
On Communication in Solving Distributed Constraint
Satisfaction Problems

Hyuckchul Jung1 and Milind Tambe21 Florida Institute for Human and Machine Cognition, USA2 Department of Computer Science, University of Southern California, USA

Abstract. Distributed Constraint Satisfaction Problems (DCSP) is a general frame-
work for multi-agent coordination and conflict resolution.In most DCSP algo-
rithms, inter-agent communication is restricted to only exchanging values of vari-
ables, since any additional information-exchange is assumed to lead to significant
communication overheads and to a breach of privacy. This paper provides a de-
tailed experimental investigation of the impact of inter-agent exchange of addi-
tional legal values among agents, within a collaborative setting. We provide a new
run-time model that takes into account the overhead of the additional communi-
cation in various computing and networking environments. Our investigation of
more than 300 problem settings with the new run-time model (i) shows that DCSP
strategies with additional information-exchange can leadto big speedups in a sig-
nificant range of settings; and (ii) provides categorization of problem settings with
big speedups by the DCSP strategies based on extra communication, enabling us
to selectively apply the strategies to a given domain. This paper not only provides
a useful method for performance measurement to the DCSP community, but also
shows the utility of additional communication in DCSP.

1 Introduction
Distributed, collaborative agents play an important role in large-scale multiagent appli-
cations such as sensor networks [6]. Collaborative agents in such applications must co-
ordinate their plans, resolving conflicts, if any, among their action or resource choices.
Distributed Constraint Satisfaction Problems (DCSP) is a major technique in multiagent
coordination and conflict resolution in collaborative settings [10]. DCSP provides rich
foundation for the representation of multiagent coordination and conflict resolution, and
there exist highly efficient baseline algorithms [3, 7, 9, 10].

In most DCSP algorithms, inter-agent communication is restricted to only exchang-
ing values of variables, since any additional information-exchange is assumed to lead to
significant communication overheads, a breach of privacy, and knowledge transforma-
tion cost [10]. We refer to this restriction of only communicating values of variables as
value-only communication. However, as large-scale systems based on such value-only
communication get developed, it is critical to re-examine this commitment to value-
only communication that has now become the foundation of DCSP. Indeed, it is feasible
that, by unnecessarily subscribing to such value-only communication, researchers may
be forced to compromise on correctness or quality of solutions; and/or forced to de-
velop unnecessarily complex algorithms. Could eliminating or diluting this restriction
of value-only communication lead to significant speedups, or would that lead to addi-
tional overheads? Such a re-examination of the communication commitment in DCSP
may imply potentially significant enhancements to the current DCSP algorithms.

We examine the impact of value-only communication in collaborative agent appli-
cations, where agents are homogeneous or at least do not facesignificant difficulties



in communicating their potential choices of values to each other. In such collaborative
agent applications, some of the key reasons for restrictingto value-only communication
do not hold. In particular, there are three key reasons provided in the literature [10] for
value-only communication: (i)Maintaining privacy, (ii) Difficulty of knowledge trans-
formation in heterogeneous agent settings; (iii) Overheads of extra communication.

However, collaborative agents have no reason to maintain privacy from other agents,
and many domains with homogeneous agents do not have a problem in knowledge
transformation. The central remaining question is thus of communication overheads,
and loosening the restriction of value-only communicationcan indeed add to the com-
munication cost in DCSP. This tradeoff in the potential speedup due to extra commu-
nication vs the cost of communication is the central tradeoff that is at the heart of this
paper. Various aspects of different types of domains need tobe considered in the anal-
ysis (e.g., communication or local computation cost).

In earlier work, we introduced DCSP techniques with additional information ex-
change [5]. However, since the investigation was limited tolimited settings, the per-
formance of such DCSP techniques was not fully evaluated in alarge set of realistic
domains. Furthermore, the overhead from extra communication was never analyzed.
In this paper, we present a comprehensive, detailed analysis over a large range of re-
alistic domain settings. For the analysis, we develop a new run-time model that takes
into account extra communication overhead in various computing and networking en-
vironments since the performance metric widely used in the DCSP literature,cycles
explained in Section 3, does not take into account the overhead of additional informa-
tion exchange (i.e., increased message size and number).

