally, we assume that message transfer may have random but finite delay and messages
are received in the order in which they are sent between any pair of agents. Messages sent
from different agents to a single agent may be received in any order.

We will evaluate our approach in a distributed graph coloring problem in which each
node in the graph is a variable and is assigned to a different agent. Each variable has a
domain of three possible colors and constraints require adjacent nodes to have different
color. A unit cost of one is counted for every constraint violation and the goal is to find
a solution that minimizes cost. We will also consider a variant in which constraints have
differing costs of violation, i.e., weighted constraints.

3. Basic Ideas

The Adopt algorithm consists of three key ideas: a) a novel asynchronous search strategy
where solutions may be abandoned before they are proven suboptimal, b) efficient recon-
struction of those abandoned solutions, and c) built-in termination detection. Each idea is
discussed next.

3.1 Opportunistic Best-First Search

Agents are prioritized into a tree structure in which each agent has a single parent and
multiple children. Using this priority ordering, Adopt performs a distributed backtrack
search using an ”opportunistic” best-first search strategy, i.e., each agent keeps on choosing
the best value based on the current available information. Stated differently, each agent
always chooses the variable value with smallest lower bound. This search strategy is in
contrast to previous distributed “branch and bound” type search algorithms for DCOP
(e.g. SynchBB [13]) which require agents to have access to a global upper bound. Adopt’s
new search strategy is significant because lower bounds are more suitable for asynchronous
search – a lower bound can be computed without necessarily having accumulated global cost
information. In Adopt, an initial lower bound is immediately computed based only on local
cost. The lower bound is then iteratively refined as new cost information is asynchronously
received from other agents. Note that because this search strategy allows agents to abandon
partial solutions before they have proved the solution is definitely suboptimal, they may be
forced to re-explore previously considered solutions. The next idea in Adopt addresses this
issue.

3.2 Backtrack Thresholds: Efficiently Reconstructing Abandoned Solutions

To allow agents to efficiently reconstruct a previously explored solution, which is a frequent
action due to Adopt’s search strategy, Adopt uses the second idea of using a stored lower
bound as a backtrack threshold. This technique increases efficiency, but requires only poly-
nomial space in the worst case, which is much better than the exponential space that would
be required to simply memorize partial solutions in case they need to be revisited. The
basic idea behind backtrack thresholds is that when an agent knows from previous search
experience that lb is a lower bound for its subtree, it should inform the agents in the subtree
not to bother searching for a solution whose cost is less than lb. In this way, a parent agent
determines the value of the backtrack threshold and sends the threshold to its children.
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Then, the children use the backtrack threshold as an allowance on solution cost – a child
agent will not change its variable value so long as cost is less than the backtrack thresh-
old given to it by its parent. Since the backtrack threshold is calculated using a previously
known lower bound, it is ensured to be less than or equal to the cost of the optimal solution.
This ensures that the optimal solution will not be missed.

Using backtrack thresholds to reconstruct previously explored solutions becomes more
difficult when an agent has multiple children. In particular, an agent must be able to
subdivide backtrack threshold correctly among its multiple children but this is a challenging
task because the agent cannot remember how cost was accumulated from its children in
the past, at least without requiring exponential space in the worst case. We address this
difficulty by allowing the agent to subdivide the threshold arbitrarily and then correct this
subdivision over time as cost feedback is received from the children. This is accomplished
through a set of program invariants (described in more detail in the next section) that are
maintained at each agent. Each agent maintains an AllocationInvariant which states
that its local cost plus the sum of the thresholds allocated to its children must equal its
own backtrack threshold. A ChildThresholdInvariant states that no child should be
given allowance less than its lower bound. By always maintaining these invariants as cost
feedback is received from its children, the parent continually re-balances the subdivision of
backtrack threshold among its children until ultimately the correct threshold is given to
each child.

3.3 Built-in Termination Detection

Finally, the third key idea is the use of bound intervals for tracking the progress towards the
optimal solution, thereby providing a built-in termination detection mechanism. A bound
interval consists of both a lower bound and an upper bound on the optimal solution cost.
When the size of the bound interval shrinks to zero, i.e., the lower bound equals the upper
bound, the cost of the optimal solution has been determined and agents can safely terminate
when a solution of this cost is obtained. Most previous distributed search algorithms have
required a separate termination detection algorithm. In contrast, the bound intervals in
Adopt provide a natural termination detection criterion integrated within the algorithm.
This is important because (as we will see in section 6) bound intervals can be used to
perform bounded-error approximation. As soon as the bound interval shrinks to a user-
specified size, agents can terminate early while guaranteeing they have found a solution
whose cost is within the given distance of the optimal solution. This means that agents
can find an approximate solution faster than the optimal one but still provide a theoretical
guarantee on global solution quality.

4. Asynchronous Search for DCOP

We present the details of the Adopt algorithm for solving DCOP. The procedures shown
in Figure 3 and 4 are executed concurrently by each agent. Illustrative examples are also
presented in this section.
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4.1 Details of Algorithm

As mentioned, agents first are prioritized in a Depth-First Search (DFS) tree which defines
parent/child relationships between the agents. The DFS tree ordering is equivalent to the
pseudo-tree arrangements described by Freuder and Quinn [11]. The use of DFS trees has
been proposed by Collins, Dechter and Katz in the context of DisCSP [6]. For a given
constraint graph, a DFS tree is valid if there are no constraints between agents in different
subtrees of the DFS tree. Constraints are only allowed between an agent and its ancestors
or descendants. There are many possible DFS trees for a given constraint graph, and every
connected constraint graph can be ordered into some DFS tree. Figure 2.b shows a DFS
tree formed from the constraint graph in Figure 2.a – x1 is the root, x1 is the parent of
x2, and x2 is the parent of both x3 and x4. We assume parent and children are neighbors.
In this paper, we will assume the DFS ordering is done in a preprocessing step so every
agent already knows its parent and children. Several distributed algorithms for forming
DFS trees already exist [7, 12, 19] which do not require central control but only that agents
have unique ids.

Variable value assignments (VALUE messages) are sent down the DFS tree while cost
feedback (COST messages) percolate back up the DFS tree. It may be useful to view COST
messages as a generalization of NOGOOD message from DisCSP algorithms. THRESHOLD
messages are used to reduce redundant search and sent only from parent to child. The
communication in Adopt is shown in Figure 2.b. VALUE messages are sent down constraint
edges – an agent xi sends VALUE messages only to neighbors lower in the DFS tree and
receives VALUE messages only from neighbors higher in the DFS tree. A COST message
is sent only from child to parent. A COST message sent from xi to its parent contains
the cost calculated at xi plus any costs reported to xi from its children. A THRESHOLD
message contains a single number representing a backtrack threshold, initially zero.

Procedures from Adopt are shown in Figure 3 and 4. xi represents the agent’s local
variable and di represents its current value. Each agent maintains a record of higher priority
neighbors’ current variable assignments:

• Definition: A context is a partial solution of the form {(xj ,dj), (xk,dk)...}. A variable
can appear in a context no more than once. Two contexts are compatible if they do
not disagree on any variable assignment. CurrentContext is a context which holds
xi’s view of the assignments of higher neighbors.

