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ABSTRACT the locality of agents’ interactions means that the utility generated

by each agent’s action depends only on the actions of a subset of
the other agents. In this case, the outcomes of possible JAs can
be compactly represented in cooperative domains by a distributed
constraint optimization problem (DCOP)[12, 20] or, in honcoop-

erative domains, by a graphical game [6]. Each of these models
can take the form of a graph (or hypergraph) in which each node is

(i.e. a set of assignments to a DCOP) is to be generated, metrics aré@n agent gnd each edge (or hyperedge) denotes a subset of f’?ge“ts
whose actions, when taken together, incur costs or rewards, either

needed to help appropriately select this set dfidiently allocate . S : .
resources for the joint actions in the set. To address this need, wet® the agent team (in DCOPs) or “? individual agents (in graphl-
cal games). In the case of DCOP, if each agent controls a single

introducek-optimality, a metric that captures the desirable prop- iable. th inale JA i | 4 ¢ val
erties of diversity and relative quality of a set of locally-optimal variable, then a single Is a complete assignment of values to

solutions using a parameter that can be tuned based on the level of211ables (i.e. every agent chooses an individual action for itself).
these properties required. To achiezetive resource allocation We focus primarily on the team setting, using DCOP, whose appli-

for this set, we introduce several upper bounds on the cardinali- cations include multi-agent plan coordination [4], sensor networks

ties ofk-optimal joint action sets. These bounds are computable in [12], af?f_’ RoboCup soccer [17]. - .
constant time if we ignore the graph structure, but tighter, graph- Traditionally, researchers have focused on obtaining a single JA,

based bounds are feasible with higher computation cost. Bounds€XPressed ash_a single assignment of act:qns to agents in;;a DCOP.
help choose the appropriate levellebptimality for settings with [ 1OWeVer, in this paper, we consider a multi-agent system that gen-

fixed resources and help determine appropriate resource allocatiorfTates @etof JAs, L.e. ”.‘”'“p'e asggnments o the same DCOP.
for settings where a fixed level &foptimality is desired. In addi- Generating sets of JAS is useful in _domams such as disaster res-
tion, our bounds for a 1-optimal joint action set for a DCOP also cue (to provide multiple rescue options to a human commander)

apply to the number of pure-strategy Nash equilibria in a graphical [15_],_patr(_)||in? (_to execute m_LéItipIe patrlols if‘ the same agea) [14]21
game of noncooperative agents. training simulations (to provide several options to a student) an

others [16]. We provide three key contributions to address such do-
mains. The first contribution is to determine the appropriate metric
for evaluating a set of JAs. While high absolute reward is an ap-

A distributed constraint optimization problem (DCOP) is a formal-
ism that captures the rewards and costs of local interactions within
a team of agents, each of whom is choosing an individual action.
When rapidly selecting a single joint action for a team, we typically
solve DCOPs (often using locally optimal algorithms) to generate
a single solution. However, in scenarios where a set of joint actions

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence; propriate metric in single-solution domains, reward alone is a poor

1.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods, = metric for these multiple-JA domains, as it often yields clusters of

and Search very similar JAs, as shown in Section 2 of this paper. Clustering is
undesirable, as diversity, thefidirence among JAs, is a key prop-

General Terms erty for a JA set in many domains [16]. Diversity alone is unde-

. sirable, because it leads to low-quality solutions. Hence, this paper

Design, Theory introduces a new metrig;optimality, that naturally captures the di-
versity and relative quality of a JA set.KAoptimal JA has the high-

Keywords est reward within a neighborhood of other JAs théliedifrom it by

at mostk individual actions; i.e. n&-optimal JA can be improved

if k or fewer agents change actions. Thereféreptimality quan-

tifies the neighborhood in which a JA is optimal. Ik-@ptimal JA

1. INTRODUCTI_ON ) set, defined as a set of JAs, each of which is ite@ptimal, all JAs
Inalarge class of multi-agent scenarios, a set of agents choosesn the set are guaranteed a particular level of relative quality (best

a joint action (JA) as a combination of individual actions. Often, in their neighborhoods), as well as diversity (every two JAs must
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patrols in an area as in [14], each robot may be assigned a regionrewards for the DCOP are not known in advance. Despite this un-
within the area. Each robot is controlled by a single agent, and certainty, reward-independent bounds can be obtained on the size
hence, for one joint patrol, each agent must choose one of severabf a k-optimal JA set, i.e. to safely allocate enough resources for
possible routes to patrol within its region. A joint patrol is a JA, a given value ok for any DCOP with a particular graph structure.
where each agent’s action is the route it has chosen to patrol, andwWe first identify a mapping to coding theory, yielding bounds in-
rewards and costs arise from the combination of routes patrolled dependent of both reward and graph structure. We then provide a
by agents in adjacent or overlapping regions. For example, if two method to use the structure of the DCOP graph (or hypergraph of
nearby agents choose routes that largely overlap on a low-activity arbitrary arity) to obtain significantly tighter bounds.
street, the constraint between those agents would incur a cost, while The third key contribution in this paper is to establish a connec-
routes that overlap on a high-activity street would generate a re- tion to noncooperative settings by proving that our bounds for 1-
ward. Agents in distant regions would not share a constraint. If optima also apply to the number of pure-strategy Nash equilibria in
reward alone is used as a metric to select joint patrols, then all se-any graphical game on a given graph, which remains an open prob-
lected joint patrols could be the same, except for the action of one lem. In addition to their uses in resource allocation, these bounds
agent. This set of patrols would be repetitive and predictable to ad- provide insight into the problem landscapes that can exist in both
versaries. If we pick some diverse joint patrols at random, they may cooperative and noncooperative settings.
be very low-quality patrols. Using-optimality directly addresses
such circumstancek;optimality ensures that all joint patrolsftir 2. k-OPTIMALITY
by at leask + 1 agents’ actions, as well as ensuring that this diver-
sity would not come at the expense of obviously bad joint patrols
as each is optimal within a radius of at lekstgents’ actions.