To evaluate the performance of DCSP techniques based on extra communication in
different domains, we systematically investigate more than 300 problem settings in a
large problem space with more than 200,000 experimental runs, using the new run-time
model. Our investigation (i) shows that DCSP strategies with additional information-
exchange can lead to big speedups in a significant range of settings; and (ii) provides
categorization of problem settings where big speedups are achieved by the DCSP strate-
gies to guide which DCSP strategy to apply given a domain.

2 Background
DCSP provides an abstract formal framework to model coordination and conflict reso-
lution in many multiagent applications such as distributedsensor networks [6]. DCSP is
a distributed version of CSP (Constraint Satisfaction Problems) [10]. CSP is commonly
defined by a set ofn variables,X = fx1, ...,xng, each element associated with value do-
mainsD1, ...,Dn respectively, and a set ofk constraints,� = fC1, ...,Ckg. A solution
in CSP is the value assignment for the variables which satisfies all the constraints in� .
In DCSP, variables and constraints are distributed among multiple agents. A constraint
defined only on variables belonging to a single agent is called a local constraint. In
contrast, anexternal constraintinvolves variables of different agents. Solving a DCSP
requires that agents not only solve their local constraints, but also communicate with
other agents to satisfy external constraints.

A major characteristic of most DCSP algorithms is that they have focused onvalue-
only communication: agents communicate only their intended values for the objects
on which they need to agree [3, 7, 10]. That is, while the valueselection is based on



each agent’s local knowledge and local situation, agents donot communicate such in-
formation. However, a few different approaches (based on the communication of local
information between agents) were recently presented [5, 8,9].

In this section, we describe two algorithms as representative examples. One is Asyn-
chronous Weak Commitment search algorithm [10], one of the most advanced DCSP
algorithms, in which agents communicate only selected values, and the other is Locally
Cooperative DCSP algorithm [5] in which agents communicateselected values plus
local information and the communicated information is usedfor value ordering.

2.1 Asynchronous Weak Commitment (AWC) Search Algorithm
In the AWC algorithm, agents asynchronously assign values to their variables and com-
municate the values to neighboring agents with shared binary constraints. Each vari-
able has a priority that changes dynamically during search.A variable is consistent if
its value does not violate any constraints with higher priority variables. A solution is a
value assignment in which every variable is consistent.

To simplify the description of the algorithm, suppose that each agent has exactly
one variable. When the value of an agent’s variable is not consistent with the values
of its neighboring agents’ variables with higher priorities, there can be two cases: (i) a
goodcase where there exists a consistent value in the variable’sdomain; (ii) anogood
case that lacks a consistent value. In the good case with one or more value choices
available, an agent selects a value that minimizes the number of conflicts with lower
priority agents. On the other hand, in the nogood case, an agent selects a new value that
minimizes the number of conflicts with all of its neighboringagents, and increases its
priority to max+1, wheremaxis the highest priority of its neighboring agents.

2.2 Locally Cooperative DCSP (LCDCSP) Algorithm
In the LCDCSP algorithm [5], agents take into account the flexibility (choice of values)
given to other agents by their value choices in selecting newvalues. The LCDCSP
algorithm is based on the AWC but has a different mechanism invalue ordering (which
is enabled by extra communication of local constraints). Toelaborate this notion of
cooperative value selection, the followings was defined in [5]:

– Definition 1: For a valuev 2Di and a set of agentsNsubi �Ni, flexibility function
is defined asf�(v;Nsubi ) = �(
(v;Aj)) where (i)Aj 2 Nsubi ; (ii) 
(v;Aj) is the
number of values ofAj that are consistent withv; and (iii) �, referred to as a
flexibility base, can besum, min, max, produ
t, etc.