A COST message contains three fields: context, lb and ub. The context field of a COST
message sent from xl to its parent xi contains xl’s CurrentContext. This field is necessary
because calculated costs are dependent on the values of higher variables, so an agent must
attach the context under which costs were calculated to every COST message. This is similar
to the context attachment mechanism in ABT [30]. When xi receives a COST message from
child xl, and d is the value of xi in the context field, then xi stores lb, indexed by d and xl, as
lb(d, xl) (line 32). Similarly, the ub field is stored as ub(d, xl) and the context field is stored
as context(d, xl) (line 33-34). Before any COST messages are received or whenever contexts
become incompatible, i.e., CurrentContext becomes incompatible with context(d, xl), then
lb(d, xl) is (re)initialized to zero and ub(d, xl) is (re)initialized to a maximum value Inf (line
3-4, 18-19, 29-30).
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xi calculates cost as local cost plus any cost feedback received from its children. Pro-
cedures for calculation of cost (LB(d),UB(d),LB,UB) are not shown in Figure 3 but are
given by the following definitions. The local cost δ for a particular value choice di ∈ Di, is
the sum of costs from constraints between xi and higher neighbors:

• Definition: δ(di) =
∑

(xj ,dj)∈CurrentContext fij(di, dj) is the local cost at xi, when xi

chooses di.

For example, in Figure 2.a, suppose x3 received messages that x1 and x2 currently have
assigned the value 0. Then x3’s CurrentContext would be {(x1, 0), (x2, 0)}. If x3 chooses
0 for itself, it would incur a cost of 1 from f1,3(0, 0) (its constraint with x1) and a cost of 1
from f2,3(0, 0) (its constraint with x2). So x3’s local cost, δ(0) = 1 + 1 = 2.

When xi receives a COST message, it adds lb(d, xl) to its local cost δ(d) to calculate a
lower bound for value d, denoted LB(d):

• Definition: ∀d ∈ Di, LB(d) = δ(d) +
∑

xl∈Children lb(d, xl) is a lower bound for the
subtree rooted at xi, when xi chooses d.

Similarly, xi adds ub(d, xl) to its local cost δ(d) to calculate an upper bound for value d,
denoted UB(d):

• Definition: ∀d ∈ Di, UB(d) = δ(d) +
∑

xl∈Children ub(d, xl) is a upper bound for the
subtree rooted at xi, when xi chooses d.

The minimum lower bound over all value choices for xi is the lower bound for variable
xi, denoted LB:

• Definition: LB = mind∈Di
LB(d) is a lower bound for the subtree rooted at xi.

Similarly, the minimum upper bound over all value choices for xi is the upper bound for
variable xi, denoted UB:

• Definition: UB = mind∈Di
UB(d) is an upper bound for the subtree rooted at xi.

xi sends LB and UB to its parent as the lb and ub fields of a COST message (line 52).
Intuitively, LB = k indicates that it is not possible for the sum of the local costs at each
agent in the subtree rooted at xi to be less than k, given that all higher agents have chosen
the values in CurrentContext. Similarly, UB = k indicates that the optimal cost in the
subtree rooted at xi will be no greater than k, given that all higher agents have chosen the
values in CurrentContext. Note that a leaf agent has no subtree so δ(d) = LB(d) = UB(d)
for all value choices d and thus, LB is always equal to UB at a leaf. If xi is not a leaf but
has not yet received any COST messages from its children, UB is equal to maximum value
Inf and LB is equal to the minimum local cost δ(d) over all value choices d ∈ Di.

xi’s backtrack threshold is stored in the threshold variable, initialized to zero (line 1).
Its value is updated in three ways. First, its value can be increased whenever xi determines
that the cost of the optimal solution within its subtree must be greater than the current
value of threshold. Second, if xi determines that the cost of the optimal solution within its
subtree must necessarily be less than the current value of threshold, it decreases threshold.
These two updates are performed by comparing threshold to LB and UB (lines 53-56,
figure 4). The updating of threshold is summarized by the following invariant.
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• ThresholdInvariant: LB ≤ threshold ≤ UB. The threshold on cost for the subtree
rooted at xi cannot be less than its lower bound or greater than its upper bound.

A parent is also able to set a child’s threshold value by sending it a THRESHOLD
message. This is the third way in which an agent’s threshold value is updated. The reason
for this is that in some cases, the parent is able to determine a bound on the optimal cost
of a solution within an agent’s subtree, but the agent itself may not know this bound. The
THRESHOLD message is a way for the parent to inform the agent about this bound.

A parent agent is able to correctly set the threshold value of its children by subdividing
its own threshold value among its children and then using the following two equations to
re-balance over time as cost feedback is received from the children. Let t(d, xl) denote the
threshold on cost allocated by parent xi to child xl, given xi chooses value d. Then, the
values of t(d, xl) are subject to the following two invariants.

• AllocationInvariant: For current value di ∈ Di, threshold = δ(di) +
∑

xl∈Children

t(di, xl). The threshold on cost for xi must equal the local cost of choosing d plus the
sum of the thresholds allocated to xi’s children.

• ChildThresholdInvariant: ∀d ∈ Di,∀xl ∈ Children, lb(d, xl) ≤ t(d, xl) ≤ ub(d, xl).
The threshold allocated to child xl by parent xi cannot be less than the lower bound
or greater than the upper bound reported by xl to xi.

By adhering to these invariants, an agent is able to use its own threshold to determine
bounds on the cost of the optimal solution within its childrens’ subtrees.

The threshold value is used to determine when to change variable value. Whenever
LB(di) exceeds threshold, xi changes its variable value to one with smaller lower bound
(line 40-41). (Such a value necessarily exists since otherwise ThresholdInvariant would be
violated.) Note that xi cannot prove that its current value is definitely suboptimal because it
is possible that threshold is less than the cost of the optimal solution. However, it changes
value to one with smaller cost anyway – thereby realizing the best-first search strategy
described in Section 3.1.

4.2 Example of Algorithm Execution

Figure 5 shows an example of algorithm execution for the DCOP shown in figure 2. Line
numbers mentioned in the description refer to figures 3 and 4. This example is meant to
illustrate the search process and the exchange of VALUE and COST messages. COST
messages are labelled in the figures as [LB,UB,CurrentContext]. For simplicity, not every
message sent by every agent is shown. In particular, THRESHOLD messages are omitted
from the description. (A later example will illustrate how backtrack thresholds are handled.)

All agents begin by concurrently choosing a value for their variable (line 5). For this
example, let us assume they all choose value 0. Each agent sends its value to all lower
priority neighbors (figure 5.a). Since the algorithm is asynchronous, there are many possible
execution paths from here – we describe one possible execution path.

x2 will receive x1’s VALUE message. In line 15, it will record this value into its
CurrentContext. In line 21, it will enter the backTrack procedure. x2 computes LB(0) =
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Initialize
(1) threshold← 0; CurrentContext← {};
(2) forall d ∈ Di, xl ∈ Children do
(3) lb(d, xl)← 0; t(d, xl)← 0;
(4) ub(d, xl)← Inf ; context(d, xl)← {}; enddo;
(5) di ← d that minimizes LB(d);
(6) backTrack;

when received (THRESHOLD, t, context)
(7) if context compatible with CurrentContext:
(8) threshold← t;
(9) maintainThresholdInvariant;
(10) backTrack; endif;

when received (TERMINATE, context)
(11) record TERMINATE received from parent;
(12) CurrentContext ← context;
(13) backTrack;

when received (VALUE, (xj ,dj))
(14) if TERMINATE not received from parent:
(15) add (xj ,dj) to CurrentContext;
(16) forall d ∈ Di, xl ∈ Children do
(17) if context(d, xl) incompatible with CurrentContext:
(18) lb(d, xl)← 0; t(d, xl)← 0;
(19) ub(d, xl)← Inf ; context(d, xl)← {}; endif; enddo;
(20) maintainThresholdInvariant;
(21) backTrack; endif;

when received (COST, xk, context, lb, ub)
(22) d← value of xi in context;
(23) remove (xi,d) from context;
(24) if TERMINATE not received from parent:
(25) forall (xj ,dj) ∈ context and xj is not my neighbor do
(26) add (xj ,dj) to CurrentContext;enddo;
(27) forall d′ ∈ Di, xl ∈ Children do
(28) if context(d′, xl) incompatible with CurrentContext:
(29) lb(d′, xl)← 0; t(d′, xl)← 0;
(30) ub(d′, xl)← Inf ; context(d′, xl)← {};endif;enddo;endif;
(31) if context compatible with CurrentContext:
(32) lb(d, xk)← lb;
(33) ub(d, xk)← ub;
(34) context(d, xk)← context;
(35) maintainChildThresholdInvariant;
(36) maintainThresholdInvariant; endif;
(37) backTrack;

procedure backTrack
(38) if threshold == UB:
(39) di ← d that minimizes UB(d);
(40) else if LB(di) > threshold:
(41) di ← d that minimizes LB(d);endif;
(42) SEND (VALUE, (xi, di))
(43) to each lower priority neighbor;
(44) maintainAllocationInvariant;
(45) if threshold == UB:
(46) if TERMINATE received from parent
(47) or xi is root:
(48) SEND (TERMINATE,
(49) CurrentContext ∪ {(xi, di)})
(50) to each child;
(51) Terminate execution; endif;endif;
(52) SEND (COST, xi, CurrentContext, LB, UB)

to parent;

