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Abstract

In adversarial multiagent domains, security, commonly de-
fined as the ability to deal with intentional threats from other
agents, is a critical issue. This paper focuses on domains
where these threats come from unknown adversaries. These
domains can be modeled as Bayesian games; much work has
been done on finding equilibria for such games. However,
it is often the case in multiagent security domains that one
agent can commit to a mixed strategy which its adversaries
observe before choosing their own strategies. In this case, the
agent can maximize reward by finding an optimal strategy,
without requiring equilibrium. Previous work has shown this
problem of optimal strategy selection to be NP-hard. There-
fore, we present a heuristic called ASAP, with three key ad-
vantages to address the problem. First, ASAP searches for
the highest-reward strategy, rather than a Bayes-Nash equi-
librium, allowing it to find feasible strategies that exploit the
natural first-mover advantage of the game. Second, it pro-
vides strategies which are simple to understand, represent,
and implement. Third, it operates directly on the compact,
Bayesian game representation, without requiring conversion
to normal form. We provide an efficient Mixed Integer Linear
Program (MILP) implementation for ASAP, along with ex-
perimental results illustrating significant speedups and higher
rewards over other approaches.

Introduction
In many multiagent domains, agents must act in order to pro-
vide security against attacks by adversaries. A common is-
sue that agents face in such security domains is uncertainty
about the adversaries they may be facing. For example, a
security robot may need to make a choice about which areas
to patrol, and how often (Ruanet al. 2005). However, it will
not know in advance exactly where a robber will choose to
strike. A team of unmanned aerial vehicles (UAVs) (Beard
& McLain 2003) monitoring a region undergoing a human-
itarian crisis may also need to choose a patrolling policy.
They must make this decision without knowing in advance
whether terrorists or other adversaries may be waiting to dis-
rupt the mission at a given location. It may indeed be pos-
sible to model the motivations of types of adversaries the
agent or agent team is likely to face in order to target these
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adversaries more closely. However, in both cases, the secu-
rity robot or UAV team will not know exactly which kinds
of adversaries may be active on any given day.

A common approach to choose a policy for agents in such
scenarios is to model them as Bayesian games. A Bayesian
game is a game in which agents may belong to one or more
types; the type determines the agents possible actions and
payoffs. The distribution of adversary types that an agent
will face may be known or inferred from historical data.
Usually, these games are analyzed using the solution con-
cept of Bayes-Nash equilibrium, an extension of the Nash
equilibrium for Bayesian games. However, in many settings,
a Nash or Bayes-Nash equilibrium is not an appropriate so-
lution concept, since it assumes that the agents’ strategies
are chosen simultaneously (Conitzer & Sandholm 2006).

In some settings, one player can commit to a strategy be-
fore the other players choose their strategies, and by doing
so, attain a higher reward than if the strategies were cho-
sen simultaneously. These scenarios are known as Stackel-
berg games (Fudenberg & Tirole 1991). In a Stackelberg
game, a leader commits to a strategy first, and then a fol-
lower (or group of followers) selfishly optimize their own
rewards,considering the action chosen by the leader.For
example, the security agent (leader) may first commit to a
mixed strategy for patrolling various areas in order to be un-
predictable to the robbers (followers). The robbers, after
observing the pattern of patrols over time, can then choose
their own strategy of choosing a location to rob.

To see the advantage of being the leader in a Stackelberg
game, consider a simple game with the payoff table as shown
in Table 1. The leader is the row player and the follower is
the column player. Here, the leader’s payoff is listed first.

1 2 3
1 5,5 0,0 3,10
2 0,0 2,2 5,0

Table 1: Payoff table for example normal form game.

The only Nash equilibrium for this game is when the
leader and the follower plays 2 which gives the leader a pay-
off of 2. However, if the leader commits to a uniform mixed
strategy of playing 1 and 2 with equal (0.5) probability, the
follower’s best response is to play 3 to get an expected pay-



off of 5 (10 and 0 with equal probability). The leader’s pay-
off would then be 4 (3 and 5 with equal probability). In this
case, the leader now has an incentive to deviate and choose a
pure strategy of 2 (to get a payoff of 5). However, this would
cause the follower to deviate to strategy 2 as well, resulting
in the Nash equilibrium. Thus, by committing to a strategy
that is observed by the follower, and by avoiding the tempta-
tion to deviate, the leader manages to obtain a reward higher
than that of the best Nash equilibrium.

The problem of choosing an optimal strategy for the
leader to commit to in a Stackelberg game is analyzed in
(Conitzer & Sandholm 2006) and found to be NP-hard in
the case of a Bayesian game with multiple types of fol-
lowers. Thus, efficient heuristic techniques for choosing
high-reward strategies in these games is an important open
issue. Methods for finding optimal leader strategies for
non-Bayesian games (Conitzer & Sandholm 2006) can be
applied to this problem by converting the Bayesian game
into a normal-form game by the Harsanyi transformation
(Harsanyi & Selten 1972). If, on the other hand, we wish to
compute the highest-reward Nash equilibrium, new methods
using mixed-integer linear programs (MILPs) (Sandholm,
Gilpin, & Conitzer 2005) may be used, since the highest-
reward Bayes-Nash equilibrium is equivalent to the corre-
sponding Nash equilibrium in the transformed game. How-
ever, by transforming the game, the compact structure of the
Bayesian game is lost. In addition, since the Nash equilib-
rium assumes a simultaneous choice of strategies, the advan-
tages of being the leader are not considered.