Based on the flexibility, four different techniques are defined for value selection:
– Smin�
onfli
t: Each agentAi selects a value based on min-conflict heuristics (the

original value ordering method in the AWC algorithm);
– Shigh (Slow): Each agentAi attempts to give maximum flexibility towards its

higher (lower) neighboring agents by selecting a valuev that maximizesf�(v;Nhighi )(f�(v;N lowi ));
– Sall: Each agentAi selects a valuev that maximizesf�(v;Ni), i.e. max flexibility

to all neighbors.

These four different techniques can be applied to both thegoodand thenogoodcase
described in Section 2.1. (Refer to [5] for detailed information.) Therefore, there are six-
teen combinations for each flexibility base. While the LCDCSP apporach has relation to



a popular centralized CSP technique, theleast constraining valueheuristic [4], it is not
a simple mapping of theleast constraining valueheuristic onto the DCSP framework.
Agents can explicitly reason about which agents to considermost with respect to the
constrainedness given towards neighboring agents.

3 Performance Measurement
To evaluate approaches with different types of informationexchange (as shown above),
we need a new run-time model (Section 3.2) that takes into account the overhead of
extra communication (required for the LCDCSP algorithm) since existing performance
metrics (described in Section 3.1) do not properly assess such communication overhead.

3.1 Existing Method

Since it has been practically difficult to access a real large-scale distributed system (with
hundreds of nodes), the standard methodology in the field [3,9, 10] is to implement a
synchronized distributed system which is a model of distributed system where every
agent synchronously performs the following three steps (called acycle): (i) Agents re-
ceives all the messages sent to them in the previous cycle; (ii) Agents resolve conflicts,
if any, and determine which message to send; (iii) Agents send messages to neigh-
boring agents. Given such a synchronized distributed system, it is difficult to directly
measure the run-time for real distributed conflict resolution. However, in the literature,
as a compromise, researchers have used hardware independent metrics such ascycles
andconstraint checksdefined below.

– Cycles: The number of cycles until a solution is found. Total time for conflict reso-
lution is expected to be proportional tocycles[10].

– Constraint checks: The total number of the maximum number of constraint checks
at each cycle until a solution is found. More specifically, ateach cycle, a bottleneck
agent (which performs the most constraint checks) is identified, and the numbers
of constraint checks from bottleneck agents (which may varyat each cycle) are
summed up over all cycles. This is a main indicator for local computation time.

In the DCSP research community,cyclesis used as a major metric for performance
evaluation since the amount of local computation and communication that each agent
solves mostly remains same in most of previous DCSP approaches [3, 9, 10]: the differ-
ence is in the protocol for passing values and controlling backtracking. However, cycles
has the following shortcomings:

– Local computation overhead: For the hardware with limitedcomputing power, the
time for local computation may not be ignored, and there can be a variation in local
computation depending on constraint checks.

– Message communication overhead: Whilecyclesassumes that uniform time is taken
at each communication phase, the time for message communication often depends
on the size/number of messages.

3.2 Analytical Model for Run-time

While thecycles(a major DCSP metric) described above can be used as approximate
measurements, it does not properly assess the performance of algorithms like LCDCSP
which do not properly assess the additional computation andcommunication overhead



from the local information exchange. Therefore, we need a new model to take into ac-
count such overheads as part of the run-time. In this section, we present an analytical
model for run-time measurements which takes into account various message process-
ing/communication overhead in different computing/networking environments.

The local computation processed by an agent at each cycle consists of processing
received messages, performing constraint checks, and determining which message to
send for its neighbors. The run-time taken by an agent for a cycle is the sum of the
local computation time and the communication time for the agent’s outgoing messages.
Our new run-time model is based on the data collected from theexperimentation on a
synchronized distributed system. The following terms are defined for the model:

– nki : incoming message number for agenti at cyclek
– ski (j): size ofjth incoming message for agenti at cyclek
– I(l): computation time to process one incoming message (whose size isl)
– 
ki : number of constraint checks by agenti at cyclek
– t: computation time to perform one constraint check
– oki : number of outgoing message for agenti at cyclek
– uki : size of an outgoing message for agenti at cyclek
– O(m): computation time to process an outgoing message (whose size ism)
– T (d): communication time to transmit an outgoing message (whosesize isd)

In a synchronous distributed system, at each cycle, agents synchronously start their
local computation and communication. Thus, the run-time for a cycle is dominated by
an agent which requires maximum time for its local computation and communication.

