On Communication in Solving Distributed Constraint
Satisfaction Problems

Hyuckchul Jung and Milind També

! Florida Institute for Human and Machine Cognition, USA
2 Department of Computer Science, University of Southeriif@aia, USA

Abstract. Distributed Constraint Satisfaction Problems (DCSP) isrzegal frame-
work for multi-agent coordination and conflict resolutidn.most DCSP algo-
rithms, inter-agent communication is restricted to onlglenging values of vari-
ables, since any additional information-exchange is assuimlead to significant
communication overheads and to a breach of privacy. Thismpamvides a de-
tailed experimental investigation of the impact of intgeat exchange of addi-
tional legal values among agents, within a collaborativérge We provide a new
run-time model that takes into account the overhead of té&iadal communi-
cation in various computing and networking environmentst {@vestigation of
more than 300 problem settings with the new run-time moglsh@ws that DCSP
strategies with additional information-exchange can tedug speedups in a sig-
nificant range of settings; and (ii) provides categorizatibproblem settings with
big speedups by the DCSP strategies based on extra comriomj@nabling us
to selectively apply the strategies to a given domain. Tajgep not only provides
a useful method for performance measurement to the DCSP aaityybut also
shows the utility of additional communication in DCSP.

1 Introduction
Distributed, collaborative agents play an important rol&arge-scale multiagent appli-
cations such as sensor networks [6]. Collaborative agersisdh applications must co-
ordinate their plans, resolving conflicts, if any, amongdrthetion or resource choices.
Distributed Constraint Satisfaction Problems (DCSP) isgomtechnique in multiagent
coordination and conflict resolution in collaborative sefs [10]. DCSP provides rich
foundation for the representation of multiagent coordoreand conflict resolution, and
there exist highly efficient baseline algorithms [3,7,9, 10

In most DCSP algorithms, inter-agent communication igieted to only exchang-
ing values of variables, since any additional informatexthange is assumed to lead to
significant communication overheads, a breach of privany,kanowledge transforma-
tion cost [10]. We refer to this restriction of only commuating values of variables as
value-only communicatiotHowever, as large-scale systems based on such value-only
communication get developed, it is critical to re-examinis tommitment to value-
only communication that has now become the foundation of RG&leed, it is feasible
that, by unnecessarily subscribing to such value-only camioation, researchers may
be forced to compromise on correctness or quality of satsti@and/or forced to de-
velop unnecessarily complex algorithms. Could elimingitin diluting this restriction
of value-only communication lead to significant speedupsyauld that lead to addi-
tional overheads? Such a re-examination of the commuaitatmmitment in DCSP
may imply potentially significant enhancements to the aurBCSP algorithms.

We examine the impact of value-only communication in callative agent appli-
cations, where agents are homogeneous or at least do nati¢agicant difficulties

in communicating their potential choices of values to eatieo In such collaborative
agent applications, some of the key reasons for restritdinglue-only communication
do not hold. In particular, there are three key reasons gealin the literature [10] for
value-only communication: (i)Maintaining privacy, (ii)ifilculty of knowledge trans-
formation in heterogeneous agent settings; (iii) Overbadaxtra communication.

However, collaborative agents have no reason to maintaiagyfrom other agents,
and many domains with homogeneous agents do not have a prablknowledge
transformation. The central remaining question is thusashimunication overheads,
and loosening the restriction of value-only communicatian indeed add to the com-
munication cost in DCSP. This tradeoff in the potential shgedue to extra commu-
nication vs the cost of communication is the central traffnait is at the heart of this
paper. Various aspects of different types of domains neée tmonsidered in the anal-
ysis (e.g., communication or local computation cost).

In earlier work, we introduced DCSP techniques with add#@ilanformation ex-
change [5]. However, since the investigation was limitedirtated settings, the per-
formance of such DCSP techniques was not fully evaluatedlamge set of realistic
domains. Furthermore, the overhead from extra commubitatias never analyzed.
In this paper, we present a comprehensive, detailed asalysir a large range of re-
alistic domain settings. For the analysis, we develop a newtime model that takes
into account extra communication overhead in various camgand networking en-
vironments since the performance metric widely used in tGSP literaturecycles
explained in Section 3, does not take into account the oeerbéadditional informa-
tion exchange (i.e., increased message size and number).