After introducingk-optimality, our second key contribution in
this paper is addressingheient resource allocation for the multi-

We introduce the notion d-optimalityas a metric that captures
' both relative quality and diversity when selecting a set of JAs. We
begin with our model of the multi-agent team problem, which is a
DCOP in which each agent controls a single variable to which it
must assign a value. These values correspond to individual actions

ple JAs in ak-optimal set, by defining tight upper bounds on the
; b ' that can be taken by the agents. Subgroups of agents, whose com-
number ofk-optimal JAs that can exist for a given DCOP. These bined actions generate a cost or reward to the team, define the con-

bounds are n_ecessﬂa;ed by two key fgatures of the_typlcal dom‘r’“ns‘straints between agents. Because we assume that each agent con-
where ak-optimal set is applicable. First, each JA in the set con-

. trols a single variable, we will use the terms “agent” and “variable”
sumes some resources that must be allocated in advance. Such re-

. . o interchangeably. More formally, for a set of agefits= {1,...,1},
source consumption arises because: (i) a team actually execute§he ith agent takes actioa, € . We denote the joint action
each JA in the set, as in our patrolling example above, or (ii) the f a subgroup of agents ¢ 7 tl)y as = xi.s& € As where
JA set is presented to a human user (or another agent) as a list oﬁq = ..« A and the joint actions (jA.s) of Itehse entire ?nulti-agent
options to choose from, requiring time. In each case, resources ar e:lrﬁ byale—s [a'l a] € Awheredl ‘= X,., A. The team reward

i i i - -= XNier Jhi-
consumed based on the JA set size. Second, while the existencg, taking a particular JAg, is an aggregation of the rewards ob-
of the constraints between agents is knawpriori, the actual re-

wards and costs on the constraints depend on conditions that ard2ined by subgroups in the teaR(a) = s, Rs(@) = Yise) Rs(as)

not known until runtime, and so resources must be allocated beforeWheres is a minimal subgroup that generates a reward (or in-
X curs a cost) in an n-ary DCOP (i.e. a constraift)s the col-

the rewards and costs are known and before the agents generate thl%ction of all such minimal subgroups for a given problem and

k-optimal JA set. In the patrolling domain, constraints are known Rs(-) denotes a function that mapss to R. By minimality, we

to exist between patrol robots assigned to adjacent or overlappingmsean that the reward componeRg (S:annoi bey decompoé,'e d fur-

regions. However, their costs and rewards depend on recent fieldther Mathematically¥S ¢ 6, R(as) # Re,(as,) + Rs, (as,) for

reports of adversarial activity that are not known until the robots any.Rs 0 As i{' Re ()’_ ;SS ~ ]Rsé Sslz c [SZSUSCZh that
1\") - 1 ’ 2\') - 2 > 9Ly

are deployed. At this point the robots must already be fueled in or- S1US = S.S,.S, # 0. It is important to express the constraints

dg,[rfc())lrsth.ﬁzg tr%;ngmiglfgegg %Ielgizctaed?g?hegfgg;?;:?ﬁgg%ﬂunt Ofminimally to accurately represent dependencies among agents.
P : To evaluate JA sets, specifically JAs with respect to each other,

fuel required .to e.xecute each patrol; thus it is critical to ensure that we need notions of neighborhood and distance among JAs. For
enough fuel is given to each robot so that each JA found can betWO JAs,a andd, we define the following terms. Theviating
executed, without burdening the robots with wasted fuel that will group is’D(a, 3) ’,= el a#a)ie the. set of agents
go unused. Consider another domain involving a team of disasterWhose actions in' I differ fr.om their a{ctlio'ns in J%. The dis-
rescue agents that r_nust gengrate a sd¢adtimal JAs in order tanceis d(a, ) := |D(a &) where| - | denotes the cardinality of
to present a set of diverse options to a human commander, Wherethe set. Theelative rewardof a JA a with respect to another JA
each option represents the best JA within a neighborhood of similar Ais A(é, 3) = R(@) - R(@) = Secrsoaaso [Rs(as) - Re(@s)] . In
e o o anvons s sUmation, on ihe fekar on consain incden on e
o . : Viating agents are considered, since the other rewards remain the
coordinated (i.e. members of subteams) but their costs and rewardssarne We assume every subgroup of agentsas a unique op-
depend on conditions on the ground that are unknown until the time timal éubgroup joint actior, for any context, where a context
when the agents must be deployed. Here, the resource is the timeconsists obe, the actions of the agents not(m’ i.e. the comple-
the commander has to make the decision. Presenting too many ..t ofG Mz;lthematically G c 7 whereG ;t.(Z).andG 4T
options will cause the commander to run out of time before con- ) ' ’

L - : . thend a§ € Ag st. R(ag; asc) > R(ag; asc)Vag # a;. Here the
S|d(_er|ng them aII_, and presenting too few may cause high-quality notationR(ag; agc) is used to indicate the overall team reward gen-
options to be omitted.