– Run-time for a cyclek (R(k)) = maxi2Ag(Lki + Cki ) whereAg is a set of agents in
a given system,Lki is thelocal computation time of agent i at cycle k, andCki is the
communication time of agent i at cycle k.

Here,Lki andCki are computed by the following equations:
– Local computation time of agent i at cycle k(Lki ) =

Pnkij=1(I(ski (j))) (time to pro-
cess received messages) +
ki � t (time to perform constraint checks) +oki �O(uki )
(time to process outgoing messages)

– Communication time of agent i at cycle k(Cki ) = oki �T (uki ) (time for transmitting
a message whose size isuki for oki times)

Finally, the total run-time is the sum of run-time (R(k)) for each cycle:
– Total run-time=

PKk=1(R(k)) whereK is the number of total cycles.

While the above model aims to provide a metric which takes into account mes-
sage processing/communicationoverhead (based on messagesize/number), it is flexible
enough to subsume the existing method of performance measurement (Section 3.1):

– Constraint checkscorresponds to the total run-time (defined above) wheret = 1,I(�) = O(�) = 0 andCki = 0 (i.e., no communication/message-processing cost).
– Cyclescorresponds to the total run-time under the assumption thatt = 0 (the cost

for constraint checks is zero),I(�) = O(�) = 0 (message processing cost is zero),
andCki = 1 (a constant communication time independent of message size/number).
As the first analytical model for the performance measurement in DCSP which takes

into account the overhead based on message size and number, the above model could
provide a useful method for performance measurement to the DCSP community. Fur-
thermore, as shown below, the model shows interesting results as the parameters for
message processing/communication overhead vary.



4 Performance Analysis
While we focus on the domain where agents’ interaction topology is regular3, there
can be variations (e.g., problem hardness) in different problem settings that arise within
the domain. In this section, we provide various problem settings controlled by several
parameters. Systematic changes in the parameters generatea wide variety of problem
settings, and enable us to evaluate the performance of the strategies and find their com-
munication vs. computation trade-offs in different situations. Here, parameter selection
is motivated by the experimental investigation in the CSP/DCSP literature [10].

First, we vary the density of regular graphs by changing the number of neighboring
agents: (i)Hexagonal topology: Each agent is surrounded by three agents (separated by
120 degrees); (ii)Grid topology: Each agent is surrounded by four neighboring agents
(separated by 90 degrees); (iii)Triangular topology: Each agent is surrounded by eight
neighboring agents (separated by 45 degrees). The purpose of trying three different
regular graphs is to investigate the impact on performance by the degree of connectivity
(number of interactions for each agent).

Second, given a topology (among the three topologies above), we make variations
in constraint compatibility which has shown a great impact on the hardness of problems
[10]. We distinguish external constraints from local constraints in defining the constraint
tightness to analyze the effect from each constraint:
1. External constraint compatibility: Given an external constraint, for a value in an

agent’s domain, the percentage of compatibility with neighboring agents’ values is
defined. The percentage varies from 30% to 90% with intervalsof 30%. Note that
0% case and 100% case are not tried since there is no solution for 9% case and
every value assignment is a solution for 100% case.

2. Local constraint compatibility: Given a local constraint, a portion of agents’ orig-
inal domains is not allowed. We make the following two variations in local con-
straint: (i) The percentage of locally constrained agents changes from 0% to 100%
(0%, 30%, 60%, 90%, 100%); and (ii) Given a local constraint,the portion of al-
lowed values varies from 25% to 75% (25%, 50%, 75%). Here, 0% and 100% are
not tried since 0% case gives agents empty domain and 100% case has no effect of
having a local constraint.

