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Abstract.

It is critical that agents deployed in real-world settings, such as businesgess ouni-
versities and research laboratories, protect their individual users’ privacy when interacting
with other entities. Indeed, privacy is recognized as a key motivating factor in the design
of several multiagent algorithms, such as in distributed constraint reasoning (including both
algorithms for distributed constraint optimization (DCOP) and distributed constraint satisfac-
tion (DisCSPs)), and researchers have begun to propose metrics for analysis of privacy loss
in such multiagent algorithms. Unfortunately, a general quantitative framework to compare
these existing metrics for privacy loss or to identify dimensions along which to construct new
metrics is currently lacking.

This paper presents three key contributions to address this shortcoming. First, the paper
presents VPS (Valuations of Possible States), a general quantitative framework to express,
analyze and compare existing metrics of privacy loss. Based on a state-space model, VPS
is shown to capture various existing measures of privacy created for specific domains of
DisCSPs. The utility of VPS is further illustrated through analysis of privacy loss in DCOP
algorithms, when such algorithms are used by personal assistant agents to schedule meetings
among users. In addition, VPS helps identify dimensions along which to classify and construct
new privacy metrics and it also supports their quantitative comparison. Second, the article
presents key inference rules that may be used in analysis of privacy loss in DCOP algorithms
under diferent assumptions. Third, detailed experiments based on the VPS-driven analysis
lead to the following key results: (i) decentralization by itself does not provide superior pro-
tection of privacy in DisSCSPCOP algorithms when compared with centralization; instead,
privacy protection also requires the presence of uncertainty about agents’ knowledge of the
constraint graph. (ii) one needs to carefully examine the metrics chosen to measure privacy
loss; the qualitative properties of privacy loss and hence the conclusions that can be drawn
about an algorithm can vary widely based on the metric chosen. This paper should thus serve
as a call to arms for further privacy research, particularly within the DigDSPP arena.

Keywords: Distributed Constraint Reasoning, Privacy, Distributed Constraint Optimization

1. Introduction

Personal assistant agents are an emerging application whose integration into
businesses,fiice environments, universities and research organizations, as
well as other spheres of human activity, promises to enhance productivity by
performing routine or mundane tasks and expediting coordinated activities
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(Berry et al., 2005; Chalupsky et al., 2001; Modi and Veloso, 2005; Has-
sine et al., 2004; Maheswaran et al., 2004). ffleaively accomplish these
tasks, agents must be endowed with information about their users, that would
preferably be kept private. However, in domains where humans and their
agent counterparts have to collaborate with other human-agent pairs, and
agents are given the autonomy to negotiate or resolve conflicts on behalf
of their users, the exchange of private information is necessary to achieve
a good team solution. Some of these situations include meeting scheduling,
where users’ valuations of certain blocks of time in a schedule, or the relative
importance of dierent meetings, can be the information desired to be kept
private (Bowring et al., 2005; Sen, 1997; Maheswaran et al., 2004; Yokoo
etal., 1998). In team task-assignment problems, the private information could
be a user’s capability to perform various tasks and the personal priority they
assign to those tasks. Similarly, when resolving conflicts in budgets (when
collaborating across fierent organizations), the information that needs to be
kept private may be salary information. To develop trust in, and hence pro-
mote the use of, personal assistant agents, humans must believe their privacy
will be sufficiently protected by the processes employed by their agents. Thus,
understanding how privacy is lost in these contexts is critical for evaluating
the dfectiveness of strategies used to govern these interactions.

In this article, we address the problem of privacy loss in personal- assistant-
agent systems and specifically in the algorithms used for coordination. Dis-
tributed constraint reasoning, in the form of distributed constraint satisfaction
(DisCSP) (Yokoo and Hirayama, 1996; Yokoo et al., 1998; Silaghi et al.,
2001) and distributed constraint optimization (DCOP) (Mailler and Lesser,
2004; Hirayama and Yokoo, 1997; Modi et al., 2003; Maheswaran et al.,
2004), has beenfiered as a key approach that addresses this problem, as
it promises to provide distributed conflict resolution within a collaborating
set of agents. Indeed, maintaining privacy is a fundamental motivation in
distributedconstraint reasoning (Yokoo et al., 1998; Maheswaran et al., 2004;
Modi et al., 2003; Silaghi and Mitra, 2004). For instance, Yokoo et al. point
out one key motivation for DisSCSPS&Furthermore, in some application
problems, such as software agents, in which each agent acts as a secretary
of an individual, gathering all information to one agent is undesirable or
impossible for securitgrivacy reasons”(Yokoo et al., 1998). This initial
motivation based on privacy has been amplified in recent work on DCOP.
For instance, Maheswaran et al. state that DCOP is useful in domains such as
meeting scheduling, whefan organization wants to maximize the value of
their employees’ time while maintaining the privacy of informatightah-
eswaran et al., 2004) .

This emphasis on privacy has led to significant increasing interest in DisCSP
and DCOP for its applications in software personal assistant domains (Bowring
et al., 2005; Berry et al., 2005; Maheswaran et al., 2004; Modi and Veloso,
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2005; Hassine et al., 2004; Silaghi and Mitra, 2004). One approach to pro-
vide privacy in DisCSPs has been to use cryptographic technigues (Yokoo
et al., 2002), but the required use of multiple external servers may not al-
ways be desirable, available or justifiable for its benefit (see Section 6 for
further discussions). Instead, a second approach has attracted significant at-
tention, where researchers have begun providing metrics for quantifying the
privacy loss in DisCSP algorithms (Franzin et al., 2004; Silaghi and Falt-
ings, 2002; Meisels and Lavee, 2004). If we can guarantee a limited privacy
loss in specific DisCSP algorithms in the first place, then additional crypto-
graphic techniques are unnecessary. Unfortunately, these privacy approaches
are based on DisCSPs and they are notimmediately portable to DCOPs which
optimize rather than satisfy. More importantly, there is a lack of a principled
guantitative framework that would allow us to express and constrtifereint
metrics for measuring privacy or to understand the relationship among these
metrics. It is also dficult to identify dimensions along which to derive new
metrics in a principled fashion, whether in the context of DCOPs or DisCSPs.
This article provides three key contributions to address the above short-
comings. First, we propose Valuation of Possible States (VPS), a unifying
guantitative framework to express privacy loss in multiagent settings. Quan-
tification of privacy loss in VPS is based on other agents’ estimates about an
agent’s possible states before and after a protocol is engaged. In particular,
within VPS, privacy is interpreted as a valuation on the other agents’ esti-
mates about the possible states that one lives in. VPS is a general framework,
which enables existing metrics to be re-cast within the framework for cross-
metric comparison. VPS also helps us identify dimensions along which to
construct and classify new privacy metrics. Second, we develop techniques
to analyze and compare privacy loss in DCOP algorithms; in particular, when
using approaches ranging from decentralization (SynchBB (Hirayama and
Yokoo, 1997), partial centralization (OptAPO (Mailler and Lesser, 2004)), as
well as centralization. This involves constructing principled sets of inference
procedures under various assumptions of knowledge by the agents. Third,
we generate and investigate several distributed meeting-scheduling scenarios
modeled as DCOPs, where we are able to perform a cross-metric comparison
of privacy loss in these three approaches. We detail extensive experimen-
tal results presented on two sets of assumptions about real-world meeting
scheduling scenarios, one in which agents possess knowledge of the dis-
tributed constraint graph and another one which introduces uncertainty in this
knowledge. Key implications of our experiments are as follows: (i) Decentral-
ized approaches for constraint optimization do not automatically outperform
centralized approaches with respect to privacy loss, a result that consistently
holds over many metrics and scenarios; in our experiments, privacy protec-
tion is shown to have improved in the presence of uncertainty about agents’
knowledge of the constraint graph. (ii) The qualitative properties of privacy
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loss can vary widely depending on the metric chosen. For example, privacy
loss may increase or decrease as a function of the length of the schedule
depending on which metric one chooses. More significantly, they can rank
the efectiveness of privacy protection due to various algorithmic approaches
differently based on metric. Thus, one must carefully justify any metric used.
The rest of this paper is organized as follows. Section 2 outlines the VPS
framework and illustrates its ability to unify the expression of existing metrics
in a common language. Section 3 describes a distributed meeting scheduling
problem model and discusses how it can be solved as a DCOP. In Section 4,
we introduce several fierent metrics for privacy loss applicable for the meet-
ing scheduling problems expressed as DCOPs. We also describe how privacy
loss occurs in a variety of methods for solving DCOPs, including inference
procedures for distributed approaches. Section 5 presents the experimental
domains and results when applying inference aftédint metrics. In Section
6, we discuss related work, and in Section 7, we present some concluding
thoughts.

2. Valuations of Possible States

Given a setting where a group of agents, each representing a single user, must
collaborate to achieve some task, each agent must be endowed with some
private information about its user to ensure that it accurately represents their
status, capabilities or preferences in the joint task. The goal is to understand
privacy loss in collaboration where multiagent negotiation protocols neces-
sarily lead to revelation of private information. In this section, we describe
the Valuation of Possible States (VPS) framework which provides a founda-
tion for expressing various instantiations of privacy metrics and demonstrate
its ability to unify by capturing existing metrics proposed by the agents re-
search community within the same framework. Privacy generally represents
the notion of minimizing the information about some aspect of an entity in
others’ beliefs about that entity. In this paper, we will use the tagants

to refer to such entities with private information engaged in a collaborative
effort, thoughpeopleor userscan be equivalently substituted. We model the
intuitive notion of privacy of an observed agent as a function over a probabil-
ity distribution over a state space, where the distribution constitutes observer
agents’ models of the observed agent’s private information. We begin with an
example which we will refer to throughout the exposition.

