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Abstract

Distributed Constraint Optimization (DCOP) is rapidly
emerging as a prominent technique for multiagent coordina-
tion. However, despite agent privacy being a key motivation
for applying DCOPs in many applications, rigorous quanti-
tative evaluations of privacy loss in DCOP algorithms have
been lacking. Recently, [Maheswaranet al.2005] introduced
a framework for quantitative evaluations of privacy in DCOP
algorithms, showing that some DCOP algorithms lose more
privacy than purely centralized approaches and questioning
the motivation for applying DCOPs. This paper addresses
the question of whether state-of-the art DCOP algorithms suf-
fer from a similar shortcoming by investigating several of the
most efficient DCOP algorithms, including both DPOP and
ADOPT. Furthermore, while previous work investigated the
impact on efficiency of distributed contraint reasoning de-
sign decisions (e.g. constraint-graph topology, asynchrony,
message-contents), this paper examines the privacy aspect
of such decisions, providing an improved understanding of
privacy-efficiency tradeoffs.

Introduction
Understanding agents’ privacy loss in multiagent coordi-
nation and conflict resolution is emerging as a critical is-
sue in many applications. For example, personal assis-
tant agents deployed to facilitate collaboration in businesses,
office environments and research organizations [Modi &
Veloso2005, Hassine, Defago, & Ho2004, Maheswaranet
al.2004] must possess potentially private information about
their users, e.g. salary, capabilities, and preference informa-
tion about meetings and schedules. In the course of nego-
tiations and conflict resolutions, the exchange of some pri-
vate information is necessary to achieve a good team out-
come. For humans to entrust their personal assistant agents
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with private information, they need assurance that their pri-
vacy will be protected. Such privacy loss considerations
are important during resource allocation negotiations even
in highly cooperative domains such as disaster rescue where
several government, corporate and nonprofit groups may
come together. Although these organizations wish to con-
tribute resources that will lead to the optimal end, they are
mutually distrustful in most of their other endeavors and do
not want other entities to know the details of their individ-
ual constraints. A lack of understanding about privacy loss
could undermine collaboration in these settings.

Maintaining privacy is a fundamental motivation for work
in distributed constraint optimization (DCOP) [Maheswaran
et al.2004,Modiet al.2005,Silaghi & Faltings2002]. Several
recent approaches to DCOP [Modiet al.2005, Maheswaran
et al.2004], attempt to enable distributed conflict resolution
and coordination while maintaining users’ privacy. How-
ever, privacy loss analysis indicates that these algorithms
preserve less privacy than a centralized approach [Mah-
eswaranet al.2005, Maheswaranet al.2006]. One ap-
proach to privacy in DCOP is to use cryptographic tech-
niques [Yokoo, Suzuki, & Hirayama2002]. These tech-
niques ensure watertight privacy but require the use of ex-
ternal servers or computationally intensive secure function
evaluation techniques that may not always be available or
justifiable for their benefits.

In fact, it is useful to understand that the DCOP prob-
lem has three axes of tradeoffs: efficiency, privacy and op-
timality. Rather than requiring both optimality and water-
tight privacy (as above) at the expense of efficiency, this pa-
per pursues an alternative approach to this tradeoff, where
we maintain optimality but are willing to engage in some
privacy-efficiency tradeoffs. To understand the nature of this
tradeoff, the first step is to understand the privacy loss in ex-
isting DCOP algorithms using quantitative metrics [Franzin
et al.2004, Silaghi2004, Meisels & Lavee2004, Maheswaran
et al.2005]. If we can bound privacy loss in specific DCOP
algorithms, then cryptographic techniques may be avoidable
in situations where they are impractical.

There are two key weaknesses in the previous work. First,
it does not provide insight onhowvarious design choices im-
pact privacy in these algorithms. Such design decisions as
constraint-graph topology, asynchrony, and message content
have been shown to affect efficiency, but their impact on pri-



vacy has not been studied. Second, recent cross-algorithm
privacy loss analysis focused on a limited number of DCOP
algorithms [Maheswaranet al.2005]. This limitation led to
the false conclusion that DCOP algorithms provide less pri-
vacy than a centralized approach.