Figure 3: Procedures for receiving messages (Adopt algorithm). Definitions of terms
LB(d),UB(d),LB, UB are given in the text.
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procedure maintainThresholdInvariant
(53) if threshold < LB:
(54) threshold← LB; endif;
(55) if threshold > UB:
(56) threshold← UB; endif;

%note: procedure assumes ThresholdInvariant is satisfied
procedure maintainAllocationInvariant
(57) while threshold > δ(di) +

∑
xl∈Children t(di, xl) do

(58) choose xl ∈ Children where ub(di, xl) > t(di, xl);
(59) increment t(di, xl); enddo;
(60) while threshold < δ(di) +

∑
xl∈Children t(di, xl) do

(61) choose xl ∈ Children where t(di, xl) > lb(di, xl);
(62) decrement t(di, xl); enddo;
(63) SEND (THRESHOLD, t(di, xl), CurrentContext )

to each child xl;

procedure maintainChildThresholdInvariant
(64) forall d ∈ Di, xl ∈ Children do
(65) while lb(d, xl) > t(d, xl) do
(66) increment t(d, xl); enddo;endo;
(67) forall d ∈ Di, xl ∈ Children do
(68) while t(d, xl) > ub(d, xl) do
(69) decrement t(d, xl); enddo;enddo;

Figure 4: Procedures for updating backtrack thresholds

δ(0)+lb(0, x3)+lb(0, x4) = 1+0+0 = 1 and LB(1) = δ(1)+lb(1, x3)+lb(1, x4) = 2+0+0 = 2.
Since LB(0) < LB(1), we have LB = LB(0) = 1. x2 will also compute UB(0) =
δ(0)+ub(0, x3)+ub(0, x4) = 1+Inf +Inf = Inf and UB(1) = δ(1)+ub(1, x3)+ub(1, x4) =
2+Inf+Inf = Inf . Thus, UB = Inf . In line 38, threshold is compared to UB. threshold

was set to 1 ( in order to be equal to LB) in the maintainAllocationInvariant pro-
cedure call from line 20. Since threshold = 1 is not equal UB = Inf , the test fails. The
test in line 40 also fails since LB(0) = 1 is not greater that threshold = 1. Thus, x2 will
stick with its current value x2 = 0. In line 52, x2 sends the corresponding COST message
to x1 (figure 5.b).

Concurrently with x2’s execution, x3 will go through a similar execution. x3 will evaluate
its constraints with higher agents and compute LB(0) = δ(0) = f1,3(0, 0) + f2,3(0, 0) =
1 + 1 = 2. A change of value to x3 = 1 would incur a cost of LB(1) = δ(1) = f1,3(0, 1) +
f2,3(0, 1) = 2 + 2 = 4, so instead x3 will stick with x3 = 0. x3 will send a COST message
with LB = UB = 2, with associated context {(x1, 0), (x2, 0)}, to its parent x2. x4 executes
similarly (figure 5.b).

Next, x1 receives x2’s COST message. In line 31, x1 will test the received context
{(x1, 0)} against CurrentContext for compatibility. Since x1’s CurrentContext is empty, the
test will pass. (Note that the root never receives VALUE messages, so its CurrentContext
is always empty.) The received costs will be stored in lines 32-33 as lb(0, x2) = 1 and
ub(0, x2) = Inf . In line 37, execution enters the backTrack procedure. x1 computes
LB(1) = δ(1) + lb(1, x2) = 0 + 0 = 0 and LB(0) = δ(0) + lb(0, x2) = 0 + 1 = 1. Since
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LB(1) < LB(0), we have LB = LB(1) = 0. Similarly, UB = Inf . Since threshold = 0
is not equal UB = Inf , the test in line 38 fails. The test in line 40 succeeds and x1 will
choose its value d that minimizes LB(d). Thus, x1 switches value to x1 = 1. It will again
send VALUE messages to its linked descendants (figure 5.c).

Next, let us assume that the COST messages sent to x2 in figure 5.b are delayed.
Instead, x2 receives x1’s VALUE message from figure 5.c. In line 15, x2 will update its
CurrentContext to {(x1, 1)}. For brevity, the remaining portion of this procedure is not
described.

Next, x2 finally receives the COST message sent to it from x3 in figure 5.b. x2 will test
the received context against CurrentContext and find that they are incompatible because
one contains (x1, 0) while the other contains (x1, 1) (line 31). Thus, the costs in that COST
message will not be stored due to the context change. However, the COST message from x4

will be stored in lines 32-33 as lb(0, x3) = 1 and ub(0, x3) = 1. In line 37, x2 then proceeds to
the backTrack procedure where it will choose its best value. The best value is now x2 = 1
since LB(1) = δ(1)+lb(1, x3)+lb(1, x4) = 0+0+0 and LB(0) = δ(0)+lb(0, x3)+lb(0, x4) =
2 + 0 + 1 = 3. Figure 5.d shows the change in both x2 and x3 values after receiving x1’s
VALUE message from figure 5.c. x2 and x3 send the new COST messages with the new
context where x1 = 1. x2 also sends VALUE messages to x3 and x4 informing them of its
new value.

Next, figure 5.e shows the new COST message that is sent by x2 to x1 after receiving
the COST messages sent from x3 and x4 in figure 5.d. Notice that x2 computes LB as
LB(1) = δ(1) + lb(1, x3) + lb(1, x4) = 0 + 0 + 0 and UB as UB(1) = δ(1) + ub(1, x3) +
ub(1, x4) = 0 + 2 + 1 = 3. Figure 5.e also shows the new COST message sent by x3 after
receiving x2’s new value of x2 = 1. Similarly, x4 will change variable value and send a
COST message with LB = 0 and UB = 0. In this way, we see the agents have ultimately
settled on the optimal configuration with all values equal to 1 (total cost = 0).

Finally in figure 5.f, x2 receives the COST messages from figure 5.e, computes a new
bound interval LB = 0, UB = 0 and sends this information to x1. Upon receipt of this
message, x1 will compute UB = UB(0) = δ(0) + ub(0, x2) = 0 + 0 = 0. Note that x1’s
threshold value is also equal to zero. threshold was initialized to zero in line 1 and can only
be increased if i) a THRESHOLD message is received (line 8), or b) the ThresholdInvariant
is violated (line 54, figure 4). The root never receives THRESHOLD messages, so case
(i) never occurred. Since x1’s LB was never greater than zero in this example, threshold

could never have been less than LB, so case (ii) never occurred. Thus, threshold was
never increased and remains equal to zero. So, we have the test threshold == UB in line
45 evaluate to true. In line 48, it will send a TERMINATE message to x2, and then x1

will terminate in line 51. x2 will receive the TERMINATE message in line 11, evaluate
threshold == UB(= 0) to be true in line 45 and then terminate in line 51. The other
agents will terminate in a similar manner.