To evaluate the performance of DCSP techniques based anattrmunication in
different domains, we systematically investigate moratB&0 problem settings in a
large problem space with more than 200,000 experimental uging the new run-time
model. Our investigation (i) shows that DCSP strategies widitional information-
exchange can lead to big speedups in a significant rangetofgsetand (ii) provides
categorization of problem settings where big speedupschieaed by the DCSP strate-
gies to guide which DCSP strategy to apply given a domain.

2 Background
DCSP provides an abstract formal framework to model coatéin and conflict reso-
lution in many multiagent applications such as distribigexdsor networks [6]. DCSP is
a distributed version of CSP (Constraint Satisfaction mmis) [10]. CSP is commonly
defined by a set of variables X = {z;, ...,z, }, each element associated with value do-
mainsD;, ..., D, respectively, and a set éfconstraints]” = {C1, ...,Ci }. A solution
in CSP is the value assignment for the variables which sedisti the constraints if.
In DCSP, variables and constraints are distributed amortipteuagents. A constraint
defined only on variables belonging to a single agent is dalcal constraint In
contrast, arexternal constraininvolves variables of different agents. Solving a DCSP
requires that agents not only solve their local constralmis also communicate with
other agents to satisfy external constraints.

A major characteristic of most DCSP algorithms is that thaeyehfocused omalue-
only communicationagents communicate only their intended values for theatbje
on which they need to agree [3,7, 10]. That is, while the valelection is based on

each agent’s local knowledge and local situation, agentsol@ommunicate such in-
formation. However, a few different approaches (based ercttimmunication of local
information between agents) were recently presented §§, 8,

In this section, we describe two algorithms as represemtakamples. One is Asyn-
chronous Weak Commitment search algorithm [10], one of thetradvanced DCSP
algorithms, in which agents communicate only selectedesland the other is Locally
Cooperative DCSP algorithm [5] in which agents communicaected values plus
local information and the communicated information is ued/alue ordering.

2.1 Asynchronous Weak Commitment (AWC) Search Algorithm
In the AWC algorithm, agents asynchronously assign valu#sdir variables and com-

municate the values to neighboring agents with shared ypic@amnstraints. Each vari-
able has a priority that changes dynamically during seakcbariable is consistent if
its value does not violate any constraints with higher [itfiorariables. A solution is a
value assignment in which every variable is consistent.

To simplify the description of the algorithm, suppose thatteagent has exactly
one variable. When the value of an agent’s variable is nosistant with the values
of its neighboring agents’ variables with higher priomti¢ghere can be two cases: (i) a
goodcase where there exists a consistent value in the varialde®sin; (ii) anogood
case that lacks a consistent value. In the good case with onee value choices
available, an agent selects a value that minimizes the nuoflenflicts with lower
priority agents. On the other hand, in the nogood case, ant agkects a new value that
minimizes the number of conflicts with all of its neighboriagents, and increases its
priority to max+1, wheremaxis the highest priority of its neighboring agents.

2.2 Locally Cooperative DCSP (LCDCSP) Algorithm)
In the LCDCSP algorithm [5], agents take into account thelfiéy (choice of values)

given to other agents by their value choices in selecting welwes. The LCDCSP
algorithm is based on the AWC but has a different mechanisralure ordering (which
is enabled by extra communication of local constraints)elaborate this notion of

cooperative value selection, the followings was definedBln [
— Definition 1: For a valuev € D; and a set of agent§/** C NV;, flexibility function

is defined asf® (v, N7“?) = &(c(v, A;)) where (i) 4; € N5“*; (i) c(v, 4;) is the
number of values of4; that are consistent with; and (iii) ¢, referred to as a
flexibility base can besum, min, maz, product, etc.

