

Final Submission 2006-08-07

An Intelligent Personal Assistant for Task and Time Management

Karen Myers1 Pauline Berry1 Jim Blythe2 Ken Conley1 Melinda Gervasio1

Deborah McGuinness3 David Morley1 Avi Pfeffer4 Martha Pollack5 Milind Tambe6

SRI International1
Menlo Park, CA

{firstname.lastname}@ sri.com

USC/ISI2
Marina del Rey, CA

blythe@isi.edu

Stanford University3
Stanford, CA

dlm@ksl.stanford.edu

Harvard University4
Cambridge, MA

avi@eecs.harvard.edu

Univ. of Michigan5
Ann Arbor, MI

pollackm@eecs.umich.edu

Univ. of Southern California6
Los Angeles, CA
tambe@usc.edu

Abstract

We describe an intelligent personal assistant that has been developed to aid a busy knowledge
worker in managing time commitments and performing tasks. The design of the system was
motivated by the complementary objectives of (a) relieving the user of routine tasks, thus
allowing her to focus on tasks that critically require human problem-solving skills, and (b)
intervening in situations where cognitive overload leads to oversights or mistakes by the user.
The system draws on a diverse set of AI technologies that are linked within a Belief-Desire-
Intention agent system. Although the system provides a number of automated functions, the
overall framework is highly user-centric in its support for human needs, responsiveness to human
inputs, and adaptivity to user working style and preferences.

Keywords: intelligent assistants, agents, task management, time management, personalization

Final Submission 2006-08-07

2

Introduction

A typical knowledge worker must juggle a broad range of tasks and responsibilities. While
doing so, she must maintain awareness of deadlines and resources, as well as tracking current
activities and new information that could impact her objectives and productivity. Much of her
work will require coordination and collaboration with a broad range of people, both within and
outside of her immediate organization. As organizations seek to improve cost effectiveness and
efficiency, workloads for many knowledge workers are increasing. Furthermore, workers are
being inundated with vastly increased volumes of information that must be filtered and absorbed.
The net result is high levels of cognitive overload in the work place (Kirsh 2000).
 This paper describes a system, called the Project Execution Assistant (PExA), that has
been developed to improve the productivity and effectiveness of a knowledge worker by aiding
her in organizing and performing tasks. From a functional perspective, PExA focuses on two key
areas: time management and task management. Time management refers to the process of
helping a user manage actual and potential temporal commitments. Time management critically
involves meeting/appointment scheduling, but further includes reminder generation and
workload balancing. Task management involves the planning, execution, and oversight of tasks.
Such tasks may be personal in that they originate with the user, or may derive from
responsibilities associated with a project.
 PExA has been designed to aid the user with tasks along a spectrum of complexity. Some
of PExA’s value derives from its ability to relieve the user of responsibility for frequently
occurring, routine tasks (e.g., meeting scheduling, expense reimbursement). PExA can also
assist the user with tasks that are larger in scope and less precisely defined (e.g., arranging a
client visit).
 PExA incorporates a significant body of sophisticated AI technologies for knowledge
representation, reasoning (probabilistic and symbolic), planning, plan execution, agent
coordination, adjustable autonomy, explanation, and learning. These technologies are integrated
into a tightly coupled framework, drawing on a shared ontology and an agent architecture. This
linkage has enabled a number of important capabilities within the system, including dynamic
procedure learning, integrated task and calendar management, and real-time execution
monitoring and prediction.
 PExA has been developed as a key component of the CALO (Cognitive Agent that
Learns and Organizes) project -- a large-scale effort to build an adaptive cognitive assistant
situated in an office environment (see http://caloproject.sri.com/ for details).
Complementing PExA’s capabilities for time and task management in CALO are a meeting
assistant and an information assistant. The meeting assistant is designed to enhance a user’s
participation in a meeting through mechanisms that track the topics that are discussed, the
participants’ positions, and any resultant decisions. The information assistant provides tools to
organize information within the user’s desktop environment in order to support more efficient
access and improved decision making (Cheyer et al. 2005).
 The version of PExA described in this paper was delivered to the CALO project in 2006.
Although only mid-way through the five-year project, PExA already provides a significant body
of functional capabilities (task performance, time management, execution monitoring, team
coordination) and qualities (advisability, explainability, adaptability) for an intelligent personal
assistant. A version of PExA will be deployed for daily use within the research team later this
year.

Final Submission 2006-08-07

3

 The paper is organized as follows. We begin by presenting the model of assistance
underlying PExA. Next, we describe the overall PExA system and the core components for time
and task management, as well as the main user interface for the system. After that, we present a
use case that highlights select system functionality. We conclude with a discussion of issues for
mixed-initiative systems, related work, and future technical directions.

Model of Assistance

Different styles of assistive technology suit different applications, depending on the types of
problem to be addressed and the balance of expertise and knowledge between the user and the
system. In situations where human problem-solving skills are weak or compromised in some
way, an assistant can provide value by watching over the shoulder of the user and intervening to
provide guidance when the user reaches impasses or makes mistake. Systems designed to aid
people with cognitive disabilities such as memory decline fall into this category (Pollack 2005).
When human cognitive skills are an essential part of the problem solving, a more appropriate
design is to have an assistant relieve the user of routine tasks to enable her to focus on strategic
decision making. Mixed-initiative planning technologies such as MAPGEN (Bresina et al. 2005)
and PASSAT (Myers et al. 2003) provide examples of this type of assistant in the way that they
support a human in making strategic planning decisions by aiding with the management of
constraints and requirements. In situations where there is a distribution of problem-solving
skills between the user and the system, a collaborative assistant would work in conjunction with
its user to complete a shared task (Allen et al. 2002; Rich & Sidner 1998).
 The demands of a busy office environment can often lead to situations where
performance degrades as a result of information or task overload (Kirsh 2000). Typically, the
user possesses the necessary problem-solving skills to perform her job effectively, but simply has
too many things to do and too much information to track in the time available. Motivated by the
objective of reducing user workload, we chose to adopt a delegative model of interaction
between the user and the system (Myers & Yorke-Smith 2005). Within this model, the user
decides what needs to be done and which tasks she feels comfortable allocating to the system.
PExA works on behalf of its user by executing tasks that have been assigned to it, thus
paralleling how a user might assign tasks to a well-trained human assistant. The system operates
in a fairly autonomous manner within bounds set by the user, but interacts to solicit necessary
information and to confirm important decisions.
 Delegation is the primary interaction style within the system, but other forms of
interaction can be incorporated as well. PExA currently includes several forms of proactive
assistance in which it initiates communication with the user to inform her of problems, to provide
reminders of user commitments, and to provide feedback on user requests. This proactive
behavior is motivated primarily by information overload: in many situations, the system may
have a better awareness than the user of requirements, commitments, or current state, and so can
provide value by drawing on this knowledge within a given problem-solving context. Although
not present within PExA currently, incorporation of a collaboration capability would be useful to
address tasks that require the user and system to work together to solve problems.
 Within the delegative interactions model, several desiderata were identified for
interaction characteristics that the assistant would need in order for the technology to be both
useful and usable by a busy knowledge worker.