The work reported in this paper addresses both of these
weaknesses. It analyzes the privacy impact of DCOP de-
sign decisions, including constraint-graph topology, asy-
chrony and message-contents, and analyzes ADOPT [Modi
et al.2005], DPOP [Petcu & Faltings2005] and SynchID
[Modi et al.2005], three recent DCOP algorithms which are
heavily used for their efficiency. We overturn the significant
negative results from [Maheswaranet al.2005] by provid-
ing positive privacy results for the above DCOP algorithms
not considered in that work. These contributions are ob-
tained by a large-scale experimental investigation of privacy
loss in DCOP algorithms in the VPS (Valuations of Possible
States) analysis framework [Maheswaranet al.2005], using
several distributed meeting scheduling scenarios with each
data point averaged over 25 runs. Overall, while our results
are more promising than [Maheswaranet al.2005], we also
investigated upper bounds on privacy loss in DCOP algo-
rithms which indicate the need for further attention to pri-
vacy preservation.

Background
A DCOP consists of a set of variables assigned to agents
who control their values. The agents must coordinate their
local choices of variable values so that a global objective
function, modeled as a set of distributed valued constraints,
is optimized. DCOPs are often represented as graphs, where
nodes are variables and edges join variables involved in a
constraint. We can then define a cost function over each
constraint. The objective is to find an assignment of vari-
ables such that the total cost is minimized.

A predecessor to the recently introduced algorithms men-
tioned above, SynchBB [Hirayama & Yokoo1997] is an
early algorithm for DCOP. Previous work has provided a
comparison of privacy loss of a centralized approach with
SynchBB, suggesting that the centralized approach may lead
to lower privacy loss. Hence, this paper focuses on DPOP,
ADOPT, and SynchId. These algorithms were chosen be-
cause they present novel design choices, or occupy a promi-
nent place in the algorithmic space.

ADOPT is an asynchronous complete DCOP algorithm,
guaranteed to find the optimal solution. In ADOPT, an agent
communicates only one message indicating the cost of an
assignment to a set of variables at a time.

SynchID is an iterative deepening algorithm similar to
ADOPT, with two main differences: agents are organized
into a chain, not a tree, and messages are sent synchronously.
We initially believed that asynchrony would be harmful to
privacy since more messages are sent.

DPOP is an synchronous complete DCOP algorithm, us-
ing a tree topology. DPOP is a variable elimination algo-
rithm, where all relevant information is sent up the tree in
one large message.

SynchBB or synchronous branch-and-bound, was stud-
ied in [Maheswaranet al.2005]. However, we focus on a

Figure 1: Scenarios: Transparent boxes represent agents and the
dark, inner boxes are meeting variables. Thick lines are intra-agent
contraints and thin lines are inter-agent constraints.

slightly modified SynchBB where information irrelevant to
the problem is not communicated.

Experimental Methodology
We focus our investigation on privacy loss in the distributed
meeting scheduling problem, since this domain presents in-
herent privacy concerns [Maheswaranet al.2005, Franzinet
al.2004]. However, the results of this work can be general-
ized to other DCOP settings where privacy matters.

We define a meeting/event scheduling problem based on
the formalism of [Maheswaranet al.2004], expressed using
the PEAV-DCOP representation, which is motivated by pri-
vacy considerations.

• R := {R1, . . . ,RN} is a set ofN agents.

• E := {E1, . . . ,EK} is a set ofK events.

• T := {1, . . . ,T} is the set of available timeslots.

• Ek := (Ak,Vk) is thekth event, whereAk ⊂ R are the re-
quired attendees andVk := {Vk

1, . . . ,Vk
N} is a value vector,

whereVk
n represents the value to thenth person for attend-

ing eventk.

• V0
n(t) : T → � denotes thenth person’s valuation for

keeping time slott free, due to a preference to keep that
time open or the value of an already scheduled event,
where� is a discrete set.

The goal is to schedule meetings maximizing the SUM
Σ(Vk

n − V0
n(t)), where theVk

n − V0
n(t) is an agent’s utility

scheduling eventk at timet.
Scenarios: The majority of scheduling instances in a

functional personal assistant agent system will consist of
a small number of meetings that need to be negotiated si-
multaneously. While larger-scale problems may present
themselves, if privacy is a critical factor, the coordina-
tion protocols must be effective for these small-scale in-
stances [Franzinet al.2004, Modi et al.2005]. We con-
sider seven scenarios of three (R = {A, B,C}) or four (R =
{A, B,C,D}) agents. The PEAV-DCOP graphs in Figure 1
show the events, labeled by their attendees, and decomposed
into variables and constraints.

Measuring Privacy Loss: In order to measure the pri-
vacy loss in a system, we first consider how to measure from
one agentRi to another agentRj . Then, we combine these
measures to determine system-wide privacy loss.



