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ABSTRACT
The DEFACTO system is a multiagent based tool for training inci-
dent commanders for large scale disasters. In this paper, we high-
light some of the lessons that we have learned from our interaction
with the Los Angeles Fire Department (LAFD) and how they have
affected the way that we continued the design of our training sys-
tem. These lessons were gleaned from LAFD feedback and initial
training exercises and they include: system design, visualization,
improving trainee situational awareness, adjusting training level of
difficulty and situation scale. We have taken these lessons and used
them to improve the DEFACTO system’s training capabilities. We
have conducted initial training exercises to illustrate the utility of
the system in terms of providing useful feedback to the trainee.

1. INTRODUCTION
The recent hurricanes that have hit the gulf coast of the US have

served to reaffirm the need for emergency response agencies to be
better prepared for large scale disasters. Both natural and man-
made (terrorism) disasters are growing in scale, however the re-
sponse to these incidents continues to be managed by a single per-
son, namely the incident commander. The incident commander
must monitor and direct the entire event while maintaining com-
plete responsibility. Because of this, incident commanders must
start to be trained to handle these large scale events and assist in
the coordination of the responding team.

In order to fulfill this need and leverage the advantages of multia-
gents, we have continued to develop the DEFACTO system (Demon-
strating Effective Flexible Agent Coordination of Teams via Om-
nipresence). DEFACTO is a multiagent based tool for training in-
cident commanders for large scale disasters (man-made or natural).

Our system combines a high fidelity simulator, a redesigned hu-
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man interface, and a multiagent team driving all of the behaviors.
Training incident commanders provides a dynamic scenario in which
decisions must be made correctly and quickly because human safety
is at risk. When using DEFACTO, incident commanders have the
opportunity to see the disaster in simulation and the coordination
and resource constraints unfold so that they can be better prepared
when commanding over an actual disaster. Applying DEFACTO to
disaster response aims to benefit the training of incident comman-
ders in the fire department.

With DEFACTO, our objective is to both enable the human to
have a clear idea of the team’s state and improve agent-human team
performance. We want DEFACTO agent-human teams to better
prepare firefighters for current human-only teams. We believe that
by leveraging multiagents, DEFACTO will result in better disaster
response methods and better incident commanders.

Previously, we have discussed building our initial prototype sys-
tem, DEFACTO [8]. Recently, the Los Angeles Fire Department
(LAFD) have begun to evaluate the DEFACTO system. In this pa-
per, we highlight some of the lessons that we have learned from our
interaction with the LAFD and how they have affected the way that
we continued to design of our training system. These lessons were
gleaned from LAFD feedback and initial training exercises.

The lessons learned from the feedback from the LAFD include:
system design, visualization, improving trainee situational aware-
ness, adjusting training level of difficulty and situation scale. We
have taken these lessons and used them to improve the DEFACTO
system’s training capabilities.

We have also performed initial training exercise experiments to
illustrate the utility of the system in terms of providing useful feed-
back to the trainee. We ended up finding that allowing more fire
engines to be at the disposal of the incident commander sometimes
not only didn’t improve, but rather worsened team performance.
There were even some instances in which the agent team would
have performed better had the team never listened to human advice
at all. We also provide analysis of such behaviors, thereby illustrat-
ing the utility of DEFACTO resulting from the feedback given to
trainees.

2. MOTIVATION
In this section, we will first start with an explanation of the cur-

rent methods for training that the LAFD currently use. Then we
explain some of the advantages that our multiagent approach has
over these methods.

The incident commander’s main duties during a fire shoulder all
responsibility for the safety of the firefighters. In order to do this,
the incident commander must have constant contact with the fire-
fighters and have a complete picture of the entire situation. The
incident commander must make certain that dangerous choices are
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Figure 1: Old vs. New training methods

avoided and the firefighters are informed and directed as needed.
We were allowed to observe a Command Post Exercise that sim-

ulated the place where the incident commander is stationed during
a fire (see Figure 1(a)). The Incident commander has an assistant
by his side who keeps track on a large sheet of paper where all of
the resources (personnel and equipment) are located. A sketch of
the fire is also made on this sheet, and the fire and fire engines’
location is also managed.