Final Submission 2006-08-07

• Directable: Although the assistant should be capable of operating in an autonomous

manner, it must accept explicit directions from the user on what to do (or not), and how
to do it.

• Personalizable: The assistant should learn a model of the user’s preferences and adapt its
behavior accordingly.

• Teachable: It should be easy for the user to communicate new or modified problem-
solving knowledge to the assistant over time.

• Transparent: The assistant should be able to communicate succinctly what it is doing and
why in order to provide the user with insight as to the status and strategy of its actions.

System Overview

Figure 1 depicts the PExA
architecture. Each PExA is
associated with a single user
but interacts with the PExAs
of other users to exchange
information and coordinate
on tasks.
 The heart of the
system consists of the
components for task and time
management. These two
elements are unified through
the use of a common agent
framework (the SPARK
system, described below) and
a shared ontology.
Additional components
within the system provide
complementary capabilities
for execution monitoring and
prediction, procedure learning,
task explanation, and team coordination. The different components within an individual PExA
interact through an asynchronous messaging scheme to exchange data, queries, and requests to
perform tasks (Cheyer & Martin 2001), resulting in a distributed and modular environment that
simplified overall system development.

Figure 1. PExA Architecture

 PExA’s knowledge is distributed throughout the system. Key knowledge sources include
a taxonomy of general office concepts, the user’s personal calendar, an email server, a model of
user preferences and a current situation model. The CALO Query Manager provides a unified
interface to this knowledge through an integrated collection of reasoning and retrieval facilities
(Ambite et al. 2006).

4

Final Submission 2006-08-07

 Although PExA will be deployed for operational use in the near future, it operates
currently within a realistic but partially simulated office environment. While some effectors
cause real actions to occur (e.g., calendar modifications, sending of email, information retrieval
from the web), others are necessarily simulated (e.g., purchasing and conference registration
actions).
Task Management
The role of the Task Manager is to organize, filter, prioritize, and oversee execution of tasks on
behalf of the user. Tasks may be posed explicitly by the user or another PExA agent, or adopted
proactively by the Task Manager in anticipation of user needs. The Task Manager can both
perform tasks itself and draw on other problem-solving entities (including the user) to support
task execution.
 The Task Manager is built on top of a Belief-Desire-Intention (BDI) agent framework
called SPARK (SRI Procedural Agent Realization Kit) (Morley & Myers 2004). SPARK
embraces a procedural reasoning model of problem solving, in the spirit of earlier agent systems
such as PRS (Georgeff & Ingrand 1989) and RAPS (Firby 1994). Central to SPARK’s
operation is a body of process models that encode knowledge of how activities can be
undertaken to achieve objectives. The process models are represented in a procedural language
that is similar to the hierarchical task network (HTN) representations used in may practical AI
planning systems (Erol et al. 1994). However, the SPARK language extends standard HTN
languages through its use of a rich set of task types (e.g., achievement, performance, waiting)
and advanced control constructs (e.g., conditionals, iteration).
 The Task Manager includes a library of process models (alternatively, plans or
procedures) that provide a range of capabilities in the areas of visitor planning, meeting
scheduling, expense reimbursement, and communication and coordination. The processes were
designed primarily to automate capabilities but include explicit interaction points where the Task
Manager solicits inputs from the user.
 Rather than blindly accepting tasks from the user, the Task Manager analyzes requests to
determine whether they are appropriate and feasible in the context of the user’s current
commitments and activities (Myers & Yorke-Smith 2005). For problematic requests, the system
can make recommendations on how to eliminate the problems and work with the user to
implement those recommendations. This type of proactive behavior on the part of the system can
be useful in situations where the user may have limited awareness of the context in which tasks
are to be performed, and hence may be posing requests that are unsuitable in certain ways. For
example, if the user assigns the task of registering for a conference and the Task Manager
determines that the user lacks sufficient travel funds, the system will notify the user and make
suggestions to address the shortfall such as applying for a departmental travel grant or
postponing a planned equipment purchase. The assessment of the resource feasibility of a task
makes use of a capability to project necessary and sufficient bounds on resource usage by
analyzing the space of possible hierarchical decompositions of a task (Morley et al. 2006).
 SPARK also maintains a collection of metalevel predicates (or metapredicates) that track
key internal state and processing steps of the system, such as what tasks it is performing, which
procedures are being applied to those tasks, and what decisions have been made in the scope of
executing a task. These metapredicates allow the system to reflect on and dynamically modify
its behavior at runtime in order to adapt to evolving requirements; they are also used to support
explanation (discussed further below).

