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Abstract

For agents deployed in real-world settings, such as busi-
nesses, universities and research laboratories, it is critical that
agents protect their individual users’ privacy when interact-
ing with others entities. Indeed, privacy is recognized as a
key motivating factor in design of several multiagent algo-
rithms, such as distributed constraint optimization (DCOP)
algorithms. Unfortunately, rigorous and general quantitative
metrics for analysis and comparison of such multiagent algo-
rithms with respect to privacy loss are lacking. This paper
takes a key step towards developing a general quantitative
model from which one can analyze and generate metrics of
privacy loss by introducing the VPS (Valuations of Possible
States) framework. VPS is shown to capture various exist-
ing measures of privacy created for specific domains of dis-
tributed constraint satisfactions problems (DCSPs). The util-
ity of VPS is further illustrated via analysis of DCOP algo-
rithms, when such algorithms are used by personal assistant
agents to schedule meetings among users. In addition, VPS
allows us to quantitatively evaluate the properties of several
privacy metrics generated through qualitative notions. We ob-
tain the unexpected result that decentralization does not auto-
matically guarantee superior protection of privacy.

Introduction
Personal assistant agents are an emerging application whose
integration into office environments promises to enhance
productivity by performing routine or mundane tasks and
expediting coordinated activities (CALO 2003). To effec-
tively accomplish these tasks, agents must be endowed with
information about their users, that would preferably be kept
private. However, in domains where humans and their agent
counterparts have to collaborate with other human-agent
pairs, and agents are given the autonomy to negotiate on
their users’ behalves, the exchange of private information is
necessary to achieve a good team solution. Some of these
situations include meeting scheduling, where users’ valu-
ations of certain blocks of time in a schedule or the rela-
tive importance of different meetings can be the information
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desired to be kept private. In team task assignment prob-
lems, the private information could be a user’s capability to
perform various tasks and the personal priority they assign
to those tasks. To develop trust in, and hence promote the
use of, personal assistant agents, humans must believe their
privacy will be sufficiently protected by the processes em-
ployed by their agents. Thus, understanding how privacy is
lost in these contexts is critical for evaluating the effective-
ness of strategies used to govern these interactions.

Earlier work on privacy focused on creating secure co-
ordination mechanisms such that negotiation would not be
observable to parties outside the collaborating set of agents
(Yokoo, Suzuki, & Hirayama 2002). Our concern is evaluat-
ing the privacy loss inherent in the negotiation within the
collaborating set of agents. There has been recent work
on addressing privacy in constraint satisfaction. Though
these investigations have quantitative elements, they are
not immediately portable to other models where one might
want to optimize instead of satisfy (Franzinet al. 2002;
Silaghi, Sam-Haroud, & Faltings 2000; Meisels & Lavee
2004). What is lacking is a principled quantitative ap-
proach to deriving metrics for privacy for general domains.
To address this need, we propose the Valuation of Possi-
ble States (VPS) framework to quantitatively evaluate pri-
vacy loss in multiagent settings. We apply these ideas in
a distributed meeting scheduling domain modeled as a dis-
tributed constraint optimization problem (DCOP). We then
develop techniques to analyze privacy loss when using the
OptAPO (Mailler & Lesser 2004) and SynchBB (Hirayama
& Yokoo 1997) algorithms to solve the DCOP.

A key implication of our experiments is that the mea-
sure of an algorithm’s performance with respect to privacy,
and the conclusions that can be drawn from this measure
vary widely depending on the chosen privacy metric. An-
other is that centralization outperforms many decentralized
approaches for constraint optimization with respect to pri-
vacy, over many metrics. Finally, we observe that the key to
preserving privacy is to minimize the inferences that other
agents can make about one’s possible states.

