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ABSTRACT
Distributed Constraint Optimization (DCOP) is rapidly emerging
as a prominent technique for multiagent coordination. Unfortu-
nately, rigorous quantitative evaluations of privacy loss in DCOP
algorithms have been lacking despite the fact that agent privacy is
a key motivation for applying DCOPs in many applications. Re-
cently, Maheswaran et al. [3, 4] introduced a framework for quan-
titative evaluations of privacy in DCOP algorithms, showing that
early DCOP algorithms lose more privacy than purely centralized
approaches and questioning the motivation for applying DCOPs.
Do state-of-the art DCOP algorithms suffer from a similar short-
coming? This paper answers that question by investigating the most
efficient DCOP algorithms, including both DPOP and ADOPT.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence

General Terms
Algorithms, Performance, Security
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1. INTRODUCTION
Promising approaches in distributed constraint optimization (DCOP)

[5,7], enable distributed conflict resolution and coordination while
maintaining users’ privacy. Indeed, maintaining privacy is a fun-
damental motivation in DCOP [5, 7, 9]. One approach to privacy
in DCOP is to use cryptographic techniques [11] that ensure wa-
tertight privacy but require the use of external servers or computa-
tionally intensive cryptographic operations. Instead, we focus on
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an approach in which researchers provide metrics for quantifying
the privacy loss in DCOP algorithms [1,3,4,6,10]. If we can bound
privacy loss in specific DCOP algorithms, then cryptographic tech-
niques may be avoidable in situations where they are impractical.

There are three key weaknesses in the previous work on pri-
vacy loss analysis in DCOP. First, recent cross-algorithm privacy
loss analysis focused on a limited number of DCOP algorithms but
indicated that these algorithms preserve less privacy than a cen-
tralized approach [3], seriously undermining a key motivation for
these algorithms. Thus, it is crucial to analyze some of the most
used and most recent DCOP algorithms to see whether they are
similarly undermined and to measure their cross-algorithm perfor-
mance. Two notable omissions in previous analysis are ADOPT [7]
and DPOP [8], both among the most efficient DCOP algorithms.

This paper overturns the significant negative results from [3, 4]
by providing positive privacy results for several DCOP algorithms
not considered in [3, 4]. This paper analyzes ADOPT, DPOP and
SynchID [7], three recent DCOP algorithms, via a large-scale ex-
perimental investigation of privacy loss in DCOP algorithms in the
VPS (Valuations of Possible States) analysis framework [3, 4], us-
ing several distributed meeting scheduling scenarios.

A predecessor to the recently introduced algroithms above, SynchBB
[2] is an early algorithm for DCOP. Previous work has provided a
comparison of privacy loss of a centralized approach with SynchBB,
suggesting that the centralized approach may lead to lower privacy
loss. Hence, this paper focuses on the remaining algorithms above.
These algorithms were chosen because they present novel design
choices, or occupy a prominent place in the algorithmic space. The
following describes key characteristics of these algorithms:

Adopt is an asynchronous complete DCOP algorithm, guaran-
teed to find the optimal solution. In Adopt, an agent communicates
only one value from its domain at a time, or one message indicating
the cost of an assignment to a set of variables at a time.

SynchID is an iterative deepening algorithm similar to Adopt,
with two primary differences: agents are organized into a linear
chain, rather than a tree, and messages are sent synchronously.

DPOP [8] is an synchronous complete DCOP algorithm, using a
tree topology. DPOP is a variable elimination algorithm, where all
relevant information is sent up the tree in one large message.

SynchBBor synchronous branch-and-bound, was studied in [4].
However, we focus on a slightly modified SynchBB where infor-
mation irrelevant to the problem is not communicated.

2. EXPERIMENTAL METHODOLOGY
We focus our investigation on privacy loss in the distributed meet-

ing scheduling problem, since this domain presents inherent pri-
vacy concerns [1,4]. However, the results of this work can be gen-
eralized to other DCOP settings where privacy matters.

We define a meeting/event scheduling problem based on the for-
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Figure 1: Scenarios: Transparent boxes represent agents and the
dark, inner boxes are meeting variables. Thick lines are intra-agent
contraints and thin lines are inter-agent constraints.

malism of [5], expressed using the PEAV-DCOP representation [5],
which is motivated by privacy considerations.

Scenarios in PEAV-DCOP:The majority of scheduling instances
in a functional personal assistant agent system will consist of a
small number of meetings that need to be negotiated simultane-
ously. While larger-scale problems may present themselves, if pri-
vacy is a critical factor, the coordination protocols must be effective
for these small-scale instances. We consider two scenarios of three
(A, B,C) or four (A, B,C,D) agents. The PEAV-DCOP graphs in
Figure 1 show the events, labeled by their attendees, and decom-
posed into variables and constraints.