5

Final Submission 2006-08-07

Time Management
Time management within PExA is focused on aiding a user in managing their temporal
commitments. Such time management is intensely personal, with many people being reluctant to
relinquish control over their schedules. The PTIME component of PExA provides the user with
personalized time-management support that is responsive to her needs and preferences, and
adaptive to changing circumstances (Berry et al. 2006a). PTIME learns its user’s preferences
through a combination of passive learning, active learning, and advice taking. As a result, the
user can become progressively more confident of PTIME’s ability, and thus allow it to make
increasingly more autonomous decisions, for example, whether to accept a meeting request,
when to schedule a meeting, how much information to share when negotiating the time and
location of a meeting with others, and when to issue reminders about upcoming deadlines.
 PTIME is, in effect, a single-calendar scheduler that interacts with PTIME components of
other PExA agents to coordinate shared calendar entities. In PExA, PTIME is used in an open,
unbounded environment in which issues of privacy, authority, cross-organizational scheduling,
and availability of participants are more significant than in prior work on automated calendar
management. For example, (Franzin et al. 2002) assume complete privacy, while (Payne et al.
2002) and (Modi & Veloso 2004) assume more cooperative environments. With the exception
of (Modi & Veloso 2004), most prior systems focus on requests formulated as hard constraints,
and produce only feasible scheduling options. In contrast, PTIME treats the underlying
scheduling problem as a soft constraint satisfaction problem; it makes use of individual
preferences and the context of the user’s current workload and deadlines (i.e., it does not just
handle meetings, but also “to do” items), and it may interact with its user to find the best solution.
 PTIME integrates commercial calendaring tools and user interface technology with new
algorithms for constraint satisfaction, goal-directed process management, and preference
learning. Scheduling requests are formulated in a highly expressive language that combines
temporal and finite-domain constraints with disjunction and preferences. This degree of
expressiveness is necessary to cover many real-world requirements, such as a preference to meet
with a member of the sales department before noon or after 3:00 on Friday. Scheduling is
accomplished through the use of powerful constraint satisfaction techniques designed to support
this expressive language (Peintner & Pollack 2004; Berry et al. 2006b).
 PTIME provides support for scheduling a single meeting, a set of related meetings, or an
agenda of events. It also supports the user in canceling events, rescheduling events, requesting
another person to commit to an event, and committing to a requested event. PTIME tracks its
user’s manipulations of her calendar to maintain schedule integrity and to alert her to
consequences of her actions in the context of her current workload. PTIME also supports the
exchange of information (availability, commitments) and requests between PExA agents. A
SPARK-based controller manages the interactions between the user and the constraint reasoner,
and interagent communication.
Execution Monitoring and Prediction
An intelligent assistant must be able to reason about the tasks it attempts to undertake: to
determine whether a task is feasible, and to adapt to developments that occur during the course
of execution. Determining whether a task is logically feasible given the user’s current
commitments is the responsibility of the Task Manager. However, even tasks that are logically
feasible may be likely to fail because of uncertain future events. Furthermore, tasks that were
likely to succeed at their initiation may become likely to fail because of unexpected events. It is

6

Final Submission 2006-08-07

the responsibility of the Execution Monitor and Predictor (EMP) component of PExA to reason
about the course of a task’s execution.
 The EMP uses models written in ProPL, a probabilistic process modeling language
(Pfeffer 2005). A ProPL model is a description of how a process evolves, including the
specification of uncertainty over the success of subprocesses, their results, and execution times.
ProPL models, which are derived from SPARK process models, are transformed into dynamic
Bayesian networks in which there is a variable for every subprocess that could possibly be
executed.
 The Task Manager notifies the EMP of key events as they occur: the beginning and end
of a subtask, the success or failure of a subtask, and the results produced by a subtask. At all
points in time, the EMP maintains a probability distribution over the current state of the process
using particle filtering (Doucet et al. 2001). The Task Manager and the EMP can interact in two
ways. In on demand mode, the Task Manager can query the EMP for the probability that the
task will succeed given the possible current states, or the expected time to completion. In
continuous mode, the EMP runs at all time points: when the probability of success falls below a
threshold, or it appears that the task will not complete by its deadline, the EMP notifies the Task
Manager.
Team Coordination
Given the team-oriented nature of office activities, an effective intelligent assistant should be
aware of other individuals and their assistants with whom the user needs to interact, and facilitate
collaboration with them. PExA includes a capability for coordinating multiple PExA agents and
their users based on the Machinetta framework for team coordination (Schurr et al. 2004).
Machinetta, derived from the earlier STEAM (Tambe 1997) and TEAMCORE (Pynadath &
Tambe 2003) coordination architectures, enables high-level team-oriented programming, thus
avoiding the need to write tedious low-level coordination algorithms. Machinetta is used in
PExA to provide team-level interagent communication capabilities, and to support dynamic task
reallocation.
 Dynamic task reallocation involves both the initial allocation of tasks within a team, and
reallocation in response to anticipated problems in meeting deadlines. Machinetta employs a
distributed constraint optimization algorithm for task allocation that draws on a model of user
capabilities (Varakantam et al. 2005). Deciding when to reallocate tasks is difficult because of
uncertainty both in observations of the user's task performance and in expectations of future user
progress. Machinettta uses partially observable Markov decision processes (POMDPs) to enable
task reallocation decisions despite such observational and transitional uncertainty. While the
system must not autonomously make a reallocation decision in haste, it may have more current
and detailed information about task dependencies and deadlines than the user, and must guard
against situations where the user is unable to respond quickly. The POMDP policy enables PExA
to adjust its own autonomy, asking the user if she will complete the task on time, and
reallocating the task if she cannot or if she does not respond in a timely fashion.

Enhancing the User Experience

Layered on top of the core task and time management capabilities described in the previous
section are functionalities that address the requirements of directability, personalization,
teachability and transparency.