Measuring Privacy Loss Between Two Agents:We
make use of the Valuation of Possible States (VPS) frame-
work [Maheswaranet al.2005] to quantitatively evaluate pri-
vacy loss between a pair of agents: fromRi to Rj . Privacy
loss in VPS is based on a valuation onRj ’s estimates about
(i.e. a probability distribution over)Ri ’s possible states. In
VPS, agentRi ’s private information is modeled as a state
sn ∈ Sn, whereSn is a set of possible states thatRi may
occupy. Rj estimates about agentRi ’s possible states are
expressed as a probability distribution�n((Sn) j). The util-
ity that agentRi derives fromRj ’s beliefs aboutRi ’s states
yields value function�i(�i((Sn) j)).

Now if we apply VPS to the meeting scheduling prob-
lem, Rj knows only thatRi exists in one of|�|T possible
states after running the DCOP algorithm.Ri is modeled by
Rj whose estimate ofRi is captured by�i((Sn) j). Different
possibilities for how these values may be assigned are cap-
tured in six metrics introduced in [Maheswaranet al.2005]
that define the privacy of an agentRi with respect toRj .

Due to the nature of messaging in DCOPs, the typical
form of information gathered is the elimination of a possible
state. We define the total number of states asS and the states
remaining at the end of the inference assr . We scale privacy
loss between 0 and 1. The six metrics (from [Maheswaran
et al.2005] we use are as follows:LinearSgives the number
of states not eliminated by other agents:S−sr

S−1 . GuessSgives
the probability thatRj will be able to guess the state ofRi

accurately from the among the eliminated states:1
S−1 ∗

S
sr

.
EntropySwas introduced in [Franzinet al.2004] and consid-
ers privacy loss from an information-theoretic perspective:
1− lg(sr )

lg(S) . In meeting scheduling, one way to viewRi ’s state is
the vector of possible valuations it has for each of its times-
lots. So, in a scenario with 3 timeslots and 4 valuations,S
would be 43 = 64. We could also consider the states in a
per timeslot way, in which caseS = 4, and then average the
results over all possible timeslots. When doing this, we refer
to the metrics asLinearTS, GuessTSandEntropyTS.

Measuring System-wide Privacy Loss:Once we have
measures of privacy loss between all pairs of agents, we
must aggregate them into a measure of the privacy loss of
the whole system. One way to do this is to average the pri-
vacy loss between all pairs of agentsR1 to RN in the system.
This is the approach taken by [Maheswaranet al.2005].

In this AVERAGE method, a centralized algorithm has
a privacy of 1

N , and the privacy approaches infinity as the
number of agents increases. The effect of one agent learning
more than others, and gaining an asymmetric advantage over
them, is not considered. To address this issue, we devised
the MAX aggregation method. In MAX, we consider only
the total privacy loss to the single agent that learns the most
information about other agents, rather than the mean of all
pairs of agents. This method is also relevant when there is
concern that an agent might reveal information outside of
the group of collaborators.

Inference Algorithms

Based on the VPS framework, we define a process by which
agents can infer information about other agents while run-

ning various DCOP algorithms, in order to measure the
likely privacy loss between agents in a DCOP. All infer-
ence experiments for all algorithms (including the central-
ized method) start with the same initial assumptions. We
assume that the constraint graph and the valuation of each
meetingis known to all agents, but the valuations oftime
slots are private. Previous work in constraint satisfaction
has considered private information to be whether an agent
can attend a meeting [Wallace & Freuder2005]. This makes
sense in a CSP framework with hard constraints. In DCOP
we are optimizing soft constraints, so the private information
is expressed in weighted valuations of each timeslot.

The assumption that agents know the existence and im-
portance of all meetings to be scheduled comes from com-
mon situations in universities and research labs where some
fixed project meetings and/or student- advisor meetings are
well known. (Already scheduled meetings, such as people’s
personal meetings would be represented as timeslot valua-
tions, which are considered private.) If this assumption is
removed, our framework still applies, but the results would
show less privacy loss, thus strengthening our conclusions.

We assume that agents do not deviate from the protocols
specified by the algorithms since (1) deviating from the pro-
tocol may lead to suboptimality and involve other messaging
costs; (2) if agents are discovered, they may face sanctions.
Investigating situations where the agents deviate from the
protocol is a worthwhile area for future work.

These assumptions are exactly as in [Maheswaranet
al.2005], allowing comparison of the results. Based on these
assumptions, we developed methods for agent inference for
SynchID, ADOPT and DPOP.