Based on the flexibility, four different techniques are dedifior value selection:
— Smin—conflict: Each agentd; selects a value based on min-conflict heuristics (the

original value ordering method in the AWC algorithm);

— Shigh (Siow): Each agentd; attempts to give maximum flexibility towards its
higher (lower) neighboring agents by selecting a valtieat maximizeg'® (v, N;**")
(f® (v, Nlow));

— S.u: Each agent!; selects a value that maximizes® (v, N;), i.e. max flexibility
to all neighbors.

These four different techniques can be applied to botlgtieeland thenogoodcase
described in Section 2.1. (Refer to [5] for detailed infotima.) Therefore, there are six-
teen combinations for each flexibility base. While the LCIFG®porach has relation to

a popular centralized CSP technigue, lnest constraining valubeuristic [4], it is not
a simple mapping of thkeast constraining valubeuristic onto the DCSP framework.
Agents can explicitly reason about which agents to consiuest with respect to the
constrainedness given towards neighboring agents.

3 Performance Measurement

To evaluate approaches with different types of informag¢inchange (as shown above),
we need a new run-time model (Section 3.2) that takes intowaddhe overhead of
extra communication (required for the LCDCSP algorithmgsiexisting performance
metrics (described in Section 3.1) do not properly assedsmammunication overhead.

3.1 Existing Method

Since it has been practically difficult to access a real lamggde distributed system (with
hundreds of nodes), the standard methodology in the fieldl, [3)] is to implement a
synchronized distributed system which is a model of digteld system where every
agent synchronously performs the following three steplie@acyclg: (i) Agents re-
ceives all the messages sent to them in the previous cygl@ggnts resolve conflicts,
if any, and determine which message to send; (iii) Agents saassages to neigh-
boring agents. Given such a synchronized distributed systds difficult to directly
measure the run-time for real distributed conflict resolutHowever, in the literature,
as a compromise, researchers have used hardware indeperetens such asycles
andconstraint checkdefined below.

— Cycles The number of cycles until a solution is found. Total timedonflict reso-
lution is expected to be proportional¢gcles[10].

— Constraint checksThe total number of the maximum number of constraint checks
at each cycle until a solution is found. More specificallygath cycle, a bottleneck
agent (which performs the most constraint checks) is ifledtiand the numbers
of constraint checks from bottleneck agents (which may \&rgach cycle) are
summed up over all cycles. This is a main indicator for logahputation time.

In the DCSP research communityclesis used as a major metric for performance
evaluation since the amount of local computation and conication that each agent
solves mostly remains same in most of previous DCSP appesdah9, 10]: the differ-
ence is in the protocol for passing values and controllirakbvacking. However, cycles
has the following shortcomings:

— Local computation overhead: For the hardware with limgethputing power, the
time for local computation may not be ignored, and there @a Yariation in local
computation depending on constraint checks.

— Message communication overhead: Whifelesassumes that uniform time is taken
at each communication phase, the time for message comntionioéien depends
on the size/number of messages.

3.2 Analytical Model for Run-time

While thecycles(a major DCSP metric) described above can be used as ap@ixim
measurements, it does not properly assess the performbalgeathms like LCDCSP
which do not properly assess the additional computationcantimunication overhead

from the local information exchange. Therefore, we needvamedel to take into ac-
count such overheads as part of the run-time. In this seotierpresent an analytical
model for run-time measurements which takes into accoumws message process-
ing/communication overhead in different computing/nekimng environments.

The local computation processed by an agent at each cyctstoof processing
received messages, performing constraint checks, andmeteg which message to
send for its neighbors. The run-time taken by an agent forckedg the sum of the
local computation time and the communication time for therdg outgoing messages.
Our new run-time model is based on the data collected fronetiperimentation on a

synchronized distributed system. The following terms afned for the model:
— n¥:incoming message number for agéat cyclek

— sk(4): size of j*" incoming message for agenat cyclek

— Z(I): computation time to process one incoming message (&/bize ig)

c¥: number of constraint checks by agenitt cyclek

t: computation time to perform one constraint check

of: number of outgoing message for agéat cyclek

u¥: size of an outgoing message for ageat cyclek

— O(m): computation time to process an outgoing message (whoséssiz)
— T (d): communication time to transmit an outgoing message (whizgeisd)

In a synchronous distributed system, at each cycle, aggnthigonously start their
local computation and communication. Thus, the run-timeafoycle is dominated by
an agent which requires maximum time for its local compatadind communication.