Valuations of Possible States Framework
Given a setting where a group ofN agents, indexed by the
setN := {1, . . .N}, each representing a single user, must col-
laborate to achieve some task, each agent must be endowed



with some private information about its user to ensure that
it accurately represents their status, capabilities or prefer-
ences in the joint task. This private information can be mod-
eled as a state among a set of possible states. In a meeting
scheduling domain, agents might need to protect calendar
information while in a task allocation problem, a personal
assistant agent might want to protect information about its
users’ capabilities or priorities. Consider a scenario where
personal assistant agents collaborate to order lunch (Scerri,
Pynadath, & Tambe 2002). Each user could prefer one of
three restaurants. To observers, a person can exist in one
of three possible states. Each observer also has an estimate
of the likelihood that a person lies in each of these possi-
ble states. Privacy can then be interpreted as a valuation on
the other agents’ estimates about the possible states that one
lives in. Simply put, privacy is our level of comfort with
what others know about us. In this paper, we will often use
the termagentto refer to an entity with private information
thoughpersonor usercan be equivalently substituted.

To express these ideas more formally, let the private infor-
mation of theith agent be modeled as a statesi ∈ Si , where
Si is a set of possible states that theith agent may occupy.
For simplicity, we assume thatSi , i ∈ N are discrete sets,
though these ideas can be extended to continuous sets. Let
� j(�− j) be the jth agent’s model of the possible states of all
other agents where

�− j = S1 × S2 × · · · × S j−1 × S j+1 × · · · × SN−1 × SN,

�
j(�− j) = [P j(s̃1) · · ·P j(s̃k) · · ·P

j(s̃K1)],

s̃k = s1
ks2

k · · · s
j−1
k sj+1

k · · · sN−1
k sN

k ∈ �− j ,

K1 = Πz, j |Sz|, P j(s̃k) ≥ 0,
∑
s̃∈�− j

P j(s̃) = 1.

Thus, an agent’s knowledge of other agents is a joint prob-
ability mass function over the product set of possible states
of all other agents. Thejth agent’s knowledge of a particular
agent, say theith agent, is then the marginal probability of
this distribution with respect toi, as follows:

�
j
i (Si) = [P j

i (s1) · · ·P j
i (si) · · ·P

j
i (sK2)], (1)

si ∈ Si , K2 = |Si |, P j
i (si) =

∑
s̃∈�− j :s̃i=si

P j(s̃).

The knowledge that other agents have about theith agent can
then be expressed as follows:

�i((Si)
N−1) = [�1

i (Si) �
2
i (Si) · · ·

�
i−1
i (Si) �

i+1
i (Si) · · · �
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i (Si) �
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i (Si)]

where� j
i (Si) is as defined in (1). The above model assumes

that agents do not share there information or estimates about
other agents. If sharing does occur, this can be captured
by the�G

i (Si) whereG ⊂ N is a group of agents that share
information to obtain a better estimate of theith agent’s state,
wherei < G. In this case�i((Si)N−1) would be composed of
group estimates�G

i (Si) whereG is an element of the power
set ofN .

The ith agent can then put a value for each belief that
the collection of other agents could hold, yielding a value

function�i(�i((Si)N−1)). For example, in the lunch order-
ing scenario, one agent may value highly the ability to hide
his restaurant preferences (it wants� j

i (Si) to be uniformly
distributed overSi ,∀ j , i) while another may value highly
that others know its preference (it wants� j

i (Si) to be an ac-
curate delta function∀ j , i), e.g. if the agent (or more
appropriately, its user) is a vegetarian. This framework is
essentially a utilitarian model of information states and thus
captures the notion of privacy as a special case. Given this
framework, a single agent can measure loss of privacy in a
collaboration by measuring the changes in�i and an organi-
zation can measure the loss of privacy from a process by cal-
culating the changes in some functionf (�1, · · · ,�N) which
aggregates the valuation of possible states for the entire set
of agents.