The Command Post is currently simulated by projecting a sin-
gle static image of a fire in an apartment. In the back of the room,
several firefighters are taken off duty in order to play the role of fire-
fighters on the scene. They each communicate on separate channels
over walkie talkies in order to coordinate by sharing information
and accepting orders. The fire spreading is simulated solely by
having one of the off-duty firefighters in the back speaking over the
walkie talkie and describing the fire spreading.

The LAFD’s current approach, however, has several limitations.
First, it requires a number of officers to be taken off duty, which
decreases the number of resources available to the city for a disas-
ter during training. Second, the disaster conditions created are not
accurate in the way that they appear or progress. Since the image
that the incident commander is seeing is static, there is no infor-
mation about state or conditions of the fire that can be ascertained
from watching it, which is contrary to the actual scene of a disas-
ter response. Furthermore, the fire’s behavior is determined by the
reports of the acting fire fighters over the walkie talkie, which at
times might not be a plausible progression of fire in reality. Third,
this method of training restricts it to a smaller scale of fire because
of the limited personnel and rigid fire representation.

Our system aims to enhance the training of the incident com-
manders (see Figure 1(b)). Our approach allows for training to not
be so personnel heavy, because fire fighter actors will be replaced
by agents. By doing this we can start to train incident comman-
ders with a larger team. Through our simulation, we can also start
to simulate larger events in order to push the greater number of
available resources to their limit. Also, by simulating the fire pro-
gression, we can place the Incident commander in a more realistic
situation and force them to react to realistic challenges that arise.

3. SYSTEM ARCHITECTURE
In this section, we will describe the technologies used in three

major components of DEFACTO: the Omni-Viewer, proxy-based
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team coordination, and proxy-based adjustable autonomy. The Omni-
Viewer is an advanced human interface for interacting with an agent-
assisted response effort. The Omni-Viewer has been introduced
before [8], however has since been redesigned after incorporating
lessons learned from the LAFD. The Omni-Viewer now provides
for both global and local views of an unfolding situation, allow-
ing a human decision-maker to obtain precisely the information re-
quired for a particular decision. A team of completely distributed
proxies, where each proxy encapsulates advanced coordination rea-
soning based on the theory of teamwork, controls and coordinates
agents in a simulated environment. The use of the proxy-based
team brings realistic coordination complexity to the training sys-
tem and allows a more realistic assessment of the interactions be-
tween humans and agent-assisted response. These same proxies
also enable us to implement the adjustable autonomy necessary to
balance the decisions of the agents and human. This architecture
has been described in a more extended fashion in [8]; we present a
brief report here.

DEFACTO operates in a disaster response simulation environ-
ment. The simulation environment itself is provided by the RoboCup
Rescue Simulator [3]. To interface with DEFACTO, each fire en-
gine is controlled by a proxy in order to handle the coordination
and execution of adjustable autonomy strategies. Consequently, the
proxies can try to allocate fire engines to fires in a distributed man-
ner, but can also transfer control to the more expert user (incident



commander). The user can then use the Omni-Viewer to allocate
engines to the fires that he has control over. In our scenario, sev-
eral buildings are initially on fire, and these fires spread to adjacent
buildings if they are not quickly contained. The goal is to have a
human interact with the team of fire engines in order to save the
greatest number of buildings. Our overall system architecture ap-
plied to disaster response can be seen in Figure 2.

3.1 Omni-Viewer
Our goal of allowing fluid human interaction with agents re-

quires a visualization system that provides the human with a global
view of agent activity as well as shows the local view of a particu-
lar agent when needed. Hence, we have developed an omnipresent
viewer, or Omni-Viewer, which will allow the human user diverse
interaction with remote agent teams. While a global view is ob-
tainable from a two-dimensional map, a local perspective is best
obtained from a 3D viewer, since the 3D view incorporates the per-
spective and occlusion effects generated by a particular viewpoint.

To address our discrepant goals, the Omni-Viewer allows for
both a conventional map-like top down 2D view and a detailed 3D
viewer. The viewer shows the global overview as events are pro-
gressing and provides a list of tasks that the agents have transferred
to the human, but also provides the freedom to move to desired lo-
cations and views. In particular, the user can drop to the virtual
ground level, thereby obtaining the perspective (local view) of a
particular agent. At this level, the user can fly freely around the
scene, observing the local logistics involved as various entities are
performing their duties. This can be helpful in evaluating the phys-
ical ground circumstances and altering the team’s behavior accord-
ingly. It also allows the user to feel immersed in the scene where
various factors (psychological, etc.) may come into effect.