EXAMPLE 1. Meeting Scheduling.Consider a scenario where three agents
(A,B,C) have to negotiate a meeting for either 9:00 AM or 4:00 PM. Each
agent has a preference or availability denoted by O or 1 for each time. Before
negotiation, all agents will have some beliefs about the preferences of other
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agents. After negotiation, agents will alter these beliefs due to inferences they
make from the messages received. The privacy loss due to the negotiation is
generally the dference, according to some measure, between the initial and
final beliefs.! o

2.1. RAMEWORK

To express VPS more formally, let the private information of itheagent

be modeled as a statg € S;, whereS; is a set of possible states that the
it agent may occupy. For simplicity, we assume t{ﬁu}i'\il are discrete
sets, though these ideas can be extended to continuous setd\ hkethe
number of agents who are indexed by the set= {1,...,N}. In Exam-
ple 1, each agent is in one of four states from the state space Sg =

Sc = {[00],[0 1],[1 O], [1 1]}, where the elements of the vector denote the
preference for 9:00 AM and 4:00 PM, respectively. Then,

S_j :ZS]_XSzX"'XSJ’_1XSJ‘+1X"'XS|\|_1XSN,

is the set of all possible states of all agents excepj'thegent. Thgt" agent
knows that the other agents’ private information is captured by an element of
the setS_;. In Example 1, agent A models agents B and C as an element of
the setS_p = Sg x Sc whereSg = S¢ = {[0 0],[0 1],[1 O],[1 1]}. Since

an agent does not know the private information of other agents exactly, we
can model thg™ agent’s belief as a probability distribution over the possible
states of all other agents denotecPéeS_j). Given that we have discrete sets,
we will have a probability mass function,

PI(S_) = [PI(B) - PI(E) - PI(3,)].

wheres € S_j is a possible state of all other agents. Therekare: I1,.|S;]|
possible states and since the vector is a probability mass function, we have the
conditionsP!(&) > 0, Yas_, P/(§) = 1. In Example 1, agent A's knowledge
of the other agents would be a probability vector of length = 16, i.e.
PAS_a) = [PA(Z) --- PA(31e)]. The statesd,, . . ., 516} map isomorphically
to{[0000]---,[1 111} which captures the possible states of agents B
and C. The states of other agents are represented jointly because information
about multiple agents can be coupled in a single message.

Thus, an agent’s knowledge of other agents can be represented by a joint
probability mass function over the product set of possible states of all other
agents. Thg'" (observer) agent’s knowledge of a particular agent, say the

1 The term negotiation in this example and throughout the rest of this paper alludes to
the interaction that occurs among agents in the DigDSEPP algorithms that are analyzed.
However, the VPS framework is not limited to DisGBROP algorithms.
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it (observed) agent, is then the marginal probability of this distribution with
respect ta, as follows:

P/(S) = [P(s1) - P(s) - P)(s,)], (1)
seSi, Ko=ISi, Plis)= > Py
%S_j:§=5

wheres refers to the state of tH& agent in the tuple & S_j. In Example 1,
the probability that agent A thinks that agent B is in the state [0 1] is the
sum of of the probabilities that it thinks agents B and C are in the states
{{0100}[0101][0110][0111].

The knowledge that othéd — 1 (observer) agents have about tRegob-
served) agent can then be expressed as follows:

Pi(Si) = [PH(Si) PAS) --- PIXS) PIYS) - PNYS) PN(S)]

where]PiJ(Si) is as defined in (1). In Example 1, the information other agents
have about agent A BA(Sa) = [IPE(SA) ng(SA)]. The above model assumes

that agents do not share there information or estimates about other agents, i.e.
there is no collusion to gain information, and the beliefs are independent. If
sharing does occur, th@F(Si) denotesG’s belief about thé!" agent, where

G c N is a group of agents that share information to obtain a better estimate
of theih agent’s state, wheliez G. In this caséP;(S;) would be composed of
group estimatePiG(Si) whereG is an element of the power set &f. These
concepts can be extended to the case where the beliefs of observer agents or
groups of observer agents are not independent.

Thei" agent can then put a value for each distribution that the collection of
other agents could hold, yielding a value functigr(PP;(S;)). A simple value
function is the number of possible states that other agents have not elimi-
nated (i.e. states with nonzero probability). If an observed agent's valuation
of privacy treats each observer agent’s beliefs independently, we can represent
Vi(Pi(S)) = X« V](P!(S)) whereV/(-) is the valuations of privacy with
respect to thé!" observing agent. Given these assumptions and incorporating
the number of remaining possible states as a metric, we have

MUICYEDIPIYININES )

j#i S€S;

wherely, is an indicator function. This is just one possible metric expressed
in VPS, and additional metrics for meeting scheduling will be discussed in
Section 4.

An agent’s privacy loss during a negotiation is thfetience in the valua-
tions of the observer agents’ beliefs before negotiations and their beliefs after
the negotiation. IfP; o(S;) is the probability distribution that observer agents
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Figure 1. VPS Flow Diagram

attribute to thei™ agent before negotiation ari| £(S;) is the probability
distribution that observer agents attribute to tfeagent after negotiation,
then the privacy loss for th& agent is

Vi(Pio(Si)) - Vi(Pir(Si)).

The privacy of the system is indicated by some funcfi¢¥, - - - , V) which
aggregates the individual valuations of possible states for the entire set of
agents. A flow diagram for the VPS framework is displayed in Figure 1.

EXAMPLE 2. Privacy Loss in Meeting SchedulingConsider the scenario
proposed in Example 1, where the valuation function for all agents are as
described in (2) and the aggregation function is:

f(Va, VB, V) = Va() + Va(-) + V().

Let us say that the preferences of the agents are denoted by the states s

ss = [0 1] and g = [0 0]. Before a multiagent coordination protocol be-
gins, the agents have no information about the other agents, i.e. each state
is equally likely. Thus, agent A's model of agents B and C are captured by
PA(S_a) Where P\(s_p) = 1/16,¥s_a € S_a, which implies that agent A’s
model of agent B statesé[—‘sg) = 1/4,¥Ysg € Sg. The same is true for
agent A's model of agent C. With analogous belief structures for agent B
and agent C, we can calculate the individual privacy level before negotia-
tion for all agents as 8 (the sum of states with positive probabilites in the
beliefs of the two observing agents), and the system privacy level as 24. Let
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us say that after the protocol has terminated, and inference has occurred
by analyzing the exchanged messages, agent A's model of others has been
reduced to P([0 1 0 0]) = 1/2 and P*([0 0 0 1]) = 1/2; agent B’s model

of others is analogous to that of agent A; agent C has narrowed its belief to
PS([0 1 0 1]) = 1. This implies that B([0 1]) = 1/2 and P&([0 0]) = 1/2,

with the same distribution for agent A’s model of agent C. Again, agent B’s
model of agent A and agent C are analogous to that of agent A's model of
agent B and agent C. Agent C, however, h&$[® 1]) = P§([0 1]) = 1.

After negotiation, the valuation of privacy for agents A and\B&\(Pa(Sa))

and Vg(Pg(Sg)), respectively) has now been reduced to 3, while agent C's
valuation of privacy is at 4; the system privacy is at 10. Since the individual
privacy level varies from 2 to 8, agents A and B have lost (B3) = 56

of their privacy, while agent C has lost (848)2)= 2/3 of its privacy. The
system privacy level varies from 6 to 24, so during this collaboration, the
system privacy loss was (24-A@%-6)=7/9 of the maximum possible loss.

This example shows how normalization will be a key element of VPS
when engaging in cross-metric comparison. In this paper, as in the example,
in any fixed scenario, we assume that all agents employ the same valuation
function (which may vary over scenarios). The valuation function is homoge-
nous with respect to all observers and the aggregation function is simply the
arithmetic average of the individual valuations. Thus, when we measure loss
in system privacy, it is the average loss in privacy among all the agents in the
system, i.e. the dlierence between the average privacy level before negoti-
ation and the average privacy level after negotiation. We note that VPS is a
theoretical framewaork for capturing privacy loss. In practice, agents may not
have to computational or storage ability to record and analyze their exchanges
in this manner, especially in large-scale systems. However, our goal is to
study the privacy loss inherent in the algorithms and thus, ignore complexity
and bounded rationality issues that could mask their privacy loss.

2.2. NIFICATION

One of the motivations for introducing VPS was to build a unifying frame-
work for privacy. A successful model must then be able to capture existing
notions of privacy. In this section, we show that VPS indeed passes this test
by representing three metrics proposed by prominent researchers in the field
within our framework. While some of the metrics were expressed quantita-
tively, by presenting them in VPS, we connect them to a common fundamen-
tal framework which facilitates cross-metric comparison.

— In (Silaghi and Faltings, 2002), they consider Distributed Constraint
Satisfaction Problems (DisCSPs) where agents have a cost associated
with the revelation of whether some tuple of values (such as a meeting
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location and time) is feasible (i.e., the agent’s user is willing to have a
meeting at that place and time). The agents begin exchanging messages
and each agent pays a cost if the feasibility of some tuple is fully deter-
mined by other agents. This continues until a solution is reached or to
the point where the cost of a tuple whose feasibility is about to be fully
revealed is greater than the potential reward of the collaboration. If the
latter occurs, the negotiation is terminated. Putting this in VPS form, we
haveS; is the set of all vectors of lengfhi whose components are either

0 or 1, whereT; is the cardinality of all tuples of th&" agent. That
agent is then characterized by some elenseatS; wheres (t) denotes

the feasibility of tupld. This metric of privacy can expressed as:

Ti
Vi(PP(S)) = Z ci(t) [I{]PiG(Si‘):O} + |{1PiG(s}):1}]
t=1
whereG = N\ i, ¢i(t) is the cost of revealing tupke I, is an indicator
function,

S!:={s €Si:s() = 0}, andPP(S) = " PE(9).

seS!