Third, we vary the number of domain values from 10 to 80 (10, 40, 80) to check how
different domain sizes have an impact on the performance andtrade-offs of the strate-
gies. Given the above variations, the total number of settings is 351, and we evaluate the
performance of the two DCSP strategies (presented in Section 2) on each setting. Note
that the LCDCSP strategy can have different value selectiontechniques introduced in
Section 2.2. For a given problem setting, the performance ofstrategies is measured on
35 problem instances which are randomly generated by the problem setting (defined
with the above parameters).

For each setting, seventeen strategies (sixteen strategies defined in this paper plus
the original AWC strategy) are tried for each problem instances. Thus, the total num-
ber of experimental runs is 208,845 (= 351 � 35 � 17). 4 Note that, for the sixteen

3 In real applications such as sensor networks [6], agents areoften arranged in regular networks.
4 To conduct the experiments within a reasonable amount of time, the number of cycles was

limited to 1000 for each run (a run was terminated if this limit exceeded).



LCDCSP strategies,sum is used as a flexibility base (the original AWC strategy is
min-conflictstrategy without extra communication of local information). We set the
number of agents as 512 since, in real applications such as sensor networks [6], the
number of agents in hundreds is considered to be large-scale.

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800 900 1000

Problem instances based on original AWC cycle

H
ow

 m
an

y 
fo

ld
 d

iff
er

en
ce

 in
 c

yc
le

s

Fig. 1.Speedup by LCDCSP strategies for individual problem instances

4.1 Categorization of Problem Settings with Big Speedups byLCDCSP
In Figure 1, the horizontal axis plots problem hardness for each individual problem in-
stance (based on thecyclesby the AWC strategy), and the vertical axis plots how many
speedup (i.e., how many fold reduction in cycles) is achieved by the best LCDCSP
strategies for each problem instance.5 The results in Figure 1 indicates that LCDCSP
strategies show performance improvement for majority of problem instances across dif-
ferent problem hardness: while there is a variation in performance improvement, the
speedups do not come from only a few exceptional cases.

Local constraintExternal constraintDomain Ratio of locally Speedup at Each Topology
compatibility compatibility size constrained agentsHexagonal Grid Triangular

10 30% High
60% Moderate

30% others Low
25% 40 & 80 60% Low Moderate Low

others Low
60% 40 90% Low High Low

10 & 80 others Low
90% * * Low

50% & 75% * * * Low
Table 1.Speedups based on problem class

Local constraint compatibilityDomain sizeRatio of locally constrained agentsSpeedup

25% 10 0� 100% Low
25% 40 90% High

others Moderate
25% 80 0� 100% Moderate
50% 10, 40, 80 0� 100% Moderate
75% 10, 40, 80 0� 100% Moderate

Table 2.Maximum speedup in the problem settings where topology is grid, and external constraint compatibility is 60%

Table 1 and 2 show how much speedu can be achieved by the best LCDCSP strate-
gies for a group of problem settings classified by the parameters introduced above. Note
that this categorization is not exhaustive, and focuses on problem settings (not on in-
dividual problem instances). In Table 1 and 2, high/moderate/low speedup respectively
indicates “more than five”/”between three and four”/”less than two”-fold speedup by
LCDCSP strategies over the AWC strategy. The following is the summarized result
shown in Table 1 and 2:

5 Selecting the best LCDCSP strategies were based on empirical results.



– When external constraint compatibility is low (30%),� For each topology, high performance improvement is achieved when local con-
straint compatibility is low (25%) and domain size is small (10).� A big speedup by LCDCSP strategies is shown unless agents areeither to-

tally unconstrained in local constraints(0%) or totally constrained (100%).� For grid topology, a big speedup is also shown when domain size is large
(80), and the ratio of locally constrained agents is moderate (60%) or
high (90%). However, when all agents are locally constrained (100%), no
speedup is shown.� When local constraint compatibility increases or domain size gets larger, LCD-

CSP shows low speedup.
– When external constraint compatibility is moderate (60%)in grid topology,� High performance improvement is achieved when local constraint compatibil-

ity is low (25%) and domain size is moderate (40).� A big speedup by the best LCDCSP strategy is shown when the ratio of
locally constrained agents is high (90%). However, note that, when the
ratio is 100%, there is no big speedup since all the problems in the setting
are easy regardless of strategies to be applied.