Because each JA consumes resources, knowing the maximal nume_rated when subgroup takes the JAas with respect fo a fixed
ber of k-optimal JAs that could exist for a given DCOP would al- context ofagc. The above assumption is natural for domains where

. . rewards come from precise measurements, and is common in work
low us to allocate dflicient resources for a given level bf Un-

- : on bounds and estimates for numbers of local optima [2] and Nash
fortunately, we cannot predict this number because the costs and_ _ . . . ; ) .
equilibria [11]. Given this assumption, we now classifas ak-
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Figure 1: DCOP example
optimal JAor k-optimumif A(a,d > 0v¥a s.t d(ad) < k

Equivalently, if the set of agents have reachdda@ptimum, then

no subgroup of cardinalitg k can improve the overall reward by
choosing diferent actions; every such subgroup is acting optimally
with respect to its context.

A collection ofk-optimal JAs must be mutually separated by a
distance> k+1 as they each have the highest reward within a radius
of k. Thus, a highek-optimality of a collection implies a greater
level of relative reward and diversity. Lé(l,k) = {a € A :
A(a,d) > 0Va s.t d(a, d) < k} be the set of ak-optimal JAs for a
team ofl agents with domains of cardinality It is straightforward
to showAq(l, k+ 1) € Aq(l, k).

Exampre 1. Figure 1 is a binary DCOP in which agents choose
actions from{0, 1}, with rewards shown for the two constraints
(minimal subgroups) = {1,2} and S, = {2, 3}. The assignment
a=[11 1]is 1-optimal because any single agent that deviates re-
duces the team reward. Howevfr,1 1] is not2-optimal because
if the group{2, 3} deviated, making the assignment= [1 0 0],
team reward would increase from 16 to 20. The globally optimal
solution, & = [0 0 O] is k-optimal for all ke {1, 2, 3}.0

We now show, in an experiment, the advantagdsaptimal JA
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Figure 3: Hypothetical example illustrating the advantages of
tighter bounds

In addition to categorizing local optima in a DCGFpptimality
provides a natural classification for DCOP algorithms. Many known
algorithms are guaranteed to convergé-mptima for somek > 0,
including DBA [20], DSA [5], and coordinate ascent [17] foe 1,
MGM-2 and SCA-2 [9] fork = 2, and Adopt [12], OptAPO [10]
and DPOP [13] fok = |I. Fork < I, random restarts of these
“k-optimal algorithms” can be used to find setkedptimal JAs.

3. UPPER BOUNDS ONk-OPTIMA
Upper bounds on the number of possikleptimal JAs|Aq(1, K)|

sets as capturing both diversity and high reward compared with JA are useful for two reasons: they yield resource savings in domains
sets chosen by other metrics. The lower half of Figure 2(a) shows where a particular level df-optimality is desired, and help deter-
a DCOP graph representing a team of 10 patrol robots, each ofmine the appropriate level df-optimality to prevent guaranteed

whom must choose one of two routes to patrol in its region. The

waste of resources (fuel, time, etc.) in settings with fixed resources.

nodes are agents and the edges represent binary constraints betweenFirst, a particular level ok-optimality may be desired for a JA
agents assigned to overlapping regions. The actions (i.e. the cho-set: a highk will include JAs that are more diverse, and opti-
sen routes) of these agents combine to produce a cost or reward tanal within a larger radius, but higkalgorithms have significantly

the team. For each of 20 runs, the edges were initialized with re-

wards from a uniform random distribution. The set of all 1-optima

higher coordinatioftommunication overheads [12, 10, 9]; hence
lower k is preferable under time pressure. Lowemay also be

was enumerated. Then, for the same DCOP, we found equal-sizedpreferable if an agent team or a human user wants a more detailed
sets of JAs using two other metrics. In one metric, the set of JAs set of JAs, for example, more joint patrols, more rescue options,
with highest reward are included, and in the next, JAs were selectedetc. For a given level ok-optimality, bounds indicate the maxi-

purely for diversity by the following method. We repeatedly cycled
through all possible JAs in lexicographic order, and included a JA

mum resource requirement for akyoptimal JA set. Thus, tighter
bounds provide savings by allowing fewer resources to be allocated

in the set if the distance between it and every JA already in the seta priori while ensuring enough will be available for &Hoptimal

was not less than a specified distance; in this case 2. The averagdAs, regardless of the rewards and costs on the constraints. Figure 3
reward and the diversity (expressed as the minimum distance be-is a hypothetical example, withon thex-axis and the number of
tween any pair of JAs in the set) for the JA sets chosen using eachresources to be allocated on thaxis. 8, andg, are two diferent

of the three metrics over all 20 runs is shown in the upper half of
Figure 2(a). While the sets of 1-optima come close to the reward

upper bounds on the number lebptimal JAs that can exist for a
given DCOP. Part (a) shows how the tighter bogpéhdicates that

level of the sets chosen purely according to reward, they are clearly a resource level af; is suficient for allk-optimal JAs, if each JA

more diverse (T-tests for this claim showed a significance within
.0001%). If a minimum distance of 2 is required in order to guar-
antee diversity, then using reward alone as a metric idficgent;

consumes one resource, yielding a savings efr, over using3;.
Second, if resource availability is fixed, tighter bounds help us
choose an appropriate levellobptimality. If kis too low, we may

in fact the JA sets generated using that metric had an average min-exhaust our resources on bad JAs (similar JAs with poor relative

imum distance of 1.21, compared with 2.25 for 1-optimal JA sets
(which guarantee a minimum distancekof 1 = 2). The 1-optimal

quality). In contrast, fewek-optimal JAs can exist dsincreases,
and so ifk is too high, available resources that could be spent on