7

Final Submission 2006-08-07

Directability
Directability within PExA is grounded in a mechanism for advisability. This mechanism allows
the user to express guidance as to (a) the strategy to be used in solving a particular task or class
of tasks, and (b) the scope of the system’s autonomy (Myers & Morley 2001). Advice is
expressed in a high-level language that gets operationalized into constraints that direct PExA’s
decision making at execution time.
 The first class of advice can be used to designate or restrict procedures to be used, as well
as to constrain how procedure parameters are instantiated. For example, the guidance “Avoid
rescheduling meetings with Bill” expresses a preference over approaches for responding to
scheduling conflicts. The directive “Get approval for purchases from Ray or Tom” restricts the
choices for instantiating parameters that denote possible sources for approval.
 The second class can be used to declare conditions under which an agent must obtain
authorization from the user before performing activities (e.g., “Obtain permission before
scheduling any meetings after 5:00”). As well, it can be used to designate a class of decisions
that should be deferred to the user. These decisions can relate to either the selection of a value
for parameter instantiation (e.g., “Let me choose airline flights”) or the selection of a procedure
for a task (e.g., “Consult me when deciding how to respond to requests to cancel staff meetings”).
Personalization
Given that work styles are highly personal, an effective intelligent assistant must adapt to the
preferences and characteristics of its user. Users may have preferences over a wide range of
functions within the system, including how tasks are performed, how and when meetings are
scheduled, and how the system interacts with the user. To date, the focus for personalization in
PExA has been on the online, unobtrusive acquisition of user scheduling preferences through
machine learning techniques.
 In response to a meeting request, PTIME presents the user with a small number of
candidate schedules. The user can select one from among that set, or request that the system
generate additional candidates from which to choose. The learning exploits the preference
information implicit in these user actions to produce a preference model in the form of an
evaluation function over schedules. PTIME initially learned only general preferences over
temporal constraints (i.e., preferences over days and times) in underconstrained situations
(Gervasio et al. 2005). PTIME was extended recently to learn a multicriteria evaluation function
that encompasses a number of additional factors, including meeting-specific temporal
preferences, preferences over finite-domain constraints (e.g., meeting participants), preferences
over global schedule characteristics (e.g., fragmentation, stability), and preferences over the
scheduling preferences of other users. This expanded set of criteria improves PTIME’s ability to
capture the tradeoffs faced by users in real-world settings (Berry et al. 2006b).
 PTIME employs active learning (Cohn et al. 1992) to inform the decision of which
candidate schedules to present. In a typical active learning setting, the sole purpose is learning,
thus no restrictions are imposed on the sets of candidate solutions presented to the user.
However, PTIME’s active learner is deployed within a functional scheduling system and thus
must present reasonable solutions to actual meeting requests. To balance the often-competing
requirements of exploring the solution space to benefit learning and of presenting desirable
solutions to satisfy the user, the active learner uses a seeded entropy-based metric to find a
diverse set of desirable solutions.

8

Final Submission 2006-08-07

 Initial results demonstrated that this learning approach can produce an accurate
preference model for the user given a sufficient number of training examples. Informal studies
have shown, however, that users have a low tolerance for bad scheduling suggestions, which are
likely to occur during initial use of the system. To address this problem, PTIME was extended to
provide a bootstrapping phase in which users can specify general preferences as well as certain
types of tradeoffs between those preferences using a specialized graphical tool. Based on these
explicitly stated preferences, PTIME induces a multicriteria evaluation function of the same form
as the learned preference model. By combining these two functions, PTIME can provide
reasonably good solutions early on while employing learning capabilities to refine the initial
model to account for the unstated or evolving preferences of the user.
Teachability
The ability to expand and modify procedure knowledge at runtime is essential for a persistent
problem-solving agent like PExA, which will need to incorporate new capabilities and adapt to
changes in policy or expectations. The complexity of the procedures invoked by the system lies
well beyond what current fully automated learning methods can synthesize. For this reason, we
have focused on supporting a mixed-initiative model of procedure acquisition and extension.
 PExA includes a tool called Tailor (Blythe 2005a; 2005b) that can modify PExA’s
process models in response to user instructions in the form of short sentences. Tailor can be used
to correct problems with procedure knowledge detected at runtime or to create new procedures;
additions or corrections can be dynamically loaded into the executor, thus enabling problem-
solving behavior to adapt on the fly.
 Tailor bridges the gap between the user’s description of an intended change in behavior
and a corresponding modification to the procedural knowledge and domain ontology. This is
done through a combination of search for potential modifications and reasoning about their
effects on PExA’s global behavior. For example, given a user instruction “Prepay with my
credit card when the fee is less than $500”, Tailor identifies the affected action from those that
are part of PExA’s current tasks, uses search to find expressions corresponding to terms like ‘the
fee’ and possibly omitted action parameters or objects, simulates one or more potential
modifications to test their effect on other parts of the plan, and presents the most promising
choices to the user for confirmation. Testing has shown that users can add new steps, modify
conditions and change step orderings using Tailor without knowledge of PExA’s procedure
representation or precise domain ontology.
Transparency
For users to embrace personal assistant software, they need to have access to explanations as to
why decisions are made and actions taken, and what information and processes those actions and
decisions depend on. PExA has been designed with this requirement in mind and provides
explanation capabilities through its Integrated Cognitive Explanation Environment (ICEE).

 ICEE is capable of explaining a variety of questions including why PExA is
currently performing a task, why the task is not yet finished, what information PExA relies on,
and how PExA will execute something. When an explanation is requested, ICEE chooses one of
a number of strategies to answer the question, depending upon context and a user model. For
example, one strategy for answering the question “Why are you doing <task>?” leverages
provenance information about the source of the task process, including processes that have been
modified through various learning methods, and produces the explanation “I am trying to do
<high_level_task> and you instructed me to do <task> when <condition> holds.” Other

9

Final Submission 2006-08-07

strategies for this question include exposing preconditions or termination conditions, revealing
meta-information about task dependencies, showing task hierarchies and abstractions, and
explaining further provenance information related to task preconditions or other task knowledge.
 ICEE relies on the Inference Web infrastructure for explaining distributed systems
(McGuinness & Pinheiro da Silva 2004) and leverages the Proof Markup Language (PML) proof
interlingua (Pinheiro da Silva et al. 2005) for representing justifications. To produce the
explanation, ICEE generates PML from the SPARK metapredicates (described earlier) that track
which processes are executing, what goals they are servicing, and what termination conditions
are not met. ICEE uses a dialog model and Inference Web components to present relevant
information and possible context-appropriate follow-up questions for the user to ask. Follow-up
questions might include requests for additional detail, clarifying questions about an explanation
that has been provided previously, or requests to employ an alternate strategy for answering a
previously posed question. For example, possible follow-up questions to the explanation given
above are “Why is <task> not yet completed?” and “When will you finish <task>?”.