Since revelation for thé" agent is considered with respect to informa-
tion gathered by all other ager® we consider the joint knowledge of

all other agentsiPiG. The expression for the valuation captures that a cost
ci(t) is paid whenever the feasibility of that tuple has been identified. The
expressions inside the indicator functions capture whether a tuple has
been identified by seeing if the probability on a tuple being identified as
available is zero or one, i.e. anything else would indicate a distribution
on more than one possibility.

In (Franzin et al., 2004), Franzin, Rossi, Freuder and Wallace consider
a distributed meeting scheduling problem, where each agent assigns a
preference from the discrete 46t1,0.2,...,1} to each locatioftime-
slot combination. The measure of privacy loss is entropy with respect
to the size of the possible state space that can exist. Thus, in ${PS,
is the set of all vectors of length;L; whereT; is the number of time
slots andL; is the number of locations, where each component of the
vector can take one of 10 values. Privacy metric, which applies entropy
to the uncertainty in valuation for each particular locatiaime-slot
combination, can be expressed as:

TiL; 10

2= | esi:s =j/10 PC(s(K)=j/10)>0
Vi(]PiG(Si)) o Z'ng j=1 '{maxg es;:5 (k=j/10 P (s (K)=/10)>0}
= 10




10 Maheswaran, Pearce, Bowring, Varakantham & Tambe

whereG = N \i is the set of all agents except tifeagent as information
sharing is part of the assumption in privacy loss. The indicator function
in the numerator is because the authors consider whether a particular
valuation has been eliminated as viable for a time slot, hence the key
difference is whether the probability is positive or zero. When assigning
uniform probability over viable time slots, the probability multiplier be-
fore the log in the entropy function is eIiminateﬂi'll(l/N)log(l/N) =
log(1/N)). The 10 in the denominator indicates that all 10 preferences
are possible at the beginning of negotiation.

— In (Silaghi and Mitra, 2004), Silaghi and Mitra present a privacy model
for a setting where each agent has a cost for scheduling a particular
meeting at a particular time and location. They propose a model where
agents can share information among each other. The privacy metric is
the size of the smallest coalition necessary to deduce a particular agent’s
costs exactly. In VPS, each agent’s private information is modeled as an
elements of the setS; which is the set of all vectors of lengiL; M;
whereT; is the number of time slotd,; is the number of locations
and M; is the number of meetings. The components of the vector are
some elements of a finite set of costs. Even this distinctive model can be
captured in VPS as follows:

Vi(Pi(S)) = gwelg |G| where

G = {G CN: Z PS(s)log Pe(s) = O}.
SES;
The setG is the set of all coalitions that have deduced itheagent’s
costs exactly. Deducing the costs exactly is identical to saying that the
entropy of the knowledge distribution is zero. If the entropy measure on
IPiG is zero, then the estimate of the graBmbout the™™ agent must be a
delta function (all probability on one state) and thereforethagent’s
state is known exactly by the gro Alternately, we could define

G = {GCN: ]_I(l—PiG(s)):O}.

S€S;

The fact that VPS can capture such a diverse set of metrics indicates not
only its ability to unify expression of privacy but also that it mathematically
represents the basic and intrinsic properties of privacy.
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3. Distributed Meeting Scheduling Model

To investigate VPS in a relevant privacy problem, we apply it to a personal
assistant agent domain: distributed meeting scheduling. Here, we have an
environment where private information must be exchanged to obtain a team-
optimal solution, i.e. an optimal schedule. However, we also wish to minimize
the privacy lost through inference from the messages sent in any multia-
gent negotiatioftoordination protocol. We present here the distributed multi-
event scheduling (DIMES) model presented in (Maheswaran et al., 2004)
that captures many fundamental characteristics of distributed scheduling in
an optimization frameworkk We then describe how we can map the DIMES
problem to a distributed constraint optimization problem (DCOP), which can
be solved by agents on a structure that prevarmisori privacy loss.

3.1. DMES

The original DIMES model mapped the scheduling of arbitrary resources.
Here, DIMES is instantiated to address a meeting-scheduling problem. We
begin with a set of peopl® := {Ry, ..., Ry} of cardinalityN and an event set
& = {(EL,...,EX)} of cardinalityK. Let us consider the minimal expression
for the time interval Teariiess Tiatesd OVer which all events are to be scheduled.
Let T € N be a natural number amilbe a length such that - A = Tiatest—
Tearliest We can then characterize the time domain by th&set {1,..., T}
of cardinalityT where the elemerite 7 refers to the time intervallpariiest+
(t—1)A, Tearliest+tA]. Thus, a business day from 8AM - 6PM partitioned into
half-hour time slots would be representedby= {1, ..., 20}, where time slot
8 is the interval [11:30 AM, 12:00 PM]. Here, we assume equal-length time
slots, though this can easily be relaxed.

Let us characterize thé" event with the tupleEX := (AX, L¥; V¥) where
AK c R is the subset of people that are required to attéde 7, is the
length of the event in contiguous time slots. In a meeting scheduling, an event
is characterized by its attendees, the duration and the importance of the event
to its attendees. The heterogeneous importance of an event to each attendee
is described in a value vectd. If R, € AX (R, is a required attendee of the
kih event), therVk will be an element o¥/* which denotes the value per time
slot to then" person for scheduling evekt Let VO(t) : 7 — R* denote the
n" person’s valuation for keeping time skdree (or committed to its current
status). These valuations allow agents to compare the relative importance of
multiple events to be scheduled, and also to compare the importance of an
event to be scheduled to the current value of a particular time slot.

2 While we choose DIMES as itfkectively captures our example domain of meeting
scheduling, VPS and the analysis in the following sections are not DIMES-dependent and
can be extended to other models (Sadeh and Fox, 1996; Liu and Sycara, 1996).
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Given the above framework, we now present the scheduling problem. Let
us define a schedul® as a mapping from the event set to the time domain
whereS(EX) c 7~ denotes the time slots committed for evknall people in
A must agree to assign the time sIS&EX) to eventEX in order for the event
to be consideredcheduledthus allowing the people to obtain the utility for
attending it. This assumption also could be relaxed in an extended framework.

Let us define a person’s utility to be theffédrence between the sum of
the values from scheduled events and the aggregated values of the time slots
utilized for scheduled events if they were kept free. This measures the net gain
between the opportunity benefit and opportunity cost of scheduling various
events. The organization wants to maximize the sum of utilities of all its
members as it represents the best use of all assets within the team. Thus,
we define the fundamental problem in this general framework as:

m@{i 2 2 (Vﬁ—v&t))}

k=1 neAk teS(Ek)

such thatS(EX) N S(EX) = 0 Vki, ko € {1,..., K}, kg # ko, At 0 AR % 0.
Intuitively, we want to schedule the meetings that are most important using
the least valuable time slots, while making sure that all attendees can attend
without creating any conflicts.

3.2. PEAV-DCOP

Given a problem captured by the DIMES framework, we need an approach
to obtain the optimal solution. As we are optimizing a global objective with
local restrictions (eliminating conflicts in resource assignment), DCOP (Modi
et al., 2003) presents itself as a useful and appropriate approach.

A DCOP consists of a variables s&t= {xi,... Xy} distributed among
agents where the variablgtakes a value from the finite discrete domBin
The goalis to choose values for variables to optimize the aggregation of utility
functions, each of which depend on the values of a particular subset of vari-
ables inX. If all the utility functions depend on exactly two variables, it can be
modeled with a graph, where nodes represent variables and utility functions
can be captured as edge weights. For each dadged E, (whereE denotes
a set of edges whose endpoints belong to a set isomorplxy, twe have a
function fij(x;, Xj) : Dj x Dj — R. Our goal is to choose an assignmaht
A := D1 x --- x Dy, such thag* = arg MA%eA (i, j)eE fij (xi =a,Xj = aj).
Figure 2 shows a DCOP structure where each variable must choose from
an identical two-value domain and the global objective function is captured
through four edges with identical constraint utility functions.

Our challenge is to convert a given DIMES problem into a DCOP. We
choose to convert to a DCOP with binary constraints as all prominent fully
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Figure 2. DCOP Structure

decentralized algorithms in the community depend on a binary graph. We
may then apply any type of algorithm developed for DCOP to obtain a so-
lution. In (Maheswaran et al., 2004), three DCOP formulations for DIMES
were proposed. The formulation chosen witlegt privacy loss because each
variable must have knowledge of the constraint utility function between it and
all other connected variables. These constraint utility function may contain
private information depending on the formulation.

EXAMPLE 3. Consider the scenario with three agents,(B, C}) trying to
schedule two meetings where the attendees for each meeting ar¢AAB}

and & = {B,C}. The EAV (Events As Variables, where there is one variable in
the DCOP for each meeting) and PEAV (Private Events As Variables, where
the DCOP has multiple variables for each meeting, one for each attendee)
DCOP graphs for this problem are shown in Figure 3. In the EAV formula-
tion, we have a variable representing,Fand one agent would have to reveal

all its private information to another (say B to A). Similarly fo?,BB or C
would have to obtain all private information about each other. Furthermore,
since this information would have to lie on the constraint between the two
variables, both agents controlling each variable would have full knowledge
of all private information before any DCOP algorithm even began. If for
EL, agent A revealed its private information to agent B, and féy &gent

C revealed its private information to agent B, then it would be identical to a
centralized solution. However, in the PEAV formulation, because each agent
creates its own variable for each event, private information can be stored on
internal constraints while inter-agent constraints simply enact a large penalty
if event times disagree and are zero otherwise. Formulations analogous to
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EAV PEAV

Agent A Agent A Agent C

=) [CH) A

Agent B
AB H BC

Agent B

Figure 3. EAV and PEAV DCOP graphs for AB and BC events

PEAV have been utilized by others for the sake of privacy when investigating
meeting scheduling in DisCSP formulatiohgjsels and Lavee, 200Modi
and Veloso, 20060

To utilize PEAV, we occasionally have unary constraints for agents who
are attendees for only one event. Thus, we create a “dummy” variable which
takes on a single value, to ensure having the private information on an internal
constraint. As we are investigating privacy, we choose the PEAV formulation,
which was created such that there would be no loss of private information
prior to negotiation. The details of constructing the PEAV constraints are
discussed in (Maheswaran et al., 2004). Thus, given events and values, we
are able to construct a graph and assign constraint link utilities from which a
group of personal assistant agents can apply a DCOP algorithm and obtain an
optimal solution to the DIMES problem.