3.2 Proxy: Team Coordination
A key hypothesis in this work is that intelligent distributed agents

will be a key element of a disaster response. Taking advantage
of emerging robust, high bandwidth communication infrastructure,
we believe that a critical role of these intelligent agents will be to
manage coordination between all members of the response team.
Specifically, we are using coordination algorithms inspired by the-
ories of teamwork to manage the distributed response [6]. The gen-
eral coordination algorithms are encapsulated inproxies, with each
team member having its own proxy which represents it in the team.
The current version of the proxies is calledMachinetta[7] and ex-
tends the earlier Teamcore proxies [5]. Machinetta is implemented
in Java and is freely available on the web. Notice that the concept
of a reusable proxy differs from many other “multiagent toolkits”
in that it provides the coordinationalgorithms, e.g., algorithms for
allocating tasks, as opposed to theinfrastructure, e.g., APIs for re-
liable communication. These proxies and their architecture have
been discussed in detail in [8].

3.3 Proxy: Adjustable Autonomy
One key aspect of the proxy-based coordination is “adjustable

autonomy.” Adjustable autonomy refers to an agent’s ability to dy-
namically change its own autonomy, possibly to transfer control
over a decision to a human. Previous work on adjustable autonomy
could be categorized as either involving a single person interacting
with a single agent (the agent itself may interact with others) or a
single person directly interacting with a team. In the single-agent
single-human category, the concept of flexible transfer-of-control
strategy has shown promise [6]. A transfer-of-control strategy is a
preplanned sequence of actions to transfer control over a decision
among multiple entities. For example, anAH1H2 strategy implies

that an agent (A) attempts a decision and if the agent fails in the de-
cision then the control over the decision is passed to a humanH1,
and then ifH1 cannot reach a decision, then the control is passed
to H2. Since previous work focused on single-agent single-human
interaction, strategies were individual agent strategies where only a
single agent acted at a time.

An optimal transfer-of-control strategy optimally balances the
risks of not getting a high quality decision against the risk of costs
incurred due to a delay in getting that decision. Flexibility in such
strategies implies that an agent dynamically chooses the one that
is optimal, based on the situation, among multiple such strategies
(H1A, AH1, AH1A, etc.) rather than always rigidly choosing one
strategy. The notion of flexible strategies, however, has not been ap-
plied in the context of humans interacting with agent-teams. Thus,
a key question is whether such flexible transfer of control strategies
are relevant in agent-teams, particularly in a large-scale application
such as ours.

DEFACTO has introduced the notion of team-level adjustable
autonomy strategies. For example, rather than transferring control
from a human to a single agent, a team-level strategy could transfer
control from a human to an agent-team. Concretely, each proxy is
provided with all strategy options; the key is to select the right strat-
egy given the situation. An example of a team level strategy would
combineAT Strategy andH Strategy in order to makeAT H Strat-
egy. The default team strategy,AT , keeps control over a decision
with the agent team for the entire duration of the decision. TheH
strategy always immediately transfers control to the human.AT H
strategy is the conjunction of team levelAT strategy withH strat-
egy. This strategy aims to significantly reduce the burden on the
user by allowing the decision to first pass through all agents before
finally going to the user, if the agent team fails to reach a decision.

4. LESSONS LEARNED FROM INITIAL DE-
PLOYMENT FEEDBACK

Through our communication with strategic training division of
the LAFD (see Figure 1(b)), we have learned a lot of lessons that
have influenced the continuing development of our system.

4.1 Adjustable Autonomy in Practice
Our most important lesson learned from talking with the LAFD

and seeing their exercises is that adjustable autonomy correctly
maps over to what happens in the actual disaster response. The ad-
justing of autonomy is easily seen as the event scales up and down
in size and intensity. For a smaller scale response to, for exam-
ple, a residential single story house fire, the incident commander
will usually make all allocation decisions and thus practice theA
strategy. For a larger scale event, a lot of the burden of most al-
locations are left to the team and other entities in the hierarchy,
while the Incident Commander is left to concentrate on the bigger
picture. In this case, the Incident commander is notified if a specif-
ically problematic situation, for example not enough resources to
attack a particular fire. This strategy is essentially what we refer to
asAT H in our experiments, in which, the team first tries to assign
someone to the fire with the resources they have, and if not able to
then pass it off to the Incident Commander for help. As the situ-
ation were to die down and the size of the team were to decrease,
more autonomy would be shifted to the Incident Commander due
to an increased ability to make allocations for the team.