SynchID: SynchID is a synchronous algorithm in which
agents are ordered in a chain, and messages are passed up
and down the chain. An upward message from agentRn
contains a numbermn, which is equal to the best currently
known total reward for the subchain of agents under and in-
cludingRn. For PEAV, the total reward for the chain is equal
to the sum of differences between the valuation of a sched-
uled meeting and the valuation of the time slot it occupies
for every scheduled meeting for every person. We hence-
forth use∆Ek

Rn
(t) = Vk

n−V0
n(t) to denote the change in utility to

thenth agent for scheduling thekth meeting at timet. When
agentRn receives an upward message it knows thatmn = a
sum of∆ terms from agents lower in the chain fromRn.

To illustrate how possible states can be eliminated in
SynchID, we outline the inferences that one can make from
messages received in Scenario 1. In SynchID, upward mes-
sages to agentRn contained information of the form:

mn =
∑
∆

Ek
Rn

(tEk) +
∑
∆

Ek
Rn

(t̃Ek), (1)

where the summations include events lower in the chain
from Rn. tEk is the time of an eventEk when that time is
known toRn (becauseRn is a participant in eventEk), and
t̃Ek is the time of an eventEk when that time is not known
to Rn. For example, sinceB knows when meetingBC is
scheduled, as well as the value of meetingBC, a message
from C to B (mB) allows B to know VC(tBC) (the valuation
vector component ofC at the time at which meetingBC is



scheduled). Similarly, a message fromB to A (mA) allows
A to know vB(tAB) + vB(t̃BC) + vC(t̃BC), where t̃BC is some
time not equal totAB, but otherwise unknown toA. Each
of these relations allows the observing agent to reduce the
number of possible states the other agents could be in. We
obtain the privacy loss for SynchID by allowing each agent
to collect these relations, iterate over them, and test each re-
lation against a list of possible states for the other agents,
discarding states that conflict with any of the relations.

ADOPT: ADOPT contains the same type of upward mes-
sages as in SynchID, but, due to its asynchrony, it may be
impossible for agents to tell how many∆ terms are con-
tained in the reward component of each message. When a
message is received, we know it contains rewards for at least
one agent more than the previous message it sent. However,
due to asynchrony, our agent might have included more de-
scendants in the message. So, for our inference, we use a≤

sign. The inference equation is:

mn ≤
∑
∆

Ek
Rn

(tEk) +
∑
∆

Ek
Rn

(t̃Ek), (2)

This relation changes to an equality in the special case when
only one agent is downstream from agentRn.

DPOP: In the DPOP algorithm, each agent sends exactly
one cost message to its parent. This message is a table of
all possible assignments of constrained upstream events and
the aggregate costs of those assignments to the agents down-
stream ofRn. Each entry in the table is used to create in-
ference rules as in equation 1. The events in the entry are
the∆Ek

Rn
tEk terms and other events with participating agents

downstream ofRn are the∆Ek
Rn

t̃Ek terms.
SynchBB: Inference rules for SynchBB are as described

in [Maheswaranet al.2005].
Centralized: In a centralized algorithm, the agents all

send their valuation information to one agent, who computes
the result and returns. In every case the centralized agent can
“infer” the valuations perfectly [Maheswaranet al.2005].

Experimental Results
In this section, we present experimental results from the
seven scenarios. We begin with comparisons of privacy loss
in the algorithms according to the EntropyTS metric, then
examine the algorithms using all metrics from [Maheswaran
et al.2005]. We introduce a new aggregation method (MAX)
to highlight privacy benefits of all studied DCOP algorithms
over centralized approaches. We then explore the privacy
impact of more sophisticated inference techniques and di-
verse topologies.

For the three-agent scenarios, we varied|�| from 3 to 7
while holding the number of timeslotsT = 3. For the four-
agent scenarios, for reasons of computational complexity,
we varied|�| from 3 to 5 while holdingT = 3. For each
(T, |V|) pair, we performed 25 runs for each of the following
algorithms: SynchID, ADOPT, SynchBB and DPOP. The
privacy loss for each pair of agents was measured using all
six metrics, assuming the agents were using the inference
algorithms given in Section 3. We aggregate systemwide
privacy loss using the AVERAGE and MAX methods.
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Figure 2: Privacy loss comparisons between algorithms.