4. Privacy

In this section, we address privacy loss when applying DCOP algorithms to
scheduling problems in the DIMES model. We first generate several instan-
tiations of valuations to quantitatively measure privacy levels and express
them in the VPS framework. In addition, VPS helps identify dimensions by
which we can map and compare the various metrics. We then discuss how
privacy is lost due to the mechanics of the DCOP algorithms, including de-
tails about how inference is conducted on messages passed in a distributed
protocol. We use algorithms from three areas: a centralized one, a partially
centralized one, and one that attempts full distribution. We select OptAPO
(Mailler and Lesser, 2004) from the partially centralized space because it is
the primary and prominent member of that class. For the distributed case, sev-
eral candidates are available. We focus on SynchBB (Hirayama and Yokoo,
1997) because (i) as a synchronous algorithm with fewer messages than its
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asynchronous counterparts, it provided an illustrative testbed for privacy loss
analysis; (ii) its fewer messages were hypothesized to lead to lower privacy
loss; (iii) it was simpler to express the impact of uncertainty and quantify
inference.

4.1. Ruavacy Metrics ForR PEAV-DCOR ror DIMES

The initial task is to identify the information that an agent should consider
private, i.e., the data that identifies the state of its human user. In DIMES, it
is clear that the valuation of timé/,io(t), explicitly captures the preferences
that will be used in the collaborative process. Users may wish to keep these
preferences private as it may reveal whether there are important individual
activities going on in particular time slots, or because it reveals their prefer-
ences for working early or working late. In addition, the rewards for attending
various eventssVi" . i € A4 is another component that agents may wish to
keep private. For the sake of simplicity, we will assume a setting where event
rewards are public, though the analysis can be extended to capture situations
where this information is private (if the event rewards are private, our analysis
could assume that these rewards take values over some known set with some
givena priori distribution). IfViO(t) € V where?V is a discrete set and there
areT time slots in a schedule, the stafeof thei" agent is an element of the
setS; = VT and can be expressed as a vector of lefytihis is because
users have assigned a valuation franto each of theiil time slots based on

their preferences.

Before negotiation, each agent knows only that each of the other agents
exist in one of|'V|" possible states. After negotiation, each agent will be
modeled by all other agents whose estimate of the observed agent is captured
by IP;(S;). The question now is how an agent should assign values to these es-
timates of possible states through which others see it. The method introduced
in (Silaghi and Faltings, 2002) does not apply here because we are not in a
pure satisfaction setting and the method in (Silaghi and Mitra, 2004) is not
viable because information sharing is not an appropriate assumption in this
domain.

4.1.1. Entropy-Based Metrics

We do consider the entropy-based metric introduced in (Franzin et al., 2004)

and captured in VPS in Section 2.2. We remove the fakctdhat captures

location and adjust to account for privacy loss to lack of information sharing:
VI

i Z:m=1 I{ma P’ =
esis(k=m P} (5 (K)=m)>0}
Vi(R(S)) = ) ) log, e ®)
=

We extend this to the case where entropy is applied to the distribution over
the entire schedule as opposed to time slot by time slot. The “entire schedule”
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case has a single joint distribution over each possible valuation assignment
for all time slots, while the “time slot by time slot” case is an aggregation
of distributions for each time slot, where each distribution has support over a
single time slot. In this case, we have

v,
Lim-1 I{]Pij(sm)>0}

T (4)

Vi(Pi(SD) := ) log,
j#i
Using entropy, it is possible for the privacy loss to get arbitrarily high as
the number of initial states increases (dueTtor |'V|). To facilitate cross-
metric comparison, we shift and normalize each mé¥tie 1 + 'V, with an
appropriate constamt so that the valuation for the worst-case privacy level,
i.e. the case where the entire schedule is known, is zero and the ideal level is

one.

4.1.2. Proportional Metrics
Due to the nature of the messaging in DCOPs, the most typical form of infor-
mation gathered is the elimination of a possible state. Thus, a straightforward
choice forV; would be
VitPi(S)) = ) > picrsol (5)
j#l S€S; I
which can be extended to a time-slot-by-time-slot version:
T |V

VitRI(SD) = D, D D ima eyl (8(0-m0 ®)
j# k=1m=1

wherel, is an indicator function. The first essentially aggregates the number
of states that have not been eliminated by an observing agent in the system.
The second aggregates the number of valuations (per time slot) that have
not been eliminated. We can scale both functions with a transformation of
the formV = «(V — B) with appropriate choices af andg such that the
valuations span [0 1] with zero being the worst level and one being the ideal
level of privacy.

4.1.3. State-Guessing Metrics

We note that the metrics above are linear functions in possible states. Con-
sider when one agent has been able to eliminate one possible state of another
agent. The observed agent may not value that loss equally if the observer went
from 1000 states to 999, as opposed going from 2 to 1. To address this idea,
we introduce the following nonlinear metrics for privacy:

Vi(Pi(S)) = Z [1 ;] (7)

T Zssi lpigso
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and its per-time-slot analogue:

.
ViPi(S) = )] > |1~ : - @

L ZVV\ .
j# k=1 m=1 {ma)(fiesi:q(kkmlpij(3(k):m)>0}

These valuations model privacy as the probability that an observer agent will
be unable to guess the observed agent’s state accurately given that their guess
is chosen uniformly over their set of possible states for the observed agent.
For the first, the other agents are trying to guess the entire schedule accurately
while in the second they are guessing time slot by time slot. Again, we can
scale both functions with a transformation of the fokn= «(V — B) with
appropriate choices af andg such that the valuations span [0 1] with zero
being the worst level and one being the ideal level of privacy. We note that all
the metrics here can be written as

Vi(Pi(S)) = Y VI(Pl(S)

j#

whereV!() represents thié agent's valuation of privacy loss to th& agent.
Because of the normalization of an agent’s privacy level to fall within [0 1]
and the fact that each observer agent contributes equally to privacy level, the
privacy level calculated from any single observer agent falls WithiFkFBl—].

We refer to the metrics presented here as EntropyTS (3), EntropyS (4), Pro-
portionalS (5), ProportionalTS (6), GuessS (7) and GuessTS (8) where the
numbers in parentheses refer to the equations that characterize them.

4.1.4. Classification

The advantage of the VPS framework is that we can take these six metrics and
map them into a common space which allows us to identify dimensions along
which we can classify privacy metrics. This can be useful in discovering new
directions for generating metrics and uncovering gaps in existing metrics.
In our case, there are two distinct dimensions that appear: (i) state-space
partitioning, and (ii) degree of nonlinearity. The first dimension is revealed
in the bifurcation between judging privacy by schedule versus by time slot.
In VPS, this amounts to deciding how to partition the state space into in-
dependent supports on which privacy loss will be evaluated. For privacy by
schedule, we take the entire state space, while for privacy by time slot, we
filter the state space to evaluate the privacy loss in time slot independently.
Thus, for this and other domains, identifying the independence in state space
is a dimension to classify or generate privacy metrics. The second dimen-
sion is the degree of nonlinearity of the valuation applied to the part of the
state space being evaluated. In our case, we have three types of valuations:
linear (ProportionalS, ProportionalTS), asymptotic (GuessS, GuessTS) and
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Figure 5. Degree of nonlinearity of metrics for (a) 20 states and (b) 400 states

logarithmic (EntropyS, EntropyTS). A table showing a classification of the
metrics generated here along the dimensions mentioned above are displayed
in Figure 4. Another key principle whose identification was facilitated by VPS
was the importance of normalization in cross-metric comparison. Using our
normalization to [0 1], we display the degree of nonlinearity of the various
functional types in Figure 5. We see that as the number of states increase, the
effects of the relative nonlinearities increase as well.

Finally, we must determine which function to use for the system privacy
level. For simplicity, in this paper, we choose the arithmetic mean of the
individual privacy levels, i.e.:

1 N
f(Vi. Vi) = 5 D Vi),
i=1

This reflects the notion that the privacy of all agents are equally valued in the
system. Heterogeneous importance of agents could be addressed easily with
a weighted sum over individual valuations.

4.2. Ravacy Loss n DCOP ALGORITHMS

We now apply these metrics to DCOP algorithms. We considepdangally
centralized algorithmOptAPO and thelistributedalgorithm SynchBB (Hi-



Privacy Loss in Distributed Constraint Reasoning 19

rayama and Yokoo, 1997). In addition, we address a baseline that is missing in
much privacy analysis, which is tteentralizedsolution. As detailed earlier,

one of the main arguments for distributed solutions is the need to protect pri-
vacy. However, by ignoring centralization in analysis, the implicit assumption
is that decentralization would automatically yield better privacy protection.
Consequently, itis important to identify if and when this argument is justified.
The metrics generated under the VPS framework give us an opportunity to
compare various classes of protocols (centralized, partially centralized, de-
centralized) for a relevant problem (meeting scheduling) in a guantitative and
rigorous manner.