In this paper we introduce an efficient heuristic method
for approximating the optimal leader strategy for security
domains, known as ASAP (Agent Security via Approximate
Policies). This method has three key advantages. First, it
directly searches for an optimal strategy, rather than a Nash
(or Bayes-Nash) equilibrium, thus allowing it to find high-
reward non-equilibrium strategies like the one in the above
example. Second, it generates policies with a support which
can be expressed as a uniform distribution over a multiset of
fixed size as proposed in (Lipton, Markakis, & Mehta 2003).
This allows for policies that are simple to understand and
represent (Lipton, Markakis, & Mehta 2003), as well as a
parameter (size of the multiset) that controls the simplicity
of the policy and can be tuned. Third, the method allows
for a Bayes-Nash game to be expressed compactly with-
out needing conversion to a normal-form game, allowing for
large speedups over existing Nash methods like (Sandholm,
Gilpin, & Conitzer 2005) and (Lemke & Howson 1964).

The rest of the paper is organized as follows. In the next
section we fully describe the patrolling domain and its prop-
erties. We then introduce the Bayesian game, the Harsanyi
transformation, and existing methods for finding an optimal
leader’s strategy in a Stackelberg game. Next, the ASAP al-
gorithm is presented for normal-form games, and we show
how it can be adapted to the structure of Bayesian games
with uncertain adversaries. Experimental results showing a
higher reward and faster policy computation in comparison
to existing Nash methods are shown in the Experimental re-
sults section. We then conclude with a discussion of related
work.

The Patrolling Domain
In most security patrolling domains, the security agents
(which could be UAVs (Beard & McLain 2003) or security
robots (Ruanet al. 2005)) cannot feasibly patrol all areas all
the time. Instead, they choose a policy by which they patrol
various routes at different times, accounting for factors like
the likelihood of crime in different areas, possible targets
for crime, and the security agents’ own resources (number
of security agents, amount of available time, fuel, etc.). It
is usually beneficial for this policy to be nondeterministic
so that robbers cannot safely rob certain locations, knowing
that they will be safe from the security agents (Paruchuriet
al. 2006). To demonstrate the utility of our algorithm, we
express a simplified version of such a domain as a game.

The most basic version of our game consists of two play-
ers: the security agent (the leader) and the robber (the fol-
lower) in a world consisting ofm houses,1 . . .m. The secu-
rity agent’s set of pure strategies consists of possible routes
of d houses to patrol (in an order). The security agent can
choose a mixed strategy so that the robber will be unsure of
exactly where the security agent may patrol, but the robber
will know the mixed strategy the security agent has chosen.
For example, the robber can observe over time how often
the security agent patrols each area. With this knowledge,
the robber must choose a single house to rob. We assume
that the robber generally takes a long time to rob a house. If
the house chosen by the robber is not on the security agent’s
route, then the robber successfully robs the house. Other-
wise, if it is on the security agent’s route, then the earlier the
house is on the route, the easier it is for the security agent to
catch the robber before he finishes robbing it.

We model the payoffs for this game with the following
variables:

• vl,x: value of the goods in housel to the security agent.

• vl,q: value of the goods in housel to the robber.

• cx: reward to the security agent of catching the robber.

• cq: cost to the robber of getting caught.

• pl: probability that the security agent can catch the robber
at thelth house in the patrol (pl < pl′ ⇐⇒ l′ < l).
The security agent’s set of possible pure strategies (pa-

trol routes) is denoted byX and includes alld-tuplesi =<
w1, w2, ..., wd > with w1 . . . wd = 1 . . .m. where no two
elements are equal (the agent is not allowed to return to the
same house). The robber’s set of possible pure strategies
(houses to rob) is denoted byQ and includes all integers
j = 1 . . .m. The payoffs (security agent, robber) for pure
strategiesi, j are:

• −vl,x, vl,q, for j = l /∈ i.

• plcx+(1−pl)(−vl,x),−plcq+(1−pl)(vl,q), for j = l ∈ i.

With this structure it is possible to model many different
types of robbers who have differing motivations; for exam-
ple, one robber may have a lower cost of getting caught than
another, or may value the goods in the various houses differ-
ently. If the distribution of different robber types is known or
inferred from historical data, then the game can be modeled
as a Bayesian game (Fudenberg & Tirole 1991).