4.3 Example of Backtrack Thresholds

We illustrate how backtrack thresholds are computed, updated and balanced between chil-
dren. The key difficulty is due to context changes. An agent only stores cost information
for the current context. When the context changes, the stored cost information must be
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Figure 5: Example Adopt execution for the DCOP shown in figure 2

deleted (in order to maintain polynomial space). If a previous context is later returned to,
the agent no longer has the previous context’s detailed cost information available. How-
ever, the agent had reported the total sum of costs to its parent, who has that information
stored. So, although the precise information about how the costs were accumulated from
the children is lost, the total sum is available from the parent. It is precisely this sum that
the parent sends to the agent via the THRESHOLD message. The child then heuristically
re-subdivides, or allocates, the threshold among its own children. Since this allocation may
be incorrect, it then corrects for over-estimates over time as cost feedback is (re)received
from the children.

Figure 6 shows a portion of a DFS tree. The constraints are not shown. Line numbers
mentioned in the description refer to figure 3 and figure 4. xp has parent xq, which is the
root, and two children xi and xj . For simplicity, assume Dp = {dp} and δ(dp) = 1, i.e, xp

has only one value in its domain and this value has a local cost of 1.
Suppose xp receives COST messages containing lower bounds of 4 and 6 from its two

children (figure 6.a). The costs reported to xp are stored as lb(dp, xi) = 4 and lb(dp, xj) = 6
(line 32) and associated context as context(dp, xi) = context(dp, xj) = {(xq, dq)}. LB is
computed as LB = LB(dp) = δ(dp) + lb(dp, xi) + lb(dp, xj) = 1 + 4 + 6 = 11. In figure 6.b,
the corresponding COST message is sent to parent xq. After the COST message is sent,
suppose a context change occurs at xp through the receipt of a VALUE message xq = d′q.
In line 18-19, xp will reset lb(dp, xi), lb(dp, xj), t(dp, xi) and t(dp, xj) to zero.
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Next, xq receives the information sent by xp. xq will set lb(dq, xp) = 11 (line 32),
and enter the maintainChildThresholdInvariant procedure (line 35). Let us as-
sume that t(dq, xp) is still zero from initialization. Then, the test in line 65 succeeds since
lb(dq, xp) = 11 > t(dq, xp) = 0 and xq detects that the ChildThresholdInvariant is being
violated. In order to correct this, xq increases t(dq, xp) to 11 in line 66.

Next, in figure 6.c, xq revisits the value dq and sends the corresponding VALUE message
xq = dq. Note that this solution context has already been explored in the past, but xp has
retained no information about it. However, the parent xq has retained the sum of the costs,
so xq sends the THRESHOLD message with t(dq, xp) = 11.

Next, xp receives the THRESHOLD message. In line 8, the value is stored in the
threshold variable. Execution proceeds to the backTrack procedure where in line 44
the maintainAllocationInvariant is invoked. Notice that the test in line 57 of
maintainAllocationInvariant evaluates to true since threshold = 11 > δ(dp) +
t(dp, xi) + t(dp, xj) = 1 + 0 + 0. Thus, in lines 57-59, xp increases the thresholds for
its children until the invariant is satisfied. Suppose that the split is t(dp, xi) = 10 and
t(dp, xj) = 0. This is an arbitrary subdivision that satisfies the AllocationInvariant – there
are many other values of t(dp, xi) and t(dp, xj) that could be used. In line 63, these values
are sent via a THRESHOLD message (figure 6.d).

By giving xi a threshold of 10, xp risks sub-optimality by overestimating the threshold
in that subtree. This is because the best known lower bound in xi’s subtree was only 4.
We now show how this arbitrary allocation of threshold can be corrected over time. Agents
continue execution until, in figure 6.e, xp receives a COST message from its right child xj

indicating that the lower bound in that subtree is 6. xj is guaranteed to send such a message
because there can be no solution in that subtree of cost less than 6, as evidenced by the
COST message previously sent by xj in figure 6.a. xp will set lb(dp, xj) = 6 (line 32) and
enter the maintainChildThresholdInvariant procedure in line 35. Note that the test
in line 65 will succeed since lb(dp, xj) = 6 > t(dp, xj) = 5 and the ChildThresholdInvariant
is being violated. In order to correct this, xp increases t(dp, xj) to 6 in line 66. Execution
returns to line 35 and continues to line 44, where the maintainAllocationInvariant
is invoked. The test in line 60 of this procedure will succeed since threshold = 11 <

δ(dp) + t(dp, xi) + t(dp, xj) = 1 + 10 + 6 = 17 and so the AllocationInvariant is being
violated. In lines 60-62, xp lowers t(dp, xi) to 4 to satisfy the invariant. In line 63, xp sends
the new (correct) threshold values to its children (figure 6.f).

In this way, a parent agent continually re-balances the threshold given to its independent
subtrees in order to avoid overestimating the cost in each subtree and, as discussed in section
3.2, allowing more efficient search.

5. Algorithm Correctness and Complexity

We use three theorems to show that Adopt is guaranteed to terminate with the globally
optimal solution. In Theorem 1, we show that the bounds computed by each agent are
always correct. In Theorem 2, we show the algorithm will always terminate. Finally, in
Theorem 3 we show that the optimal solution is obtained upon termination.
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Figure 6: Example of backtrack thresholds in Adopt

Property 1 is used in the proof of Theorem 1. Let OPT (xi, context) denote the cost of
the optimal solution in the subtree rooted at xi, given that higher priority variables have
values in context.

Property 1: ∀xi ∈ V ,

OPT (xi, CurrentContext)
def
= mind∈Di

δ(d)+
∑

xl∈Children OPT (xl, CurrentContext∪ (xi, d))

For example if xi is a leaf, then OPT (xi, context) is equal to δ(d), where d is the value
that minimizes δ. This inductive property states that the cost of the optimal solution in
the subtree rooted at xi is obtained when xi chooses value d that minimizes the sum of its
local cost plus the cost of the optimal solution in its subtree.

Theorem 1 shows that the lower bound LB computed by an agent is never greater than
the cost of the optimal solution within its subtree, and the upper bound UB is never less
than the cost of the optimal solution within its subtree. The proof of Theorem 1 proceeds
by induction. The base case follows from the fact LB = OPT (xi , CurrentContext) = UB

is always true at a leaf agent. The inductive hypothesis assumes that LB (UB) sent by
xi to its parent is never greater (less) than the cost of the optimal solution in the subtree
rooted at xi. The proof also relies on the fact that costs are reported to only one parent so
there is no double counting of costs.

Theorem 1: ∀xi ∈ V ,
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LB ≤ OPT (xi, CurrentContext) ≤ UB

.
Proof: By induction on agent priorities.
Base Case I: xi is a leaf. The equations for LB and UB simplify to mind∈Di

δ(d) since
xi has no children. Property 1 simplifies to OPT (xi, CurrentContext) = mind∈Di

δ(d) for
the same reason. So we conclude LB = mind∈Di

δ(d) = OPT (xi, CurrentContext) = UB.
Done.

Base Case II: Every child of xi is a leaf. We will show LB ≤ OPT (xi, CurrentContext).
The proof for OPT (xi, CurrentContext) ≤ UB is analogous.