4.2.1. Centralized
In an N-agent example, before any information is exchanged, all observers’
models of an observed agent will not be able to eliminate any states, i.e,
Vi‘(-) = 1/(N — 1) due to our normalization. Thus, the privacy level of all
agents will beV;(-) = 1. Then, the system level of privacy will also bg) =
1. In a centralized solution, one agent will receive a set of utility change
values Delta]!‘(t)}, wherei denotes the agerkdenotes the event andenotes
the time slot. Each utility change vaIuA}f(t) = Vik - Vio(t), represents the
utility gain or decrease to th& agent for scheduling thié" event at timet.
Because the event rewarc{n‘s(,"} are public, the centralized agent can calculate
{Vio(t)} for all other agents (if event rewards weren'’t public, we could apply
some probabilistic analysis). After this solution is reached, the central agent’s
privacy level remains aV:(-) = 1, as he has not revealed anything. For all
other agents, they have revealed their state exactly to one agent while the
remainingN -2 observer agents have exactly the same knowledge as they had
before information was exchanged. Tha#, (-) = 0 andV)(-) = 1/(N - 1)
for j # j*. The privacy level of these agents after centralization is:

N-2 N-2

Vi =V O+ Y VIO =0+ 57 = Ty
j#.jr

The system level of privacy of all agents after centralization is:

N-1

1
O=§ N

Vii()+ > Vi()

%7

1 N-2
=N(1+(N—1)m):

which implies the privacy loss due to centralization jN1This is the case

for all the metrics we presented as they were all normalized to have the same
ranges. Thus,/N is the baseline by which we must evaluate privacy loss in
other algorithms.

EXAMPLE 4. For the problem considered in Example 3, given our nor-
malization, an observed agent has potentially one unit of privacy to lose in
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total, which translates to losing)/(N — 1) = 1/2 to each observing agent, if
they discover the exact state of the observed agent. If we use centralization,
with agent B as the central agent, agent A will log2 tb agent B, and 0

to agent C; agent C will lose/2 to agent B and 0 to agent A; agent B will

not lose any privacy. The system privacy level after centralization is then
[Va(:) + VB() + Ve()]/3=1[1/2+ 1+ 1/2]/3 = 2/3 which is a privacy loss
of1/3=1/N.oO

4.2.2. Partially Centralized: OptAPO
As in the centralized case, due to our normalization the system level of pri-
vacy before the protocol has startedfig) = 1. In Optimal Asynchronous
Partial Overlay (OptAPQO) (Mailler and Lesser, 2004), there is an initial phase
where agents exchange their constraints with all their neighbors. In our case,
these constraints contain utility change informatimf(t)} described earlier)
from which the private valuations of time can be deduced given public knowl-
edge of event rewarda(t) = VK — VO(t)). The dynamics of OptAPO after
the initial phase are not deterministically predictable. It is possible that by the
end, all agents will be able to learn each others’ preferences. However, it is
also possible that the privacy loss may remain at the same level as after the
initial phase. For purposes of analysis, we will assign to OptAPO the privacy
loss after the initial phase, which is a lower bound on actual privacy loss.

Let L; denote the set of agents who have links vifttagent in the DCOP
graph, i.e., there exists a constraint between some variable fo¥ thgent
and some variable for thg" agent for allj € Lj. After the initial phase of
OptAPO, we hav&/!(-) = 0 for j € Lj andV/(-) = 1/(N - 1) for j € {LE \ i},
whereLiC is the set complement adf; (we remove the elememntbecause an
agent does not measure privacy loss with respect to itself). This yields the
privacy level of thé™™ agent after the initial phase of OptAPO as:

vo=3vior 3 Vo= 3 =t

jeLi jeLE, ji je(LC\i}

which states the privacy level is the percentage of observer agents who are
not neighbors of th&" agent. Then the system privacy level after the initial
phase of OptAPO is

19 1TOHLC 1 S N-2 N-2
f0=J2Vi0=§ 2 N=1 SNAN-1-N-1

where the inequality is because at best each agent will lose all information
to only one neighbor. BecausH ¢ 2)/(N — 1) < (N - 1)/N for N > 1, we
have that OptAPO will always have worse privacy loss than centralization.
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Due to the normalization, this will be true for all the metrics we presented.
Thus, if privacy protection is the main concern for a group of agents, it would
be better for them to use a centralized solution rather than use OptAPO.

EXAMPLE 5. Let us consider the problem in Example 3 when using Op-
tAPO under the PEAV formulation shown in Figure 3. As in the centralized
case, given our normalization, an observed agent has potentially one unit
of privacy to lose in total, which translates to losidg(N — 1) = 1/2 to

each observing agent, if they discover the exact state of the observed agent.
In the initial phase of OptAPO, agents will share their internal constraints
with their neighbors. Thus, agent A will los@ X0 agent B, and 0 to agent

C, and agent C will lose/2 to agent B and 0 to agent A, which is the same
as centralization. However, in OptAPO, agent B will log2 tb agent A and

1/2 to agent B. The system privacy level after OptAPO will then be at most
[Va() + VB() + Vc()]/3 = [1/2+ 0 + 1/2]/3 = 1/3, (assuming no more
information is gained after the initial phase), which is a privacy loss of (at
least)2/3. O

One reason for this phenomenon is that OptAPO was designed with speed
of convergence as opposed to privacy in mind. However, it is important to
note that the (partial) decentralization did not by itself protect privacy. We
note that for more complex problems where there are multiple intra-agent
constraints, it may be possible to prevent full privacy loss in the initial phase
of OptAPO. Also, we note that our metric weights privacy loss equally with
regard to the agent to whom privacy was lost. In some situations, where the
weights are heterogeneous (an agent would prefer to tell certain agents about
their preferences over other agents) and the central agent is chosen poorly,
OptAPO may yield lower privacy loss than a centralized solution.

4.2.3. Decentralized: SynchBB

An algorithm used for solving constraint satisfaction and optimization prob-
lems in a distributed setting is Synchronous Branch and Bound (SynchBB)
(Hirayama and Yokoo, 1997). This approach can be characterized as sim-
ulating a centralized search in a distributed environment by imposing syn-
chronous, sequential search among the agents. First, the constraint structure
of the problem is converted into a chain. Synchronous execution starts with
the variable at the root selecting a value and sending it to the variable next in
the ordering. The second variable then sends the value selected and the cost
for that choice to its child. This process is repeated down to the leaf node.
The leaf node, after calculating the cost for its selection, would send back the
cost of the complete solution to its parent, which in turns uses the cost to limit
the choice of values in its domain. After finding the best possible cost with its
choices, each variable communicates with its parent and the process continues
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until all the choices are exhausted. As can be seen from above, branch and
bound comes intofeect when the cost of the best complete solution obtained
during execution can be used as a bound to prune out the partial solutions at
each node.

The loss of privacy in using SynchBB occurs by the inferences that vari-
ables in the chain can make about other variables in the chain through the cost
messages that are passed. Determining these inferences and the consequent
elimination of possible states is more complex in tree-like algorithms such as
SynchBB, due to the partial and aggregated nature of information. In the fol-
lowing subsections, we discuss these inference processes in the cases where
the agents are aware of the structure of the chain and also when the agents
are not aware of the chain structure. While this inference is specific to the
PEAV representation, it is illustrative of the types of inferences that may be
feasible in SynchBB or graph-based algorithms in general. It is important to
know that we cannot ensure that we are making all the possible inferences, as
one could use domain information or more detailed exploitation of the algo-
rithm to eliminate possible states. Thus, the privacy loss due to the inferences
presented here for SynchBB represents a lower bound on actual privacy loss
(as was the case for OptAPO).

4.2.4. Inference Rules for SynchBB with Graph Knowledge

SynchBB requires that the DCOP graph be converted into a chain. If the
process of conversion allows the agents to know the structure of the entire
chain, they can employ this information when making inferences about other
agents. The agents upstream know the agents involved in the DCOP down-
stream (and vice versa) and their variables in the chain, but as discussed
earlier, agents do not know the valuations on time sIbiQ(t)}, of other
agents. In a SynchBB chain, a downstream message (from a parent to a child)
denotedqd wherei is the agent receiving the message (in this case, the child),
reports the context (instantiated values of variables) above the child and the
associated partial utility of the solutioh An upstream message (from child

to parent) reports only the best attainable utility for the entire chain given
over all the contexts sent down by the parent. Thus, if a child sends up a
utility value that is identical to a previous message, then the best attainable
utility for the current context is less than or equal to the best attainable utility
previously reported. Let us denote the associated partial utility reported in a
downstream message aﬂ wherei is the agent receiving the message, i.e.
the child. Let us denote the associated partial utility reported in an upstream
message (which can be calculated by subtracting the partial utility from the
downstream message from the total utility reported in the upstream message)

3 Our discussion and analysis of SynchBB will use utility maximization principles even
though SynchBB is implemented as a cost minimizing algorithm, as we can map one
formulation to the other.
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asm' wherei again is the agent receiving the message, i.e. the parent. These
messages are aggregations of utilities on constraints in the chain.

In a PEAV formulation, inter-agent links contribute either zero or a large
negative utility to the aggregation. If the latter occurs, it will obfuscate any
private information as an agent receiving a message with a large negative util-
ity will not know how much to éset the value. Thus, any message that has a
large negative value contains only the information that a conflict has occurred.
Because itis diicult to make inference when the penalties for conflicts can be
arbitrarily picked (as long as they arefciently high), we will focus on the
inference that can be done with messages that do not have conflict penalties
included in the aggregates. A solution where no new meeting are scheduled
has a utility of zero (as it does not change the previous value of time). Thus,
there will be no conflicts in the the final solution. If such a conflict occurs
during negotiation, SynchBB will continue with more sets of values without
conflicts. Thus, it is appropriate to just focus on inference on these messages
that do not include conflict penalties. As mentioned earlier, this will give us a
lower bound on the privacy loss in SynchBB.

The utility on the intra-agent links of tH& agent is the sum of the fiiér-
ences between the value gained for scheduling an event and the value of the
time where it was scheduled, i.e.

