
Multiply-Constrained DCOP for Distributed Planning and Scheduling

Emma Bowring and Milind Tambe
Computer Science Dept.

University of Southern California
Los Angeles CA 90089
{bowring,tambe}@usc.edu

Makoto Yokoo
Dept. of Intelligent Systems

Kyushu University
Fukuoka, 812-8581 Japan
yokoo@is.kyushu-u.ac.jp

Abstract

Distributed constraint optimization (DCOP) has emerged as
a useful technique for multiagent planning and scheduling.
While previous DCOP work focuses on optimizing a single
team objective, in many domains, agents must satisfy addi-
tional constraints on resources consumed locally (due to in-
teractions within their local neighborhoods). Such local re-
source constraints may be required to be private or shared
for efficiency’s sake. This paper provides a novelmultiply-
constrained DCOPalgorithm for addressing these domains.
This algorithm is based on mutually-intervening search, i.e.
using local resource constraints to intervene in the search for
the optimal solution and vice versa, realized via three key
ideas: (i) transforming n-ary constraints via virtual variables
to maintain privacy; (ii) dynamically setting upper bounds on
joint resource consumption with neighbors; and (iii) identify-
ing if the local DCOP graph structure allows agents to com-
pute exact resource bounds for additional efficiency. These
ideas are implemented by modifying Adopt, one of the most
efficient DCOP algorithms. Both detailed experimental re-
sults as well as proofs of correctness are presented.

Introduction
Distributed Constraint Optimization (DCOP)(Modiet al.
2005; Mailler & Lesser 2004; Petcu & Faltings 2005) is
a useful technique for applications involving multiagent
planning and scheduling, e.g. distributed meeting schedul-
ing, distributed factory and staff scheduling, and sensor net
scheduling(Meisels & Lavee 2004; Hanne & Nickel 2003).
In a DCOP, distributed agents, each in control of a set of
variables, assign values to these variables, so as to optimize
a global objective function expressed as an aggregation of
utility functions over combinations of assigned values.

While recent advances in efficient DCOP algorithms are
encouraging (Modiet al. 2005; Mailler & Lesser 2004;
Petcu & Faltings 2005), these algorithms focus on optimiz-
ing a single objective and fail to capture the complexities
that arise in many domains where agents must adhere to re-
source constraints, e.g. budgets, fuel, transportation. These
resource constraints necessitate DCOP algorithms that opti-
mize a global objective, while ensuring that resource limits
aren’t exceeded. While in some domains agent must keep

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

these resource constraints private (e.g. travel budgets in dis-
tributed meeting scheduling(Meisels & Lavee 2004)), in oth-
ers resource constraints may be non-private (e.g. overtime
limits in staff allocation for distributed software develop-
ment).

Thus, there is a need for multiply-constrained DCOP al-
gorithms. There are three primary challenges in design-
ing such algorithms. First, agents’ additional resource con-
straints add to DCOP search complexity. Hence, agents
must quickly prune unproductive search paths. Second, har-
nessing state-of-the-art DCOP algorithms is crucial (hence-
forth, we refer to these as “singly-constrained” DCOP al-
gorithms) given their efficiency and continual algorithmic
improvements. This is challenging because the additional
resource constraints are local, possibly private and defined
over different domains. Third, algorithms must exploit con-
straint revelation to gain efficiency when privacy is not cru-
cial. (Unlike (Yokoo, Suzuki, & Hirayama 2002) which uses
cryptographic techniques in DisCSP/DCOP for privacy, we
do not insist on such watertight privacy, as the use of multi-
ple external servers may not always be desirable.)

This paper presents a novel multiply-constrained DCOP
algorithm that employsmutually-intervening searchesto ad-
dress the first challenge above: while an agent immediately
intervenes in the search for the global optimal if its local
resource constraint is violated and opportunistic search for
the global optimal solution obviates testing all partial solu-
tions for resource constraint satisfaction. There are three key
techniques in this algorithm which are facets of mutually-
intervening search: constraint transformation, dynamically-
constraining search and local acyclicity. The first idea,con-
straint transformation, adds a virtual variablev′ to the orig-
inal DCOP problem to represent the resource constraint at
each variablev. Variablev′ is owned by the same agent
asv and provides high negative utility if its neighbors’ val-
ues violate the resource-constraint tested byv′. These vir-
tual variables enable singly-constrained algorithms to be ex-
ploited for multiply-constrained DCOPs and, by manipu-
lating virtual variable placement in the DCOP graph, con-
straint privacy is maintained. The next two ideas focus on
the privacy-efficiency tradeoff. Indynamically-constraining
search, an agent reveals to its neighbors an upper-bound on
any non-private resource constraint. When optimizing the
global objective function, its neighbors only pre-select val-

ues that abide by the bounds, improving algorithmic effi-
ciency. The final idea,local acyclicity, further improves
efficiency in locally acyclic DCOP graphs by allowing the
communicated resource bounds to be tightened without sac-
rificing algorithmic correctness. In particular, we define T-
nodes, which are variables whose local graph acyclicity al-
lows for the dynamic use of exact bounds and do not require
virtual variables. We show that these tighter bounds can not
be applied at non-T-nodes.