JA set also provides significantly higher average reward than the additional JAs are guaranteed to go unused. Tighter bounds provide
sets chosen to maintain a given minimum distance, which had ana more accurate measure of this kind of guaranteed waste and thus,

average reward of 0.037 (T-test significance within .0001%.). Sim-

allow a more appropriateto be chosen. In Figure 3(b), under fixed

ilar results with equal significance were observed for the 10-agent resource level,the looser bound; hides the resources guaranteed
graph in Figure 2(b) and the nine-agent graph in Figure 2(c). Note to go unused wheky is used. This waste is revealed gy with the

also that this experiment us&d: 1, the lowest possible Increas-
ing kwould, by definition, increase the diversity of tk@ptimal JA

thick line indicating the resources that, if allocated, will never be
used, as there cannot exist enolgbptima to use them all; instead,

set as well as the neighborhood size for which each JA is optimal. we now see that using will reduce this guaranteed waste.



To find the first upper bounds on the numberkedptima for from it. It cannot claim all these words for its sphere exclusively, as
a given DCOP graph, we discovered a correspondence to codingthey may be equidistant from other codewords. We do know how-
theory [8]. In error-correcting codes, a set of codewords must be ever that each of these words can be on the boundary of at most

chosen from the space of all possible words, where each word is| spheres (i.e. can be equidistant from at mlosbdewords) be-

a string of characters from an alphabet. All codewords af@-su
ciently different from one another so that transmission errors will
not cause one to be confused for another. Finding the maximum
possible number of-optima can be mapped to finding the maxi-
mum number of codewords in a spacegbfvords where the min-
imum distance between any two codewordsd is k + 1. We can
map JAs (complete DCOP assignments) to wordslkaagtima to
codewords as follows: A Jataken byl agents each with a domain
of cardinalityq is analogous to a word of lengtifrom an alphabet

of cardinalityg. The distancel(a, &) can then be interpreted as a
Hamming distance between two words. Themig k-optimal, and
d(a, &) < k, thendcannot also bk-optimal by definition. Thus, any
two k-optima must be separated by distancke + 1.

Three well-known bounds [8] on codewords are Hammpig=
q'/(Z%‘jOZJ (;)(q— 1)1), Singleton: Bs = g%, and Plotkin: gp
[ﬁj which is only valid when (2 1/g)n < k + 1. Note
that for the special case of= 2, it is possible to use the relation
Bu(l,kq) =Bu(l —1,k-1,0)[8] to obtain a tighter bound for odd
k using the Hamming bound. Now, to find a reward-independent
bound on the number of 1-optima for three agents wgith2, (e.g.,
the system in Example 1), we obtain rf8n,Bs.B8e} = Bu = 4,
without knowingR;» andR,3 explicitly.

Unfortunately, problems of evah(oddk), are not of interest for
error-correcting codes, amft;, the Hamming bound, is very loose
or useless for DCOP wheq > 2, e.g., for 1-optima (solutions

reached by DSA) the bound is equal to the number of possible as-
signments in this case. Hence, for DCOP, we pursue an improved? @ 1. A2 01 © A1 0 Ax.

bound forq > 2 and odd. By is derived by using a sphere-packing
argument stating that the total number of wogisnust be greater
than the number of codewordg(l, k) multiplied by the size of a
sphere of radiugk/2] centered around each codeword. A sphere
Sa(@, r) with centera® and radiug is the set of JAsaSuch that
d(a*,a) < r, and represents words that cannot be codewords (ex-
cept for its center). It can be shown thak(a*, [k/2]) contains
exactly y12 (1)@ - 1) words. Ifkis even, the tightest packing
occurs with spheres of radikg2 and each word can be uniquely
assigned to the sphere of its closest codewordk iff odd, it is
possible for a word to be equidistant from two codewords and it is

cause they are of length Furthermore, each of these words can be
equidistant from at mosiy(l, k) codewords, i.e. the total number

of codewords in the space. Thus, each codeword can safely incor-
porate ¥ min{l, Aq(l, K)} of each of these boundary words into its
sphere without any portion being claimed by more than one sphere.
Aggregating over all the words on the boundary, we can increase
the volume of the sphere Ky}, ,)(@ — 1)*1/2/ min{l, Ay(l, K)}.
Using the sphere-packing argument with the portions of the bound-
ary words added to each spheredf{l, k) < |, we have

Lk/2) | . ((k+|1)/2)(q _ 1)(k+1)/2
q' > (l,k)[ ) (q_1)1+ ]
~ JZ; (J) Aq(1,K)
' (e — 1)k+D)2
= Aq(l,K) < g ((k+1)/2)(q 1) A

> ()@-1y
and if Aq(l, k) > I, we have

Lk/2] )(q — 1)keDy2

Z | ((k+|1)/2

jo(Jm—lv+ |

l |

_ = A
(A= 1)1+ (uhy) (@ = DED2(12)

We haveAq(I,K) < 1 = Ag(l,K) < A andAq(l,K) > 1 = Ay(l,K) <
A,. We can show thad, 0l & Ao, Yo € {<, >, =}. Furthermore,
Thus, whenA; < |, thenA; < | and

q'zAm,m[

= Ay(1,K) < Ztk/ZJ ( )

I
=0 \j

Ap < Ay S0,A¢(1,K) < Ag = min{Aq, Ay} whenA; < |. And, when
Ay > 1, thenAy > | andA; > Ay, S0,Aq(l,K) < Ay = min{A, Ay}
whenA; > |. Therefore Aq(l, k) < min{A;, A}.m

We call the Modified Hamming bounglyy and defingBusp =
min{By,Bs,Br.Bun}, including the relation fopy for q = 2; i.e.