Since all children xl are leaves, we know from Base Case I that lb(d, xl) ≤ OPT (xl,
CurrentContext∪ (xi, d)). Furthermore, each child xl sends COST messages only to xi, so
costs are not double-counted. We substitute OPT (xl, CurrentContext∪(xi, d)) for lb(d, xl)
into the definition of LB to get the following:

LB = mind∈Di
δ(d) +

∑
xl∈Children lb(d, xl) ≤

mind∈Di
δ(d) +

∑
xl∈Children OPT (xl, CurrentContext∪ (xi, d))

Now we can simply substitute Property 1 into the above to get

LB ≤ OPT (xi, CurrentContext)

and we are done.
Inductive Hypothesis: ∀d ∈ Di,∀xl ∈ Children,

lb(d, xl) ≤ OPT (xl, CurrentContext∪ (xi, d)) ≤ ub(d, xl)

The proof of the general case is identical to that of Base Case II, except we assume
lb(d, xl) ≤ OPT (xl, CurrentContext∪ (xi, d)) from the Inductive Hypothesis, rather than
from the assumption that xl is a leaf. 2

In Theorem 2, we show that Adopt will eventually terminate. Adopt’s termination con-
dition is shown in line 45 of Figure 3. A non-root agent terminates when threshold = UB

is true and a TERMINATE message has been received from its parent. The proof follows
from the fact that once an agent’s parent terminates, LB is monotonically increasing. Since
LB is monotonically increasing, and Theorem 1 showed that LB has an upper bound, LB

must eventually stop changing. A similar argument is true for UB. Finally, the Threshold-
Invariant forces threshold to stay between LB and UB until ultimately threshold = UB

occurs.
Theorem 2: ∀xi ∈ V , if CurrentContext is fixed, then threshold = UB will eventually

occur.
Proof: By induction on agent priorities.
Base Case: xi is a leaf. LB = UB is always true at xi because it is a leaf. Every

agent maintains the ThresholdInvariant LB ≤ threshold ≤ UB. So threshold = UB must
always be true at a leaf.

Inductive Hypothesis: If CurrentContext is fixed and xi fixes its variable value to di,
then ∀xl ∈ Children, threshold = UB will eventually occur at xl and it will report an
upper bound ub via a COST message, where ub = t(di, xl).
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Assume CurrentContext is fixed. To apply the Inductive Hypothesis, we must show
that xi will eventually fix its variable value. To see this, note that xi changes its variable
value only when LB(di) increases. By Theorem 1, LB is always less than the cost of the
optimal solution. LB cannot increase forever and so xi must eventually stop changing its
variable value. We can now apply the Inductive Hypothesis which says that when xi fixes
its value, each child will eventually report an upper bound ub = t(di, xl). This means
t(di, xl) = ub(di, xl) will eventually be true at xi. We can substitute t(di, xl) for ub(di, xl)
into the definition of UB to get the following:

UB
def

≤ UB(di)
def
= δ(di) +

∑
xl∈Children ub(di, xl)

= δ(di) +
∑

xl∈Children t(di, xl)

Using the AllocationInvariant threshold = δ(di) +
∑

xl∈Children t(di, xl), we substitute
threshold into the above to get UB ≤ threshold. The right-hand side of the ThresholdIn-
variant states threshold ≤ UB. So we have both UB ≤ threshold and threshold ≤ UB.
So threshold = UB must be true and the Theorem is proven. 2

As an aside, we note that the algorithm behaves differently depending on whether xi’s
threshold is set below or above the cost of the optimal solution. If threshold is less than
the cost of the optimal solution, then when LB increases above threshold, xi will raise
threshold until ultimately, LB = threshold = UB occurs. On the other hand, if threshold

is greater than the cost of the optimal solution, then when UB decreases below threshold,
xi will lower threshold so threshold = UB occurs. In the second case, LB may remain less
than UB at termination.

Theorem 2 is sufficient to show algorithm termination because the root has a fixed
(empty) CurrentContext and will therefore immediately terminate when threshold = UB

occurs. Before it terminates, it sends a TERMINATE message to its children informing
them of its final value (line 48). It is clear to see that when a TERMINATE message is
received from the parent, an agent knows that its current context will no longer change
since all higher agents have already terminated.

Finally, Theorem 3 shows that the final value of threshold is equal to the cost of the
optimal solution.

Theorem 3: ∀xi ∈ V , xi’s final threshold value is equal to OPT (xi, CurrentContext).
Base Case: xi is the root. The root terminates when its (final) threshold value is equal

UB. LB = threshold is always true at the root because threshold is initialized to zero and
is increased as LB increases. The root does not receive THRESHOLD messages so this is
the only way threshold changes. We conclude LB = threshold = UB is true when the
root terminates. This means the root’s final threshold value is the cost of a global optimal
solution.

Inductive Hypothesis: Let xp denote xi’s parent. xp’s final threshold value is equal to
OPT (xp, CurrentContext).

We proceed by contradiction. Suppose xi’s final threshold is an overestimate. By
the inductive hypothesis, xp’s final threshold is not an overestimate. It follows from the
AllocationInvariant that if the final threshold given to xi (by xp) is too high, xp must
have given some other child (a sibling of xi), say xj, a final threshold that is too low (See
Figure 6). Let d denote xp’s current value. Since xj’s threshold is too low, it will be
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unable to find a solution under the given threshold and will thus increase its own threshold.
It will report lb to xp, where lb > t(d, xj). Using Adopt’s invariants, we can conclude
that threshold = UB cannot be true at xp, so xp cannot have already terminated. By
the ChildThresholdInvariant, xp will increase xj ’s threshold so that lb(d, xj) ≤ t(d, xj).
Eventually, lb(d, xj) will reach an upper bound and lb(d, xj) = t(d, xj) = ub(d, xj) will hold.
This contradicts the statement that xj ’s final threshold is too low. By contradiction, xj ’s
final threshold value cannot be too low and xi’s final threshold cannot be too high. 2

The worst-case time complexity of Adopt is exponential in the number of variables n,
since constraint optimization is known to be NP-hard. To determine the worst-case space
complexity at each agent, note that an agent xi needs to maintain a CurrentContext which
is at most size n, and an lb(d, xl) and ub(d, xl) for each domain value and child, which is at
most | Di | ×n. The context(d, xl) field can require n2 space in the worst case. Thus, we can
say the worst-case space complexity of Adopt is polynomial in the number of variables n.
However, it can be reduced to linear at the potential cost of efficiency. Since context(d, xl) is
always compatible with CurrentContext, CurrentContext can be used in the place of each
context(d, xl), thereby giving a space complexity of | Di | ×n. This can be inefficient since
an agent must reset all lb(d, xl) and ub(d, xl) whenever CurrentContext changes, instead of
only when context(d, xl) changes.

6. Bounded-Error Approximation

We consider the situation where the user provides Adopt with an error bound b, which is
interpreted to mean that any solution whose cost is within b of the optimal is acceptable.
For example in over-constrained graph coloring, if the optimal solution requires violating 3
constraints, b = 5 indicates that 8 violated constraints is an acceptable solution. Note that
this measure allows a user to specify an error bound without a priori knowledge of the cost
of the optimal solution. Adopt can be guaranteed to find a global solution within bound b

of the optimal by allowing the root’s backtrack threshold to overestimate by b. The root
agent uses b to modify its ThresholdInvariant as follows:

• ThresholdInvariant For Root (Bounded Error): min(LB+b, UB) = threshold.
The root agent always sets threshold to b over the currently best known lower bound
LB, unless the upper bound UB is known to be less than LB + b.

Let us revisit the example shown in figure 2. We will re-execute the algorithm, but in
this case the user has given Adopt an error bound b = 4. Instead of initializing threshold

to zero, the root agent x1 will initialize threshold to b. Note that LB is zero and UB is Inf

upon initialization. Thus, min(LB + b, UB) = min(4, Inf) = 4 and the thresholdInvariant
above requires x1 to set threshold = 4. In addition, the AllocationInvariant requires x1 to
set t(0, x2) = 4 since the invariant requires that threshold = 4 = δ(0)+t(0, x2) = 0+t(0, x2)
hold.