Bayesian Games
A Bayesian game contains a set ofN agents, and each agent
n must be one of a given set of typesθn. For our patrolling
domain, we have two agents, the security agent and the rob-
ber. θ1 is the set of security agent types andθ2 is the set of
robber types. Since there is only one type of security agent,
θ1 contains only one element. During the game, the rob-
ber knows its type but the security agent does not know the
robber’s type. For each agent (the security agent or the rob-
ber) n, there is a set of strategiesσn and a utility function
un : θ1 × θ2 × σ1 × σ2 → <.

A Bayesian game can be transformed into a normal-form
game using the Harsanyi transformation (Harsanyi & Sel-
ten 1972). For the transformed game obtained, new, linear-
program (LP)-based methods for finding high-reward strate-
gies for normal-form games (Conitzer & Sandholm 2006)
can be used to find a strategy; this strategy can then be used
for the Bayesian game. While methods exist for finding
Bayes-Nash equilibria directly, without the Harsanyi trans-
formation (Koller & Pfeffer 1997), they find only a single
equilibrium in the general case, which may not be of high
reward. Recent work (Sandholm, Gilpin, & Conitzer 2005)
has led to efficient mixed-integer linear program techniques
to find the best Nash equilibrium for a given agent. How-
ever, these techniques do require a normal-form game, and
hence to compare the ASAP policy against the optimal pol-
icy, as well as the highest-reward Nash equilibrium, we must
apply these techniques to the Harsanyi-transformed matrix.
The next two subsections elaborate on how this is done.

Harsanyi Transformation

The first step to solve Bayesian games is to apply the
Harsanyi transformation (Harsanyi & Selten 1972) that con-
verts the incomplete information game into a normal form
game. Given that the Harsanyi transformation is a standard
concept in game theory, we explain it briefly through a sim-
ple example without introducing the mathematical formula-
tions. Let us assume there are two robber typesa andb in
the Bayesian game. Robbera is active with probabilityα,
and robberb, active with probability1 − α. The rules de-
scribed in the domain section allow us to construct simple
payoff tables.

Assume that there are two houses in the world (1 and 2)
and hence there are two patrol routes (pure strategies) for the
agent:{1,2} and{2,1}. The robber can rob either house 1 or
house 2 and hence he has two strategies (denoted as1l, 2l for
robber type l). Since there are two types assumed (denoted
asa andb), we construct two payoff tables (shown in Ta-
ble 2) corresponding to the security agent playing a separate
game with each of the two robber types with probabilities
α and1 − α. First, consider robber typea. Borrowing the
notation from the domain section, we assign the following
values to the variables:v1,x = v1,q = 3/4, v2,x = v2,q =
1/4, cx = 1/2, cq = 1, p1 = 1, p2 = 1/2. Using these
values we construct a base payoff table as the payoff for the
game against robber typea. For example, if the security
agent chooses route{1,2} when robbera is active, and rob-
ber a chooses house 1, the robber receives a reward of -1

(for being caught) and the agent receives a reward of 0.5 for
catching the robber. The payoffs for the game against robber
typeb are constructed using different values.

Security agent: {1,2} {2,1}
Robber a

1a -1, .5 -.375, .125
2a -.125, -.125 -1, .5

Robber b
1b -.9, .6 -.275, .225
2b -.025, -.025 -.9, .6

Table 2: Payoff tables: Security Agent vs Robbersa andb

Using the Harsanyi technique involves introducing a
chance node, that determines the robber’s type, thus trans-
forming the security agent’s incomplete information regard-
ing the robber into imperfect information (Brynielsson &
Arnborg 2004). The Bayesian equilibrium of the game is
then precisely the Nash equilibrium of the imperfect infor-
mation game. The transformed, normal-form game is shown
in Table 3. In the transformed game, the security agent is the
column player, and the set of all robber types together is the
row player. Suppose that robber typea robs house 1 and
robber typeb robs house 2, while the security agent chooses
patrol{1,2}. Then, the security agent and the robber receive
an expected payoff corresponding to their payoffs from the
agent encountering robbera at house 1 with probabilityα
and robberb at house 2 with probability1− α.

Finding an Optimal Strategy
Although a Nash equilibrium is the standard solution con-
cept for games in which agents choose strategies simultane-
ously, in our security domain, the security agent (the leader)
can gain an advantage by committing to a mixed strategy
in advance. Since the followers (the robbers) will know the
leader’s strategy, the optimal response for the followers will
be a pure strategy. Given the common assumption, taken in
(Conitzer & Sandholm 2006), in the case where followers
are indifferent, they will choose the strategy that benefits the
leader, there must exist a guaranteed optimal strategy for the
leader (Conitzer & Sandholm 2006).