While we illustrate these ideas by building on top of
Adopt, one of the most efficient DCOP algorithms (Modi
et al. 2005), our techniques could be applied to other algo-
rithms, e.g. OptAPO and SynchBB (Mailler & Lesser 2004;
Yokoo et al. 1998). We present a multiply-constrained
Adopt algorithm that tailors its performance to three situ-
ations: 1) when a resource constraint must be kept private,
2) when a constraint is sharable but the variable is not a T-
node, and 3) when a constraint is sharable and the variable
is a T-node. The different techniques can be applied simul-
taneously to different nodes in the same problem. We ex-
perimentally compare these techniques and illustrate prob-
lems where agents may gain the most efficiency by sharing
resource constraints and problems where agents lose no ef-
ficiency by maintaining privacy.

Problem Definition
DCOP
A DCOP(Modiet al. 2005; Petcu & Faltings 2005) consists
of n variables,{x1, x2, . . . , xn}, assigned to a set of agents
who control the values they take on. Variablexi can take on
any value from the discrete finite domainDi. The goal is
to choose values for the variables such that the sum over a
set of constraints and associated cost functions,fij : Di ×
Dj → N ∪∞, is minimized, i.e. find an assignment, A, s.t.
F(A) is minimized: F (A) =

∑
xi,xj∈V fij(di, dj), where

xi ← di, xj ← dj ∈ A. Here, variablesxi and xj are
considered neighbors since they share a constraint.

Taking as an example the constraint graph in Figure 1
where x1, x2, x3, and x4 are variables each with do-
main {0,1} and the f-cost functions shown (ignoring g),
F ((x1, 0), (x2, 0), (x3, 0), (x4, 0)) = 4 and the optimal
would be(x1, 1), (x2, 1), (x3, 1), (x4, 1). While the above
commonly used definition of DCOP emphasizes binary con-
straints,general DCOP representationsmay include n-ary
constraints.

x1

x2

x3 x4

di dj f(di,dj)

0 0 1
0 1 2
1 0 2
1 1 0

g-budget on x1: g <= 4

 d1 d2 d3 g(d1,d2,d3)

 0 0 0 4
 0 0 1 8
 0 1 0 8
 0 1 1 12
 1 0 0 1
 1 0 1 1
 1 1 0 1
 1 1 1 8

Figure 1: Multiply-Constrained constraint graph

Multiply-Constrained DCOP
In Multiply-Constrained DCOP we make use of n-ary
DCOP constraints by adding an new cost functiongi on
a subset ofxi’s links and a g-budgetGi that the accumu-
lated g-cost must not exceed. Together this g-function and
g-budget constitute a g-constraint. Figure 1 shows an exam-
ple g-constraint onx1. In the example, ifx1, x2, x3 each
take on the value of 1 (leading to an optimal f-cost) then
the g-cost is 8, which violatesx1’s g-budget of 4. Since g-
cost functions cannot be merged with f-cost functions, each
value must be selected based on both f and g, hence this is a
multiply-constrained DCOP. It is straightforward to extend
this framework to multiple g-constraints on a variable.

In general, the combined g-cost can be an arbitrary func-
tion on the values ofxi and its neighbors wherexi’s neigh-
bors. We define g-constraints to be private or shared. If
the g-constraint can be shared and the g-cost function is the
sum of the g-costs of the links impinging uponxi, we can
improve efficiency by exploiting the additive nature of the
function. In the rest of the paper, we assume such additiv-
ity for shared g-constraints but make no such assumption
for private g-constraints. Given the g-cost functions and g-
budgets, we now modify the DCOP objective to be: find
A s.t. F(A) is minimized:F (A) =

∑
xi,xj∈V fij(di, dj),

wherexi ← di, xj ← dj ∈ A
and∀xi ∈ V

gi(di, {dj |xj ∈ neighbors(xi)}) ≤ Gi

Multiply-Constrained DCOP is situated within the space
of general DCOP representations mentioned in Section 2.1.
However, it emphasizes n-ary (g-cost) constraints, f- and g-
constraints defined over overlapping sets of variables, pri-
vacy of g-constraints, and the need to exploit the interac-
tion between f- and g-constraints for pruning the search
space. No current DCOP algorithm, including leading algo-
rithms such as Adopt, OptAPO and DPOP(Modiet al. 2005;
Mailler & Lesser 2004; Petcu & Faltings 2005), are able to
address all these issues together.

Motivating Domains
In this section we demonstrate the need for multiply-
constrained DCOP algorithms in distributed planning and
scheduling with two examples.

Distributed Meeting Scheduling:When members of or-
ganizations in separate locations collaborate, personal assis-
tant agents must optimize their meeting schedules and yet
adhere to travel budgets. Consider a simple example shown
in Figure 2, where researchers, A, B, C, D and E are divided
between organizations at Loc1 and Loc2. A and C need to
meet, and B, D and E (E’s attendance is not mandatory) also
need to meet. A and C are group leaders who manage travel
budgets for their groups and wish to keep budgetary con-
straints private.