Figure 2 presents a sample dialogue in which the user has asked for the motivation for a
particular task (e.g., it is waiting for PExA to complete the purchase of a piece of office
equipment requested by the user). Relevant follow-up questions in this case ask why the task has
not yet completed, when the high-level task will complete, and when the system learned the
process it is executing for the high-level task.

Figure 2. An example explanation dialog, with suggested follow-up questions.

User Interaction

User interactions for specifying, managing, tracking, explaining, and collaborating on tasks are
made through a unified user interface (UI). In this way, the diversity and complexity of the
underlying AI technologies are hidden from the user. Additional specialized interfaces are
provided for viewing and modifying calendar information, and for procedure modifications in
Tailor, as those activities require detailed interactions that are not well suited to a general-
purpose interface.

10

Final Submission 2006-08-07

 The interface, called Towel, uses a lightweight, peripheral display. The primary window
(see Figure 3 – left side) summarizes the user’s tasks and provides visual representations of task
metadata such as deadlines and priority. Towel provides a variety of mechanisms to organize,
search, prioritize and view tasks, including tagging, property assignment, and grouping
capabilities. Associated with each task in Towel is a rich body of information about task
provenance (source, time of creation), requirements (e.g., deadlines, priority), current state, and
relations to other tasks (semantic groupings, task/subtask relations).
 Towel draws on ideas from prior systems designed to support ‘to do’ management (e.g.,
(Bellotti et al. 2004)); however, the emphasis within those systems is to help the user track and
prioritize tasks that she needs to complete. Towel goes beyond such systems through its support
for (a) the delegation of tasks to other PExA-enabled teammates, and (b) the dispatching of tasks
for automated execution by the Task Manager.
 For task dispatching, a user can assign a task to the Task Manager for execution by
selecting from a menu of automated capabilities. Alternatively, the user can define a task
informally by providing a textual description of it (e.g., “Schedule project review”); Towel will
provide the user with a list of possible tasks that it believes it could perform to help accomplish
this task (see Figure 3 – right side). Currently, this list is generated through simple keyword
matching on task and procedure descriptions, but more sophisticated mechanisms based on
semantic matching will be employed in the future.

Figure 3. The Towel ToDo Manager User Interface: task list (left) and task specification (right) displays.

11

Final Submission 2006-08-07

Figure 4. Sample task collaboration window in which the user first defines a scheduling task (left side) and
then explores and selects a solution (right side).

 The task list UI within Towel provides a summary view of tasks and access to common
operations for manipulating and viewing them. Given the temporally extended nature of many
of the tasks that the Task Manager can perform on the user’s behalf, Towel further includes a
collaboration window for supporting ongoing interactions between the user and the Task
Manager for an individual task (Figure 4). In particular, each task has an associated collaboration
window that is used solely for communication related to that task. An earlier design placed all
interactions within a common window: while that approach provided a convenient, single place
for interaction, test users were confused by conversations about multiple tasks occurring within
the same dialog. The design for the collaboration window was inspired by the user interface of
the DiamondHelp system for collaborative task guidance (Rich et al. 2006).
 The collaboration windows also support the use of specialized displays tied to specific
functions, to simplify certain types of interaction (similar in design to). For example, the bottom
portions of the two windows in Figure 4 display specialized interaction frames for soliciting
detailed information about a meeting request (left side) and exploring alternative solutions (right
side). The specialized frame for entering meeting requests supports an expressive, albeit
restricted, natural language input to enable users to quickly and naturally specify requirements
and preferences. In contrast, traditional form-based input interfaces for calendar systems are
ineffective for communicating constructs such as constraints and preferences. Although
specification of preferences such as “prefer Tuesday at 2pm”, “Bob is optional”, and “can
overlap” is possible with dialog form widgets, the inclusion of appropriate widgets for all

12

Final Submission 2006-08-07

possible constraints and preferences would result in an overly complex interface; furthermore,
such interfaces have been shown to elicit untrue preferences (Viappiani 2006). In contrast, the
specialized graphical display for exploring candidate solutions helps the user understand the key
differences among schedules, refine or relax input constraints, explore alternative solutions, and
select a preferred candidate. The warning sign seen in the right-most schedule indicates that the
constraint that meetings not overlap had to be relaxed (as indicated by the tool tip “overlaps with
Coffee”). If existing meetings must be moved (which is not the case here), the display would
indicate whether the effort required to reschedule is high, medium, or low.

Use Case

We present a sample use case that highlights select PExA capabilities.

Scene 1: Visitor scheduling
Helen receives an email request from the sponsor of one of her projects to visit next Wednesday
for a review. Helen asks PExA to initiate the planning process. Her PExA starts arranging a
tentative agenda based on its knowledge of typical requirements of such visits. It identifies a set
of project demonstrations and presentations for the meeting based on its knowledge of project
activities; the agenda also includes time for lunch, coffee breaks and a private meeting with
Helen at the end of the day. PExA determines various constraints for the meeting, including
durations, participants, and a range of start/end times for each agenda item. Helen’s PExA
interacts with the PExAs of the other project members to finalize the agenda (i.e., get schedules,
update their calendars).
 PExA is unable to find an agenda that satisfies all requirements, so it presents three
candidate solutions to Helen that relax the scheduling problem in various ways. Helen indicates
that none of the solutions is satisfactory. PExA then presents a set of strategies for simplifying
the scheduling problem (e.g., drop a presentation, shorten presentation times, extend the day,
change participants). Helen suggests (a) dropping one of the demonstrations and (b) getting
Dave to replace Joe. PExA produces a new set of candidate agendas based on the
recommendation and Helen selects one. PExA distributes the agenda to the relevant people (i.e.,
project members, sponsor) and assigns tasks to members of the project team to prepare for the
visit.