Unification of Expression with Valuations of
Possible States Framework

One of the motivations for introducing VPS was to build a
unifying framework for privacy. A successful model must
then be able to capture existing notions of privacy. In this
section, we show that VPS indeed passes this test by repre-
senting three metrics proposed by prominent researchers in
the field within our framework:

• In (Silaghi & Faltings 2002), Silaghi and Faltings con-
sider Distributed Constraint Satisfaction Problems (DC-
SPs) where agents have a cost associated with the revela-
tion of the feasibility of some tuple of values. The agents
begin exchanging messages and they each pay this cost if
that cost is less than the potential reward of the collabora-
tion. This continues until a solution is reached or at some
point the cost of tuple in question is greater than the re-
ward. At this point, the entire process is halted without
resolution. Putting this in VPS form, we haveSi is the set
of all vectors of lengthTi whose components are either 0
or 1, whereTi is the cardinality of all viable tuples for the
ith agent who is characterized by some elementsi ∈ Si
wheresi(t) denotes the feasibility of tuplet. This metric
of privacy can expressed as:

�i(�
G
i (Si)) :=

Ti∑
t=1

ci(t)
[
I{�G

i (St
i )=0} + I{�G

i (St
i )=1}

]
whereG = N \ i, ci(t) is the cost of revealing tuplet, I{·}
is an indicator function,

St
i := {si ∈ Si : si(t) = 0}, and�G

i (St
i ) =
∑
s∈St

i

�
G
i (s).

The terms inside the brackets (expressed as identity func-
tions) identify whether a tuplet has been identified by the
outside worldG, and if so the priceci(t) is paid.

• In (Franzin et al. 2002), Franzin, Freuder, Rossi and
Wallace consider a distributed meeting scheduling prob-
lem, where each agent assigns a preference from the set
{0.1,0.2, . . . ,1} to each location/time-slot combination.
The measure of privacy loss is entropy with respect to the
size of the possible state space that can exist. Thus, in



VPS,Si is the set of all vectors of lengthTiLi whereTi
is the number of time slots andLi is the number of loca-
tions, where each component of the vector can take one
of 10 values. Privacy metric, which applies entropy to
the uncertainty in valuation for each particular location/
time-slot combination, can be expressed as:

�i(�
G
i (Si)) :=

Ti Li∑
k=1

log2

 10∑10
j=1 I{�G

i (si (k)= j/10)>0}


whereG = N \ i.

• In (Silaghi & Mitra 2004), Silaghi and Mitra present a
privacy model for a setting where each agent has a cost
for scheduling a particular meeting at a particular time
and location. They propose a model where agents can
share information amongst each other. The privacy metric
is the size of the smallest coalition necessary to deduce
a particular agent’s costs exactly. In VPS, each agent is
modeled as an elementsi of the setSi which is the set
of all vectors of lengthTiLi Mi whereTi is the number
of time slots,Li is the number of locations andMi is the
number of meetings. The components of the vector are
some elements of a finite set of costs. Even this distinctive
model can be captured in VPS as follows:

�i(�i(Si)) := min
G∈G
|G| where

G :=

G ⊂ N :
∑
si∈Si

PG
i (si) logPG

i (si) = 0

 .
If the entropy measure on�G

i is zero, then the estimate of
the groupG about theith agent is a delta function and
therefore, theith agent’s state is known exactly by the
groupG.

The fact that VPS can capture such a diverse set of metrics
indicates not only its ability to unify expression of privacy
but also that it mathematically represents the basic and in-
trinsic properties of privacy.

Distributed Meeting Scheduling Model
To investigate the usefulness of VPS as a generative tool,
we applied it to a personal assistant domain: distributed
meeting scheduling. We present here the distributed multi-
event scheduling (DiMES) model presented in (Maheswaran
et al. 2004) that captures many fundamental characteris-
tics of distributed scheduling in an optimization framework.
We then describe how we can map the DiMES problem to a
distributed constraint optimization problem (DCOP), which
can be solved by agents on a structure that preventsa priori
privacy loss.

DiMES
The original DiMES model mapped the scheduling of ar-
bitrary resources. Here, we address a meeting scheduling
problem. We begin with a set of peopleR := {R1, . . . ,RN}

of cardinalityN and an event setE := {E1, . . . ,EK} of car-
dinality K. Let us consider the minimal expression for the
time interval [Tearliest,Tlatest] over which all events are to be

scheduled. LetT ∈ � be a natural number and∆ be a length
such thatT · ∆ = Tlatest− Tearliest. We can then character-
ize the time domain by the setT := {1, . . . ,T} of cardinal-
ity T where the elementt ∈ T refers to the time interval
[Tearliest+ (t − 1)∆,Tearliest+ t∆]. Thus, a business day from
8AM - 6PM partitioned into half-hour time slots would be
represented byT = {1, . . . ,20}, where time slot 8 is the in-
terval [11:30 AM, 12:00 PM]. Here, we assume equal-length
time slots, though this can easily be relaxed.