Multiply-constrained DCOP allows us to model this prob-
lem. We assume that agents share all their scheduling pref-
erences with their appropriate neighbors but not their bud-
getary constraints. Thus, our representation is a generaliza-
tion of MAP(Modi & Veloso 2005). The domain of each
variable is a tuple of time-of-meeting and location, e.g.{6th

AC

BDE

AC

BDE

BDE

A

B

C

D

E

Loc1 Loc2

6th 6th 5
6th 21st 0
15th 6th 10
15th 21st 0

AC BDE f

 6th 6th 5
 6th 21st inf
 21st 6th inf
 21st 21st 0

B-BDE D-BDE f

g-budget = $470

 6th 6th $320
 6th 21st $370
 15th 6th $310
 15th 21st $340

C-AC D-BDE g

 6th 6th $150
 6th 21st $180
 6th --- $0
 15th 6th $150
 15th 21st $180
 15th --- $0

C-AC E-BDE g

Locations Agent Variable

g-budget = $700

Figure 2: Meeting Scheduling Example

Oct at Loc1, 15th Oct at Loc2}. The f-cost expresses agents’
scheduling preferences and that they must agree on the meet-
ing time (or else receive an infinite cost). The f-cost function
between C and D reflects C’s preference that the BDE meet-
ing precede the AC meeting (for readability not all of the
f- and g-functions are shown in Figure 2). Since a meeting
may require flying to that destination, the g-cost associated
with subgroups of agents reflects their travel cost. The cost
varies depending on the date of travel and whether all mem-
bers are traveling on the same day and can share a cab. C
has a travel budget of $470, represented via a g-budget on
C’s variable AC. C must pay for expenses incurred by C, D
or E in either the AC or BDE meeting if they are held at
Loc1. A and C may not wish to reveal their travel budgets
(hence private g-constraints).

Distributed Software Development: Many software com-
panies have campuses across the globe and teams collab-
orate across both distances and time zones (Espinosa &
Carmel 2004; Jalote & Jain 2004). While interdependent
tasks within a project must be scheduled for their timely
completion, a team liaison must videoconference with the
team to which the code is being sent to facilitate the hand-
off. However, this liaison may have to stay after hours to
teleconference with the new team in its time zone. Figure 2
shows an example involving five tasks{t1, . . . , t5}, where
Team1 must completet1 andt4 and Team2 must complete
t2, t3 andt5. The domain values are times at which a task
can be completed. The f-function captures both the tempo-
ral precedence constraints and a preference function over the
potential times (e.g.t1 must complete beforet2, and prefer
t1 to start early in the day). A team liaison from Team1 must
videoconference with Team2 during the first hour oft2 and
t3, requiring the liaison to work overtime. To avoid burnout
corporate policy may limit liaison overtime to 8 hours, es-
tablishing a non-private g-constraint.

The two examples above illustrate the need for multiply-
constrained DCOPs to model such collaborations. These do-
mains require agents to optimize an f-cost function and yet
adhere to (private) g-constraints.

t1

t4

t2

t3

t5

Loc1 Loc2

Figure 3: Software Development Example

Background: ADOPT
Adopt(Modi et al. 2005) is an asynchronous complete
DCOP algorithm. Adopt has been discussed in detail in sev-
eral publications(Modiet al. 2005; Cox & Durfee 2005), so
we provide only a brief description here. Adopt organizes
agents into a Depth-First Search (DFS) tree in which con-
straints are allowed between a variable and its ancestors or
descendants, but not between variables in separate sub-trees.
The constraint graph in Figure 1 is organized as a DFS tree.
X2 is a child ofx1 andx3 is a descendant (but not a child)
of x1. While for expository purposes it is useful to consider
each variable as belonging to a separate agent, Adopt does
not require a single variable per agent.

Adopt employs two basic messages: VALUE and COST.1

Assignments of values to variables are conveyed in VALUE
messages that are sent to variables sharing a constraint with
the sender, lower in the DFS tree. For example,x1 will send
its VALUE messages tox2 andx3. To start, variables take
on a random value and send out VALUE messages to get
the flow of computation started. A COST message is sent
from children to parents indicating the f-cost of the sub-tree
rooted at the child (e.g.x3 will send its COST messages to
x2 andx2 sends COST messages tox1). A variable keeps
its current assignment until the lower bound on cost accu-
mulated, i.e. the lower bound of its children’s sub-trees plus
the f-cost of its constraints with its ancestors, exceeds the
lower-bound cost of another assignment. When this occurs,
the variable willopportunisticallyswitch its value assign-
ment (unexplored assignments have a lower bound of zero).
The root’s upper and lower bounds represent the upper and
lower bounds on the global problem; when they meet the
optimal has been found and the algorithm terminates. Since
communication is asynchronous, messages have a context,
i.e. a list of the variable assignments in existence at the time
of sending, attached to them to help determine information
relevance.

Multiply-Constrained Adopt (MCA)
Basic Ideas
In this section we discuss the basic ideas that go into forming
the mutually-intervening searches of the MCA algorithm.
Mutually-intervening search addresses a major challenge of
multiply-constrained DCOP (namely greater complexity) by

1Adopt also uses THRESHOLD messages for improved effi-
ciency, but this is orthogonal to the contributions in this paper.