— Run-time for a cyclé (R(k)) = maz;c a,(LY + CF) whereAg is a set of agents in

a given system! is thelocal computation time of agent i at cycledndC} is the

communication time of agent i at cycle k

Here,£¥ andC¥ are computed by the following equations:

— Local computation time of agent i at cyclé&?) = 371, (Z(sf(4))) (time to pro-
cess received messages)+x ¢ (time to perform constraint checksy# x O(u¥)
(time to process outgoing messages)

— Communication time of agent i at cyclé®’) = of x T (u¥) (time for transmitting
a message whose sizeui for of times)

Finally, the total run-time is the sum of run-timR (k)) for each cycle:
— Total run-time= Zle(R(k)) whereK is the number of total cycles.

While the above model aims to provide a metric which takes adcount mes-
sage processing/communication overhead (based on meszsefeimber), it is flexible

enough to subsume the existing method of performance mezasut (Section 3.1):
— Constraint checksorresponds to the total run-time (defined above) whetel,

Z(-) = O(-) = 0 andCF = 0 (i.e., no communication/message-processing cost).
— Cyclescorresponds to the total run-time under the assumptiort tead (the cost

for constraint checks is zerdj(-) = O(-) = 0 (message processing cost is zero),

andCF = 1 (a constant communication time independent of messag@sinéer).

As the first analytical model for the performance measureémddCSP which takes
into account the overhead based on message size and nuhgabdve model could
provide a useful method for performance measurement to @8FDcommunity. Fur-
thermore, as shown below, the model shows interestingtseaslthe parameters for
message processing/communication overhead vary.

4 Performance Analysis

While we focus on the domain where agents’ interaction togylis regular, there
can be variations (e.g., problem hardness) in differertlpra settings that arise within
the domain. In this section, we provide various problemrsgttcontrolled by several
parameters. Systematic changes in the parameters geaexéde variety of problem
settings, and enable us to evaluate the performance ofrdtegies and find their com-
munication vs. computation trade-offs in different sitaas. Here, parameter selection
is motivated by the experimental investigation in the CSPAP literature [10].

First, we vary the density of regular graphs by changing tivalmer of neighboring
agents: (iHexagonal topologyEach agent is surrounded by three agents (separated by
120 degrees); (iifsrid topology Each agent is surrounded by four neighboring agents
(separated by 90 degrees); (ilijiangular topology Each agent is surrounded by eight
neighboring agents (separated by 45 degrees). The purpdsgng three different
regular graphs is to investigate the impact on performagp¢bddegree of connectivity
(number of interactions for each agent).

Second, given a topology (among the three topologies abarxeinake variations
in constraint compatibility which has shown a great imparcttee hardness of problems
[10]. We distinguish external constraints from local coaistts in defining the constraint
tightness to analyze the effect from each constraint:

1. External constraint compatibility: Given an externahswaint, for a value in an
agent's domain, the percentage of compatibility with nbiging agents’ values is
defined. The percentage varies from 30% to 90% with intelnBB9%. Note that
0% case and 100% case are not tried since there is no solotid®%4 case and
every value assignment is a solution for 100% case.

2. Local constraint compatibility: Given a local constitaim portion of agents’ orig-
inal domains is not allowed. We make the following two vadas in local con-
straint: (i) The percentage of locally constrained agehésges from 0% to 100%
(0%, 30%, 60%, 90%, 100%); and (ii) Given a local constrétm, portion of al-
lowed values varies from 25% to 75% (25%, 50%, 75%). Here, 086100% are
not tried since 0% case gives agents empty domain and 10@teaxo effect of
having a local constraint.