Let us characterize thekth event with the tupleEk :=
(Ak, Lk; Vk) whereAk ⊂ R is the subset of people that are
required to attend.Lk ∈ T , is the length of the event in
contiguous time slots. The heterogeneous importance of an
event to each attendee is described in a value vectorVk. If
Rn ∈ Ak, thenVk

n will be an element ofVk which denotes the
value per time slot to thenth person for scheduling eventk.
Let V0

n(t) : T → �+ denote thenth person’s valuation for
keeping time slott free. These valuations allow agents to
compare the relative importance of events and also to com-
pare the importance of the event to the value of a person’s
time.

Given the above framework, we now present the schedul-
ing problem. Let us define a scheduleS as a mapping from
the event set to the time domain whereS(Ek) ⊂ T denotes
the time slots committed for eventk. All people inAk must
agree to assign the time slotsS(Ek) to eventEk in order for
the event to be consideredscheduled, thus allowing the peo-
ple to obtain the utility for attending it.

Let us define a person’s utility to be the difference be-
tween the sum of the values from scheduled events and
the aggregated values of the time slots utilized for sched-
uled events if they were kept free. This measures the net
gain between the opportunity benefit and opportunity cost of
scheduling various events. The organization wants to max-
imize the sum of utilities of all its members as it represents
the best use of all assets within the team. Thus, we de-
fine the fundamental problem in this general framework as:
maxS

{∑K
k=1
∑

n∈Ak

∑
t∈S(Ek)

(
Vk

n − V0
n(t)
)}

such thatS(Ek1) ∩

S(Ek2) = ∅ ∀k1, k2 ∈ {1, . . . ,K}, k1 , k2, Ak1 ∩ Ak2 , ∅.

PEAV-DCOP

Given a problem captured by the DiMES framework, we
need an approach to obtain the optimal solution. As we are
optimizing a global objective with local restrictions (elimi-
nating conflicts in resource assignment), DCOP (Modiet al.
2003) presents itself as a useful and appropriate approach.

Our challenge is to convert a given DiMES problem into
a DCOP with binary constraints. We may then apply any
algorithm developed for DCOP to obtain a solution. In (Ma-
heswaranet al. 2004), three DCOP formulations for DiMES
were proposed. As we are investigating privacy, we choose
the PEAV formulation, which was created such that there
would be no loss of private information prior to negotiation.

Thus, given events and values, we are able to construct a
graph and assign constraint link utilities from which a group
of personal assistant agents can apply a DCOP algorithm
and obtain an optimal solution to the DiMES problem.



Privacy in PEAV-DCOPs for DiMES
In this section, we apply our VPS ideas to the DiMES model
and generate several instantiations of valuations to quantita-
tively measure the privacy loss when agents apply known
DCOP algorithms to a distributed meeting scheduling sce-
nario.

VPS for DiMES
The initial task is to identify the information that an agent
should consider private, i.e. the data that identifies the state
of its human user. In DiMES, it is clear that the valuation of
time, V0

n(t), explicitly captures the preferences that will be
used in the collaborative process. In addition, the rewards
for attending various events{Vk

n : n ∈ Ak} is another compo-
nent that agents may wish to keep private. For the sake of
simplicity, we will assume a setting where event rewards are
public, though the analysis can be extended to capture situ-
ations where this information is private. IfV0

n(t) ∈ V where
V is a discrete set and there areT time slots in a schedule,
the statesn of thenth agent is an element of the setSn = V