It is very helpful to know that these strategies not only are ca-
pable of making our agent teams perform well and interface with
the Incident Commander, but that they also reflect similar strategies
that current firefighting teams are using.



Figure 3: Selecting for closer look at a Fire Engine.

4.2 Questioning the Incident Commander
Another lesson that relates to our agent design is that we learned

how a team on the ground may possibly not agree with the com-
mand (allocation to a fire) given by the Incident Commander. This
will usually be due to the fact that the Incident Commander has
a broad global view of the disaster, whereas the agents each have
a more detailed local view. This mismatch in information can, at
times, lead to detrimental team allocations. In an actual disaster
response, this is handled by the allocated team both questioning
the order and providing the Incident Commander with the missing
information.

This has led us to consider a team of agents that can disagree
with human inputs. This issue has not been addressed in our im-
plementation as of yet, but it is relevant given the results that will
be presented later in the training exercise experiments. There are
experimental settings in which the team performance would have
been improved, had they rejected the Incident Commander’s input.

4.3 Perspective
Just as in multiagent systems, the Incident commander must over-

come the challenge of managing a team that each possess only a
partial local view. This is highlighted in fighting a fire by incident
commanders keeping in mind that there are five views to every fire
(4 sides and the top). Only by taking into account what is hap-
pening on all five sides of the fire, can the fire company make an
effective decision on how many people to send where. Because of
this, a local view (see Figure 4(a)) can augment the global view (see
Figure 4(b)) becomes helpful in determining the local perspectives
of team members. For example, by taking the perspective of a fire
company in the back of the building, the incident commander can
be aware that they might not see the smoke from the second floor,
which is only visible from the front of the building. The incident
commander can then make a decision to communicate that to the
fire company or make an allocation accordingly.

The 3D perspective of the Omni-Viewer was initially thought to
be an example of a futuristic vision of the actual view given to the
incident commander. But after allowing the fire fighters to look
at the display, they remarked, that they have such views available
to them already, especially in large scale fires (the very fires we are
trying to simulate). At the scene of these fires are often a news heli-
copter is at the scene and the incident commander can patch into the
feed and display it at his command post. Consequently our training
simulation can already start to prepare the Incident Commander to
incorporate a diverse array of information sources.

4.4 Fire Behavior
We also learned how important smoke and fire behavior is to the

firefighters in order to affect their decisions. Upon our first showing
of initial prototypes to the Incident Commanders, they looked at our
simulation, with flames swirling up out of the roof (see Figure 5(a)).
We artificially increased fire intensity in order to show off the fire
behavior and this hampered their ability to evaluate the situation
and allocations. They all agreed that every firefighter should be
pulled out because that building is lost and might fall at any minute!
In our efforts to put a challenging fire in front of them to fight, we
had caused them to walk away from the training. Once we start
to add training abilities, such as to watch the fire spread in 3D, we
have to also start to be more aware of how to accurately show a fire
that the Incident Commander would face. We have consequently
altered the smoke and fire behavior (see Figure 5(b)). The smoke
appears less “dramatic” to the a lay person than a towering inferno,
but it provides a more effective training environment.

4.5 Gradual Training
Initially, we were primarily concerned with changes to the sys-

tem that allowed for a more accurate simulation of what the Inci-
dent Commander would actually see. Alternatively, we have also
added features, not because of their accuracy, but also to aid in
training by isolating certain tasks. Very often in reality and in our
simulations, dense urban areas obscure the ability to see where all
of the resources (i.e. fire engines) are and prevent a quick view of
the situation (see Figure 6(a)). To this aim, we have added a new
mode using the 3D, but having the buildings each have no height,
which we refer to as Flat World (see Figure 6(b)). By using this
flat view, the trainee is allowed to concentrate on the allocation of
resources, without the extra task of developing an accurate world
view with obscuring high rise buildings.