6i = Z AK(t)

ke{Ek:ic Ak}

wheres; is the change in utility due to the given schedule (captureftidy

A¥ are the attendees for thé' eventEX, andAX(t) = V& - VO(ty) is the

utility change associated with scheduliBat timet,. It is these changes in
utilities that are aggregated to form the upstream and downstream messages,
which can use for inference with the following relationships:

LEDICEDIEPIRFHC

jeA(i) jeA() ke{EK: jeAK)
m= D, di= ), QL A
j€D(i) J€D(i) ke{EX: jeAk}

where A(i) and D(i) denote the ancestor and descendent agents df'the
agent in the chain, respectively. We note that if theis calculated from
taking a value of the complete chain utility and subtracr'nﬁglf m'is strictly
greater than previously reported then the relationship above holds, however

4 We assume that¥(0) = 0, i.e. choosing not to schedule a meeting=# 0) does not
change utility.
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if there is no improvement, then we have

mz > Alw).

i€D(i) ke{EK:icAk)

Thus, every upstream message contains information of the form

M M
ZARJJ(th) =m' or ZARj‘(th) <m'
ieg jeg

whereJ is an index setR; is an attendee anhll; is an event. Every down-
stream message contains information of the form of the upstream equation
with strict equality. By making the substitution
M; M;j 0
ARjJ(th) = VRJ-J - VRJ- (th)7

we can transform the upstream message with inequality information to

M.
2 VR (tm) = ) V! - =c

i< j€J
wherec' is defined as the right-hand side of the inequality above which

is a constant given the message and our knowledge/F'\éf}. Adding the
complexity thaty; may not be known, we have

2 VR tw) + ) Vi () = cf (9)

j€eg1 j€J2

where g7 is an index set for known event-agent pajfg; is an index set

for unknown event-agent pairs alﬁ,(z]j indicates an unknown time. Similar
transformations can be made for other messages. Thus, an agent can take
every message it receives, turn it into an equation of the form in (9), and use
the set of these equations to prune out possible states.

EXAMPLE 6. In Figure 6, we show the messages and the resulting inference
equations for the problem in Example 3, where the chain is formed with
agents in the order A- B — C. The downstream messages Yield equality
inferences and the upstream messages yield both inequality inferences (as
shown) and equality inferences, depending on the value of the message with
respect to previous messages.

We see through the inference relationships in this example how privacy
protection in SynchBB can be enhanced. By passing down the entire context
as opposed to the relevant context, agent C is awatggoven though it
plays no role in the calculation @. If agents (or variables) passed down
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Figure 6. Example of inference in SynchBB with graph information

contexts (i.e. meeting times) only to those agents who need to know it, we
would havetag — tag, meaning that agent C would not be aware of the time
that agents A and B are considering for their meeting, which would result in
the weaker inference:

mg = VR(fAB) + Vg(fAB) + Vg(tgc) = Cg = VQB + VQB + VEC - mg

The dfects of this improvement were investigated and the results are shown
and discussed in Section 5.

4.2.5. Inference Rules for SynchBB without Graph Knowledge

Let us now consider the case where, when converting the DCOP graph into
a chain, the structure of the graph is not revealed to the agents. While the
structure is not fully known, agents have a bowhan the number of terms
{AF'\fjj (tm;) } that could exist in the chain because of domain knowledge about
limits on numbers and types of meetings that could be scheduled simultane-
ously. While agents do not know all of theterms that exist in the chain,
they are aware of some of them because of the meetings for which they are
attendees. Agents know that other attendees must haeems for these
meetings and agents are also aware of whether these terms are above them
or below them in the chain for communication purposes.

As opposed to the case where the entire graph structure is known, we
cannot account for all tha’s in the upstream and downstream messages by
by adding all theA’s for the upstream and downstream agents ¢tienote
the set ofA’s known to be part of upstream messages (i.e. from variables
below thei™ agent) due to common meeting§? denote the set af’s known
to be part of downstream messages (i.e. from variables abové' thgent)
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due to common meetings afq denote the set of’s within theit" agent.>
ThenK; := K- |K!|- |‘Kid| —|%G]| is the number of potentid’s that may exist
outside the scope of th# agent’s knowledge. Thus, given that the bound on
the total number of\’s in the entire chain i, then the number of potential
A’s that are unknown to thid agent isK;.

To prevent making inaccurate inference, tHeagent must assume that
messages imply relationships of the form:

K
M.
m'= ) Ag (tm)) + Y (10)
jeT =1
and
M; K
m= )" Ag'(tm)) + Y (11)
jegd j=1

where the utility changes take valuas € (VK. — V..., V&, — VO )
if the meeting valuations take valus® e (VK. ... VK } and the private
valuations of time take valueg’(t) € {VO.  --- V.. Again, we must
consider the possibility that the upstream relationship in (10) is an inequality.
Let us consider first the case, where (10) is an equality due to the report of
a strictly greater chain utility. By making the appropriate substitutions and

using the limits ofAj, we have

Z Vlgj (tMJ) 2 Ki (VrI:ﬂn - Vr%ax) + Z VRjJ - rT’|iu (12)
jegt jeg

and
D VR ) < Ki(Via— Vo) + D, Ve — it (13)
jegt jegy

Thus, an equality relationship from}' due to an improvement from variables
below thei! agent yields two inference equations: a lower bound and an up-
per bound. If it was the case that the upstream message implied an inequality
in (10), then we would only have (12), the lower bound, as the sole resulting
inference equation.

EXAMPLE 7. In Figure 7, we show the messages and inferences for the
chain in Example 6. Both the lower bound and potential upper bound that

5 We assume implicitly that all variables within a single agent will be connected sequen-
tially. While we can modify our results for chains where this is not the case, for privacy
protection, it is prudent to minimize messaging. Sequential ordering of agent variables ensures
no more than two outgoing messages per agent.
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b VCQ([BC) > C% = Vgc + 2(Vlfnn - Vrgax) - m?}

p

Vl(?)(tBC) < CdC = V£C+4(V£dx - Vn(iin) - de

Vl(g)(tBC) > Cé = BBC+4(Vk g

d
min Vmax) —mc

I

<
c
8L |y [ L Vo) <=Vt AV Vi) —
AB my = 7Y > ol -— YAB 4 4(Vk 0 u
B (tAB) ZCy=Vg + (Vmin - Vmax) — Iy
—) ¢
- o
m?} = Vf‘?(tAB) < C?? = VfB+2(VIﬁax7Vrgin) 7’"?3
m| AB || ¥ V(tap) = ¢ = VP +2(Voiy — Vinax) — M
s T
el = {V£<r3c> <y = VEC 42V — V) — i

Agent C

Figure 7. Example of inference in SynchBB without graph information

could result are displayed for upstream messages. We not&that4, Kg =
2andKc =4.0

5. Experiments

In this section, we describe the experimental domain detailing various sce-
narios which are modeled as PEAV-DCOPs for DIMES problems. We then
solve these problems utilizing various DCOP algorithms for which we present
and analyze privacy loss with respect to the metrics generated in Section 4.
Implications of the choice of algorithm and metric along with phenomena
such as uncertainty and collusion are discussed. This paper provides the most
thorough empirical investigation of privacy loss in distributed constraint opti-
mization, with a total of 39000 measurements over 6500 separate simulations
taken according to six privacy metrics over seven meeting scenarios, using
various combinations of environmental parameters.

5.1. EPperRIMENTAL DOMAINS

The majority of scheduling instances in a functional personal assistant agent
system will consist of a small number of meetings that need to be negotiated
simultaneously. This notion of a small number of meetings is also shared in
the work motivated by (Modi and Veloso, 2005; Franzin et al., 2002), and
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as members of a research organization, this is the situation that the authors
commonly observe. While larger-scale problems may present themselves, if
privacy is a critical factor, the coordination protocols must Fective for

these small-scale instances. The instantiations of the DIMES problems that
we investigated are described below:

— Agents:We consider scenarios where there are either tiRee {A, B, C})
or four (R = {A, B,C, D}) personal assistant agents, each representing a
single user, whose joint task is to schedule a set of events (meetings).

— Events: We consider seven scenarios. For simplicity, all events last for
one time slot. The attendee sets for the meetings in each scenario are as
follows:

e Scenario 1{AB, BC}

e Scenario 2{AB, BC, AC}

e Scenario 3{ABC, BC} with chain ordelA— B-C
e Scenario 4{ABC, BC} with chain ordelC - B- A
e Scenario 5{AB, BC,CD}

e Scenario 6{ABCD, BC}

e Scenario 7{ABCD, BD, AD}

The PEAV formulations of each scenario, displayed as chains, are shown
in Figure 8. This chain structure is relevant for the analysis of privacy
loss for SynchBB.

— Valuations and Timeslots: For each experiment for a given scenario,
we chose the number of time slots, denotedTbgnd a value for the
number of possible valuations for a single time slot, denotedy
The valuations of time slots,\/io(t)}, were chosen uniformly from the
setV = {1,...,|V]} and the valuations of meetingS/,ik}, were chosen
uniformly from the sef2,...,|V|}. For an event to be scheduled at time
t, we required thatk(t) = V¥ — VO(t) > 0. Thus, we us&/2,, = [V,

VEax = VI, Vo= 1, andVK. = 2 in our inference equations. For

the three-agent scenarios, we variedrom {3, 4,5, 6, 7} while holding

|V| = 3. Then, we variedV| from {3, 4,5, 6, 7}, while holdingT = 3.