From the Bayesian game in Table 2, we constructed the
Harsanyi transformed bimatrix in Table 3. We denoteX =
σθ2

1 = σ1 andQ = σθ2
2 as the index sets of the security

agent and robbers’ pure strategies, respectively, withR and
C as the corresponding payoff matrices.Rij is the reward of
the security agent andCij is the reward of the robbers when
the security agent takes pure strategyi and the robbers take
pure strategyj. A mixed strategy for the security agent is
a probability distribution over its set of pure strategies and
will be represented by a vectorx = (px1, px2, . . . , px|X|),
wherepxi ≥ 0 and

∑
pxi = 1. Here,pxi is the probability

that the security agent will choose itsith pure strategy.
The optimal mixed strategy for the security agent can be

found in time polynomial in the number of rows in the nor-
mal form game using the following linear program formula-
tion from (Conitzer & Sandholm 2006). For every possible
pure strategyj by the follower (the set of all robber types),



{1,2} {2,1}
{1a, 1b} −1α− .9(1− α), .5α + .6(1− α) −.375α− .275(1− α), .125α + .225(1− α)
{1a, 2b} −1α− .025(1− α), .5α− .025(1− α) −.375α− .9(1− α), .125α + .6(1− α)
{2a, 1b} −.125α− .9(1− α),−.125α + .6(1− α) −1α− .275(1− α), .5α + .225(1− α)
{2a, 2b} −.125α− .025(1− α),−.125α− .025(1− α) −1α− .9(1− α), .5α + .6(1− α)

Table 3: Harsanyi Transformed Payoff Table

max
∑

i∈X pxiRij

s.t. ∀j′ ∈ Q,
∑

i∈σ1
pxiCij ≥

∑
i∈σ1

pxiCij′∑
i∈X pxi = 1

∀i∈X , pxi >= 0

(1)

Then, for all feasible follower strategiesj, choose the one
that maximizes

∑
i∈X pxiRij , the reward for the leader. The

pxi variables give the optimal strategy for the security agent.
Note that while this method is polynomial in the number

of rows in the transformed normal-form game, the number
of rows increases exponentially with the number of robber
types. Thus, this method needs running|σ2||θ2| separate LPs
for a Bayesian game. This is not a surprise, since finding the
optimal strategy to commit to for the leader in a Bayesian
game is NP-hard (Conitzer & Sandholm 2006).

Heuristic Approaches
Given that finding the optimal strategy for the leader is NP-
hard, we provide a heuristic approach. In this heuristic we
limit the possible mixed strategies of the leader to select ac-
tions with probabilities that are integer multiples of1/k for
a predetermined integerk. Previous work (Paruchuriet al.
2006) has shown that strategies with high entropy are bene-
ficial for security applications when opponents’ utilities are
completely unknown. Our method will result in uniform-
distribution strategies as solutions. One advantage of such
strategies is that they are compact to represent (as fractions)
and simple to understand; hence are efficiently implemented
by real organizations. We aim to maintain the advantage of
simple strategies for our security application problem, in-
corporating the effect of the robbers’ rewards on the agent’s
rewards. Thus, the ASAP heuristic will produce strategies
which arek-uniform. A mixed strategy is denotedk-uniform
if it is a uniform distribution on a multisetS of pure strate-
gies with|S| = k. A multiset is a set whose elements may be
repeated multiple times; thus, for example, the mixed strat-
egy corresponding to the multiset{1, 1, 2} would take strat-
egy 1 with probability 2/3 and strategy 2 with probability
1/3. ASAP allows the size of the multiset to be chosen in
order to balance the complexity of the strategy reached with
the goal that the identified strategy will yield a high reward.

Another advantage of the ASAP heuristic is that it oper-
ates directly on the compact Bayesian representation, with-
out needing the Harsanyi transformation. This is because
the different follower types are independent of each other.
Hence, evaluating the leader strategy against a Harsanyi-
transformed game is equivalent to evaluating against each
of the game matrices for the individual follower types. This

independence property is exploited in ASAP to yield a de-
composition scheme. Note that the LP method introduced
by (Conitzer & Sandholm 2006) to compute optimal Stack-
elberg policies is unlikely to be decomposable into a small
number of games as it was shown to be NP-hard for Bayes-
Nash problems. Finally, note that ASAP requires the solu-
tion of only one optimization problem, rather than solving a
series of problems as in the LP method of problem 1.

For a single follower type, the algorithm works the fol-
lowing way. Given a particulark, for each possible mixed
strategyx of the leader that corresponds to multiset of size
k, evaluate the leader’s payoff fromx when the follower
plays a reward-maximizing pure strategy. We then take the
mixed strategy with the highest payoff. We need to consider
only the reward-maximizing pure strategies of the followers,
since for a given fixed strategyx of the agent, each robber
type faces a problem with fixed linear rewards. If a mixed
strategy is optimal for the robber, then so are all the pure
strategies in the support of that mixed strategy. Note that
because the leader’s strategies are limited to discrete values,
the assumption from previous section that followers break
ties in the leader’s favor is not significant, since ties will be
unlikely to arise. This is because, in domains where rewards
are drawn from any random distribution, the probability of
a follower having more than one pure optimal response to
a given leader strategy approaches zero, and the leader will
have only a finite number of possible mixed strategies.

Our approach to characterize the optimal strategy for the
security agent makes use of properties of linear program-
ming. We briefly outline these results here for complete-
ness, for detailed discussion and proofs see one of many ref-
erences on the topic, such as (Bertsimas & Tsitsiklis 1997).
Every linear programming problem, such as:

max cT x | Ax = b, x ≥ 0,

has an associated dual linear program, in this case:

min bT y | AT y ≥ c.