Busp gives the best of all the (graph-independent) bounds so far.

4. GRAPH-BASED ANALYSIS: k-OPTIMA

TheBusp bound and its components depend onlylpk andq,
regardless of how the team reward is decomposed onto constraints;
i.e., the bounds are the same for@llFor instance, the bound on

unclear how to assign it to a sphere. The Hamming bound addressed -optima for Example 1 (found to be 4 in the previous section) ig-

this issue by using the bound fr 1 whenk is odd, which leads to

nored the fact that agents 1 and 3 do not share a constraint, and

smaller spheres and a bound larger than necessary. This ignores thgields the same result independent of the DCOP graph structure.

contribution of a word that lies on the “boundary” between several

However, exploiting this structure (as capturedé)ycan signifi-

spheres. These boundary assignments can be appropriately particantly tighten the bounds diq(1, K)l}|_,. In particular, in obtain-

tioned to achieve a tighter bound on the numbek-@ptima for
oddk, called theModified Hamming bound

Proposirion 1. For odd k, A(l, k) < min{Aq, A} where
q - ((k+|1)/2)(q - 1fenr
s ()a- 1)
qI
S ()@= 1) + (g 1y2) (@ = 1YED2(10)

Proof. Any word that has Hamming distan¢k/2] or less from
a codeword belongs in that codeword’s sphere, because belong

A

A

ing to more than one sphere would violate the code’s distance re-

quirement. Given an odd value &f each codeword will have

((k+'1)/2)(q — 1)*1/2 words that are a distance df ¢ 1)/2 away

ing the bounds in Section 3, pairs of JAs were mutually exclusive
ask-optima (only one of the two could Heoptimal) if they were
separated by a distangek. We now show how some JAs separated
by a distance> k + 1 must also be mutually exclusive k®ptima.

We defineDg(a,8) :={i e G: a # &} andV(G) := Uscg.gns«0S.
Intuitively, Dg(a, &) is the set of agents within the subgro@mwho
have chosen dierent actions betweea and &, andV(G) is the
set of agents (including those ®) who are a member of some
constraintS € ¢ incident on a member @ (e.g.,G and the agents
who share a constraint with some member@f Then, V(G)©
is the set of all agents whose contribution to the team reward is
independent of the values taken By

Proposition 2. Let there be a JA'ac Aq(l, k) and letd € A be
another JA for which @*,8) > k. If 3G c 7, G # 0 for which
|G| < k and Dyg)(a’, &) = G, thena ¢ Ay(l, k).
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Figure 4: A visual representation of the dfect of Proposition 2.

Proof. Givena*, &, andG with the properties stated above, we have
thatva: d(a',a) < k, A(@",a) > 0. If ais defined such tha; = &
fori € V(G) anda = & fori ¢ V(G), thenD(a*,a) = G and
d(a®, a) < kwhich implies

D, Rs(@)-Rs(as)= ), Rs(as)-Rs(as)

Sef:SND(a*,a)#0 Seb:SNG#0

> Re(as) - Rs(as) > 0.
Seh:SNG#£0
If @ is defined such thaa "= & fori € V(G) andg = & for
i ¢ V(G), thenD(3, d) = G andd(&, 8) < k, and

AB.8) = R(8s) -~ Rs(3s) = ) Rs(s) - Rs(as)
Seh:SND(8,8)#0 Seh:SNG#0

Rs(és) - Rs(a*s) < O,

Sef:SNG£0
thus,a'¢ Aq(l, k) because\(d, &) < 0 andd(d,8) < km

Proposition 2 provides conditions wheraifis k-optimal therel
which may be separated from by a distance greater tham 1 may
not bek-optimal, thus tightening bounds &roptimal JA sets. With
Proposition 2, since agents are typically not fully connected to all
other agents, theelevant contexa subgroup faces is not the entire

A@,a) =

Figure 5: Exclusivity graphs for 1-optima for Example 1 with
MIS shown in gray, (a) not using Proposition 2 and (b) using it.

nodes such that no pair defines an edge, gives an upper bound on
|Aq(1,K)I. Naturally, an expandefl, implies a more connected ex-
clusivity graph and thus a tighter bound [@g(1, K)!.

Without introducing graph-based analyggsp for eachk pro-
vides a bound on the MIS ¢, when&y = Uecr14g<k E- This set
& captures only the restriction that no two JAs within a distance of
k can both bek-optimal. Consider Example 1, but with unknown
rewards on the links. Here, the exclusivity relation set for 1-optima
without considering the DCOP graphdg = {{1}, {2}, {3}}, mean-
ing that no two JAs dfering only by the action taken by either
agent 1, 2, or 3, can both be 1-optimal. This leads to the exclusivity
graph in Figure 5(a) whose MIS implies a bound of 4.