T

and can be expressed as a vector of lengthT. Before negotia-
tion, each agent knows only that the other agents exist in one
of |V|T possible states. After negotiation, each agent will be
modeled by all other agents whose estimate of the observed
agent is captured by�n((Sn)N−1). The question now is how
an agent should assign values to these estimates of possible
states through which others see it. The method introduced
in (Silaghi & Faltings 2002) does not apply here because we
are not in a satisfaction setting and the method in (Silaghi &
Mitra 2004) is not viable because information sharing is not
an appropriate assumption in this domain. We do consider
the entropy-based metric introduced in (Franzinet al. 2002)
and captured in VPS in Section . We remove the factorLi
that captures location and adjust to account for privacy loss
to other individual agents:

�i(�i(Si)) :=
∑
j,n

∑
si∈Si

T∑
k=1

log2

 |V|∑|V|
m=1 I

{�
j
i (si (k)=m)>0}

 (2)

We extend this to the case where entropy is applied to the
distribution over the entire schedule as opposed to time slot
by time slot. In this case, we have

�i(�
G
i (Si)) := log2

 |V|T∑|V|T
j=1 I{�G

i (sj )>0}

 (3)

whereG = N \ i. Using entropy, it is possible for the privacy
loss to get arbitrarily high as the number of initial states in-
creases (due toT or |V|). To facilitate cross-metric compar-
ison, we shift and normalize each metric�̃ = 1− α�, with
an appropriate constantα so that the valuation for the worst-
case privacy level, i.e. the case where the entire schedule is
known, is zero and the ideal level is one.

Due to the nature of the messaging in DCOPs, the most
typical form of information gathered is the elimination of a
possible state. Thus, a straightforward choice for�n would
be

�i(�i((Si)
N−1)) =

∑
j,i

∑
si∈Si

I
{�

j
i (si )>0} (4)

which can be extended to a time-slot-by-time-slot version:

�i(�i((Si)
N−1)) =

∑
j,i

∑
si∈Si

T∑
k=1

|V|∑
m=1

I
{�

j
i (si (k)=m)>0} (5)

whereI{·} is an indicator function. The first essentially ag-
gregates the number of states that have not been eliminated
by an observing agent in the system. The second aggregates
the number of valuations (per time slot) that have not been
eliminated. We can scale both functions with a transforma-
tion of the form�̃ = α(�− β) with appropriate choices ofα
andβ such that the valuations span [0 1] with zero being the
worst level and one being the ideal level of privacy.

We note that these are linear functions in possible states.
Consider when one agent has been able to eliminate one pos-
sible state of another agent. The observed agent may not
value that loss equally if the observer went from 1000 states
to 999, as opposed going from 2 to 1. To address this idea,
we introduce the following nonlinear metrics for privacy:

�̃n(�n((Sn)N−1) =
∑
j,n

1− 1∑
s∈Sn

I
{�

j
n(s)>0}

 (6)

and its per-time-slot analogue:

�̃n(�n((Sn)N−1) =
∑
j,n

1− 1∑
s∈Sn

I
{�

j
n(s)>0}

 . (7)

These valuations model privacy as the probability that an
observer agent will be unable to guess the observed agent’s
state accurately given that their guess is chosen uniformly
over their set of possible states for the observed agent. For
the first, the other agents are trying to guess the entire sched-
ule accurately while in the second they are guessing time
slot by time slot. Again, we can scale both functions with
a transformation of the form̃� = α(� − β) with appropri-
ate choices ofα andβ such that the valuations span [0 1]
with zero being the worst level and one being the ideal level
of privacy. We refer to these metrics as LogTS (2), LogS
(3), Linear-S (4), LinearTS (5), GuessS (6) and GuessTS (7)
where the numbers in parentheses refer to the equations that
characterize them. We apply these metrics to various algo-
rithms in an experimental domain discussed below.

Experimental Domain
We choose an instantiation of the DiMES problem where
there are three personal assistant agents, each representing
a single user, whose joint task is to schedule two meet-
ings. One meeting involves all three agents and another in-
volves only two. Each meeting lasts for one time slot. For-
mally, we haveR = {A, B,C},E1 = [{A, B,C},1,V1],E2 =
[{A, B},1,V2]. The private information accessible to the
agents are the valuations of time{V0

A,V
0
B,V

0
C} which are vec-

tors of lengthT, whose components can take values from the
setV := {1, · · · ,K}. In our experiments, we varied bothK
andT from the set{3,4,5,6,7}. For the privacy of the entire
agent group, we choose to average their individual levels,
i.e. f (�A,�B,�C) = (�A + �B + �C)/3. To solve this
scheduling problem, a group of agents can employ a variety
of techniques. We now analyze the privacy loss for several
of these algorithms.