For reasons of computational complexity, we chose not to Vaand

V9. for the four-agent scenarios (scenarios 5, 6, and 7) to the same

degree as for the three-agent scenarios. For example, Ts#g in a

four-agent scenario (witfy| = 3) would require an agent to consider

337 possible states, i.e., over a billion states. To keep the possible state

space under 10 the cases we varigld/| from {3, 4, 5} while holding

T = 3, and variedV| from {3, 4} while holding|V| = 3.
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SCENARIO1 SCENARIO2 SCENARIO3  SCENARIO 4

A aEg| (A ¢ @)
AB AB ABC BC

B (AB B (AB B (ABC B(BC
BC BC BC ABC

C(BC C(BC BC A (ABC

ABC
SCENARIO 5 SCENARIO 6 SCENARIO 7

A A (ABCD
ABCD AB

B (ABCD B( AB
BC ABCD

C( BC C (ABCD
ABCD CcD

D (ABCD D(cD
ABCD

Figure 8. PEAV formulations of scenarios as chains
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— Privacy: The system privacy level, as mentioned earlier, is the arithmetic
mean of the individual privacy levels, i.&(Va, Vg, V¢) = (Va+ Vg +
V¢)/3 for three-agent scenarios ahfVa, Vg, Ve, Vp) = (Va+ VYV +
Vc+Vp)/4 for four-agent scenarios, where the individual privacy levels
are obtained from the metrics described in Section 4.
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We now discuss the results of solving multiple experiments for each sce-
nario, under various DCOP algorithm and the analysis of the privacy loss with
respect to the metrics and procedures discussed in Section 4.

5.2. ResuLrs AND ANALYSIS

For eachT, |V|) pair and a given scenario, we ran 50 experiments where time
slot and meeting valuations were chosen randomly as discussed earlier. For
each experiment, we ran SynchBB and each agent generated a set of inference
equations or inequalities about the possible states of other agents from all the
upward and downward messages it received. The agent used the simplest of
these equations (those with only o\dé(t) term, of the formViO(t) = cor

VO(t) < c) to quickly determine the maximum and minimum possible values
for each of the time slot valuations of the other agents. Then, the agent consid-
ered every possible state in which the valuations fall within these boundaries,
and checked this state against its set of remaining equations. If the world state
satisfied all the equations, the agent considered it to be an active state (i.e. a
state not eliminated) in its terminal belief. To compare the privacy loss in
SynchBB (Hirayama and Yokoo, 1997) against other DCOP algorithms, we
used the six metrics discussed in Section 4.1 which were functions of agents’
terminal beliefs.

For each metric, we took the mean of the privacy loss calculated from
the 50 runs of each scenario. We compared SynchBB against the partially
centralized DCOP algorithm, OptAPO (Mailler and Lesser, 2004), as well as
a completely centralized method, in which all agents send all information to a
single agent that computes the solution. As mentioned in Section 4.2.2, rather
than measuring privacy loss in OptAPO exactly, we obtain a lower bound by
noting that, in the initial phase of the algorithm, all variables send complete
information about their constraints to all their neighbors. In both centraliza-
tion and OptAPO, agent-to-agent privacy loss is “all or nothing,” (because
messages share all internal constraints) and we have normalized the privacy
losses across all metrics (such that “all” is a privacy loss of 1, and “noth-
ing” is a privacy loss of 0), the system-wide privacy loss is identical for all
experimental runs, regardless of which of the six metrics is used. The “all or
nothing” properties of centralization and OptAPO, can be seen in Examples 4
and 5 in Sections 4.2.1 and 4.2.2, respectively. Below, we present two sets of
results. Section 5.3 presents results comparing the original SynchBB with
full chain knowledge against OptAPO and centralization for all scenarios and
all metrics. Section 5.4 presents results for all scenarios comparing origi-
nal SynchBB with full chain knowledge, improved SynchBB with full chain
knowledge, improved SynchBB with uncertain chain knowledge, OptAPO
and centralization.
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5.3. GOMPARISON OF EXISTING ALGORITHMS

Figure 9(a) presents the privacy loss in the original SynchBB algorithm for
Scenario 1 as measured by the sigatient metrics and compares it to the
privacy loss of OptAPO and a centralized algorithm (for which all metrics
give the same result). Average system-wide privacy loss is represented on the
y-axis and can vary from 0 to 1 where 0 means that no agents can make any
inference about any other agent’s time valuations and 1 means that all agents
know all of each other’s valuations. Theaxis shows the number of time
slots in each agent’'s schedule. Each data point represents an average over
50 runs of experiments run wiffi’| = 3. We can see that, regardless of the
metric chosen to measure the loss of privacy in SynchBB, it is greater than
the privacy loss in a centralized method, which in this scenariBis\We can

also see that OptAPO (with privacy loss gBRloses more privacy than the
centralized method, as shown in Section 4.2.2. Figure 9(b) presents the same
privacy loss measures for Scenario 1 but the number of time 3lpts,held

fixed at 3 and now the number of possible valuatidf4, is varied. Once
again the average system-wide privacy loss is represented gratkis. On

the x-axis we measure the number of possible valuations agents can have for
each of their time slots.

The key observation from Figure 9(a) and 9(b) is that the centralized
method preserves greater average privacy than OptAPO and SynchBB, re-
gardless of the chosen metric. In other words, simply distributing computa-
tion as done in SynchBB is inadequate by itself to preserve greater privacy
compared to the centralized method. Figure 9(c)-(h) and Figure 10(a)-(f)
present the same graphs for each of the other 6 scenarios. Other than the
GuessS metric for Scenario 4, the superiority of centralization as a privacy-
preserving choice persists across all scenarios and metrics.

We note that these values for privacy loss are lower bounds. Indeed, when-
ever analyzing privacy loss, one can only discuss lower bounds as ffiis di
cult to prove the non-existence of additional inference rules. However, our
experiments were conducted to investigate the assumption of the field that
distribution alone was ghicient to provide greater privacy than centralization,
and that assumption is clearly not supported. In fact, there is little room for
privacy loss under centralization to increase as the central agent extracts the
maximum possible information and the remaining agents have only the final
meeting times to use for potential inference. Even if additional inference for
non-central agents in a centralized system was possible, it seem unlikely that
this inference could close the gap in bounds of privacy loss with SynchBB.
Furthermore, even if the gap was closed and the privacy loss between central-
ized and decentralized were identical, it is problematic to use privacy loss as
a justification for decentralization which has, in general, a higher implemen-
tation cost. These results do not preclude the possibility that decentralization
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might be better for protection of privacy in other domains or undfeint
decentralized schemes. We do note that centralization has its own drawbacks
such as lack of robustness, in the case of failures or delays in the central
agent’'s computation.

These experiments illustrate that one must carefully examine and justify
any metric chosen to measure privacy loss. For instance, Figure 9(g) shows
how the choice of metric can lead to vastlytdrent implications with respect
to privacy loss. When comparing privacy loss under the GuessS and Propor-
tionalS metrics, GuessS indicates that privacy loss decreases as the number
of time slots increases and that SynchBB is better than centralization, while
ProportionalS would indicate the opposite where privacy loss increases as the
number of time slots increases and SynchBB is worse than centralization.
We note that GuessS always gives the lowest level of privacy loss while
ProportionalS always gives the highest level of privacy loss for SynchBB.
Also, we note that ProportionalS and Proportional TS gitkedént qualitative
properties, where ProportionalTS indicates that privacy loss decreases and
the number of time slots increase. Similarly in Figure 10(f), GuessS would
indicate that SynchBB matched the privacy loss in centralization, but Propor-
tionalS would indicate a bigger loss for SynchBB. Thus, a careful choice of
metrics is essential to avoiding misguided conclusions about SynchBB.

5.4. IMpacT oF COMMUNICATION AND UNCERTAINTY

Because SynchBB was not designed with privacy explicitly in mind, it can be
easily modified to preserve more privacy. In SynchBB, each variable receives
from its parent the values of all variables above it in the chain, and passes this
information, along with its own value, to its child in the chain. As a result,
many agents receive extra information about other agents with which they
do not share constraints. This information can be used to make additional
inferences. To avoid privacy loss to to this extraneous communication, a vari-
able can instead pass down only its own value (not those of its ancestors).
However, this value needs to be passed to all the variable’s descendants (not
only its child), in order for them to have affigient context to choose their
own values. We maodified SynchBB to behave in this way. For example, in
Scenario 2, with the original SynchBB, agent B would receive A's value for
meeting AC, even though agent B does not need this information to make its
decisions. With modified SynchBB, agent B would not receive this informa-
tion, because A would pass it directly to C (along the AC-AC link) rather than
relaying it through agent B.

To explore the ffect of agents’ knowledge of the constraint graph on the
system-wide privacy loss, we introduced a degree of uncertainty that agents
may have about the graph. We assumed that agents know an upperkoound
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on the sum of all attendees over all meetings, as given in Section 4.2.5, and
then investigated how the tightness of this boufidcied privacy loss.

Graphs comparing SynchBB with full graph knowledge, modified SynchBB
with full graph knowledge, and modified SynchBB with uncertainty levels
K = {K*,K* + 1} (whereK* is the actual number ok’s in the chain), are
shown in Figures 11 and 12. Here, “Uncertainty)” refers toK = K*, and
“Uncertainty +1” refers toK = K* + 1. We note that even though = K*

(the agent is aware of the number &8), there is uncertainty as to how
these are distributed in the chain. The graph presents the privacy loss of the
different algorithms for each scenario as measured by the EntropyTS metric.
Average privacy loss in the system is plotted onyfaxis. In the left column,

the x-axis shows the number of time slots in each agent’s schedule with the
valuations chosen from a set of sizé| = 3. The graphs in the right column
have a fixed number of time slot§, = 3, but vary the number of possible
valuations on the-axis. Each data point represents an average over 50 runs.
Once again the baseline performance provided by centralized is shown with
the solid bold line. We can see that in some cases (Figure 11(b) and Figure 12
(a), (b), (e) and (f)), the modified SynchBB algorithm preserves more privacy
than a centralized algorithm. However, in all other cases, even the augmented
SynchBB loses more privacy than the centralized algorithm.

Interestingly, even having no uncertainty about the numbeY'®in the
chain is instficient to guarantee greater privacy protection than centraliza-
tion. Notably, in Figure 11(e)-(h), the centralized algorithm still maintains
more privacy than the modified SynchBB algorithm with uncertainty. How-
ever, when the graph uncertainty increases+”; the SynchBB algorithm
preserves more privacy than centralization. In fact, privacy loss is virtually
eliminated.