Preprocessing
(1) for eachxi from highest priority to lowest
(2) if Tnodei == false or privatei == true
(3) x′

i is a new virtual variable
(4) Neighbors(x′

i)← Neighbors(xi) ∪ xi

(5) Neighbors(xi)← Neighbors(xi) ∪ x′
i

(6) forall xk ∈ Neighbors(xi)
(7) if xk is not a neighbor of≥ onexl ∈ Neighbors(xi)
(8) Neighbors(xk)← Neighbors(xk) ∪ xl

(9) rebuildDFStree(x1 . . . xn)
(10) forall x′

i parent(x′
i)← lowest priority Neighbor ofx′

i

Initialize
(11) CurrentContext← {}
(12) initialize structures to store lb and ub from children
(13) di ← d that minimizesLB(d)
(14) if privatei == false andTnodei == true
(15) forall xl ∈ Children
(16) gThreshi(xl)← 0
(17) for gt← 0 . . . Gi

(18) GFmap(xl, gt)← min f(dl, di) s.t.g(dl, di) ≤ gt
(19) backTrack

when received (VALUE , xj , dj , gThreshj)
(20) if privatej == false
(21) add (xj ,dj ,gThreshj) to CurrentContext
(22) elseadd (xj ,dj) to CurrentContext
(23) reset lb and ub if context has changed
(24) if privatei == false
(25) forall xl ∈ Children
(26) if gContext(xl) incompatible withCurrentContext:
(27) gThresh(xl)← 0
(28) backTrack ;

when received (COST, xk, context, lb, ub)
(29) updateCurrentContext
(30) forall d′ ∈ Di, xl ∈ Children
(31) if context(d′, xl) incompatible withCurrentContext:
(32) reset lb and ub
(33) if context compatible withCurrentContext:
(34) store lb and ub
(35) GFmap(xl, gThreshil)← lb s.t.

(xi, di, gThreshil) is part ofcontext from xk

(36) backTrack

procedure backTrack
(37) if xi not a virtual variable
(38) if LB(di) > LB(d) for somed
(39) di ← d that minimizesLB(d) and

satisfiesgThreshj wherexj ∈ Ancestors(xi) and
privatej == false

(40) if privatei == false
(41) calcOptimalSplit
(42) SEND (VALUE , (xi, di, gThresh(xk)))

to each lower priority neighborxk

(43) elseSEND (VALUE , (xi, di))
to each lower priority neighborxk

(44) if LB == UB:
(45) if TERMINATE received from parent orxi is root:
(46) SEND TERMINATE to each child
(47) Terminate execution;
(48) if Tnodeparent == false
(49) SEND (COST, xi, CurrentContext, LB, UB)
(50) else
(51) SEND (COST, xi, CurrentContext, LB, UB)

to parent for eachg we have triedg ≤ gThreshparent

(52) else
(53) if g(di, CurrentContext) > gConstraint(xi)
(54) SEND (COST, xi, CurrentContext,∞,∞) to parent
(55) elseSEND (COST, xi, CurrentContext, 0, 0) to parent

Figure 4: Multiply-Constrained Adopt Pseudo-code

having agents immediately intervene in the search for the
optimal f-cost if its g-constraint is violated and conversely
allowing quick pruning of the high f-cost solutions to ob-
viate checking if such an assignment violates a node’s g-
constraint. This overall approach is realized via three ba-
sic techniques: constraint transformation, dynamically con-
straining search and local acyclicity. We now address each
of these in more detail.

Constraint TransformationTo harness the efficiency of
existing DCOP algorithms and maintain privacy, we add vir-
tual variables to enforce g-constraints, e.g. for the problem
described in Figure 1, we addx′1 to represent an n-ary con-
straint betweenx1, x2, x3. Virtual variables are controlled
by the original variable’s owner and enforce the original
variable’s g-constraint by sending infinite costs when a con-
straint is violated to the nodes involved, preemptively cut-
ting off that line of search. Since typical DCOP algorithms
such as Adopt are based on binary cost functions that are
shared (and not private) across agents, n-ary constraints re-
quire additional mechanisms within such algorithms. By
encapsulating the n-ary constraint in a virtual variable and
placing the virtual variables as leaves in the DFS tree, we can
protect the privacy of both the g-function and the g-budget
since it is encapsulated inside the virtual variable and not
present on any of the links.

Dynamically Constraining SearchWhen privacy is not es-
sential, it is important to exploit g-constraint revelation to
gain efficiency in the f-optimization and vice versa. We ad-
dress the first aspect by requiring descendant nodes to only
consider assignments that will not violate the g-constraints
of their ancestors. Specifically we pass each descendants
a bound (termed g-threshold) specifying how large a g-cost
they can pass up, thus limiting their choice of domain values.
This g-threshold can represent an exact bound when the lo-
cal graph is acyclic or an upper bound otherwise. If a value
combination fails to satisfy an ancestor’s g-constraint, de-
scendants will not explore to see whether this value combi-
nation is optimal in f. Additionally, the opportunistic search
for an optimal f means that variables will only try to enforce
their g-constraint for those value combinations that seem to
be of low f-cost. Thus, the searches dynamically constrain
each other, leading to performance improvements.