Analysis of Algorithms
As we have argued, privacy is a critical property in the realm
of personal assistant agents. Thus, it is important to evaluate
privacy loss when deciding which methods to embed in these
agents for solving team problems. For meeting scheduling,
we will apply our metrics on two DCOP algorithms: Op-
tAPO (Mailler & Lesser 2004) and SynchBB (Hirayama &
Yokoo 1997), in addition to the baseline centralized solution.

We first look at centralization as a solution because one
main argument for decentralization is the need to protect
privacy (Maheswaranet al. 2004). Consequently, it is im-
portant to identify if and when this argument is justified. A
quantitative analysis tool gives us the opportunity to com-
pare various algorithms in a rigorous manner. In a central-
ized solution, all agents except one would give up their en-
tire valuation vector to a single agent. The central agent
will then be able to narrow all other agents’ possible states
to one, while non-central agents remain at their initial esti-
mates. Because we have scaled our metrics to span [0 1],
the two non-central agents go from a privacy level of two to
a privacy level of one (due to the privacy loss to the central
agent) and the central agent remains at two. Thus, the aver-
age loss is 1/3. ForN agents, centralization would yield an
average privacy loss of 1/N.

To apply decentralized techniques, we map the experi-
ment to a DCOP graph using the PEAV structure as shown
in Figure 1. In OptAPO, agents exchange their constraints
with all their neighbors in the initial phase. In our exam-
ple, all agents will be able to identify the exact states of
other agents with the exception that agents B and C will not
know anything about each other immediately after the initial
phase. The dynamics of OptAPO after the initial phase are
not deterministically predictable. It is possible that by the
end, agents B and C will be able to learn each others’ pref-
erences. However, it is also possible that the privacy loss
may remain at the same level as after the initial phase. For
purposes of analysis, we will assign to OptAPO the privacy
loss after the initial phase, which is a lower bound on actual
privacy loss. Here, agent A will go from 2 to 0 (as it reveals
its preferences to agents B and C) while agents B and C go
from 2 to 1 (as they reveal only to agent A). Thus, the av-
erage loss is 2/3. We see that OptAPO yields worse privacy
loss than centralization.

Thus, if privacy protection is the main concern for a group
of agents, it would be better for them to use a centralized
solution rather than use OptAPO. We note that our met-
ric weights privacy loss equally with regard to the agent
to whom privacy was lost. In some situations, where the
weights are heterogeneous (an agent would prefer to tell cer-
tain agents about their preferences over other agents) and the
central agent is chosen poorly, OptAPO may yield lower pri-
vacy loss than a centralized solution.

We now consider SynchBB, another algorithm used for
solving constraint satisfaction and optimization problems in
a distributed setting. This approach can be characterized
as simulating a centralized search in a distributed environ-
ment by imposing synchronous, sequential search among the
agents. First, the constraint structure of the problem is con-
verted into a chain. Synchronous execution starts with the
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Figure 1:DCOP Graph of Experimental Domain in PEAV Struc-
ture
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Figure 2:SynchBB Chain Structures

variable at the root selecting a value and sending it to the
variable next in the ordering. The second variable then sends
the value selected and the cost for that choice to its child.
This process is repeated down to the leaf node. The leaf
node, after calculating the cost for its selection, would send
back the cost of the complete solution to its parent, which
in turns uses the cost to limit the choice of values in its do-
main. After finding the best possible cost with its choices,
each variable communicates with its parent and the process
continues until all the choices are exhausted. As can be seen
from above, branch and bound comes into effect when the
cost of the best complete solution obtained during execution
can be used as a bound to prune out the partial solutions at
each node.