2.1 VPS: Measuring Privacy Loss
The Valuation of Possible States (VPS) framework [4] was pro-

posed to quantitatively evaluate privacy loss among a group of agents
R1 · · ·Rn. Quantification of privacy loss in VPS is based on a val-
uation on the other agents’ estimates about (i.e. a probability dis-
tribution over) an agent’s possible states. There are three key el-
ements in VPS: (i) agentRn’s private information, modeled as a
statesn ∈ Sn, whereSn is a set of possible states thatRn may oc-
cupy; (ii) other agents’ estimates about agentRn’s possible states,
expressed as a probability distribution�n((Sn)N−1), (iii) the utility
that agentRn derives from the distribution of other agents’ beliefs
aboutRn’s states, yielding value function�n(�n((Sn)N−1)). Note
that�n((Sn)N−1) = [�1

n(Sn) �2
n(Sn) · · ·�N

n (Sn)], where� j
n(Sn) pro-

vides agentRj ’s probability distribution over states of agentRn.
Before negotiation, each agent knows only that the other agents

exist in one of|V|T possible states. Afterwards, each agent will
be modeled by all other agents whose estimate of the observed
agent is captured by�n((Sn)N−1). In this analysis, we focus on the
information-theoretic analysis introduced in [1] or the EntropyTS
metric [3]. Privacy loss between two agents is studied on a per-
timeslot basis, averaged over all timeslots.

We can scale this function and average the privacy loss between
all pairs of agents such that the valuations span[0 1] with zero is
no loss and one is complete loss of privacy.

2.2 Inference Algorithms
Based on the VPS framework, we define a process by which

agents can infer information about other agents while running var-
ious DCOP algorithms, in order to measure the likely privacy loss
between agents in a DCOP. All inference experiments for all algo-
rithms (including the centralized method) start with the same initial
assumptions. We assume that the constraint graph and the valuation
of eachmeetingis known to all agents, but the valuations oftime
slotsare private. These assumptions are exactly as in [3, 4], allow-
ing comparison of the results; in addition, for the scenarios with
few meetings, it is reasonable to assume that the valuations for
meetings are public knowledge. Based on these assumptions, we
developed the following methods for agent inference for SynchID,
Adopt and DPOP.

Centralized: In a centralized algorithm, the agents all send their
valuation information to one agent, who computes the result and re-
turns. In every case the centralized agent can “infer” the valuations

perfectly [4]. Since we express our results as an average of each
agent’s privacy loss, the privacy loss of the centralized algorithm is
1
N whereN is the total number of agents.

SynchID: SynchID is a synchronous algorithm in which agents
are ordered in a chain, and messages are passed up and down the
chain. An upward message from agentRn contains a numbermn,
which is equal to the best currently known total reward for the sub-
chain of agents under and includingRn. For PEAV, the total reward
for the chain is equal to the sum of differences between the valu-
ation of a scheduled meeting and the valuation of the time slot it
occupies for every scheduled meeting for every person. We hence-
forth use∆Ek

Rn
(t) = Vk

n−V0
n(t) to denote the change in utility to thenth

agent for scheduling thekth event at timet. When agentRn receives
an upward message it knows thatmn = a sum of∆ terms lower in
the chain fromRn.

To illustrate how possible states can be eliminated in SynchID,
we outline the inferences that one can make from messages re-
ceived in Scenario a. In SynchID, upward messages to agentRn

contained information of the form:

mn =
∑
∆

Ek
Rn

(tEk) +
∑
∆

Ek
Rn

(t̃Ek), (1)

where the summations include events downstream fromRn. tEk is
the time of an eventEk when that time is known toRn (because
Rn is a participant in eventEk), and t̃Ek is the time of an eventEk

when that time is not known toRn. For example, sinceB knows
when meetingBC is scheduled, as well as the value of meeting
BC, a message fromC to B (mB) allows B to know VC(tBC) (the
valuation vector component ofC at the time at which meetingBC
is scheduled). Similarly, a message fromB to A (mA) allows A to
knowvB(tAB)+vB(t̃BC)+vC(t̃BC), wheret̃BC is some time not equal to
tAB, but otherwise unknown toA. Each of these relations allows the
observing agent to reduce the number of possible states the other
agents could be in. We obtain the privacy loss for SynchID by
allowing each agent to collect these relations, iterate over them,
and test each relation against a list of possible states for the other
agents, discarding states that conflict with any of the relations.

Adopt: Adopt contains the same type of upward messages as
in SynchID, but, due to its asynchrony, it may be impossible for
agents to tell how many∆s are contained in the reward component
of each message. When a message is received, we know it contains
rewards for at least one agent more than the previous message it
sent. However, due to asynchrony, our agent might have included
more descendants in the message. So, for our inference, we use a
≤ sign. The inference equation is:

mn ≤
∑
∆

Ek
Rn

(tEk) +
∑
∆

Ek
Rn

(t̃Ek), (2)

This relation changes to an equality in the special case when only
one agent is downstream from agentRn.