4.6 User Intent
A very important lesson that we learned from the LAFD, was that

the Incident Commander cannot be given all information for the
team and thus the human does not know all about the status of the
team members and vice versa. Consequently, this lack of complete
awareness of the agent team’s intentions can lead to some harmful
allocations by the human (Incident Commander). In order for in-
formation to be selectively available to the Incident Commander,
we have allowed the Incident Commander to query for the status of
a particular agent. Figure 3 shows an arrow above the Fire Engine
at the center of the screen that has been selected. On the left, the
statistics are displayed. The incident commander is able to select
a particular fire engine and find out the equipment status, person-
nel status, and the current tasks that are being performed by the
fire fighters aboard that engine. This detailed information can be
accessed if desired by the Incident Commander, but is not thrown
to the screen by all agents, in order to not overwhelm the Incident
Commander.

4.7 Scale
In addition, we have also learned of new challenges that we are

currently attempting to tackle by enhancing the system. One of the
biggest challenges in order to start simulating a large urban fire is
the sheer scale of the resources that must be managed. According
to the fire captains, in order to respond to a single high rise build-
ing with a few floors on fire, roughly 200 resources (fire engines,
paramedics etc.) would need to be managed at the scene. Coor-
dinating such a large number of agents on a team is a challenge.
Also, as the incident scales to hundreds of resources, the Incident
Commander ends up giving more autonomy to the team or else face



(a) Local Perspective (b) Global Perspective

Figure 4: Local vs. Global Perspectives in the Omni-Viewer

(a) Old Fire (b) New Smoke

Figure 5: Improvement in fire visualization

(a) Normal (b) Flat World

Figure 6: Improvement in locating resources (fire engines and ambulances)
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Figure 7: AH for all subjects.
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Figure 8: ATH for all subjects.

being overwhelmed. We believe that adjustable autonomy will start
to play a bigger and more essential roll in allowing for the Incident
Commander to monitor the larger situations.

5. LESSONS LEARNED FROM TRAINING
EXERCISES

In this section, we will present results and analysis from a set
of training exercises. Our initial experimental results have been
published earlier [8], however the analysis presented here is new.

5.1 Training Exercises
In order to study the potential of DEFACTO, we performed some

training exercises with volunteers. These initial experiments showed
us that humans can both help and hurt the team performance. The
key point is that DEFACTO allows such experiments with training
exercises and more importantly allows for analysis and feedback
regarding the exercises. Thus trainees can gain useful insight as to
why their decisions led to problematic/beneficial situations.

The results of our training exercise experiments are shown in
Figure 9, which shows the results of subjects 1, 2, and 3. Each
subject was confronted with the task of aiding fire engines in sav-
ing a city hit by a disaster. For each subject, we tested three strate-
gies, specifically,H, AH (individual agent, then human) andAT H
(agent team, then human); their performance was compared with
the completely autonomousAT strategy.AH is an individual agent
strategy, tested for comparison withAT H, where agents act indi-

vidually, and pass those tasks to a human user that they cannot im-
mediately perform. Each experiment was conducted with the same
initial locations of fires and building damage. For each strategy we
tested, varied the number of fire engines between 4, 6 and 10. Each
chart in Figure 9 shows the varying number of fire engines on the
x-axis, and the team performance in terms of numbers of building
saved on the y-axis. For instance, strategyAT saves 50 building
with 4 agents. Each data point on the graph is an average of three
runs. Each run itself took 15 minutes, and each user was required
to participate in 27 experiments, which together with 2 hours of
getting oriented with the system, equates to about 9 hours of exper-
iments per volunteer.

Figure 9 enables us to conclude the following:

• Human involvement with agent teams does not necessarily
lead to improvement in team performance.Contrary to ex-
pectations and prior results, human involvement does not
uniformly improve team performance, as seen by human-
involving strategies performing worse than theAT strategy
in some cases. For instance, for subject 3AH strategy pro-
vides higher team performance thanAT for 4 agents, yet at
10 agents human influence is clearly not beneficial.

• Providing more agents at a human’s command does not nec-
essarily improve the agent team performance.As seen for
subject 2 and subject 3, increasing agents from 4 to 6 given
AH andAT H strategies is seen to degrade performance. In
contrast, for theAT strategy, the performance of the fully au-
tonomous agent team continues to improve with additions of
agents, thus indicating that the reduction inAH andAT H
performance is due to human involvement. As the number of
agents increase to 10, the agent team does recover.

• Complex team-level strategies are helpful in practice: AT H
leads to improvement overH with 4 agents for all subjects,
although surprising domination ofAH over AT H in some
cases indicates thatAH may also need a useful strategy to
have available in a team setting.