Third, we vary the number of domain values from 10 to 80 (108@) to check how
different domain sizes have an impact on the performanceradd-offs of the strate-
gies. Given the above variations, the total number of ggtie 351, and we evaluate the
performance of the two DCSP strategies (presented in $e2}ion each setting. Note
that the LCDCSP strategy can have different value selet¢iomniques introduced in
Section 2.2. For a given problem setting, the performanatrafegies is measured on
35 problem instances which are randomly generated by thelgmosetting (defined
with the above parameters).

For each setting, seventeen strategies (sixteen stratdgimed in this paper plus
the original AWC strategy) are tried for each problem instan Thus, the total num-
ber of experimental runs is 208,845 (351 x 35 x 17). * Note that, for the sixteen

% In real applications such as sensor networks [6], agentsfne arranged in regular networks.
4 To conduct the experiments within a reasonable amount daf, tthre number of cycles was
limited to 1000 for each run (a run was terminated if this timiceeded).

LCDCSP strategiessum is used as a flexibility base (the original AWC strategy is
min-conflictstrategy without extra communication of local informadiowe set the
number of agents as 512 since, in real applications suchre®isaetworks [6], the
number of agents in hundreds is considered to be large:scale

90
4
< 80
>
o
£ 704
8
2 60 1
g
£ 501 .
£
S 40 3
o *e o
?307 * ¢ sor r <
< * . -~
4 ¢ o * *
SRR, P NIRRT S
2 104* s bes 00T, e Y
: Aelos

Problem instances based on original AWC cycle

Fig. 1. Speedup by LCDCSP strategies for individual problem ircgtan

4.1 Categorization of Problem Settings with Big Speedups byCDCSP

In Figure 1, the horizontal axis plots problem hardness &mheandividual problem in-
stance (based on tloyclesby the AWC strategy), and the vertical axis plots how many
speedup (i.e., how many fold reduction in cycles) is acldelvg the best LCDCSP
strategies for each problem instanedhe results in Figure 1 indicates that LCDCSP
strategies show performance improvement for majority objgm instances across dif-
ferent problem hardness: while there is a variation in perénce improvement, the
speedups do not come from only a few exceptional cases.

Ratio of locally Speedup at Each Topology
constrained agenfsiexagon: Grid [Triangulal

Local conslrairTExlernal conslrairItDomain

compatibility compatibility size
10 30% High
60% Moderate
30% others Low
25% 40 & 80 60% Low [Moderatd Low
others Low
60% 40 90% Low [High T TLow
10 & 80 others| Low
90% * * Low
50% & 75% * * * Low

Table 1. Speedups based on problem class

[Local constraint compatibilifydomain siz¢Ratio of locally constrained agerjtSpeedug]

25% 10 0 ~ 100% Low
25% 40 90% High
others Moderatg
25% 80 0 ~ 100% Moderatg
50% 10, 40, 80 0 ~ 100% Moderatd
75% 10, 40, 80 0 ~ 100% Moderatg

Table 2. Maximum speedup in the problem settings where topologyids gnd external constraint compatibility is 60%
Table 1 and 2 show how much speedu can be achieved by the bB&$FE strate-
gies for a group of problem settings classified by the param@ttroduced above. Note
that this categorization is not exhaustive, and focusesrohlgm settings (not on in-
dividual problem instances). In Table 1 and 2, high/modgial speedup respectively
indicates “more than five”/"between three and four’/’lekan two"-fold speedup by
LCDCSP strategies over the AWC strategy. The following is sammarized result
shown in Table 1 and 2:
5 Selecting the best LCDCSP strategies were based on enpéaszats.

— When external constraint compatibility is low (30%),

e For each topology, high performance improvementis achliexeen local con-
straint compatibility is low (25%) and domain size is smab}.
x A big speedup by LCDCSP strategies is shown unless agengitlaee to-
tally unconstrained in local constraints(0%) or totallystrained (100%).
x For grid topology, a big speedup is also shown when domagisitarge
(80), and the ratio of locally constrained agents is mo@e(60%) or
high (90%). However, when all agents are locally const@i{i®0%), no
speedup is shown.
¢ When local constraint compatibility increases or domate giets larger, LCD-
CSP shows low speedup.