In figure 7.a, all agents again begin by concurrently choosing value 0 for their variable
and sending VALUE messages to linked descendants. In addition, x1 sends a THRESHOLD
message to x2. Upon receipt of this message, x2 sets threshold = 4 (line 8).

19



Modi, Shen, Tambe & Yokoo

Each agent computes LB and UB and sends a COST message to its parent (figure 7.b).
This was described previously in section 4.2 and shown in figure 5.b. The execution path
is the same here.

Next, x1 receives x2’s COST message. As before, the received costs will be stored in
lines 32-33 as lb(0, x2) = 1 and ub(0, x2) = Inf . In line 37, execution enters the backTrack
procedure. x1 computes LB(1) = δ(1)+ lb(1, x2) = 0+0 = 0 and LB(0) = δ(0)+ lb(0, x2) =
0 + 1 = 1. Since LB(1) < LB(0), we have LB = LB(1) = 0. UB(0) and UB(1) are
computed as Inf , so UB = Inf . Since threshold = 4 is not equal UB = Inf , the test in
line 38 fails. So far, the execution is exactly as before. Now however, the test in line 40 fails
because LB(di) = LB(0) = 1 is not greater than threshold = 4. Thus, x1 will not switch
value to x1 = 1 and will instead keep its current value of x1 = 0.

Next, x2 receives the COST messages sent from x3 and x4. The received costs will be
stored in lines 32-33 as lb(0, x3) = 2, ub(0, x3) = 2, lb(0, x4) = 1, and ub(0, x4) = 1. In line
37, execution enters the backTrack procedure. x2 computes LB(0) = δ(0) + lb(0, x3) +
lb(0, x4) = 1 + 2 + 1 = 4 and LB(1) = δ(1) + lb(1, x3) + lb(1, x4) = 2 + 0 + 0 = 2. Thus,
LB = LB(1) = 2. Similarly, x2 computes UB(0) = δ(0)+ub(0, x3)+ub(0, x4) = 1+2+1 = 4
and UB(1) = δ(1) + ub(1, x3) + ub(1, x4) = 2 + Inf + Inf = Inf . Thus, UB = UB(0) = 4.
Since threshold = UB = 4, the test in line 38 succeeds. However, x2 will not switch value
since its current value is the one that minimizes UB(d). Note that the equivalent test in
line 45 succeeds, but the test in line 46 fails since x2 has not yet received a TERMINATE
message from x1. So, x2 does not terminate. Instead, execution proceeds to line 52 where
a COST message is sent to x1. This is depicted in figure 7.c.

Next, x1 receives x2’s COST message. The received costs will be stored as lb(0, x2) = 2
and ub(0, x2) = 4. x1 now computes LB(1) = δ(1) + lb(1, x2) = 0 + 0 + 0 and LB(0) =
δ(0)+lb(0, x2) = 0+2 = 2. Similarly, x1 computes UB(1) = δ(1)+ub(1, x2) = 0+Inf = Inf

and UB(0) = δ(0) + ub(0, x2) = 0 + 4 = 4. Thus, UB = UB(0) = 4. So, now we have the
test threshold == UB in line 45 evaluate to true, since threshold = UB = 4. Since x1 is
the root, the test in line 47 succeeds and x1 will terminate with value x1 = 0. It will send
a TERMINATE message to x2 and the other agents will terminate in a similar manner.

In this way, we see the agents have ultimately settled on a configuration with all values
equal to 0, with a total cost of 4. Since the optimal solution has cost 0, the obtained
solution is indeed within the given error bound of b = 4. The solution was found faster
because less of the solution space was explored. In particular, note that x1 never had to
explore solutions with x1 = 1.

Theorems 1 and 2 still hold with the bounded-error modification to the ThresholdIn-
variant. Also, agents still terminate when threshold value is equal UB. The root’s final
threshold value is the cost of a global solution within the given error bound. Using this
error bound, Adopt is able to find a solution faster than if searching for the optimal solu-
tion, thereby providing a method to trade-off computation time for solution quality. This
trade-off is principled because a theoretical quality guarantee on the obtained solution is
still available.
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t(0,x2)=4

Figure 7: Example Adopt execution for the DCOP shown in figure 2, with error bound
b = 4.

7. Evaluation

As in previous experimental set-ups[14], we experiment on distributed graph coloring with
3 colors. One node is assigned to one agent who is responsible for choosing its color. Cost
of solution is measured by the total number of violated constraints. We will experiment
with graphs of varying link density – a graph with link density d has dn links, where n is
the number of nodes in the graph. For statistical significance, each datapoint representing
number of cycles is the average over 25 random problem instances. The randomly generated
instances were not explicitly made to be over-constrained, but note that link density 3 is
beyond phase transition, so randomly generated graphs with this link density are almost
always over-constrained. The tree-structured DFS priority ordering for Adopt was formed
in a preprocessing step. To compare Adopt’s performance with algorithms that require a
chain (linear) priority ordering, a depth-first traversal of Adopt’s DFS tree was used.

We measure “time to solution” in terms of synchronous cycles. One cycle is defined as all
agents receiving all incoming messages and sending all outgoing messages simultaneously.
This metric has been used previously to evaluate asynchronous algorithms [14]. This metric
is appealing because it is not sensitive to differing computation speeds at different agents
or fluctuations in message delivery time. Indeed, these factors are often unpredictable and
we would like to control for them when performing systematic experiments. Although the
cycles metric does not measure run-time directly, it is a good approximation when message
delivery time dominates local processing time and the communication infrastructure is able
to transmit multiple messages in parallel [23]. However, we note that more sophisticated
metrics for measuring comparing the performance of asynchronous algorithms are needed.
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7.1 Efficiency

We present the empirical results from experiments using three different algorithms for
DCOP – Synchronous Branch and Bound (SynchBB), Synchronous Iterative Deepening
(SynchID) and Adopt. We illustrate that Adopt outperforms SynchBB[13], a distributed
version of branch and bound search and the only known algorithm for DCOP that provides
optimality guarantees. In addition, by comparing with SynchID we show that the speed-up
comes from two sources: a) Adopt’s novel search strategy, which uses lower bounds instead
of upper bounds to do backtracking, and b) the asynchrony of the algorithm, which enables
concurrency.

SynchID is an algorithm we have constructed in order to isolate the causes of speed-
ups obtained by Adopt. SynchID simulates iterative deepening search[16] in a distributed
environment by requiring agents to execute sequentially and synchronously. SynchID’s
search strategy is similar to Adopt in that both algorithms use the lower bounds to do
backtracking. The central difference is that SynchID is sequential while Adopt is concurrent.
In SynchID, the agents are ordered into a linear chain. (A depth-first traversal of Adopt’s
DFS tree was used in our experiments.) Briefly, SynchID operates as follows: the highest
priority agent chooses a value for its variable first and initializes a global lower bound to
zero. The next agent in the chain attempts to extend this solution so that the cost remains
under the lower bound. If an agent finds that it cannot extend the solution so that the cost
is less than the lower bound, a backtrack message is sent back up to the parent. Once the
highest priority agent receives a backtrack message, it increases the global lower bound and
the process repeats.