Note that the phenomena described range over multiple users,
multiple runs, and multiple strategies. Unfortunately, the strate-
gies including the humans and agents (AH andAT H) for 6 agents
show a noticeable decrease in performance for subjects 2 and 3
(see Figure 9). It would be useful to understand which factors con-
tributed to this phenomena from a trainee’s perspective.

5.2 Analysis
We decided to perform a more in depth analysis of what exactly

was causing the degrading performance when 6 agents were at the
disposal of the Incident Commander. Figure 10 shows the num-
ber agents on the x-axis and the average amount of fire engines
allocated to each fire on the y-axis.AH andAT H for 6 agents
result in significantly less average fire engines per task (fire) and
therefore lower average. Another interesting thing that we found
was that this lower average was not due to the fact that the Incident
Commander was overwhelmed and making less decisions (alloca-
tions). Figures 11(a), 11(b), and 11(c) all show how the number of
buildings attacked do not go down in the case of 6 agents, where
poor performance is seen.

Figures 7 and 8 show the number of agents assigned to a building
on the x-axis and the probability that the given building would be
saved on the y-axis. The correlation between these values demon-
strate the correlation between number of agents assigned to the
quality of the decision.
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Figure 9: Performance.

2

2.5

3

3.5

4

3 4 5 6 7 8 9 10 11
Number of Agents

A
ge

nt
s/

Fi
re

AH ATH

(a) Subject 1

2

2.5

3

3.5

4

3 4 5 6 7 8 9 10 11
Number of Agents

A
ge

nt
s/

Fi
re

AH ATH

(b) Subject 2

2

2.5

3

3.5

4

3 4 5 6 7 8 9 10 11
Number of Agents

A
ge

nt
s/

Fi
re

AH ATH

(c) Subject 3

Figure 10: Amount of agents assigned per fire.
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Figure 11: Number of buildings attacked.



We can conclude from this analysis that the degradation in per-
formance occurred at 6 agents because fire engine teams were split
up, leading to fewer fire-engines being allocated per building on
average. Indeed, leaving fewer than 3 fire engines per fire leads
to a significant reduction in fire extinguishing capability. We can
provide such feedback of overall performance, showing the perfor-
mance reduction at six fire engines, and our analysis to a trainee.
The key point here is that DEFACTO is capable of allowing for
such exercises, and their analyses, and providing feedback to po-
tential trainees, so they improve their decision making, Thus, in
this current set of exercises, trainees can understand that with six
fire engines, they had managed to split up existing resources inap-
propriately.

6. RELATED WORK AND SUMMARY
In terms of related work, it is important to mention products

like JCATS [9] and EPICS [4]. JCATS represents a self-contained,
high-resolution joint simulation in use for entity-level training in
open, urban and subterranean environments. Developed by Lawrence
Livermore National Laboratory, JCATS gives users the capability
to detail the replication of small group and individual activities dur-
ing a simulated operation. At this point however, JCATS cannot
simulate agents. Finally, EPICS is a computer-based, scenario-
driven, high-resolution simulation. It is used by emergency re-
sponse agencies to train for emergency situations that require multi-
echelon and/or inter-agency communication and coordination. De-
veloped by the U.S. Army Training and Doctrine Command Analy-
sis Center, EPICS is also used for exercising communications and
command and control procedures at multiple levels. Similar to
JCATS however, EPICS does not currently allow agents to par-
ticipate in the simulation. More recently multiagents have been
successfully applied to training navy tactics [10] and teams of Un-
inhabited Air Vehicles [1, 2]. Our work is similar to these in spirit,
however our focus and lessons learned are based on the train of
Incident Commanders in disaster rescue environments.

In summary, in order to train Incident Commanders for large
scale disasters, we have been working on the DEFACTO training
system. This multiagent system tool has begun to be used by fire
captains from the Los Angeles Fire Department. We have learned
some valuable lessons from their feedback and the analysis of some
initial training exercise experiments. These lessons were gleaned
from LAFD feedback and initial training exercises. The lessons
learned from the feedback from the LAFD include: system design,
visualization, improving trainee situational awareness, adjusting
training level of difficulty and situation scale. We have taken these
lessons and used them to improve the DEFACTO system’s training
abilities. We have conducted initial training exercises to illustrate
the utility of the system in terms of providing useful feedback to the
trainee. Through DEFACTO, we hope to improve training tools for
and consequently improve the preparedness of Incident Comman-
ders.
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