These experiments illustrate that while distribution by itself is inadequate
to match the privacy loss in the centralized case, uncertainty of graph knowl-
edge can begin to provide privacy in DCOP algorithms. Thus, if privacy
preservation is crucial, agents must communicate only with the relevant agents
in the DCOP and their choices should not be forwarded to agents uninvolved
with local constraints. Indeed, even this step might befficdant and knowl-
edge of the graph structure itself may need to be hidden from others.

6. Related Work

This paper significantly extends our previous conference paper (Maheswaran
et al., 2005). In particular, this paper provides significant new additional
experiments and analysis, detailed and formal description of inference rules
when detecting privacy loss, a significantly enhanced treatment of the formal
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VPS framework for privacy and the following detailed discussion of related
work.

Given the focus of this paper, we start out with a discussion of privacy
work in the context of DiSCSP and DCOP, and then extend to other related
work on privacy, particularly in agents and multiagent systems. As men-
tioned earlier, privacy is a major motivation for research on DisCSPs and
DCOPs. Given the explosion of interest in applying DisCSPs and DCOPs
in software personal assistants based on this motivation of privacy (Bowring
et al., 2005; Maheswaran et al., 2004; Yokoo et al., 2002; Modi and Veloso,
2005; Silaghi and Mitra, 2004), rigorous investigations of privacy loss are
important. While the majority of research in this arena has focused on de-
veloping dficient distributed algorithms, which is also a crucial need, there
has been some early work on privacy which we have discussed throughout
this paper (Silaghi and Faltings, 2002; Franzin et al., 2004; Silaghi and Mitra,
2004). Indeed, this early work established the importance of a more rigor-
ous understanding of privacy within DisCEFZOP and our VPS framework
builds on this early work. Section 2 illustrates how key metrics of privacy
introduced in this earlier work can be captured within the VPS framework for
comparison among metrics. We presented experimental results based on this
idea and discussed key implications of these results for further research on
privacy in DisSCSFDCOP. In addition, a key feature of VPS is that it steps
beyond DisCSPs, which was the focus of this earlier work, into analysis of
privacy loss in DCOP algorithms.

As discussed earlier, Yokoo et al discuss a secure DisCSP algorithm (Yokoo
et al., 2002). The authors note that while privacy is a major motivation for
DisCSP techniques, this issue is not rigorously dealt within existing algo-
rithms; indeed, there is leakage of private information in search. They then
introduce information security techniques to ensure that privacy is maintained
during search. These techniques rely on public key encryption and require the
introduction of multiple intermediate servers; thus, this paper provides the
first instance of combining DisCSP and information security for the sake of
privacy. The goal of this work is to ensure that within DisCSPs, each agent
only knows the value assignment of its own variables and cannot obtain any
additional information on the value assignment of variables that belong to
other agents.

The goals of our work dier significantly from this earlier work that re-
lies on information security and encryption techniques. We are focused on
DCOP settings where agents cannot utilize such intermediate servers for rea-
sons such as cost or availability. Indeed, in some businesfiioe environ-
ments, users may be interested in some level of privacy, but may be willing
to sacrifice some privacy to save costs. Indeed, if significant privacy could
be obtained in DCOP without such information security techniques (e.g. due
to uncertainty about the distributed constraint graph as mentioned earlier),
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the cost of such techniques may not be justifiable. Within this context of
the absence of such information security techniques, we introduce a rigorous
framework to unify expression of metrics measuring privacy loss, and illus-
trate concrete applications of this framework in comparirftedént metrics

and algorithms in dferent contexts.

Even outside the context of DisSCSP and DCOP, other research on dis-
tributed multiagent meeting scheduling has been motivated by notions of
privacy (Sen, 1997; Ephrati et al., 1994; Hassine et al., 2004; Garrido and
Sycara, 1996). Furthermore, this research has explored the fiimd®eqri-
vacy and €iciency (Sen, 1997; Ephrati et al., 1994; Hassine et al., 2004;
Garrido and Sycara, 1996). However, what has been missing so far in this
research is a formal unifying framework to express privacy loss, and perform
cross-metric comparisons. VPS has begun to close this gap. Note that VPS
itself is not specific to DisCSPs and DCOPs and can be applied in these other
systems.

Going beyond privacy in DCOPs and meeting scheduling, acting opti-
mally while maintaining or hiding private information has emerged as an
important topic of research in many multiagent systems. Indeed, the increased
interest in personal software assistants and other software agents (Berry et al.,
2005; Maheswaran et al., 2004; Scerri et al., 2002) to automate routine tasks
in offices, in auctions and e-commerce, at home or all spheres of daily activity
has led to increased concern about privacy. While such software agents need
to use private user information to conduct business on behalf of users, this
wealth of private information in possession of software agents is a great area
of concern for users. This has led to many novel research thrusts aimed at
protecting privacy, including use of cryptographic techniques, secure dis-
tributed computation (secure multiparty function evaluation) and random-
ization (Brandt, 2001; Brandt, 2003; van Otterloo, 2005; Naor et al., 1999).
For instance, the randomization approach may be used when an agent’s ac-
tions can be observed but must be kept private (Paruchuri et al., 2005; van
Otterloo, 2005; Silaghi, 2004). In this approach, by choosing actions in a
randomized fashion (in particular, relying on action strategies or policies that
have high entropy), agents are able to provide minimal information to an
adversary about their preferences, while attempting to reach some of their
key objectives.

These diferent research thrusts are focused on developing novel tech-
niques for protecting privacy, which complements the research presented in
this article. Indeed, this other research emphasizes the increasing importance
of defining a common framework for privacy metrics, although it does not
define such a framework; we move towards this goal via our VPS frame-
work. Finally, while our emphasis has been on understanding privacy loss
within collaborative DisCS®COP algorithms, it points the way to improv-
ing privacy preservation in such algorithms; techniques mentioned above may
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provide some insights into building such algorithms, although techniques
such as randomization may not be directly applicable in a collaborative set-
ting. Indeed, our investigation of the impact of uncertainty on privacy loss is
a step in the direction of understanding principles that reduce privacy loss in
DCOP algorithms.

7. Summary

In many emerging applications, particularly that of software personal assis-
tant agents, protecting user privacy is a critical requirement. DDBESP is

an important approach to multiagent systems that promises to enable agents’
distributed negotiation and conflict resolution while maintaining user’s pri-
vacy; thus, several software personal assistant applications are being built
around DCOPDIsCSP algorithms (Bowring et al., 2005; Berry et al., 2005;
Maheswaran et al., 2004; Modi and Veloso, 2005; Hassine et al., 2004; Silaghi
and Mitra, 2004). Unfortunately, a general quantitative framework to compare
existing metrics for privacy loss, and identify dimensions along which to
constructclassify new metrics is currently lacking. Indeed, privacy loss anal-
ysis has in general focused on DisCSPs rather than DCOPs, and within this
arena, quantitative cross-metric comparisons of privacy loss dudfevedit
algorithms are currently missing.

This paper presents three key contributions to address these shortcomings.
First, the paper presents the VPS (Valuations of Possible States) framework,
a general quantitative model from which one can analyze and generate met-
rics of privacy loss. VPS is shown to capture various existing measures of
privacy created for specific domains of DisCSPs. The utility of VPS is fur-
ther illustrated via analysis of privacy loss in DCOP algorithms, when such
algorithms are used by personal assistant agents to schedule meetings among
users. Second, the article presented key inference rules that may be used in
analysis of privacy loss in DCOP algorithms, undeffetent assumptions
about agent knowledge. We provided such rules in the context of the fully
centralized algorithm, an algorithm that is partially centralized (OptAPO) and
finally an algorithm that attempts full distribution (SynchBB). These rules are
illustrative of the inferences that may be feasible in general for other DCOP
algorithms. Third, the article presented detailed experiments based on its
VPS-driven analysis, leading to the following key results: (i) decentralization
by itself does not provide superior protection of privacy in Dis@EFOP
algorithms when compared with centralization; instead, privacy protection
requires the additional presence of uncertainty in agents’ knowledge of the
constraint graph. (ii) one needs to carefully examine the metrics chosen to
measure privacy loss; the qualitative properties of privacy loss and hence the
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conclusions that can be drawn about an algorithm can vary widely based on
the metric chosen.

In terms of future work, several major issues suggest themselves imme-
diately. First, researchers continue to investigate algorithms or preprocessing
strategies that improve DCOP solutioftiéency. If privacy is a major mo-
tivation for DCOP, then it is crucial to understand if these improvements
ultimately cause a further erosion of privacy. Thus, researchers should focus
on privacy-preserving féciency improvements at least if the DCOP algo-
rithms are to be applied in domains such as software personal assistant agents,
where preservation of privacy is crucial. Second, our current investigation
weighed all privacy loss equally. However, it might be the case that pri-
vacy loss to some individuals is weighed less than to others. For instance, in
inter-organizational negotiations, privacy loss within an organization might
not be weighed as heavily as outside the organization. Understanding the
impact of such weighted privacy loss is also a key issue for future work.
Third, we have assumed a model where there is no information leakage,
i.e. agents do not communicate inferred information to others in the system.
While theoretically, information leakage can range from zero to complete (in
potentially multi-dimensional ways, i.e. varying amounts tdedent agents),
we chose zero as we believe it most closely approximates distributed meeting
scheduling and similar domains. However, the assumptions about information
leakage can alter thefectiveness of various algorithms in terms of privacy
loss (e.g. in the extreme case, centralization would lead to total privacy loss
under a complete information leakage assumption). In the general case, where
information loss is not total, it is not obvious how algorithms will perform
with respect to privacy loss, and thus, is a fertile area for research. This
paper hopes to serve as a call to arms for the community to improve privacy
protection algorithms and further research on privacy.
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