Local Acyclicity (T-nodes)The notion of locally acyclic
graph structure is captured more formally via our defini-
tion of T-nodes given below. Variablexi is a T-node if all
lower priority g-constrained neighbors ofxi are in separate
branches of the DFS tree. In our original DCOP example in
Figure 1,x1 is not a T-node because two of its descendents
are in the same subtree (x2 andx3), butx2, x3 andx4 are all
T-nodes. Identifying local acyclicity is important because it
allows us to treat our children as independent and this al-
lows for calculating exact (rather than upper) bounds for the
dynamically constraining search.

x1
 1

x2
 1

x3
 1

x4
 1

x1
 1

x2

x3 x4

x1'

g <= 4 g <= 4

inf
ini

ty

g-
th

re
sh

 =
 0 g-thresh = 4

D2: {0,1}

D3: {0, 1}

x1
 1

x2
 1

x3
 1

x4
 1

x1'

g <= 4

inf
ini

ty

g-thresh = 3

g-
th

re
sh

 =
 3

D2: {0,1}

D3: {0, 1}

a) b) c)

Figure 5: a) MCAP b) MCAS c) MCASA

Algorithm Description

Figure 4 presents pseudo-code for the MCA algorithm.2

The following conventions are used: (i)xi denotes the vari-
able itself, (ii) xj denotes a higher priority neighbor, and
(iii) xk andxl denote lower priority neighbors. To empha-
size the new elements we have included only general de-
scriptions of functionality that remains unchanged from the
original Adopt algorithm(Modiet al. 2005). There are three
separate techniques used in MCA, and we assign each tech-
nique a name: MCA Private (MCAP) is employed when a
constraint may not be revealed to its neighbors and it em-
ploys constraint transformation, MCA Shared (MCAS) is
used when a constraint is sharable but the variable is not
a T-node and it employs constraint transformation as well
as dynamically constraining search, and MCA Shared and
Acyclic (MCASA) is utilized when a constraint is sharable
and the variable is a T-node and it relies solely on dynami-
cally constraining search. We take privacy to mean that nei-
ther the g-functions nor the g-budgets are explicitly revealed
to any other agent.

We will first discuss MCAP. An example snapshot of its
execution on the problem from Figure 1 is shown in Fig-
ure 5a. MCAP searches for an optimal solution for f and
when an assignment violates a g-constraint, a feedback sig-
nal of very high cost (infinite cost) is sent to the cluster of
nodes involved. The feedback is sent by a virtual variable
(x′1) which is responsible for enforcing the g-constraint of
a single variable (x1). The original and the virtual variable
are controlled by the same agent. The feedback is sent to the
lowest priority of the variables involved in the broken con-
straint (x3). Using the f-cost optimization mechanisms of
Adopt, the feedback will be propagated to the other node(s)
that must change their values to find the optimal solution that
still satisfies the g-constraints.

Since feedback must be able to be sent to all the nodes in
a constraint, Adopt’s DFS tree must be restructured to put
all the variables involved in the same subtree (lines 6-9 in
figure 4). MCA preprocessing creates the virtual variables
which need to be placed as leaves lower in the DFS tree than
the variables in the g-constraint they enforce (line 10). A

2A more up-to-date version of the pseudocode is available in
the proceedings of AAMAS 2006

virtual variable will only receive VALUE messages and will
then determine whether the current assignment violates the
g-constraint it represents. If so, an infinite cost is passed up,
forcing the variables to try a different assignment, otherwise
a cost of 0 is passed up to the appropriate variable (lines
53-55).

While feedback signals have the advantage of maintaining
the privacy of the g-constraints and the variables involved
in them by encapsulating the g-cost functions and g-budget
inside a variable, it has a drawback: its partial search of
unsatisfying assignments slows the algorithm. When a g-
constraint – the specific g-functions and the g-budget – is
non-private, we can reveal the g-function of a link to those
vertices connected to it, which is the same privacy loss tol-
erated for the f-function. With this information we can
implement MCAS and MCASA. Snapshots of MCAS and
MCASA are shown in Figures 5b and 5c respectively.

In MCAS and MCASA we exploit the sharing of the
g-functions by having parents send their descendants g-
thresholds in the VALUE messages (lines 20-22) indicating
that the child may take on no value with a g-cost greater than
the g-threshold. In the snapshots from Figures 5b and 5c we
can see the g-thresholds being passed down from nodex1 to
nodesx2 andx3. (Note that as discussed earlier, we make
use of the assumption that the g-functions are additive here.)
If the variable is not a T-node (in MCAS), the g-thresholds
represent an upper bound, constituting the total g-budget mi-
nus the minimum g-cost that could be consumed by each of
the other links involved:
(Gi −

∑
xj∈Neighbors(xi) 6=xl

min gij(di, dj)). In the ex-
ample in Figure 5b, the total g-budget onx1 is 4, and the
minimum usable on each link is 1, and hence the messages
set a g-threshold upper-bound of 3 for each child. Given this
upper-bound, a node can prune out certain values from its
domain as violating the g-constraint (e.g. 0 is pruned from
the domain ofx3) leading to speedups over MCAP. For T-
nodes it is possible to calculate an exact bound (MCASA)—
in Figure 5c, the exact bound is 0 for nodex3 and 4 for node
x2 – enabling more values to be pruned out, further speeding
up the search. Note that Figure 5c is slightly modified from
the original example to show T-nodes. Calculating the exact
bounds requires a node to maintain a mapping from potential
g-thresholds to f-costs (GFmap) for each of its lower priority
neighbors. This is initially constructed from the link func-
tion (line 17) and then updated as COST messages arrive
(line 35). A T-node uses these g-threshold to f-cost lb map-
pings for each of its descendents to calculate how to split
its g-budget among them. This calcOptimalSplit function
can be implemented using a straightforward dynamic pro-
gram and thus is omitted from the pseudo-code. The new
g-thresholds engender a design choice. Nodes can either
store lb and ub information about f-costs for each possible
g-threshold as they do for each of their own values or they
can consider the g-thresholds part of their context and restart
their local optimization whenever the g-thresholds change.
The former option is simpler and possibly more efficient in
terms of cycles but it increases the space requirements of
each node so we have chosen to implement the latter ap-
proach.