These primal/dual pairs of problems satisfy weak duality:
For anyx andy primal and dual feasible solutions respec-
tively, cT x ≤ bT y. Thus a pair of feasible solutions is op-
timal if cT x = bT y, and the problems are said to satisfy
strong duality. In fact if a linear program is feasible and has
a bounded optimal solution, then the dual is also feasible
and there is a pairx∗, y∗ that satisfiescT x∗ = bT y∗. These
optimal solutions are characterized with the following opti-
mality conditions:

• primal feasibility:Ax = b, x ≥ 0
• dual feasibility:AT y ≥ c



• complementary slackness:xi(AT y − c)i = 0 for all i.

Note that this last condition implies that

cT x = xT AT y = bT y,

which proves optimality for primal dual feasible solutionsx
andy. In the following subsections, we first define the prob-
lem in its most intuitive form as a mixed-integer quadratic
program, and then show how this problem can be converted
into a mixed-integer linear program.

Mixed-Integer Quadratic Program
We begin with the case of a single follower type. Let the
leader be the row player and follower, the column player.
We denote byx the vector of strategies of the leader andq
the vector of strategies of the follower. We also denoteX
andQ the index sets of the leader and follower’s pure strate-
gies, respectively. The payoff matricesR andC correspond
to: Rij is the reward of the leader andCij , the reward of the
follower when the leader takes pure strategyi and the fol-
lower takes pure strategyj. Letk be the size of the multiset.

We first fix the policy of the leader to somek-uniform
policy x. The valuexi is the number of times pure strat-
egyi is used in thek-uniform policy, which is selected with
probability xi/k. We formulate the optimization problem
the follower solves to find its optimal response tox as the
following linear program:

max
∑
j∈Q

∑
i∈X

1
k

Cijxi qj

s.t.
∑

j∈Q qj = 1
q ≥ 0.

(2)

The objective function maximizes the follower’s expected
reward givenx, while the constraints make feasible any
mixed strategyq for the follower. The dual to this linear
programming problem is the following:

min a

s.t. a ≥
∑
i∈X

1
k

Cijxi j ∈ Q. (3)

From strong duality and complementary slackness we ob-
tain that the maximum reward value for the followera is
the value of every pure strategy withqj > 0, that is in the
support of the optimal mixed strategy. Therefore each of
these pure strategies is optimal. Optimal solutions to the
follower’s problem are characterized by the LP optimality
conditions: primal feasibility constraints in (2), dual feasi-
bility constraints in (3), and complementary slackness

qj

(
a−

∑
i∈X

1
k

Cijxi

)
= 0 j ∈ Q.

These conditions must be included in the problem solved by
the leader in order to consider only best responses by the
follower to thek-uniform policy x. The leader seeks the
k-uniform solutionx that maximizes its own payoff, given
that the follower uses an optimal responseq(x). Therefore
the leader solves the following integer problem:

max
∑
i∈X

∑
j∈Q

1
k

Rijq(x)j xi

s.t.
∑

i∈X xi = k
xi ∈ {0, 1, . . . , k}.

(4)

Problem (4) maximizes the leader’s reward with the fol-
lower’s best response (qj for fixed leader’s policyx and
hence denotedq(x)j) by selecting a uniform policy from a
multiset of constant sizek. We complete this problem by in-
cluding the characterization ofq(x) through linear program-
ming optimality conditions. To simplify writing the com-
plementary slackness conditions, we will constrainq(x) to
be only optimal pure strategies by just considering integer
solutions ofq(x). The leader’s problem becomes:

maxx,q

∑
i∈X

∑
j∈Q

1
k

Rijxiqj

s.t.
∑

i xi = k∑
j∈Q qj = 1

0 ≤ (a−
∑

i∈X
1
kCijxi) ≤ (1− qj)M

xi ∈ {0, 1, ...., k}
qj ∈ {0, 1}.

(5)

Here, the constantM is some large number. The first and
fourth constraints enforce ak-uniform policy for the leader,
and the second and fifth constraints enforce a feasible pure
strategy for the follower. The third constraint enforces dual
feasibility of the follower’s problem (leftmost inequality)
and the complementary slackness constraint for an optimal
pure strategyq for the follower (rightmost inequality). In
fact, since only one pure strategy can be selected by the
follower, say qh = 1, this last constraint enforces that
a =

∑
i∈X

1
kCihxi imposing no additional constraint for

all other pure strategies which haveqj = 0.
We conclude this subsection noting that Problem (5) is

an integer program with a non-convex quadratic objective in
general, as the matrixR need not be positive-semi-definite.
Efficient solution methods for non-linear, non-convex inte-
ger problems remains a challenging research question. In
the next section we show a reformulation of this problem as
a linear integer programming problem, for which a number
of efficient commercial solvers exist.