— When external constraint compatibility is moderate (6@%@rid topology,
¢ High performance improvement is achieved when local cairgtcompatibil-
ity is low (25%) and domain size is moderate (40).

x A big speedup by the best LCDCSP strategy is shown when treaht
locally constrained agents is high (90%). However, note, tveaen the
ratio is 100%, there is no big speedup since all the problertisd setting
are easy regardless of strategies to be applied.

— When external constraint compatibility is 90%, the spgdduelatively small since
the problem settings with 90% external constraint comiyilis easier than other
settings (taking less than 2clesin general) so that there is no big difference in
cyclesbetween the AWC strategy and LCDCSP strategies.

4.2 Performance in Run-time Analytical Model

In this section, we present how the performance results @gedup) changes with the
analytical run-time model in Section 3.2 compared with #muits based ocycles The
parameters specified in this section assume a realistic idomiere message commu-
nication overhead dominates local computation cost andagesprocessing overhead
is relatively smaller than communication overhead (buhcate ignored). In defining
the parameters for such a domain, two different propertieaessage processing and
communication overhead are considered:

— Property 1: Message processing/communication overheéwnlyrdepends on the
size of messages to process/communicate.

— Property 2: Message processing/communication overheéwnlyrdepends on the
number of messages to process/communicate: Message éspeacas a bundle or
message communication delay is dominated by message tionten

Message Size as a Main Factor for Message Processing & Comnication Over-
head For a domain where message size is a main factor for messagesging and
communication overhead, parameters for the run-time meraetet as follows:

—Z() =l xtxaandO(m) = m x t x a: Message processing is assumed to
be slower than a constraint check by two order of magnitudesifulate such a
difference o is set as 100 or 1000.

— T(d) = d x t x 8: To simulate the situation where communication overhead-do
inates local computation cogt,is set as 1000 or 10000.

Speedup by LCDCSP strategies
Based off Based on run-time model
Casq cycles [a = 100 3 = 1000Ja = 100 8 = 10000]Ja = 1000 8 = 1000]Ja = 1000 3 = 10000

11 7 7 7 7

10 9 9 8 9

37 21 21 20 21

14 4 7 5 7

11 7 8 7 8

44 33 33 31 33
Table 3.Speedup change in run-time model

Table 3 shows the speedup by the best LCDCSP strategy fatppotal settings
given differentn andg. In Table 3, the speedup based on the run-time model forrdiffe
enta andg is less than the speedup basedgalesi.e., the performance of LCDCSP
strategies with the run-time model appear to be worse thesyttie based performance.

The decrease in speedup with thm-timemodel is due to the fact that LCDCSP
strategies have larger message size to process/comneiaichinore constraint checks
(to compute flexibility towards neighbors) than the AWC &gy. The analysis with
othera andg values show similar results.

While we present limited data because of space limit, thdyaisashows that, as
domain size or graph density (i.e., the number of neighbocsgases, the difference in
message size and constraint checks between the AWC stiantddyCDCSP strategies
also increases, leading to significant decrease in speedlyfCDCSP strategies.

DO WN R

Message Number as a Main Factor for Message Processing & Commication

Overhead For a domain where message number is a main factor for megsage

cessing and communication overhead (message processiogn&nication time is

independent of message size), parameters for the run-todelrare set as follows:
—I()=txaandO(m) =t x a; T(d) =t x

Speedup by LCDCSP strategies
Based off Based on run-time model
Casq cycles [a = 100 3 = 1000Ja = 100 8 = 10000]Ja = 1000 8 = 1000]Ja = 1000 3 = 10000

1

SRS ENYARN]

11
10
37
14
11
44

9
10
37

6
10
46

10
10
37
12
10
44

9
9
38
9
9
54

10
10
37
13
10
47

Table 4.Speedup change in run-time model

Here, the values oft and are same as above. Table 4 shows the speedup by the
best LCDCSP strategy for the same prototypical settingss@rted in Table 3). In Ta-
ble 4, the speedup based on the run-time model for diffexegatd 5 is very similar
with the speedup based ayclesin general. The main reason is that the number of
messages to communicate is decided by the number of negfibar graph density)
which is static. While there can be a large difference in trairgt checks depending on
the graph density and the domain size, when the messagespiog®r communication
overhead dominates (the differenceomstraint checkbecomes insignificant), the per-
formance of the AWC strategy and LCDCSP strategies depemdgalesbecause of
little difference in message size.