Space limitations preclude us from presenting
all our results (additional results are available at
http://teamcore.usc.edu/dcop/aaai06). Thus, in some
cases, we present results from only some of the seven
scenarios. Each data point is an average of 25 runs, and we
provide statistical significance results to support our main
conclusions. When directly comparing algorithms, we use
a chain topology (since not all algorithms could use a tree);
we investigate the impact of graph topology on privacy in a
separate experiment.

Cross-algorithm comparison: Figure 2 shows the com-
parison of privacy loss for the four algorithms mentioned
above, for each of the seven scenarios, as well as the cen-
tralized approach. Thex-axis plots the different number of
valuations and they-axis plots privacy loss. The thick hori-
zontal line shows the centralized approach, for scenarios 1-4
(three agents), its privacy loss is 0.33, but for scenarios 5-7
(four agents) it is 0.25. The privacy loss in the centralized
case is the same no matter which of the six metrics is used to
measure it. We use the EntropyTS metric as the metric for
privacy loss in this result; as seen later, EntropyTS provides
results that are in the mid-range among all metrics. Results
are aggregated using the AVERAGE method.

We conclude the following from Figure 2: (1) Except
for SynchBB, the remaining algorithms have a privacy loss
that is lower than the centralized approach. In contrast with
the negative results presented in [Maheswaranet al.2005],
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Figure 3: Cross-metric comparisons, scenario 1

which illustrated DCOP algorithms as having worse privacy
loss than a centralized approach, this is a significant posi-
tive result. Indeed, the privacy loss in ADOPT and DPOP
is less than half that of the centralized approach. Further-
more, statistical tests show that ADOPT performs better
than centralized in all scenarios and DPOP performs better
than centralized in all except scenario 4 (significance level
of 5%). (2) DPOP and ADOPT had very similar privacy
loss, despite their vastly different approaches. In particu-
lar, despite DPOP’s one-shot communication of all informa-
tion, it performed surprisingly well in terms of privacy loss.
ADOPT does perform slightly better than DPOP for privacy
loss (see in particular Scenario 4), but not to the level an-
ticipated, at least in these scenarios. (3) ADOPT signif-
icantly outperformed SynchID in terms of privacy protec-
tion. The asynchrony in ADOPT was expected to be signif-
icantly detrimental to privacy due to the increased numbers
of messages. Instead, we found that the uncertainty intro-
duced by asynchrony as to which agents participate in each
cost message provides significant privacy gains compared to
synchronous algorithms such as SynchID. (4) Despite modi-
fications to improve privacy—we removed unnecessary con-
text messages—SynchBB still performed the worst in terms
of its privacy loss; often worse than centralized. The key
reason for SynchBB’s low performance is its bi-directional
messaging of cost information. Thus, it is important to avoid
bi-directional cost propagation in DCOP algorithms when
privacy is a goal.

Cross-metric comparison: Figure 3 shows results com-
paring the algorithms’ privacy loss for Scenario 1 accord-
ing to each of the metrics from section 3. We conclude
the following from Figure 3: (1) Even if we examine other
metrics beyond EntropyTS, DCOP algorithms do not suffer

from privacy loss to the extent seen in the earlier investiga-
tion [Maheswaranet al.2005], further confirming the posi-
tive results seen earlier. (2) The choice of metric affects how
the algorithms compare to the centralized approach (with
LinearS suggesting the most privacy loss), but seems to pre-
serve the qualitative ranking of the algorithms.

MAX method: Figure 4 shows the results for all the al-
gorithms aggregated by the MAX method for all seven sce-
narios, withT = 3. The number of valuations is plotted on
the x-axis and the privacy loss is plotted on they-axis. The
MAX method shows that there is always a privacy benefit
obtained by using DCOP algorithms, even those that, by the
AVERAGE methode (and any of the six metrics) perform
worse than the centralized approach, if the major privacy
concern is one agent accumulating too much knowledge.
Under the MAX method, DPOP and ADOPT continued to
outperform SynchBB, while SynchID varied widely.
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Figure 4: Algorithms compared using the MAX metric:
Centralized has a privacy loss of 1

Upper bounds: The results so far all used the inference
algorithms described earlier, and provided a lower bound on
privacy loss, since they only considered each message in iso-
lation. Although lower bounds are sufficient to demonstrate
a negative result, they must be augmented to demonstrate a
positive one. While there is no theoretical limit to the quan-
tity of domain knowledge an inference algorithm may pos-
sess (making a tight upper bound impossible to calculate),



Figure 5: DPOP: upper bound results compared to lower
bound and centralized

Figure 6: ADOPT, assuming cost message participants are
known, compared with the unknown case and centralized

we can calculate upper bounds assuming agents know only
the message contents and graph structure.