Mixed-Integer Linear Program
We linearize the quadratic program of Problem 5 through the
change of variableszij = xiqj , thus obtaining

maxq,z

∑
i∈X

∑
j∈Q

1
kRijzij

s.t.
∑

i∈X

∑
j∈Q zij = k∑

j∈Q zij ≤ k

kqj ≤
∑

i∈X zij ≤ k∑
j∈Q qj = 1

0 ≤ (a−
∑

i∈X
1
kCij(

∑
h∈Q zih)) ≤ (1− qj)M

zij ∈ {0, 1, ...., k}
qj ∈ {0, 1}

(6)



Proposition 1 Problems (5) and (6) are equivalent.

Proof: Considerx, q a feasible solution of (5). We will
show thatq, zij = xiqj is a feasible solution of (6) of same
objective function value. The equivalence of the objective
functions, and constraints 4, 6 and 7 of (6) are satisfied by
construction. The fact that

∑
j∈Q zij = xi as

∑
j∈Q qj = 1

explains constraints 1, 2, and 5 of (6). Constraint 3 of (6) is
satisfied because

∑
i∈X zij = kqj .

Let us now considerq, z feasible for (6). We will show
thatq andxi =

∑
j∈Q zij are feasible for (5) with the same

objective value. In fact all constraints of (5) are readily sat-
isfied by construction. To see that the objectives match, no-
tice that ifqh = 1 then the third constraint in (6) implies that∑

i∈X zih = k, which means thatzij = 0 for all i ∈ X and
all j 6= h. Therefore,

xiqj =
∑
l∈Q

zilqj = zihqj = zij .

This last equality is because both are 0 whenj 6= h. This
shows that the transformation preserves the objective func-
tion value, completing the proof.

Given this transformation to a mixed-integer linear pro-
gram (MILP), we now show how we can apply our de-
composition technique on the MILP to obtain significant
speedups for Bayesian games with multiple follower types.

Decomposition for Multiple Adversaries
The MILP developed in the previous section handles only
one follower. Since our security scenario contains multiple
follower (robber) types, we change the response function for
the follower from a pure strategy into a weighted combina-
tion over various pure follower strategies where the weights
are probabilities of occurrence of each of the follower types.

Decomposed MIQP
To admit multiple adversaries in our framework, we modify
the notation defined in the previous section to reason about
multiple follower types. We denote byx the vector of strate-
gies of the leader andql the vector of strategies of follower
l, with L denoting the index set of follower types. We also
denote byX andQ the index sets of leader and followerl’s
pure strategies, respectively. We also index the payoff ma-
trices on each followerl, considering the matricesRl and
Cl.

Using this modified notation, we characterize the optimal
solution of followerl’s problem given the leaders k-uniform
policy x, with the following optimality conditions:∑

j∈Q

ql
j = 1

al −
∑
i∈X

1
k

Cl
ijxi ≥ 0

ql
j(a

l −
∑
i∈X

1
k

Cl
ijxi) = 0

ql
j ≥ 0

Again, considering only optimal pure strategies for fol-
lower l’s problem we can linearize the complementarity
constraint above. We incorporate these constraints on the
leader’s problem that selects the optimalk-uniform policy.
Therefore, givena priori probabilitiespl, with l ∈ L of fac-
ing each follower, the leader solves the following problem:

maxx,q

∑
i∈X

∑
l∈L

∑
j∈Q

pl

k
Rl

ijxiq
l
j

s.t.
∑

i xi = k∑
j∈Q ql

j = 1
0 ≤ (al −

∑
i∈X

1
kCl

ijxi) ≤ (1− ql
j)M

xi ∈ {0, 1, ...., k}
ql
j ∈ {0, 1}.

(7)

Problem (7) for a Bayesian game with multiple follower
types is indeed equivalent to Problem (5) on the payoff ma-
trix obtained from the Harsanyi transformation of the game.
In fact, every pure strategyj in Problem (5) corresponds
to a sequence of pure strategiesjl, one for each follower
l ∈ L. This means thatqj = 1 if and only if ql

jl
= 1 for

all l ∈ L. In addition, given thea priori probabilitiespl of
facing playerl, the reward in the Harsanyi transformation
payoff table isRij =

∑
l∈L plRl

ijl
. The same relation holds

betweenC andCl. These relations between a pure strategy
in the equivalent normal form game and pure strategies in
the individual games with each followers are key in showing
these problems are equivalent.

Decomposed MILP
We can linearize the quadratic programming problem 7
through the change of variableszl

ij = xiq
l
j , obtaining the

following problem

maxq,z

∑
i∈X

∑
l∈L

∑
j∈Q

pl

k Rl
ijz

l
ij

s.t.
∑

i∈X

∑
j∈Q zl

ij = k∑
j∈Q zl

ij ≤ k

kql
j ≤

∑
i∈X zl

ij ≤ k∑
j∈Q ql

j = 1
0 ≤ (al −

∑
i∈X

1
kCl

ij(
∑

h∈Q zl
ih)) ≤ (1− ql

j)M∑
j∈Q zl

ij =
∑

j∈Q z1
ij

zl
ij ∈ {0, 1, ...., k}

ql
j ∈ {0, 1}

(8)

Proposition 2 Problems (7) and (8) are equivalent.