The significance of Proposition 2 is that it provides additional ex-
clusivity relations for solutions separated by distandet 1, which
arise only because we considered the structure of the DCOP graph,
which will allow a tighter bound to be computed. This graph-
based exclusivity relation set& = Uecrasieisk Urepvee) [EVF]
which is a superset &. Additional relations exist because mul-
tiple exclusivity relations (JeepExc)[E U F]) appear the same to
the subgroufe because of its reduced vieW(E). Now, for Exam-
ple 1, the exclusivity relation set for 1-optima when considering the

set of other agents. Thus, the subgroup and its relevant context formPCOP graph isS, = {{1}{2}, {3}, {1, 3}}, which now has the addi-

a view (captured by/(G)) that is not the entire team. We consider
the case where a JAhasd(a*,&) > k. We also have grouf® of
sizek within whose viewV/(G), G are the only deviators between

a* andd (although agents outside the view must also have deviated,

becausal(a*, d) > k). We then know thah Tontains a grougs of
sizek or less that has taken a suboptimal subgroup joint action with
respect to its relevant context and thrauisahnot bek-optimal, i.e.
if the groupG choseay instead ofag under its relevant context
V(G) \ G for &, then team reward would increase.

Figure 4(a) showss, V(G), andV(G)® for a sample DCOP of
six agents with a domain of two actions, white and gray. Without
Proposition 2,a1, &, and&; could all potentially be 2-optimal.

tional relation{1,3}. This relation, included because of the realiza-
tion that agents 1 and 3 are not connected, says that no two JAs can
both be 1-optimal if they dier only in the actions of both agent

1 and agent 3. This leads to the exclusivity graph in Figure 5(b)
whose MIS implies a bound of 2. Algorithms for obtaining bounds
usinggk will be discussed in Section 6.

5. APPLICATION TO NASH EQUILIBRIA

Our graph-based bounds can be extended beyond agent teams to
noncooperative settings. It is possible to employ the same exclusiv-
ity relations for 1-optimal DCOP assignments to bound the number

However, Proposition 2 guarantees that they are not, leading to aof pure-strategy Nash equilibria in a graphical game (of the same
tighter bound on the number of 2-optima that could exist. To see graph structure) using any of our bounds f#&(l, 1). Bounds on

the dfect, note that i* is 2-optimal, ther = {1, 2}, a subgroup of
size 2, must have taken an optimal subgroup joint action (all white)
given its relevant context (all white). Even thoumh &,, andd; are

a distance greater than 2 fraan, they cannot be 2-optimal, since
in each of themG faces the same relevant context (all white) but is
now taking a suboptimal subgroup joint action (all gray).

To explain the significance of Proposition 2 to bounds, we intro-
duce the notion of aexclusivity relation Ec 7 which captures the
restriction that if deviating group(a, &) = E, then at most one af
andd can bek-optimal. Anexclusivity relation sefor k-optimality,

&« € P(I), is a collection of such relations that limit&(l, K)I,
the number of JAs that can lkeoptimal in a reward-independent
setting (otherwise every JA could potentially lkbeptimal). In par-
ticular, the se€y defines arexclusivity graph idwhere each node
corresponds uniquely to one of &l possible JAs. Edges are de-
fined between pairs of JAs andd, if D(a,d) € & The size of
the maximum independent set (MIS) Hf, the largest subset of

Nash equilibria [11] are useful for design and analysis of mecha-
nisms as they predict the maximum number of outcomes of a game.
We begin with a set of noncooperative ageits= {1,...1},
where thei™ agent's utility isU'(a;; &) = Xgeq Us, (&; asip)
which is a decomposition into an aggregation of component utili-
ties generated from minimal subgroups. Note that the combination
of actions taken by any subgroup of agents may generate utility for
any agent, therefore the subgroups are denote8asther thars,
as in the cooperative case, where the utility went to the entire team.
The notatiorg; andag);, refers to thé™ agent's action and the ac-
tions of the grouss with i removed, respectively. We referaas a
joint action (JA), with the understanding that it is composed of ac-
tions motivated by individual utilities. Let thdewof thei™ agent
in a noncooperative setting to B&i) = Use, Si. The deviating
group with respect t@ is: Dg(a,d) = {i € G : & # &}. As-
suming every player has a unique optimal response to its context,
then if a" is a pure-strategy Nash equilibrium, adth*,a) = 1,



i = D(a*, a), we know thatJ'(a;; a,) > Ui(a; a,,) andais not Algorithm 1 for Symmetric Region Packing (SRP) bound
a pure-strategy Nash equilibrium. However, applying the graph (or 4. & =
hypergraph) structure of the game, captured by the{8étsve get 2 a=|

Uecra<ek Urepvec) E U Fl
000]

exclusivity relations between JAs with distaned as follows. 3 JAl=1
: IR 4: B(a) = U g, f(a, E)

ProrosiTion 3. If a* is a pure-strategy Nash equilibriure,e A 5: for all b e B(a) do
.SUCh that da*,d) > 1, and3i € .[SUCh that Q(i)(a*, a) = i, thena 6 E(b) — (UEegkf(b’ E)) \ (au B(a))
is not a pure-strategy Nash equilibrium. 7. Hy(b).addNodesi(b)
Proof. We haveU'(&; &1\,) 8: forall by, b, € B(b) do

N R o: if D(by.by) € Ecthen
= D, Us@idsu) = ) Us @i ajs,y) 10: Fi(b).addEdge,, by)
JSTERST RS B gy
< Ug (85 as.)) = Ug (@ 8s\iy) = V'@ &) : = + + Mp
&ZG;JI s (a7 asy) s;, s @ &svip) (& &) 15 pen A