Scene 2: Conference Registration
While preparations for the visit continue, Helen asks PExA to register her for the AAAI
conference. PExA warns Helen that she has insufficient discretionary funds for the trip. PExA
suggests that Helen could afford the trip if she: (a) cancels her ICAPS trip, (b) postpones the
planned purchase of a laptop, or (c) applies for a departmental travel grant. Helen asks PExA to
apply for the grant; she has high certainty that the grant will be approved, so asks PExA to
continue the registration process. Registration requires payment of the conference fee. PExA
knows several payment strategies; the preferred option (based on prior advice from Helen) is for
the company to prepay, if time is available. PExA determines that there is sufficient time and
requests that procurement initiate the payment.
 Time progresses but PExA does not receive confirmation of the prepayment from
procurement. PExA eventually decides that the risk of missing the prepayment deadline is too
high. PExA recommends to Helen that it perform the prepayment directly using Helen’s credit

13

Final Submission 2006-08-07

card; Helen agrees, so PExA makes the payment and cancels the corporate prepayment. PExA
also initiates the expense reimbursement process for the registration fee.

Scene 3: Three Days Before the Visit
Three days before the visit, Helen asks PExA why she has not yet received reimbursement for
the registration fee. PExA reminds Helen that the reimbursement process for conference fees
typically takes five working days, but the request was submitted only three days ago.

Scene 4: Sixty Hours Prior to the Visit
PExA monitors progress by the team members on the tasks associated with the visit. It notices
that Dave is behind schedule in his demonstration tasks; furthermore, Dave’s calendar indicates
that he is heavily committed for the next two days. PExA infers that Dave is behind schedule,
and assigns one of his two demonstration tasks to Alice.

Scene 5: One Day Before the Visit
PExA informs Helen that the reimbursement for the conference fee should have arrived but has
not. PExA sends email to Travel Audit to check on the situation.

Scene 6: Visit Day
The visit is scheduled to start at 8:00 in the morning. At 8:15, Helen receives a page from the
sponsor indicating that he will not arrive until 10:00. Helen informs PExA of the delay. PExA
attempts to reschedule the agenda but cannot accommodate everything. PExA works with Helen
to reschedule the agenda and then notifies the participants of the changes.

Scene 7: The Day After the Visit
PExA informs Helen that her reimbursement check is available.

Issues for Mixed-initiative Assistants

The introduction to this special issue of the AI Magazine identifies a set of design issues for
mixed-initiative assistants. In this section, we discuss how these issues are addressed within
PExA.

Tasking. Tasking focuses on the division of responsibility between the human and the assistant.
As noted above, PExA embodies a delegative model of assistance in which the user first
determines what needs to be done and then explicitly assigns appropriate tasks to the system. The
system can operate in a fairly autonomous manner but interacts with the user to obtain necessary
inputs and to validate important decisions. This design enables the user to delegate
responsibility for routine or less important tasks to the system, thus increasing the amount of
time that the user can dedicate to more cognitively demanding activities.

Control. The raison d’etre for PExA is to serve the needs of its user. For this reason, the system
has been designed to provide the user with a high degree of control over system behavior: the
delegative model provides control over what the system does, while user advice provides control
over how the system does things. Nevertheless, the system retains a strong measure of autonomy.
Subsequent to the assignment of tasks by the user, the system and the user address their

14

Final Submission 2006-08-07

individual responsibilities in a fairly independent manner, initiating interactions with the other as
needed. Interactions typically focus on eliciting information from the other party that would
contribute to problem solving. In addition, the user may ask questions to develop an
understanding of what the system is doing and why. Similarly, the system has the ability to take
initiative in terms of asking questions of the user and acting proactively in areas such as reminder
generation and dynamic task reallocation. In this regard, the user and the system could be
characterized as engaging in cooperative problem solving, in contrast to the collaborative
problem-solving style of (Allen et al. 2002; Rich & Sidner 1998).

Awareness. Because the user and the system operate in a loosely coupled manner, it is
unnecessary for either to have full awareness of what the other is doing. Shared awareness is
necessary only for aspects of mutual interest. Much of the shared awareness in the system is
grounded in the to do interface. From the perspective of the system, the to do interface provides
a characterization of (at least some of) what the user wants to accomplish along with associated
priorities and deadlines. From the perspective of the user, the to do interface summarizes current
system actions and status. As desired, the user can access additional information from the system
about its current and projected activities through the explanation capabilities.
 The use of activity recognition technology to determine what the user is doing, based on
her recent actions, would be a welcome addition to PExA. In particular, activity recognition
could be used both to identify opportunities where the system could intervene to assist the user
with a given task and to improve how and when the system interacts with the user. Several
activity recognition efforts are underway within the CALO project; currently, we are exploring
how to capitalize on these capabilities within PExA.

Personalization. As noted above, personalization has been a major focus of the PExA project in
order to ensure that the technology can be used in a way that complements individual work styles.
To date, our focus for personalization has been on learning preferences for meeting scheduling.
One important area for future work is to learn preferences for interactions with the user.

Evaluation. Two factors complicate the evaluation of mixed-initiative technologies. First,
evaluation must assess the combined performance of the human with the system rather than the
system itself, thus introducing the need for expensive and time-consuming user studies. Second,
mixed-initiative technologies are of appeal in domains for which full automation is not possible,
typically because of the complexities and scope of the problems to be solved. In particular, there
is often a broad range of capabilities that would need to be assessed rather than an easily isolated
piece of functionality. Another complication derives from the fact that many such complex
domains lack objective standards for performance assessment, as measures of result quality tend
to be highly subjective. For these reasons, detailed evaluations of mixed-initiative technologies
are rare.
 Although we have conducted some informal user studies of portions of the overall system,
no comprehensive evaluation has yet been undertaken. As we introduce PExA into daily use
within our research team, we intend to collect data to determine which aspects of the system
work well for users, aiming eventually for a large-scale user study to asses the merits of the
technology.