Proof: Considerx, ql, al with l ∈ L a feasible solution of
(7). We will show thatql, al, zl

ij = xiq
l
j is a feasible solution

of (8) of same objective function value. The equivalence
of the objective functions, and constraints 4, 7 and 8 of (8)
are satisfied by construction. The fact that

∑
j∈Q zl

ij = xi

as
∑

j∈Q ql
j = 1 explains constraints 1, 2, 5 and 6 of (8).

Constraint 3 of (8) is satisfied because
∑

i∈X zl
ij = kql

j .
Lets now considerql, zl, al feasible for (8). We will show

that ql, al andxi =
∑

j∈Q z1
ij are feasible for (7) with the



same objective value. In fact all constraints of (7) are readily
satisfied by construction. To see that the objectives match,
notice for eachl oneql

j must equal 1 and the rest equal 0. Let
us say thatql

jl
= 1, then the third constraint in (8) implies

that
∑

i∈X zl
ijl

= k, which means thatzl
ij = 0 for all i ∈ X

and allj 6= jl. In particular this implies that

xi =
∑
j∈Q

z1
ij = z1

ij1 = zl
ijl

,

this last equality from constraint 6 of (8). Thereforexiq
l
j =

zl
ijl

ql
j = zl

ij . This last equality is because both are 0 when
j 6= jl. This shows that the transformation preserves the
objective function value, completing the proof.

We can therefore solve this equivalent linear integer pro-
gram with efficient integer programming packages which
can handle problems with thousands of integer variables.
We implemented the decomposed MILP and the results are
shown in the following section.

Experimental results
The patrolling domain and the payoffs for the associated
game are detailed in sections describing the Patrolling do-
main and the Bayesian games. We performed experiments
for this game in worlds of three and four houses with pa-
trols consisting of two houses. The description provided in
the domain section earlier is used to generate a base case
for both the security agent and robber payoff functions. The
payoff tables for additional robber types are constructed and
added to the game by adding a random distribution of vary-
ing size to the payoffs in the base case. All games are nor-
malized so that, for each robber type, the minimum and max-
imum payoffs to the security agent and robber are 0 and 1,
respectively.

Using the data generated, we performed the experiments
using four methods for generating the security agent’s strat-
egy:

• uniform randomization

• ASAP

• the multiple linear programs method from (Conitzer &
Sandholm 2006) (to find the true optimal strategy)

• the highest reward Bayes-Nash equilibrium, found using
the MIP-Nash algorithm (Sandholm, Gilpin, & Conitzer
2005)

The last three methods were applied using CPLEX 8.1.
Because the last two methods are designed for normal-form
games rather than Bayesian games, the games were first con-
verted using the Harsanyi transformation (Harsanyi & Sel-
ten 1972). The uniform randomization method is simply
choosing a uniform random policy over all possible patrol
routes. We use this method as a simple baseline to mea-
sure the performance of our heuristics. We anticipated that
the uniform policy would perform reasonably well since
maximum-entropy policies have been shown to be effective
in multiagent security domains (Paruchuriet al. 2006). The
highest-reward Bayes-Nash equilibria were used in order to

Figure 1: Runtimes for various algorithms on problems of 3
and 4 houses.

demonstrate the higher reward gained by looking for an op-
timal policy rather than an equilibria in Stackelberg games
such as our security domain.

Based on our experiments we present three sets of graphs
to demonstrate (1) the runtime of ASAP compared to other
common methods for finding a strategy, (2) the reward guar-
anteed by ASAP compared to other methods, and (3) the
effect of varying the parameterk, the size of the multiset,
on the performance of ASAP. In the first two sets of graphs,
ASAP is run using a multiset of 80 elements; in the third set
this number is varied.

The first set of graphs, shown in Figure 1 shows the run-
time graphs for three-house (left column) and four-house
(right column) domains. Each of the three rows of graphs
corresponds to a different randomly-generated scenario. The
x-axis shows the number of robber types the security agent
faces and they-axis of the graph shows the runtime in sec-
onds. All experiments that were not concluded in 30 minutes
(1800 seconds) were cut off. The runtime for the uniform
policy is always negligible irrespective of the number of ad-
versaries and hence is not shown.

The ASAP algorithm clearly outperforms the optimal,
multiple-LP method as well as the MIP-Nash algorithm for
finding the highest-reward Bayes-Nash equilibrium with re-
spect to runtime. For a domain of three houses, the optimal
method cannot reach a solution for more than seven robber
types, and for four houses it cannot solve for more than six



Figure 2: Reward for various algorithms on problems of 3
and 4 houses.

types within the cutoff time in any of the three scenarios.
MIP-Nash solves for even fewer robber types within the cut-
off time. On the other hand, ASAP runs much faster, and is
able to solve for at least 20 adversaries for the three-house
scenarios and for at least 12 adversaries in the four-house
scenarios within the cutoff time. The runtime of ASAP does
not increase strictly with the number of robber types for each
scenario, but in general, the addition of more types increases
the runtime required.