– When external constraint compatibility is 90%, the speedup is relatively small since
the problem settings with 90% external constraint compatibility is easier than other
settings (taking less than 30cyclesin general) so that there is no big difference in
cyclesbetween the AWC strategy and LCDCSP strategies.

4.2 Performance in Run-time Analytical Model
In this section, we present how the performance results (e.g., speedup) changes with the
analytical run-time model in Section 3.2 compared with the results based oncycles. The
parameters specified in this section assume a realistic domain where message commu-
nication overhead dominates local computation cost and message processing overhead
is relatively smaller than communication overhead (but cannot be ignored). In defining
the parameters for such a domain, two different properties for message processing and
communication overhead are considered:

– Property 1: Message processing/communication overhead mainly depends on the
size of messages to process/communicate.

– Property 2: Message processing/communication overhead mainly depends on the
number of messages to process/communicate: Message is processed as a bundle or
message communication delay is dominated by message contention.

Message Size as a Main Factor for Message Processing & Communication Over-
head For a domain where message size is a main factor for message processing and
communication overhead, parameters for the run-time modelare set as follows:

– I(l) = l � t � � andO(m) = m � t � �: Message processing is assumed to
be slower than a constraint check by two order of magnitude. To simulate such a
difference,� is set as 100 or 1000.

– T (d) = d� t� �: To simulate the situation where communication overhead dom-
inates local computation cost,� is set as 1000 or 10000.



Speedup by LCDCSP strategies
Based on Based on run-time model

Case cycles � = 100 � = 1000 � = 100 � = 10000 � = 1000 � = 1000 � = 1000 � = 10000
1 11 7 7 7 7
2 10 9 9 8 9
3 37 21 21 20 21
4 14 4 7 5 7
5 11 7 8 7 8
6 44 33 33 31 33

Table 3.Speedup change in run-time model

Table 3 shows the speedup by the best LCDCSP strategy for prototypical settings
given different� and�. In Table 3, the speedup based on the run-time model for differ-
ent� and� is less than the speedup based oncycles: i.e., the performance of LCDCSP
strategies with the run-time model appear to be worse than thecycle-based performance.

The decrease in speedup with therun-timemodel is due to the fact that LCDCSP
strategies have larger message size to process/communicate and more constraint checks
(to compute flexibility towards neighbors) than the AWC strategy. The analysis with
other� and� values show similar results.

While we present limited data because of space limit, the analysis shows that, as
domain size or graph density (i.e., the number of neighbors)increases, the difference in
message size and constraint checks between the AWC strategyand LCDCSP strategies
also increases, leading to significant decrease in speedup for LCDCSP strategies.

Message Number as a Main Factor for Message Processing & Communication
Overhead For a domain where message number is a main factor for messagepro-
cessing and communication overhead (message processing & communication time is
independent of message size), parameters for the run-time model are set as follows:

– I(l) = t� � andO(m) = t� �; T (d) = t� �
Speedup by LCDCSP strategies

Based on Based on run-time model
Case cycles � = 100 � = 1000 � = 100 � = 10000 � = 1000 � = 1000 � = 1000 � = 10000

1 11 9 10 9 10
2 10 10 10 9 10
3 37 37 37 38 37
4 14 6 12 9 13
5 11 10 10 9 10
6 44 46 44 54 47

Table 4.Speedup change in run-time model

Here, the values of� and� are same as above. Table 4 shows the speedup by the
best LCDCSP strategy for the same prototypical settings (presented in Table 3). In Ta-
ble 4, the speedup based on the run-time model for different� and� is very similar
with the speedup based oncyclesin general. The main reason is that the number of
messages to communicate is decided by the number of neighbors (i.e., graph density)
which is static. While there can be a large difference in constraint checks depending on
the graph density and the domain size, when the message processing or communication
overhead dominates (the difference inconstraint checksbecomes insignificant), the per-
formance of the AWC strategy and LCDCSP strategies depends on cyclesbecause of
little difference in message size.