The first and last equalities are by definition. The second and third =11, o, G, 1,3} T
equalities are becaus®,;)(a*, &) = i. The inequality is because B(000)) ={ [100], 010, 001, T01] T
is a pure-strategy Nash equilibrium. The result is #gas hot an Z =1 B(100) [B(@10) JBO1) [B([01)
optimal response ta7\;; and thus cannot be a Nash equilibriumn. ) (1 000] 0] [01] 001]

Proposition 3 states that andd cannot both be Nash equilib- {2}’ 110 000 01 1] 11 1]
ria if 3i, Dyg(a’, &) = i, which is identical to the condition that ’
prevents two JAs (in a team setting) from being 1-optimal. The {3, O] o1 1] o o]
commonality is that in both the cooperative and noncooperative set- {1,3}} 0] L1y [100] [111)
tings, agents have optimal actions for any given context, and in both | #1()
settings there is a notion of relevant conté4g) \ i, which can be (exclusivity D) @D D)
a subset of other agenttg \ i}. The diference is that the views are subgraph)
generated in dierent mannersV/ (i) = Uscgins-0S in @ cooperative = 1 ] N N
setting, whileV(i) = Us,e4Si in a noncooperative setting. Given TETAEER 7 7 72
the views, we can generate the exclusivity relation set in the same L

manner&; = Uier Urepviyo)li U F]. Given the exclusivity relation Figure 6: Computation of gsgrpfor Example 1
set, we can create an exclusivity graph for a noncooperative setting
in a fashion similar to the one in Section 4. Thus, the bound on the
number of Nash equilibria for a noncooperative graphical game is
identical to the bound on 1-optimal JAs for a cooperative DCOP, if
both share the same exclusivity relation &gt

from beingk-optimal bya andE. The first two rows of Figure 6
show&; and the seB([0 0 0]). Applying the exclusivity relations
again for eaclb € B(a), and discarding JAs already includediior
B(a), we generate a s&(b) = Ueeg, f (b, E) which contains all JAs
that potentially excludbe from beingk-optimal. In Figure 6, we ap-
ply & tofindB(b) forallb € B(a) ={[100],[010],[001],[10 1]}
6. GRAPH-BASED BOUNDS where the grayed out JAs are those discarded for beifeg irB(a).
As seen earlier, the graph structure expands the exclusivity rela-To ensure that the region thatlaims is disjoint from the regions
tion set fork-optimality in cooperative (DCOP) settings and Nash  cjaimed by othek-optima,a should only claim a fraction of each
equi“bria in nOnCOOperatiVe (gl’aphica|-game) Settings. ThIS set de' b e B(a) Th|s can be achieved d Shares each equa”y with
fines exclusivity grapt, whose maximum independent set (MIS)  g| otherk-optima that might excludb. These additionat-optima
provides a bound for the numberlobptimal JAs (or alternatively,  gre contained withirB(b). However, not alib € B(b) can actu-
Kl);’tz(?g;IrtheiZ]O:hgagS:nZ?:llll:l{ar;ae).[]l.:]lng(;n\?véhi?‘l \fééﬁgoz;tte:hde r:\glusrils,stic ally bek-optimal as they might exclude each other. If we construct
techniques to obtain an upper bound|&g(l, K)|. We observe that ?13rgfhaHr:((jbz/ng:‘?nglc\)/liesthfzrsilz Ef ?rgz) l\a/llrll(sj iﬁgzscz):l:?ebs

any fully-connected subset (clique) Hf can contain at most one . : ; N
g . : : P claim /(1 + Mp) of b. We again use clique partitioning to safely
k-optimum. Thus, the number of cliques in any clique partitioning estimateM,. In Figure 6, forb = [0 1 0], B([0 1 0]) leads to a

of Hy also provides an upper bound (1, k)|, where a partition- L = )
ing yielding fewer cliques will provide a tighter bound. Hence, our :Eree-?ode, fthrie-e&gefexclllljsgwtyBgra\‘ﬁk\l([o 1 0])f' B¥ alddlng
first approach is the polynomial-timfecque clique-partitioning € vaiues o ML+ M) oraib e (a) ® us one for '.sef.)’ we
algorithm, shown in [7] to outperform several competitors. obtain thasta can safely cl_alm a region of size 3 Wh'.Ch _|mpI|es
Our second heuristic technique to find a graph-based bound isﬁSRP = 12°/3] N 2. Algonth_m 1.5 runtime Is polynomlal in the
number of possible JAs, which is a comparatively small cost for a

Algorithm 1, theSymmetric Region Packing boungkrp which . L L
. " bound that applies to every possible instantiation of rewards to ac-
uses a packing method analogous to Proposition 1, wherekeach tions. An exhaustive search for the MISkf would be exponential

optimum claims a region of the space of all possible JAs (the nodes. = L
of Hy). Because these regions are constructed to be disjoint and" this number (doubly exponential in the number of agents).
have identical volumes, dividing the space of all JAs by this volume

yields a bound. Figure 6 shovgsrp computed for 1-optima for 7. EXPERIMENTAL RESULTS

Example 1. We choose an arbitrary 8A A which we assume We performed five evaluations in addition to the experiment de-
to bek-optimal @ = [0 0 0] in Figure 6), around which we will  scribed in Section 2. The first evaluates the impadt-optimality
construct a region claimed lkay for higher values ok. For each of the three DCOP graphs from

Applying the exclusivity relations frongy, we generate a set  Figure 2(a-c), Figure 7(a-c) shows key properties for 1-, 2- and 3-
B(a) = Ugg, f(a E) where f(a, E) yields the JA that is excluded ~ optima. The first column of each table sholg§ the size of the