15

Final Submission 2006-08-07

Related Work

The work on intelligent assistants most similar to PExA is the Electric Elves project (Chalupsky
et al. 2002), which provided personal assistants for a team of about twelve researchers. Key
functionalities included rescheduling meetings, selecting presenters for meetings, and ordering
meals. While Electric Elves provided an early model of how teams of personal assistants could
be productively employed in office environments, the individual agents were significantly
limited in the services that they provided to individual users compared to PExA, for example,
lacking capabilities of learning for personalization, detailed time management, and explanation.
 There has been much recent work on assistive technologies to aid people with memory
decline or other cognitive disabilities in managing their daily activities (Pollack 2005, Haigh et al.
2004). Unlike PExA, these systems do not perform tasks for the user; instead, they monitor a
person's actions in order to understand the user’s goals, and then determine reminders and
information that would be helpful to the person in achieving those goals.
 The Lumière system (Horvitz et al. 1998) provides intelligent assistance to software users.
Lumière focuses on understanding user goals and needs in order to provide proactive assistance.
It does not provide the kinds of task delegation capabilities that lie at the core of PExA.

Summary

PExA constitutes an ambitious effort to develop an intelligent personal assistant that can increase
the productivity of a busy knowledge worker through its support for task and time management.
The demands of the office environment can often lead to situations where information and task
overload lead to reduced performance. For these reasons, the system focuses on performing
routine tasks delegated to it by the user to enable the user to address more cognitively
challenging activities, while also offering proactive assistance in situations where it has
knowledge or insights that the user lacks.
 PExA draws on a diverse set of AI technologies, linked together within a BDI-based
agent framework. The use of these AI technologies enables a number of desirable qualities for
the assistant, including personalizability, directability, teachability, and transparency of
operations. Although the system provides a number of automated functions, the overall
framework is highly user centric in its support for human needs, responsiveness to human inputs,
and adaptivity to user working style and preferences.
 One critical driver for the project is to develop a system that will be adopted for regular
use. The time management component of the system was recently deployed to a small set of
users within the research team, while the Task Manager will be deployed over the next few
months. To support the Task Manager deployment, various simulated effectors within the
system are to be replaced by connections to corporate web services (e.g., for filing expense
reports or requesting travel authorization), thus enabling users to request the system to perform
real-world tasks on their behalf.
 During the remaining two years of the CALO project, work on PExA will focus on
increasing the overall utility and flexibility of the system. One key technical thrust will be to
provide additional forms of procedure learning to complement the learning by instruction
framework within Tailor. In particular, we will be incorporating into PExA procedure learning
capabilities grounded in the methodologies of learning by demonstration and learning by
discussion. A second thrust will be on increasing the scope of proactive behavior of the system

16

Final Submission 2006-08-07

through the use of reflective reasoning. Although the current system can take initiative for
interacting with the user (for reminder generation, critiquing of inappropriate task requests,
communication of important events, soliciting user inputs), these capabilities have been
explicitly engineered into the system. More generally, an intelligent assistant should have the
ability to deliberate over a general theory of its capabilities and its user’s objectives to determine
when it should take proactive measures to assist the user.

Acknowledgments. This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA), through the Department of the Interior, NBC, Acquisition Services Division,
under Contract No. NBCHD030010. The authors thank the following individuals for their contributions in
conceiving and developing the PExA system: Victoria Bellotti, Hung Bui, Jim Carpenter, Cynthia Chang,
Adam Cheyer, Li Ding, Tom Garvey, Alyssa Glass, Bill Mark, Mei Marker, Michael Moffitt, Jonathan
Pearce, Bart Peintner, Ray Perrault, Shahin Saadati, Paulo Pinheiro da Silva, Peter Schwartz, Jim
Thornton, Mabry Tyson, Pradeep Varakantham, Julie Weber, Michael Wolverton, and Neil Yorke-Smith.

References

Allen, J., Blaylock, N., and Ferguson, G. 2002. A Problem Solving Model for Collaborative
Agents. In Proceedings of the First International Conference on Autonomous Agents and
Multiagent Systems, Bologna, Italy.
Ambite, J.L., Chaudhri, V., Fikes, R., Jenkins, J., Mishra, S., Muslea, M., Uribe, T., and Yang, G.
2006. Design and Implementation of the CALO Query Manager. In Proceedings of the 18th
Innovative Applications of Artificial Intelligence Conference, Boston, MA.
Bellotti, V., Dala, B., Good, N., Bobrow, D, and Ducheneaut, N. 2004. What a To-Do: Studies of
Task Management Towards the Design of a Personal Task List Manager. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI2004), Vienna, Austria, 735-
742.
Berry, P., Conley, K., Gervasio, M., Peintner, B., Uribe, T., and Yorke-Smith, N. 2006a.
Deploying a Personalized Time Management Agent. In Proceedings of the Fifth International
Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan.
Berry, P., Gervasio, M., Peintner, B., Uribe, T., and Yorke-Smith, N. 2006b. Multi-Criteria
Evaluation in User-Centric Distributed Scheduling Agents. In Proceedings of the AAAI Spring
Symposium on Distributed and Schedule Management, Stanford, CA.
Blythe, J. 2005a. Task Learning by Instruction in Tailor. In Proceedings of the International
Conference on Intelligent User Interfaces, San Diego, CA.
Blythe, J. 2005b. An Analysis of Procedure Learning by Instruction. In Proceedings of the 20th
National Conference on Artificial Intelligence, Pittsburgh, PA.
Bresina, J., Jonsson, A., Morris, P. and Rajan, K. 2005. Activity Planning for the Mars
Exploration Rovers. In Proceedings of the 15th International Conference on Automated Planning
and Scheduling, Monterey, CA.
Chalupsky, H., Gil, Y., Knoblock, C., Lerman, K., Oh, J., Pynadath, D., Russ, T., and Tambe, M.
2002. Electric Elves: Applying Agent Technology to Support Human Organizations, AI
Magazine, 23(2): 11-24.