Correctness of Multiply-Constrained Adopt

In this section we will again separate out the proofs for each
technique for the sake of clarity. Recall in the following that
a context is the set of variable assignments upon which a
piece of information is predicated.

Proposition 1 For each nodexi for the current context,
MCAP finds the assignment whose f-cost, local cost (δ) plus
the sum of each ofxi’s children’s (xl’s) costs, is minimized
while satisfying the g-constraint:

OPT (xi, context)
def
=

mind∈Di
[δ(d) +

∑
xl

OPT (xl, context ∪ (xi, d))]
if gi(di, {dj |xj ∈ Neighbors(xi)}) ≤ Gi

∞ otherwise

whereδ(d)
def
=

∑
xj∈ancestors fij(di, dj)

Proof: To show this we start from the correctness of the
original Adopt algorithm which was proven in (Modiet al.
2005). Original Adopt will find at every nodexi:

OPT ′(xi, context)
def
=

mind∈Di
[δ′(d) +

∑
xl

OPT ′(xl, context ∪ (xi, d))]

whereδ′(d)
def
=

∑
xj∈ancestors fij(di, dj)

To show that MCAP findsOPT (xi, context) we show
that 1) it never returns an assignment containing a violated
g-constraint, unless the g-constraint is unsatisfiable and 2) it
finds the minimum f-cost solution.

The proof of part 1) starts with the fact that the virtual
variables introduce an infinite f-cost into the subtree con-
taining the violated constraint. This infinite f-cost enters
lower in the priority tree than any variable in the constraint
which allows the normal flow of COST messages to even-
tually carry it to all of the involved nodes. Since any as-
signment that does not violate the g-constraint will have a
finite f-cost, it follows from the correctness of Adopt that by
choosing the assignment that minimizes f, MCAP will never
take on an assignment that violates a g-constraint unless the
g-constraint is unsatisfiable. Part 2) follows directly from
the correctness of Adopt because the virtual nodes report a
zero cost if all constraints are satisfied, which means that by
Adopt’s normal mechanisms it will find the minimum f-cost
solution.�

Proving that MCAS is correct requires a minor addition to
the MCAP proof from Proposition 1 which is shown below.

Proposition 2 If the g-constraint for each nodexi is∑
xj∈Neighbors(xi)

gij(di, dj) < Gi, then no satisfying so-
lution can contain on linklil a g-cost greater than //Gi −∑

xj∈Neighbors(xi) 6=xl
min gij(di, dj).

Proof: This requirement easily follows from the fact that
each link consumes a certain minimum g-cost, and we are
only subtracting the sum of the absolute minimum costs on
all links. �

We next turn to MCASA and discuss the exact bounds
communicated to children of T-nodes in MCASA. After that
we will show that when a node is not a T-node then exact
bounds do not apply.

Proposition 3 For each T-nodexi, MCASA finds the assign-
ment whose f-cost, local cost (δ) plus the sum ofxi’s chil-
dren’s costs, is minimized while satisfying the g-constraint.

Proof by Contradiction: Assume that there exists a g
split: gk ∀xk ∈ Children(xi) which is not optimal, but
which seems to be based on current incomplete information.
Thus there exists another split:g∗k∀xk ∈ Children(xi)
which is optimal but which currently seems not to be. If
factual is the cost when full knowledge is attained and
fcurrent is the current lower bound on cost andf(g′) is the
f-cost accumulated when employing splitg′:
1.

∑
xk

factual(gk) >
∑

xk
factual(g∗k)

2.
∑

xk
fcurrent(gk) <

∑
xk

fcurrent(g∗k)

3.
∑

xk
fcurrent(g′k) ≤

∑
xk

factual(g′k) for any splitg′k
Thus xi will currently choose to employ split

gk∀xk ∈ Children(xi). Since there are a finite
number of nodes in the tree belowxi, at some point
before termination

∑
xk∈Children(xi)

fcurrent(gk) =∑
xk∈Children(xi)

factual(gk) will become true.
Now assume that MCASA terminates without switching

from gk to gk∗. If MCASA continues to use splitgk then at
this point:∑

xk

fcurrent(gk) =
∑
xk

factual(gk)

∑
xk

fcurrent(gk) >
∑
xk

factual(g∗k) by (1)

∑
xk

fcurrent(gk) >
∑
xk

fcurrent(g∗k) by (3)

Thus based upon current information (fcurrent) MCASA
will switch from gk to gk∗ because it has a lower associated
f-cost. This contradicts our assumption that MCASA will
not switch splits before terminating.�

If xi is not a T-node, then MCASA is not guaranteed to
find the assignment whose f-cost, local cost (δ) plus the sum
of xi’s children’s costs, is minimized while satisfying the
g-constraint. We can show this by counter-example.

x1

x2

x3

d1 d2 f g

 0 0 1 1
 0 1 1 2

 d1 d3 f g

 0 0 3 2
 0 1 2 1

d2 d3 f

 0 0 0
 0 1 6
 1 0 0
 1 1 10

Figure 6: MCASA fails on non-T-nodes

As we can see in Figure 6x1 is a non-T-node since its
two childrenx2 andx3 have a constraint between them. If

we assume thatx1 has a g-budget of 3 and only one value in
its domain, then it must choose how to split its g between its
two children. Based upon the functions on the links, it will
choose to give a g-threshold of 2 tox2 and 1 tox3, leading
to a predicted f-cost of 1 + 2 = 3. This effectively removes
the value 0 fromx3’s domain. x2 now tries the value of 1,
to obtain an f-cost of 13, and then tries the value of 0 (which
is within its g-threshold) to obtain an f-cost of 10. Hence,
x2 sendsx1 cost messages indicating that the entries in its
table should be increased to f(g=1) = 10 and f(g=2) = 10.
However, sincex2 will return an f of 10 regardless of g of 1
or 2, andx3 will return an f of 2 for any g,x1 see no reason
to change its current allocation of g-thresholds.

�

Experimental Results

Figure 7: g-budget vs. run-time for a) 100% T-node prob-
lems b) 85% T-node problems

The first experiment compares the performance of our dif-
ferent techniques, MCAP, MCAS and MCASA on four sep-
arate domain settings that have been motivated by the do-
mains presented in Section 2.3. Setting 1 focused on 20-
node problems, each with 3 values per node, with an aver-
age link density of 1.9 and maximum link density of 4. This
graph had 100% T-nodes to emphasize the speedups due to
MCASA. In this setting, both the f- and g-costs were ran-
domly chosen from a uniform distribution varying from 0 to
10. The g-constraint was assumed to be an additive function
(see Section 3). Setting 2 is similar to setting 1, except that
the graph was 85% T-node (which caused the average link
density to increase to 2.2) to emphasize the speedups due to
MCASA. Setting 3 (setting 4) is similar to setting 1, except it
is a 10-node problem. We created 15 sets of constraint func-
tions for each of our domain settings, i.e. each data-point in
our graphs is an average of 15 problem instances.

To really highlight the tradeoff between the different tech-
niques, we show the performance of each technique when
applied to all the nodes in a problem i.e. we either apply
MCAP to all the nodes or MCAS or MCASA, and thus,
there are a total of 1350 different runs summarized in this
first experiment. Figure 7a shows the average run-times of

the MCA sub-algorithms over 15 instances in settings 1 and
3, for different g-budgets. The x-axis shows the g-budget
applied to all variables and ranges from 0, which is unsatis-
fiable, to 40, which is effectively a singly-constrained prob-
lem. The y-axis shows runtime on log-scale — as with other
DCOP systems, run-time is measured in cycles of execution
where one cycle consists of all agents receiving incoming
messages, performing local processing and sending outgo-
ing messages(Modiet al. 2005).

The graphs show that the run-times of all the techniques
are lowest when the search is either unconstrained due to
a high g-budget or extremely constrained due to a low g-
budget. Due to the privacy requirement, MCAP has the
poorest performance. The upper bounds calculated by shar-
ing information in MCAS improve performance, while the
exact bounds and lack of tree-restructuring in MCASA give
it the best performance. The maximum speedup of MCAS
over MCAP is 744 for setting 1 and 209 for setting 3, while
the maximum speedup of MCASA over MCAP is 750 for
setting 1, and 216 for setting 3. Figure 7b demonstrates
similar results for setting 2 and setting 4. Only MCAP and
MCAS results are shown given the switch to 85% T-node
problems in these settings (we cannot apply MCASA to all
the nodes in these settings). The switch from 100% T-node
to 85% T-nodes also causes a significant increase in run-
time (note the y-axes are not identical). In all settings, for
tighter g-budgets, the MCAS algorithm outperforms MCAP,
however, for looser g-budgets, there is no difference in per-
formance: when g-budgets are loose MCAS upper-bounds
provide no pruning and thus there is no efficiency loss due
to privacy.

g-budget g-budget

Figure 8: g-budget vs. runtime for differing percentages of
private constraints on a) 100% T-node problems and b) 85%
T-node problems

In order to demonstrate the benefits of the per-node ap-
plication of the MCAP and MCAS techniques, we took the
examples settings 1 and 2 from Figure 7a and b and ran-
domly assigned first 25% and then 50% of the nodes to have
private g-constraints while the remaining were assumed to
be non-private. We then compared their performance to that
of MCAP (100% private) and MCAS (0% private). The re-
sults are shown in Figure 8a and b. The x-axis again shows
the g-budget applied and the y-axis measures the runtime in
cycles on a logarithmic scale. Each bar in the graph shows
an average over the 15 instances and we can see that as the
percentage of nodes whose additional constraint is private
increases, the runtime increases for smaller g-budgets. How-

ever, as was found when comparing MCAS against MCAP
in the previous figure, when the g-budget on each variable
is loose enough the runtimes converge because no pruning
takes place as a result.