We calculated upper bounds on privacy loss for one of the
most promising DCOP algorithms: DPOP. We used a brute
force approach which generated all possible combinations
of input valuations, ran DPOP on them to generate a trace
of the messages each combination would produce and then
for each agent matched these up to the messages that were
actually received. We performed simulations of this type for
DPOP, which took several days to run, compared to the sev-
eral hours taken by our primary inference algorithms. Re-
sults for upper and lower bound inference for DPOP using
all six metrics are shown in Figure 5. Scenarios 1, 4, and
5 are shown for three timeslots and three valuations, with
the metric plotted on they-axis and the privacy loss plotted
on thex-axis. Due to asynchrony and the randomness in a
variable’s initial choice of value, it is not possible to analyze
ADOPT with this approach.

For each scenario, the lower bound showed DPOP out-
performing the centralized approach (except on LinearS for
Scenario 4) while the upper bound was comparable or worse
than the centralized approach. We conclude that while pri-
vacy results on recent DCOP algorithms are encouraging,
there is still a need for improvement.

Asynchrony: The privacy loss of an asynchronous al-
gorithm such as ADOPT is difficult to analyze. Due to its
asynchrony, it may be difficult for agents to ascertain which
(or even how many) other agents’ valuations are part of any
particular cost message. However, implementation artifacts
can make this information easier to infer. For instance, one
technique to implement the meeting scheduling problem as
a DCOP solvable by ADOPT requires all rewards to be con-
verted into costs by subtracting all rewards from a large off-
set number. If this number is high enough, agents can deter-
mine the number of valuations in a cost message by round-
ing the cost in the message to the nearest multiple of this
number. The results for ADOPT assuming the participants
in each cost message are known are presented in Figure 6.
Results for scenarios 1, 4 and 5 are shown withT = 3, the

Figure 7: DPOP: tree vs. chain

number of valuations plotted on they-axis and the privacy
loss according to the EntropyTS metric on thex-axis.

Figure 6 shows that the privacy loss in ADOPT is much
higher if the agents involved in a cost message are known
to the inferring agent. Thus, if privacy is a goal, care must
be taken with the implementation of distributed algorithms
such as ADOPT to ensure that the privacy benefits of asyn-
chrony are realized. In fact, we observe that SynchID gen-
erally falls between ADOPT with message participants re-
vealed and without this information revealed (Figure 6).

Topology: While we held the constraint graph topology
fixed as a chain in our experiments so far, this experiment in-
vestigates the impact of graph topology on privacy loss. In-
deed, DPOP and ADOPT were designed to be run on trees,
not chains, and gain much of their efficiency from that dis-
tinction. Figure 7 shows the results of running DPOP on
a tree topology, as compared to the chain. The tree was
built by chosing the most constrained agent as the root, then
adding other agents lexicographically. Results for scenarios
1, 3 and 5 are shown withT = 3, the number of valuations
plotted on they-axis and the privacy loss according to the
EntropyTS metric on thex-axis. In all cases, privacy loss
using a tree was higher than that of a chain. This occurs
because agents at the top of a tree will receive information
aggregated from smaller groups of agents, due to the paral-
lelism of the tree. This result shows the privacy-efficiency
tradeoff in the design of DCOP algorithms. While trees pro-
vide improved efficiency, they led to more privacy loss than
chains in the scenarios tested.

Conclusion

DCOP is rapidly emerging as a tool for multiagent coordi-
nation. Previous work [Maheswaran et al.2006] showed a
negative result on privacy loss in early DCOP algorithms,
casting doubt on the efficacy of DCOP in privacy requiring
domains. This paper presents a large-scale investigation of
several leading algorithms, including ADOPT and DPOP,
and overturns earlier negative results. Furthermore, we in-
vestigated the privacy side of the privacy/efficiency tradeoff
in DCOP design decisions and concluded in addition: (i)
Asynchrony in ADOPT improves privacy by obscuring the
identities of agents involved in a message and by making so-
phisticated inference difficult. This is offset to a degree by
its use of more messages. (ii) Topology has significant im-
pact on system-wide privacy loss. (iii) Measures of informa-
tion centralization (MAX) show DCOP algorithms outper-
forming a centralized approach, with DPOP, SynchID and
ADOPT performing best. Finally, sophisticated inferences
(e.g. our upper bounds) indicate that there is still work to be
done in reducing privacy loss.
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