The loss of privacy in using SynchBB occurs by the infer-
ences that variables in the chain can make about other vari-
ables in the chain through the cost messages that are passed.
Thus, the structure of the chain is a key factor in determin-
ing privacy loss. For our meeting scheduling example, we
consider the chain structures displayed in Figure 2. Deter-
mining these inferences and the consequent elimination of
possible states is more complex in tree-like algorithms such
as SynchBB, due to the partial and aggregated nature of in-
formation. To illustrate how possible states can be elimi-
nated in SynchBB, we outline the inferences that one can
make from messages received in Chain 1.

An upward message contains a numberr, which is equal
to the best currently known total reward for the chain. For
PEAV, the total reward for the chain is equal to the sum



of differences between the valuation of a scheduled meet-
ing and the valuation of the time slot it occupies for every
scheduled meeting for every person. We henceforth use the
termdeltato denote the change in utility (meeting valuation
- time slot valuation) for a single agent when a single meet-
ing is assigned a time slot (if the meeting is chosen to be
unscheduled, the delta will be zero). If a nodeP receives an
upward message from its child such thatr has changed since
the last message it received from its child, thenP knows that
the current context has allowed its child to find a better so-
lution. NodeP knows thatr = d + u, whered = sum of
deltas downstream fromP andu = sum of deltas upstream
from P. Because it has received it in a downstream message
from its parent andP knows the value ofu, P knowsd ex-
actly. If r has not changed, thenP knowsr ≤ d + u, which
givesP a lower bound ond. Since A knows when meeting
ABC is scheduled, a message from C to A (mCA) allows A
to know VC(tABC) (the valuation vector component of C at
the time at which meeting ABC is scheduled). IfmCA con-
tains a newr, then this value is known exactly, otherwise a
lower bound is obtained. Since B knows when both meet-
ings are scheduled, a message from A to B allows B to know
vA(tAB) + vA(tABC) + vC(tABC). If mAB contains a newr, then
this value is known, otherwise a lower bound is obtained.

Downward messages contain a numberu, which is ex-
actly equal to the current sum of deltas that exists upstream
from the sender. They also contain the current values of all
variables upstream from the receiver of the message. Since
the values of all meetings are known, this means that a mes-
sage from B to A (mBA) allows A to know the exact value of
vB(tAB)+vB(tABC). A message from A to C (mAC) allows C to
know the exact value ofvA(tABC)+vA(tAB)+vB(tABC)+vB(tAB).
By collecting these relationships and making appropriate re-
ductions in possible states ,we can obtain the privacy loss for
SynchBB for the PEAV-DCOP privacy metrics introduced
earlier.

We ran 10 cases for each chain and each (K,T) ∈
{3,4,5,6,7}2, where each case has valuations chosen uni-
formly from V for each time slot for all agents. Figures 3,
4, 5, and 6 provide privacy loss results for increasingK and
T, for two different chains and the six metrics along with
OptAPO and centralized search. In all the graphs, they-axis
denotes the privacy loss (averaged over 10 runs) , while the
x-axis denotes the problem type,K ∗ T. Figure 3 presents
results of privacy loss asK is increased from 3− 7 for the
six metrics presented in Section along with OptAPO and
Centralized. Each line indicates the privacy loss associated
with a metric, for instance the LinearS metric gives that the
privacy loss varies from 0.7 − 0.9 asK increases. Here are
the key observations that can be made from Figure 3:

1. Different metrics give distinct values of privacy loss. For
instance, LogS provides privacy loss in the range 0.45-
0.6, while LinearS is in the range (0.7 - 0.9).

2. The phenomena (the relative privacy loss) observed across
different metrics is not identical. For instance, the relative
privacy loss (as K increases) associated with LinearS is
“0.2” (0.9 at 3*7 - 0.7 at 3*3), whereas for GuessS it is
“-0.1” (0.55 at 3*7 - 0.65 at 3*3).

Figure 3:Privacy loss as K increases (chain 1)

Figure 4:Privacy loss as K increases (chain 2)

Figure 5:Privacy loss as T increases (chain 1)

3. All the metrics (except GuessS) indicate that the privacy
lost using a centralized approach is far less than that lost
by distributed approaches, SBB and OptAPO. For in-
stance, all metrics except GuessS are in the range 0.45-
0.9, while centralized has a privacy loss of 0.33.