Conclusion and Related Work
While DCOP is rapidly emerging as a key technology for
multiagent planning and scheduling(Modiet al. 2005;
Mailler & Lesser 2004; Petcu & Faltings 2005), previous
DCOP work suffers from the limitation of optimizing a sin-
gle global objective. In many real-world distributed plan-
ning and scheduling domains, however, agents must locally
(within their local neighborhood) satisfy additional resource
constraints. Demands from real-world domains for resource
constraints has led to our new formulation of multiply-
constrained DCOPs, where agents are provided additional
(resource) constraints that they must satisfy. This paper pro-
vides a novel multiply-constrained DCOP algorithm, based
on the overarching theme of mutually-intervening searches,
which is operationalized via three key ideas: (i) transform-
ing n-ary constraints via virtual variables to maintain pri-
vacy while harnessing existing singly-constrained DCOP al-
gorithms; (ii) revealing upper-bounds on (resource) costs to
neighbors, in order to gain efficiency while sacrificing pri-
vacy where permitted; (iii) identifying a local graph struc-
ture property – T-nodes – which allows agents to gain fur-
ther efficiency by providing not just upper-bounds but exact
bounds on resource costs to neighbors. These ideas were
realized in the context of Adopt, one of the most efficient
current DCOP algorithms. The Multiply-Constrained Adopt
(MCA) algorithm modulates its performance based on the
privacy requirements of individual constraints and the local
network structure. We proved the correctness of the MCA
algorithm, and presented detailed experimental results, il-
lustrating the profile of the privacy-efficiency tradeoffs in
MCA, and the benefits of T-nodes.

In terms of related work, there is significant continued
progress in singly-constrained DCOP algorithms (Modiet
al. 2005; Yokooet al. 1998; Petcu & Faltings 2005), e.g.
OptAPO and DPOP have been shown to compare favor-
ably with Adopt in some domains and vice versa(Mailler &
Lesser 2004; Davin & Modi 2005; Petcu & Faltings 2005)
and ultimately, the costs of computation vs. communica-
tion in the domain may govern the choice of an appropri-
ate algorithm. Our work is complementary to these ad-
vances. First, the multiply-constrained DCOP formulation
presents a new challenge for all of these algorithms. Further-
more, some of the techniques developed here would trans-
fer to these other algorithms, e.g. MCAS and MCASA
style techniques could be applied to algorithms like Op-
tAPO. Whether the DPOP algorithm(Petcu & Faltings 2005)
will similarly benefit from the techniques introduced here
is a challenge for future work – indeed, variable elimina-
tion techniques such as DPOP may face significant chal-
lenges when addressing multiply-constrained DCOPs. Ap-
proaches to multi-criteria constraint satisfaction and opti-
mization problems have tackled the problem using central-
ized methods (Gavanelli 2002), but our central contribution
is in tackling a distributed problem, which requires design-

ing algorithms where agents function without global knowl-
edge.

Acknowledgements
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA), through the
Department of the Interior, NBC, Acquisition Services Di-
vision, under Contract No. NBCHD030010.

References
Cox, J., and Durfee, E. 2005. A distributed framework
for solving the multiagent plan coordination problem. In
AAMAS.
Davin, J., and Modi, P. 2005. Impact of problem central-
ization in distributed constraint optimization algorithms. In
AAMAS.
Espinosa, J. A., and Carmel, E. 2004. The impact of time
separation on coordination in global software teams: a con-
ceptual foundation. SOFTWARE PROCESS IMPROVE-
MENT AND PRACTICE8.
Gavanelli, M. 2002. An algorithm for multi-criteria opti-
mization in CSPs. InECAI, 136–140.
Hanne, T., and Nickel, S. 2003. A multi-objective evo-
lutionary algorithm for scheduling and inspection planning
in software development projects.Institute for Technical
and Economic Mathematics (ITWM) Technical Report42.
Jalote, P., and Jain, G. 2004. Assigning tasks in a 24-hour
software development model. InAsia-Pacific Software En-
gineering Conference (APSEC04).
Mailler, R., and Lesser, V. 2004. Solving distributed con-
straint optimization problems using cooperative mediation.
In AAMAS.
Meisels, A., and Lavee, O. 2004. Using additional informa-
tion in discsps search. InDistributed Constraint Reasoning
Workshop (DCR).
Modi, P. J., and Veloso, M. 2005. Bumping strategies for
the multiagent agreement problem. InAAMAS.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M.
2005. ADOPT: Asynchronous distributed constraint op-
timization with quality guarantees.Artificial Intelligence
Journal161:149–180.
Petcu, A., and Faltings, B. 2005. A scalable method for
multiagent constraint optimization. InIJCAI.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
1998. The distributed constraint satisfaction problem: For-
malization and algorithms.IEEE Transactions on Knowl-
edge and Data Engineering10:673–685.
Yokoo, M.; Suzuki, K.; and Hirayama, K. 2002. Se-
cure distributed constraint satisfaction: Reaching agree-
ment without revealing private information. InCP.