Figure 8 shows how SynchBB, SynchID and Adopt scale up with increasing number
of agents on graph coloring problems. The results in Figure 8 (left) show that Adopt

23



Modi, Shen, Tambe & Yokoo

significantly outperforms both SynchBB and SynchID on graph coloring problems of link
density 2. The speed-up of Adopt over SynchBB is 100-fold at 14 agents. The speed-up
of Adopt over SynchID is 7-fold at 25 agents and 8-fold at 40 agents. The speedups due
to search strategy are significant for this problem class, as exhibited by the difference in
scale-up between SynchBB and SynchID. In addition, the figure also show the speedup due
exclusively to the asynchrony of the Adopt algorithm. This is exhibited by the difference
between SynchID and Adopt, which employ a similar search strategy, but differ in amount
of asynchrony. In SynchID, only one agent executes at a time so it has no asynchrony,
whereas Adopt exploits asynchrony when possible by allowing agents to choose variable
values in parallel. In summary, we conclude that Adopt is significantly more effective than
SynchBB on sparse constraint graphs and the speed-up is due to both its search strategy
and its exploitation of asynchronous processing. Adopt is able to find optimal solutions
very efficiently for large problems of 40 agents.

Figure 8 (right) shows the same experiment as above, but for denser graphs, with link
density 3. We see that Adopt still outperforms SynchBB – around 10-fold at 14 agents and
at least 18-fold at 18 agents (experiments were terminated after 100000 cycles). The speed-
up between Adopt and SynchID, i.e, the speed-up due to concurrency, is 2.06 at 16 agents,
2.22 at 18 agents and 2.37 at 25 agents. Finally, Figure 9 shows results from a weighted
version of graph coloring where each constraint is randomly assigned a weight between 1
and 10. Cost of solution is measured as the sum of the weights of the violated constraints.
We see similar results on the more general problem with weighted constraints.

Figure 10 shows the average total number of messages sent by all the agents per cycle of
execution. As the number of agents is increased, the number of messages sent per cycle in-
creases only linearly. This is because, in Adopt, agent communicates with only neighboring
agents and not with all other agents. This is in contrast to a broadcast mechanism where
we would expect an exponential increase in the number of messages.

7.2 Approximating Solutions

We evaluate the effect on time to solution (as measured by cycles) and the total number
of messages exchanged, as a function of error bound b in Figure 11. Error bound b = 0
indicates a search for the optimal solution. Figure 11 (left) shows that increasing the error
bound significantly decreases the number of cycles to solution. At 18 agents, Adopt finds
a solution that is guaranteed to be within a distance of 5 from the optimal in under 200
cycles, a 30-fold decrease from the number of cycles required to find the optimal solution.
Similarly, figure 11 (right) shows that the total number of messages exchanged per agent
decreases significantly as b is increased.

We evaluate the effect on cost of obtained solution as a function of error bound b. Figure
12 shows the cost of the obtained solution for the same problems in Figure 11. (Data for
problems instances of 18 agents is shown, but the results for the other problem instances are
similar.) The x-axis shows the “distance from optimal” (cost of obtained solution minus cost
of optimal solution for a particular problem instance) and the y-axis shows the percentage
of 25 random problem instances where the cost of the obtained solution was at the given
distance from optimal. For example, the two bars labeled “b = 3” show that when b is set
to 3, Adopt finds the optimal solution for 90 percent of the examples and a solution whose
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Figure 11: Average number of cycles required to find a solution (left) and the
average number of messages exchanged per agent (right) for given
error bound b.

cost is at a distance of 1 from the optimal for the remaining 10 percent of the examples.
The graph shows that in no cases is the cost of the obtained solution beyond the allowed
bound, validating our theoretical results. The graph also shows that the cost of the obtained
solutions are often much better than the given bound, in some cases even optimal.

The above results support our claim that varying b is an effective method for doing prin-
cipled trade-offs between time-to-solution and quality of obtained solution. These results
are significant because, in contrast to incomplete search methods, Adopt provides the ability
to find solutions faster when time is limited but without giving up theoretical guarantees
on solution quality.

8. Related Work

This section discusses related work in distributed constraint reasoning for multiagent do-
mains. Section 8.1 provides an discussion of work on distributed constraint satisfaction
relevant to DCOP, while section 8.2 provides an overview of various existing approaches to
DCOP.

8.1 Distributed Constraint Satisfaction

Yokoo, Hirayama and others have studied the DisCSP problem in depth and a family of
sound and complete algorithms for solving these types of problems in a decentralized manner
exist [30]. This has been an important advance and provides key insights that influence the
work presented here. However, existing distributed search methods for DisCSP do not
generalize easily to DCOP.

Armstrong and Durfee [1] investigate the effect of agent priority orderings on efficiency
in DisCSP. They show that variable ordering heuristics from CSP can be reused as priority
orderings in DisCSP and that dynamic reordering is also a useful technique. These results
could potentially be generalized and applied to DCOP. Silaghi, Sam-Haroud and Faltings

25



Modi, Shen, Tambe & Yokoo

0

30

60

90

Zero One Two

P
er

ce
nt

 o
f E

xa
m

pl
es

Distance from Optimal Solution

GraphColor, Link Density 3
(18 agents)

b=
3

b=
4

b=
5

b=
3

b=
4

b=
5

b=
5

Figure 12: For each error bound b, the percentage of problem instances where
the obtained cost was at the given distance from optimal.

Table 1: Characteristics of Distributed Constraint Optimization Methods

Method Asynch? Optimal? Dist?
Satisfaction-Based Search[18][14] N N Y
Local Search [13][9] Y N Y
Synchronous Search [13] N Y Y
Greedy Repair [17] N N N
Asynchronous Best-First Search (Adopt) Y Y Y

[27] present an alternative representation of DisCSP in which constraints are assigned to
agents while variables are shared between agents. This approach allows the distributed
constraint paradigm to be applied in distributed domains where constraints cannot be
shared, perhaps for privacy reasons, but variables may be assigned to multiple agents.
Representing DCOP in this manner is an interesting direction of future work.

8.2 Distributed Constraint Optimization

Table 1 outlines the state of the art in existing approaches to DCOP. Methods are parame-
terized by communication model (asynchronous or synchronous), completeness (guaranteed
optimal solutions for DCOP), and “distributedness”. We assume that a method is not dis-
tributed if all agents are required to communicate directly with a single agent irrespective of
the underlying constraint network. The individual approaches are discussed further below.

Satisfaction-based methods. This method leverages existing DisCSP search algorithms
to solve special classes of DCOP, e.g. over-constrained DisCSP. In over-constrained DisCSP,
the goal is to optimize a global objective function by relaxing constraints since no completely
satisfactory solution may be possible. The approach typically relies on converting the DCOP
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into a sequence of satisfaction problems in order to allow the use of a DisCSP algorithm.
This can be done by iteratively removing constraints from the problem until a satisfactory
solution is found. However, a drawback of this approach is that agents need to repeatedly
synchronize to remove constraints (although the satisfaction-based search component may
be asynchronous). Hirayama and Yokoo [14] show that this approach can find optimal
solutions for a limited subclass of optimization problems, namely over-constrained DisCSP
in which solutions can be structured into hierarchical classes. Liu and Sycara [18] present
another similar iterative relaxation method, Anchor&Ascend, for heuristic search in a job-
shop scheduling problem. As discussed in Section 1, these satisfaction-based methods fail
to generalize to DCOP defined in this paper since agents are not able to asynchronously
determine which constraints should be relaxed to obtain the optimal solution.

Local Search Methods. In this approach, agents are oblivious to non-local costs and
simply attempt to minimize costs with respect to neighboring agents. Methods such as
random value change or dynamic priority ordering may be used for escaping local minima.
In this method, no guarantees on solution quality are available even if given unlimited
execution time. Furthermore, agents cannot know the quality of the solution they have
obtained. Examples of this approach include the Iterative Distributed Breakout (IDB)
algorithm[13]. This algorithm utilizes the Satisfaction-Based approach described above,
and so is limited in the type of DCOP it can address. In particular, IDB is applicable to
a particular class of DCOP in which agents wish to minimize the maximum cost incurred
at any agent. This type of criterion function has the special property that some agent can
always locally determine the global cost of the current solution without knowledge of the
cost incurred at other agents. For this class of DCOP, IDB is empirically shown to find
good solutions quickly but cannot guarantee optimality.