Implications
This first key result of our experiments is the the variance
in levels of privacy loss for the same communication mes-
sage exchange across various metrics. Most current research
focuses on cross-algorithm performance for a fixed metric.



Figure 6:Privacy loss as T increases (chain 2)

VPS and the idea behind unifying the metrics into a common
framework and critically within a common span for best and
worst case privacy levels (by choosing the appropriateα and
β parameters above) lead to the first cross-metric comparison
in our community. As we can see, for a fixed algorithm, the
measure of its performance with respect to privacy can be se-
lected arbitrarily by the capriciousness in selecting a metric.
It is not only the absolute measure that varies, but also the
phenomena as we vary the number of valuations and number
of time-slots. We see that for some metrics, the privacy loss
increases and for other metrics the privacy loss decreases as
the possible world space increases. These results imply that
while investigating privacy, one must spend considerable ef-
fort justifying the appropriateness of a particular measure of
privacy for a particular domain. All the metrics suggested
here could be considered “reasonable” as they were gener-
ated to meet some justifiable qualitative property, yet they
have vastly different implications on the conclusions about
privacy loss in collaboration. Developing methodologies to
evaluate privacy metrics will be a key challenge and VPS
provides a quantitative framework from which to pursue this
investigation.

A second key result is the superiority of centralization in
protecting privacy. Most research ignores centralization in
cross-algorithm performance analysis as it is assumed that
distribution is a superior course of action. We see here that it
is not the case. In fact, the only algorithm that comes close
to matching centralization is the metric easiest to dismiss,
GuessS. The GuessS metric captures another agent’s abil-
ity to guess the observed agent’s schedule accurately. Thus,
if one began with 10,000 possible states, it would have to
be whittled down to 20 before a 5% loss in privacy was
observed. The GuessS metric is the one that depicts the
least privacy loss from the experiments. According to all
the other metrics, centralization significantly outperformed
SynchBB and OptAPO. This implies that in building any
distributed communication mechanism for privacy, its per-
formance must always be compared with centralization as a
baseline to justify distribution as a path to privacy preserva-
tion. It also implies that we must look more closely at the
algorithms that we as a community develop, and investigate
message protocols more deeply to ensure that privacy is pro-

tected.
From our experiments, we have extracted the notion that

the key to managing privacy loss is minimizing the infer-
ences that other agents are able to make about one’s possible
states from the messages transmitted. We chose to investi-
gate SynchBB over Adopt (Modiet al. 2003) as it uses syn-
chronization to greatly reduce the number of messages sent.
We note that SynchBB sends costs in two directions while
Adopt only sends costs in one. It would be interesting to see
if this unidirectional feature can counter the vastly greater
number of messages generated in Adopt. Another possible
key for the source of our results is the size of the schedul-
ing example. As justified in (Modi & Veloso 2004), meet-
ing scheduling is anincremental schedulingproblem where
events to be scheduled arrive gradually. Thus, being able to
schedule a small number of meetings that appear dynami-
cally is a critical problem and thus, this example represents
a significant canonical problem in the domain. To assure
diversity, we varied the number of time slots and the range
of valuations. To generate different inference rules, we con-
sidered both a clustered and an interspersed chain. In all
scenarios, our two key findings, the variance in metrics and
the stunning performance of centralization, were virtually
identical.

Summary
Three key contributions of this paper are (1) a general frame-
work, Valuations of Possible Worlds (VPS) to quantitatively
evaluate privacy loss in multiagent settings, (2) the uni-
fication of existing notions of privacy into VPS, and (3),
the analysis of DCOP algorithms and privacy metrics us-
ing VPS. This analysis leads to the implications that (1) the
conclusions that can be drawn about privacy loss for any al-
gorithm can vary widely depending on the metric used, and
(2) centralization should not be ignored when comparing al-
gorithms with regard to privacy. This paper should serve as
a call to arms for the community to improve privacy protec-
tion algorithms and further research on privacy.
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