DPOP: In the DPOP algorithm, each agent sends exactly one
cost message to its parent. This message is a table of all possi-
ble assignments of constrained upstream events and the aggregate
costs of those assignments to the agents downstream ofRn. Each
entry in the table is used to create inference rules as in equation 1.
The events in the entry are the∆Ek

Rn
tEk terms and other events with

participating agents downstream ofRn are the∆Ek
Rn

t̃Ek terms.
SynchBB: Inference rules for SynchBB are as described in [4].

3. EXPERIMENTAL RESULTS
In this section, we present experimental results from two scenar-

ios. We compare privacy loss in the studied algorithms according
to the EntropyTS metric and we introduce a new metric to highlight
privacy benefits of distribution over centralized approaches.
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Figure 2: Privacy loss comparisons of the different algorithms.

For the three agent scenario, we variedV, the number of valua-
tions, from 3 to 7 while holding the number of timeslots= 3. For
the four agent scenario, for reasons of computational complexity,
we varied|V| from 3 to 5 while holdingT = 3. For each(T, |V|)
pair, we performed 10 runs per algorithm. For each run, the privacy
loss for each agent was measured using the inference algorithms
given in Section 3. The systemwide privacy loss was expressed as
the arithmetic mean of each agent’s privacy loss:

∑
N�n/N.

In each of our graphs, each data point is an average of 10 runs,
and we provide statistical significance results to support our main
conclusions. We use a chain topology for all algorithms, to allow
fair comparison, since not all algorithms can use a DFS tree.

Cross-algorithm comparison: Figure 2 shows the comparison
of privacy loss for the four algorithms mentioned above, for two
scenarios, as well as providing a comparison of privacy loss with
the centralized approach. Thex-axis plots the different number
of valuations (with number of time-slots fixed at 3) and they-axis
plots privacy loss. The thick horizontal line shows the centralized
approach, for scenario a (three agents), its privacy loss is 0.33, but
for scenario b (four agents) it is 0.25. We use the EntropyTS metric
as the metric for privacy loss in this result. We obtained results for
other metrics, and mostly these metrics agree with the conclusions
drawn using the EntropyTS metric.

We conclude the following from Figure 2: (1) All algorithms but
SynchBB have a privacy loss that is lower than the centralized ap-
proach. In contrast with the negative results presented in [4], which
illustrated DCOP algorithms as having worse privacy loss than a
centralized approach, this is a significant positive result. Indeed, the
privacy loss in Adopt and DPOP is less than half that of the central-
ized approach. Furthermore, statistical tests show that Adopt per-
forms better than centralized in all scenarios and DPOP performs
better than centralized in all but one (significance level of 5%). (2)
DPOP and Adopt had similar privacy loss, despite their vastly dif-
ferent approaches. Despite DPOP’s one-shot communication of all
information, it performed surprisingly well in terms of privacy loss.
Adopt does perform slightly better than DPOP for privacy loss, but
not to the level anticipated. (3) Adopt significantly outperformed
SynchID in terms of privacy protection. The asynchrony in Adopt
was expected to be significantly detrimental to privacy due to the
increased numbers of messages. Instead, we found that the un-
certainty introduced by asynchrony as to which agents participate
in each cost message provides significant privacy gains compared
to synchronous algorithms such as SynchID. (4) Despite modifi-
cations to improve privacy, SynchBB still performed the worst in
terms of its privacy loss; often worse than centralized. The key rea-
son for SynchBB’s low performance is its bi-directional messaging
of cost information. Thus, it is important to avoid bi-directional
cost propagation in DCOP algorithms when privacy is a goal.

MAX metric: In Figure 2, we measured the loss of privacy be-
tween pairs of agents, averaged to find the systemwide privacy loss.
The effect of one agent learning more than others, and gaining an
asymmetric advantage over them, is not considered. The MAX
metric addresses this effect by considering only the single agent
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Figure 3: Algorithms compared using the MAX metric.

that learns the most information about other agents (by EntropyTS),
rather than the mean of the individual privacy loss figures. Thus, a
centralized algorithm will have a value of 1, since the MAX agent
learns all the information. Figure 3 shows the results for all the al-
gorithms according to the MAX metric. The number of valuations
is plotted on thex-axis and the privacy loss is plotted on they-axis.

The MAX metric suggests that there is always a privacy benefit
obtained by using DCOP algorithms, even those that perform worse
than centralized by our other metrics, when the major privacy con-
cern is one agent accumulating excessive knowledge. In the MAX
metric, DPOP and Adopt tended to outperform SynchBB, while
SynchID varied widely from scenario to scenario.

4. CONCLUSION
Distributed Constraint Optimization (DCOP) is rapidly emerging

as a tool for multiagent coordination. Previous work [4] showed a
negative result on privacy loss in early DCOP algorithms, casting
doubt on the efficacy of DCOP in privacy requiring domains. This
paper presents an investigation of several leading algorithms, in-
cluding ADOPT and DPOP, and overturns earlier negative results.
Our metrics show DCOP algorithms outperforming a centralized
approach, with DPOP, SynchID and ADOPT performing best.
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