Fitzpatrick and Meertens [9] present a simple distributed stochastic algorithm for min-
imizing the number of conflicts in an over-constrained graph coloring problem. Agents
change variable value with some fixed probability in order to avoid concurrent moves. No
method for escaping local minimum is used. The algorithm is shown empirically to quickly
reduce the number of conflicts in large sparse graphs, even in the face of noisy/lossy commu-
nication. It is unknown how this approach would work in general since no quality guarantees
are available.

Synchronous Search. This approach can be characterized as simulating a centralized
search method in a distributed environment by imposing synchronous, sequential execution
on the agents. It is seemingly straightforward to simulate centralized search algorithms in
this manner. Examples include SynchBB (Synchronous Branch and Bound) [13] and the
SynchID (Synchronous Iterative Deepening) algorithm described in Section 7 of this paper.
While this approach yields an optimal distributed algorithm, the imposition of synchronous,
sequential execution can be a significant drawback.

Greedy Repair. Lemaitre and Verfaille [17] describe an incomplete method for solving
general constraint optimization problems. They address the problem of distributed variables
by requiring a leader agent to collect global cost information. Agents then perform a greedy
repair search where only one agent is allowed to change variable value at a time. Since
all agents must communicate with a single leader agent, the approach may not apply in
situations where agents may only communicate with neighboring agents.
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8.3 Other Work in DCOP

R. Dechter, A. Dechter, and Pearl [8] present a theoretical analysis of the constraint opti-
mization problem establishing complexity results in terms of the structure of the constraint
graph and global optimization function. In addition, they outline an approach for dis-
tributed search for the optimal solution based on dynamic programming, but no algorithm
or implementation is presented. While their approach has certain similarities to the meth-
ods presented here, they do not deal with asynchronous changes to global state or timeliness
of solution.

Parunak et al [24] describe the application of distributed constraint optimization to
the design of systems that require interdependent sub-components to be assembled in a
manufacturing domain. The domain illustrates the unique difficulties of interdependencies
between sub-problems in distributed problem solving and illustrates the applicability of the
distributed constraint representation. Frei and Faltings [10] focus on modelling bandwidth
resource allocation as a CSP. Although they do not deal with distributed systems, they
show how the use of abstraction techniques in the constraint modelling of real problems
results in tractable formulations.

9. Conclusion

Distributed constraint optimization is an important problem in domains where problem
solutions are characterized by degrees of quality or cost and agents must find optimal solu-
tions in a distributed manner. We have presented the Adopt algorithm that is guaranteed
to converge to the optimal solution while using only localized, asynchronous communica-
tion and only polynomial space at each agent. The three key ideas in Adopt are a) to
perform distributed backtrack search using a novel search strategy where agents are able to
locally explore partial solutions asynchronously, b) backtrack thresholds for more efficient
search and c) built-in termination detection. These three ideas in Adopt naturally lead to
a bounded-error approximation technique for performing trade-offs between solution qual-
ity and time-to-solution. We showed that a certain class of optimization problems can be
solved efficiently and optimally by Adopt and that it obtains significant orders of magnitude
speedups over distributed branch and bound search.

10. Algorithmic Variations for Future Work

Adopt is one example within a space of algorithms that may be designed that exploits
our key idea of using lower bounds to perform distributed optimization. In this section,
we discuss some possible algorithmic modifications to Adopt. Algorithm modifications for
unreliable communication are discussed in [22]. In addition, we are aware that the ordering
of variables has a dramatic effect on the efficiency of the DCOP algorithm. In future work,
we will develop distributed methods for discovering efficient DFS variable orderings.

Memory Usage. We consider how Adopt can be modified to obtain efficiency gains at
the expense of the polynomial-space bound at each agent. In Adopt, each agent maintains
a single CurrentContext as a partial solution and all stored costs are conditioned on the
variable values specified in that context. When context changes occur, agents delete all
stored costs. This is necessary to maintain the polynomial-space bound. However, in
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some cases worst-case exponential-space requirements are tolerable either because sufficient
memory is available or the worst-case is sufficiently unlikely to occur. In such cases, we
may allow agents to store more than one partial solution at a time. Agents should not
delete all stored costs when context changes and instead agents should maintain multiple
contexts and their associated costs. In this way, if a previously explored context should
become current again due to variable value changes at higher agents, then the stored costs
will be readily available instead of having to be recomputed. Preliminary experiments (not
reported here) have shown this technique can dramatically decrease solution time.

Reducing Communication. We consider how Adopt can be modified to reduce the num-
ber of messages communicated. In Adopt, an agent always sends VALUE and COST mes-
sages every time it receives a message from another agent, regardless of whether its variable
value or costs have changed. As a consequence, an agent often sends a message that is
identical to a message that it sent immediately prior. Although this is seemingly wasteful,
it is a sufficient mechanism to ensure liveness. However, if other mechanisms are employed
to ensure liveness, then it may be possible to reduce the number of messages dramatically.
An alternative mechanism for ensuring liveness is through the use of timeouts, as discussed
in [22].

Sending COST messages to non-parent ancestors. We consider how Adopt can be mod-
ified to allow COST messages to be sent to multiple ancestors instead of only to the parent.
To see how such reporting may decrease solution time, consider the following scenario. Sup-
pose xr is the root agent and it has a constraint with neighbor xi who is very low in the
tree, i.e., the length of p is large, where p is the path from xr to xi obtained by traversing
only parent-child edges in the tree-ordering. If xr initially chooses a bad variable value that
causes a large cost on the constraint shared with xi, we would like xr to be informed of this
cost as soon as possible so that it may explore other value choices. In Adopt, xi will send
a COST message only to its immediate parent and not to xr. The parent will then pass
the cost up to its parent and so on up the tree. This method of passing costs up the tree
is sufficient to ensure completeness, however, the drawback in this case is that since the
length of p is large, it will take a long time for the information to reach xr. Thus, it may
take a long time before xr will abandon its bad choice.

To resolve this problem, we may allow an agent to report cost directly to all its neighbors
higher in the tree. The key difficulty with this is that double-counting of costs may occur.
Such double-counting will violate our completeness guarantee. However, we can resolve
this difficulty by attaching a list of agent names to every COST message (in addition to
the information already in the COST messages). This list of names corresponds to those
agents whose local costs were used to compute the cost information in the COST message. A
receiving agent can use this list to determine when two COST messages contain overlapping
costs.

Extension to n-ary constraints. Adopt can be easily extended to operate on DCOP
where constraints are defined over more than two variables. Suppose we are given a DCOP
that contains a ternary constraint fijk : Di ×Dj ×Dk → N defined over 3 variables xi, xj ,
xk, as shown in Figure 13. The tree ordering procedure must ensure that xi, xj and xk lie
on a single path from root to leaf (they may not be in different subtrees since all three are
considered neighbors). Suppose xi and xj are ancestors of xk. With binary constraints, the
ancestor would send a VALUE message to the descendant. With our ternary constraint,
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Figure 13: A ternary constraint

both xi and xj will send VALUE messages to xk. xk then evaluates the ternary constraint
and sends COST messages back up the tree as normal. The way in which the COST
message is received and processed by an ancestor is unchanged. Thus, we deal with an n-ary
constraint by assigning responsibility for its evaluation to the lowest agent involved in the
constraint. The only difference between evaluation of an n-ary constraint and a binary one is
that the lowest agent must wait to receive all ancestors’ VALUE messages before evaluating
the constraint. For this reason operating on problems with n-ary constraints may decrease
concurrency and efficiency of the Adopt algorithm. However this seems unavoidable due to
the inherent complexity of n-ary constraints.
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