17

Final Submission 2006-08-07

Cheyer, A. and Martin, D. 2001. The Open Agent Architecture. Journal of Autonomous Agents
and Multi-Agent Systems, 4(1/2):143-148.
Cheyer, A., Park, J., and Giuli, R. 2005. IRIS: Integrate. Relate. Infer. Share. In Proceedings of
the Workshop on the Semantic Desktop, International Semantic Web Conference, Galway,
Ireland.
Cohn, D., Atlas, L., and Ladner, R. 1992. Improving Generalization with Active
Learning. Machine Learning, 15 (2): 201-221.
Doucet, A., de Freitas, N. and Gordon, N. 2001. Sequential Monte Carlo Methods in Practice:
Springer.
Erol, K., Hendler, J., and Nau, D. 1994. Semantics for Hierarchical Task-Network Planning.
Technical Report CS-TR-3239, Computer Science Department, University of Maryland.
Firby, J. 1994. Task Networks for Controlling Continuous Processes. In Proceedings of the
Second International Conference on AI Planning Systems, Chicago, IL.
Franzin, M. S., Freuder, E. C., Rossi, F., and Wallace, R. 2002. Multi-Agent Meeting Scheduling
with Preferences: Efficiency, Privacy Loss and Solution Quality. In Proceedings of the AAAI
Workshop on Preference in AI and CP, Edmonton, Canada.
Georgeff, M. and Ingrand, F. 1989. Decision-Making in an Embedded Reasoning System. In
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, MI.
Gervasio, M., Moffitt, M., Pollack, M., Taylor, J., and Uribe, T. 2005. Active Preference
Learning for Personalized Calendar Scheduling Assistance. In Proceedings of the International
Conference on Intelligent User Interfaces, San Diego, CA.
Haigh, K., Kiff, L., Myers, J., Guralnik, V., Geib., C., Phelops, J., and Wagner, T. 2004. The
Independent LifeStyle Assistant: AI Lessons Learned. In Proceedings of 16th Innovative
Applications of Artificial Intelligence Conference, San Jose, CA.
Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and Rommelse, K. 1998. The Lumière
Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users. In
Proceedings of the 14th Conference on Uncertainty in AI, Madison, WI.
Kirsh, D. 2000. A Few Thoughts on Cognitive Overload. Intellectica, 19-51.
McGuinness, D. L. and Pinheiro da Silva, P. 2004. Explaining Answers from the Semantic Web:
The Inference Web Approach. Journal of Web Semantics 1(4), 397-413.
Modi, J. andVeloso, M. 2004. Multiagent Meeting Scheduling with Rescheduling. In
Proceedings of the Fifth Workshop on Distributed Constraint Reasoning, Toronto, Canada.
Moffitt, M. D., Peintner, B., and Pollack, M. E. 2005. Augmenting Disjunctive Temporal
Problems with Finite-Domain Constraints. In Proceedings of the 20th National Conference on
Artificial Intelligence, Pittsburgh, PA.
Morley, D. and Myers, K. 2004. The SPARK Agent Framework. In Proceedings of the Third
International Conference on Autonomous Agents and Multiagent Systems, New York, NY.
Morley, D., Myers, K., and Yorke-Smith, N. 2006. Continuous Refinement of Agent Resource
Estimates. In Proceedings of the Fifth International Conference on Autonomous Agents and
Multiagent Systems, Hakodate, Japan.

18

Final Submission 2006-08-07

Myers, K. L., Jarvis, P. Tyson, W. M., and Wolverton, M. J. 2003. A Mixed-initiative
Framework for Robust Plan Sketching. In Proceedings of the 13th International Conference. on
Automated Planning and Scheduling, Trento, Italy.
Myers, K., and Morley, D. 2001. Human Directability of Agents. In Proceedings of the First
International Conference on Knowledge Capture, Victoria, Canada.
Myers, K. and Yorke-Smith, N. 2005. A Cognitive Framework for Delegation to an Assistive
User Agent. In Proceedings of the AAAI Fall Symposium on Mixed-Initiative Problem Solving
Assistants, Arlington, VA.
Palen, L. 1999. Social, Individual and Technological Issues for Groupware Calendar Systems. In
Proceedings of the Conference on Human Factors in Computing Systems (CHI-99), Pittsburgh,
PA, 17-24.
Payne, T. R., Singh, R., and Sycara, K. 2002. RCAL: A Case Study on Semantic Web Agents. In
Proceedings of the First International Conference on Autonomous Agents and Multiagent
Systems, Bologna, Italy.
Peintner, B. and Pollack, M. 2004. Low-Cost Addition of Preferences to DTPs and TCSPs. In
Proceedings of the 19th National Conference on Artificial Intelligence, San Jose, CA.
Pfeffer, A. 2005. Functional Specification of Probabilistic Process Models. In Proceedings of the
20th National Conference on Artificial Intelligence, Pittsburgh, PA.
Pinheiro da Silva, P., McGuinness, D. L., and Fikes, R. 2006. A Proof Markup Language for
Semantic Web Services. Information Systems 31(4-5): 381-395.
Pollack, M. 2005. Intelligent Technology for an Aging Population: The Use of AI to Assist
Elders with Cognitive Impairment. AI Magazine 26(2): 9-24.
Pynadath, D.V. and Tambe. M. 2003. Automated Teamwork among Heterogeneous Software
Agents and Humans. Journal of Autonomous Agents and Multi-Agent Systems 7:71–100.
Rich, C. and Sidner, C. 1998. COLLAGEN: A Collaboration Manager for Software Interface
Agents. User Modeling and User-Adapted Interaction 8(3/4): 315-350.
Rich, C., Sidner, C., Lesh, N., Garland, A., Booth, S., and Chimani, M. 2006. DiamondHelp: A
New Interaction Design for Networked Home Appliances. Personal and Ubiquitous Computing
10(2): 187-190.
Schurr, N., Okamoto, S., Maheswaran, R., Tambe, M., and Scerri, P. 2004. Evolution of a
Teamwork Model. In Cognitive Modeling and Multi-Agent Interactions, ed. R. Sun. Cambridge
University Press, U.K.
Tambe, M. 1997. Towards Flexible Teamwork. Journal of Artificial Intelligence Research, 7:83–
124.
Varakantam, P., Maheswaran, R., and Tambe, M. 2005. Exploiting Belief Bounds: Practical
POMDPs for Personal Assistant Agents. In Proceedings of the Fourth International Conference
on Autonomous Agents and Multiagent Systems, Utrecht, Netherlands.
Viappiani, P. Faltings, B., and Pu, P. 2006. Evaluating Preference-based Search Tools: A Tale
of Two Approaches. In Proceedings of the 21st National Conference on Artificial Intelligence,
Boston, MA.

19