‘A‘ avg. |A| avg. ‘A| avg. No. of agents: 7
reward reward reward
1-opt.| 10 | .850 1-opt.| 10 | .809 1-opt.| 9 .832

2-opt. | 55 | .964 2-opt. | 55 | .961 2-opt. | 45 | 977
3-opt. [ 175 | .993 3-opt. [175| .986 3-opt. [ 129 | .982

(@) (b) () | —
. . . . 0 6 12 0 6 12 18 0 8 16 24 0 12 24 36
Figure 7: 1-optima vs. JA sets chosen using other metrics # links removed # links removed # links removed # links removed
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Figure 8: BsrpVs. Busp for DCOP graphs from Figure 2 E PN

BSRP

- BHSP

neighborhood containing all JAs within a distancekdfom ak-

optimal JAa, and hence of lower reward than For example, in o & 1 0 6 12 18 o 8 %2 o & % %
the joint patrol domain described in Section 2, Figure 7(a) shows # links removed # links removed # links removed # links removed
that, if agents are arranged as in the DCOP graph from Figure 2 (a) ]
any 1-optimal joint patrol must have a higher reward than atleast 10 4| ¢
other joint patrols. We see thatlaBicreases, thie-optimal set con- H
tains JAs that each individually dominate a larger and larger neigh-
borhood. The second column shows, for each of the three graphs T e, T e T T
the average reward of eakkoptimal JA set found over 20 problem #links removed # links removed # links removed # links removed
instances, generated by assigning rewards to the links from a uni:

form random distribution. We define the reward df-aptimal JA
set as the mean reward of &lbptimal JAs that exist for a particu-

Figure 9: Comparisons ofBsrpVS. Busp

lar problem instance; each figure in the second column is therefore k=1 k=4
a mean of means. Aswas increased, leading to a larger neighbor- .., 839" sy 8GN o Bagents 2y 9gents
hood of dominated JAs, the average reward oktaptimal JA sets o :
show a significant increase (T-tests showed the increase in averagé *1 '
reward ak increased was significant within 5%.) iR 1

However ask increases, the number of possilid®ptimal JAs % ‘ ‘ .
decreases, and hence the next four evaluations explorefte e imcremover 7 viwcremoves | " wkcremoea 0 eremoved
tiveness of the dierent bounds on the numberlebptima. For the [—Busr Bsrp___---- Breuigue |
three DCOP graphs shown in Figure 2, Figure 8 provides a concrete Figure 10: Comparisons ofBsrp Bus p BrcLIOUE

demonstration of the gains in resource allocation due to the tighter .
bounds made possible with graph-based analysis. xTheis in  for k-optima fork € {1,2,3,4} andI € {7,8,9, 10}. For each of the
Figure 8 shows, and they axis shows th@,s p andgBsre bounds 16 plots shown_, thg axis shows the bounds and th(_ams shows
on the number ok-optima that can exist. To understand the impli- the number of links removed from the graph according to the above
cations of these results on resource allocation, consider a patrollingMethod. WhileBusp < Bsrpfor very dense graphgsre provides
problem where the constraints between agents are shown in the 10Significant gains for the vast majority of cases. For example, for the
agent DCOP graph from Figure 2(a), and all agents consume oned"aph with 10 agents, and 24 links removed, and a fixed., Bxs e
unit of fuel for each JA taken. Suppose tkat 2 has been chosen, implies that we must equip the agents with 512 resources to ensure
and so at runtime, the agents will use MGM-2 [9], repeatedly, to that all resources are not exhausted before all 1-optimal actions are
find and execute a set of 2-optimal JAs. We must allocate enough &X€cuted. Howevefisgpindicates that a 15-fold reduction to 34
fuel to the agents priori so they can execute up to all possible esources will sffice, yleldlng_a savings of 478 due to the use of
2-optimal JAs. Figure 8(a) shows thatdiise is used, the agents ~ 9raph structure when computing bounds.
would be loaded with 93 units of fuel to ensure enough for all 2- A fourth experiment comparegl;s p andBsreto the bound ob-
optimal JAs. Howevergsgp reveals that only 18 units of fuel are  t@ined by applying Evique, Brcuique to DCOP graphs from the
sufficient, a five-fold savings. (For clarity we note that on all three Previous experiment. Selected results are shown in Figure 10 for
graphs, both bounds are 1 wher: | and 2 wher —3 <k < 1.) graphs of 8 and 9 agents. Whigc,ique is marginally better for

To systematically investigate the impact of graph structure on K = 1.Bsrphas clear gains fdk = 4. Identifying the relative fec-
bounds, we generated a large number of DCOP graphs of varying“Veness of various algorithms that exploit our exclusivity relation
size and density. We started with complete binary graphs (all pairs SEtS is clearly an area for future work. .
of agents are connected) where each node (agent) had a unique ID, Finally, Figure 11 compares the constant-time-computable graph-
To gradually make each graph sparser, edges were repeatedly reindependent bounds from Section 3, in particular, showing the im-
moved according to the following two-step process: (1) Find the Provement oy over minBy, Bs. Bp} for selected odd values of
lowest-ID node that has more than one incident edge. (2) If such K given three possible actions for each agent( 3). Thex-
a node exists, find the lowest-ID node that shares an edge with it, 2XiS showsl, the number of agents and tlyeaxis show s 100
and remove this edge. Figure 9 shows flagp andBsre bounds (Min{Bw, Bs, Be} = Bun)/ MiniBu, Bs, Be). For odd values ok > 1,
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