The second set of graphs, Figure 2, shows the reward to
the patrol agent given by each method for three scenarios in
the three-house (left column) and four-house (right column)
domains. This reward is the utility received by the security
agent in the patrolling game, and not as a percentage of the
optimal reward, since it was not possible to obtain the op-
timal reward as the number of robber types increased. The
uniform policy consistently provides the lowest reward in
both domains; while the optimal method of course produces
the optimal reward. The ASAP method remains consistently
close to the optimal, even as the number of robber types
increases. The highest-reward Bayes-Nash equilibria, pro-
vided by the MIP-Nash method, produced rewards higher
than the uniform method, but lower than ASAP. This dif-
ference clearly illustrates the gains in the patrolling domain
from committing to a strategy as the leader in a Stackelberg
game, rather than playing a standard Bayes-Nash strategy.

The third set of graphs, shown in Figure 3 shows the ef-
fect of the multiset size on runtime in seconds (left column)

Figure 3: Reward for ASAP using multisets of 10, 30, and
80 elements

and reward (right column), again expressed as the reward
received by the security agent in the patrolling game, and
not a percentage of the optimal reward. Results here are for
the three-house domain. The trend is that as as the multi-
set size is increased, the runtime and reward level both in-
crease. Not surprisingly, the reward increases monotonically
as the multiset size increases, but what is interesting is that
there is relatively little benefit to using a large multiset in
this domain. In all cases, the reward given by a multiset
of 10 elements was within at least 96% of the reward given
by an 80-element multiset. The runtime does not always
increase strictly with the multiset size; indeed in one exam-
ple (scenario 2 with 20 robber types), using a multiset of 10
elements took 1228 seconds, while using 80 elements only
took 617 seconds. In general, runtime should increase since
a larger multiset means a larger domain for the variables in
the MILP, and thus a larger search space. However, an in-
crease in the number of variables can sometimes allow for a
policy to be constructed more quickly due to more flexibility
in the problem.

Summary and Related Work
This paper focuses on security for agents patrolling in hos-
tile environments. In these environments, intentional threats
are caused by adversaries about whom the security pa-
trolling agents have incomplete information. Specifically,
we deal with situations where the adversaries’ actions and



payoffs are known but the exact adversary type is unknown
to the security agent. Agents acting in the real world quite
frequently have such incomplete information about other
agents. Bayesian games have been a popular choice to
model such incomplete information games (Brynielsson &
Arnborg 2004). The Gala toolkit is one method for defin-
ing such games (Koller & Pfeffer 1995) without requiring
the game to be represented in normal form via the Harsanyi
transformation (Harsanyi & Selten 1972); Gala’s guarantees
are focused on fully competitive games. Much work has
been done on finding optimal Bayes-Nash equilbria for sub-
classes of Bayesian games, finding single Bayes-Nash equi-
libria for general Bayesian games (Koller & Pfeffer 1997)
or approximate Bayes-Nash equilibria (Singh, Soni, & Well-
man 2004). Less attention has been paid to finding the opti-
mal strategy to commit to in a Bayesian game (the Stackel-
berg scenario (Roughgarden 2001)). However, the complex-
ity of this problem was shown to be NP-hard in the general
case (Conitzer & Sandholm 2006), which also provides al-
gorithms for this problem in the non-Bayesian case.

Therefore, we present a heuristic called ASAP, with three
key advantages towards addressing this problem. First,
ASAP searches for the highest reward strategy, rather than a
Bayes-Nash equilibrium, allowing it to find feasible strate-
gies that exploit the natural first-mover advantage of the
game. Second, it provides strategies which are simple to
understand, represent, and implement. Third, it operates di-
rectly on the compact, Bayesian game representation, with-
out requiring conversion to normal form. We provide an effi-
cient Mixed Integer Linear Program (MILP) implementation
for ASAP, along with experimental results illustrating sig-
nificant speedups and higher rewards over other approaches.

As mentioned earlier, ourk-uniform strategies are similar
to thek-uniform strategies of (Lipton, Markakis, & Mehta
2003). While that work provides epsilon error-bounds based
on thek-uniform strategies, their solution concept is still that
of a Nash equilibrium, and they do not provide efficient al-
gorithms for obtaining suchk-uniform strategies. This con-
trasts with ASAP, where our emphasis is on a highly effi-
cient heuristic approach that is not focused on equilibrium
solutions.

Finally the patrolling problem which motivated our work
has recently received growing attention from the multiagent
community due to its wide range of applications (Chevaleyre
2004), (Machadoet al. 2002). However most of this work
is focused on either limiting energy consumption involved
in patrolling (Gui & Mohapatra 2005) or optimizing on cri-
teria like the length of the path traveled (Chevaleyre 2004),
(Machadoet al. 2002), without reasoning about any explicit
model of an adversary(Paruchuriet al. 2006).
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