This analysis shows that, when the overhead of messagegsingeand commu-
nication is mainly decided by message number (not size) andrehtes local compu-
tation overhead (the difference @onstraint checkss not significant)cyclescan be a
reasonable measurement to compare strategy performantegthdt, using this analyti-
cal model, we can simulate various computing and networ&mgronments by chang-
ing (i) the values oty and g (different weights to message processing/communication
overheads) or (ii) the cost functions.

5 Related Work and Conclusion

While significant works have focused on variable or ageneong) in DCSP [1, 3, 10],
value ordering techniques which exploit additional infatian-exchange have not re-
ceived enough attention, and little investigation has temme for performance mea-
surement which takes into account extra communicationh@aat. While communicat-
ing local information has been investigated in DCSP [8,18 tommunication over-
head in different computing/networking environments wasgroperly evaluated. Fer-
nandez et al. investigated the effect of communicationydetan the performance of
DCSP algorithms [2]. However, their investigation was tili to random effects and
did not take into account the impact from extra value commaton.

In this paper, we investigate the impact of inter-agent arge of additional infor-
mation which has not been exploited in conventional DCSBrétgms. We provide a
new run-time model for DCSP performance measurement thas tmto account the
overhead of extra communication. Experimental resultsmfextensive systematic in-
vestigation show that DCSP strategies which exploit adidéi information-exchange
indeed improve performance in a significant range of prokdettings, in particular
when message processing/communication overhead dominatd computation over-
head. We also provide categorization of problem settingh Wig speedups by the
DCSP strategies to guide strategy selection. This papeonigt provides a useful
method for performance measurement to the DCSP communityalbo shows the
utility of additional information exchange in DCSP.

References

1. A. Armstrong and E.H. Durfee. Dynamic prioritization adraplex agents in distributed
constraint satisfaction problems. Rroceedings of the International Joint Conference on
Artificial Intelligence 1997.

2. C. Fernandez, R. Bejar, B. Krishnamachari, C. Gomes, aigkeBnan. Communication and
computation in distributed csp algorithms. In V. LesserQgtiz, and M. Tambe, editors,
Distributed Sensor NetworkKluwer Academic Publishers, 2003.

3. Youssef Hamadi, Christian Bessiére, and Joél QuimueBacktracking in distributed con-
straint networks. IfProceedings of the European Conference on Atrtificial ligetice 1998.

4. R. M. Haralick and G. L. Elliot. Increasing tree searchogdficy for constraint satisfaction
problems.Artificial Intelligence 14:263—-313, 1980.

5. H. Jung and M. Tambe. Performance models for large scalgagent systems: Using
pomdp building blocks. I®roceedings of the International Joint Conference on Aatoous
Agents and Multi-Agent Systen203.

6. V. Lesser, C. Ortiz, and M. Tambe, editor®istributed Sensor Networks: a Multiagent
Perspective Kluwer Academic Publishers, 2003.

7. P. Modi, H. Jung, M. Tambe, W. Shen, and S. Kulkarni. A dyitadistributed constraint
satisfaction approach to resource allocationPtaceedings of the International Conference
on Principles and Practice of Constraint Programmjraf01.

8. E. Monfroy and J. H. Rety. Chaotic iteration for distriédtconstraint propagation. WCM
Symposium on Applied Computjrig99.

9. M. Silaghi, D. Sam-Haroud, and B. Faltings. Consisteneyntenance for abt. IRroceed-
ings of the International Conference on Principles and Riaeof Constraint Programming
2001.

10. M. Yokoo. Distributed Constraint Satisfaction: Foundations of Ceagtion in Multi-Agent
SystemsSpringer, 2000.