This analysis shows that, when the overhead of message processing and commu-
nication is mainly decided by message number (not size) and dominates local compu-
tation overhead (the difference inconstraint checksis not significant),cyclescan be a
reasonable measurement to compare strategy performance. Note that, using this analyti-
cal model, we can simulate various computing and networkingenvironments by chang-
ing (i) the values of� and� (different weights to message processing/communication
overheads) or (ii) the cost functions.



5 Related Work and Conclusion
While significant works have focused on variable or agent ordering in DCSP [1, 3, 10],
value ordering techniques which exploit additional information-exchange have not re-
ceived enough attention, and little investigation has beendone for performance mea-
surement which takes into account extra communication overhead. While communicat-
ing local information has been investigated in DCSP [8, 9], the communication over-
head in different computing/networking environments was not properly evaluated. Fer-
nandez et al. investigated the effect of communication delays on the performance of
DCSP algorithms [2]. However, their investigation was limited to random effects and
did not take into account the impact from extra value communication.

In this paper, we investigate the impact of inter-agent exchange of additional infor-
mation which has not been exploited in conventional DCSP algorithms. We provide a
new run-time model for DCSP performance measurement that takes into account the
overhead of extra communication. Experimental results from extensive systematic in-
vestigation show that DCSP strategies which exploit additional information-exchange
indeed improve performance in a significant range of problemsettings, in particular
when message processing/communication overhead dominates local computation over-
head. We also provide categorization of problem settings with big speedups by the
DCSP strategies to guide strategy selection. This paper notonly provides a useful
method for performance measurement to the DCSP community, but also shows the
utility of additional information exchange in DCSP.

References

1. A. Armstrong and E.H. Durfee. Dynamic prioritization of complex agents in distributed
constraint satisfaction problems. InProceedings of the International Joint Conference on
Artificial Intelligence, 1997.

2. C. Fernandez, R. Bejar, B. Krishnamachari, C. Gomes, and B. Selman. Communication and
computation in distributed csp algorithms. In V. Lesser, C.Ortiz, and M. Tambe, editors,
Distributed Sensor Networks. Kluwer Academic Publishers, 2003.

3. Youssef Hamadi, Christian Bessière, and Joël Quinqueton. Backtracking in distributed con-
straint networks. InProceedings of the European Conference on Artificial Intelligence, 1998.

4. R. M. Haralick and G. L. Elliot. Increasing tree search efficiency for constraint satisfaction
problems.Artificial Intelligence, 14:263–313, 1980.

5. H. Jung and M. Tambe. Performance models for large scale multiagent systems: Using
pomdp building blocks. InProceedings of the International Joint Conference on Autonomous
Agents and Multi-Agent Systems, 2003.

6. V. Lesser, C. Ortiz, and M. Tambe, editors.Distributed Sensor Networks: a Multiagent
Perspective. Kluwer Academic Publishers, 2003.

7. P. Modi, H. Jung, M. Tambe, W. Shen, and S. Kulkarni. A dynamic distributed constraint
satisfaction approach to resource allocation. InProceedings of the International Conference
on Principles and Practice of Constraint Programming, 2001.

8. E. Monfroy and J. H. Rety. Chaotic iteration for distributed constraint propagation. InACM
Symposium on Applied Computing, 1999.

9. M. Silaghi, D. Sam-Haroud, and B. Faltings. Consistency maintenance for abt. InProceed-
ings of the International Conference on Principles and Practice of Constraint Programming,
2001.

10. M. Yokoo. Distributed Constraint Satisfaction: Foundations of Cooperation in Multi-Agent
Systems. Springer, 2000.


