
KOPT : Distributed DCOP Algorithm for Arbitrary k-
optima with Monotonically Increasing Utility

Hideaki Katagishi, Jonathan P. Pearce

University of Southern California
Computer Science Department

{katagish@usc.edu, jppearce@usc.edu}

Abstract. A distributed constraint optimization problem (DCOP) is a formalism
that captures the rewards and costs of local interactions within a team of agents.
Because complete algorithms to solve DCOPs are unsuitable for some dynamic
or anytime domains, researchers have explored incomplete DCOP algorithms
that result in locally optimal solutions. One type of categorization of such
algorithms, and the solutions they produce, is k-optimality; a k-optimal solution
is one that cannot be improved by any deviation by k or fewer agents. There are
no k-optimal algorithms (k>3) so far. In addition, the quality of solution
existing algorithm can produce is fixed. We need different algorithms for
different optimality. This paper introduces the first DCOP algorithm which can
produce arbitrary k-optimal solutions.

1 Introduction

Distributed Constraint Optimization Problems (DCOP) has been an important
research area for a long time since many real world problems can be modeled by
them. Traditionally, researchers have focused on figuring out a globally optimal
solution to DCOPs by using complete algorithms, such as ADOPT[Modi et al., 2005],
OptAPO[Mailler and Lesser, 2004] or DPOP[Petcu and Falings, 2005]. However, as
the size of problems becomes larger, we cannot underestimate the significant
computation and communication cost. Thus, incomplete algorithms, which can
generate sub-optimal solutions, are the center of attention. Those algorithms include
DSA[Fitzpatrick and Meertens, 2003], DBA[Yokoo and Hirayama, 1998], MGM-
1[Maheswaran et al., 2004](a simplified version of DBA), MGM-2[Maheswaran et
al., 2004], SCA-2[Maheswaran et al., 2004].

Recently, new measure of optimality in DCOP, k-optimality [Pearce et al., 2007]
was introduced. A k-optimal solution is one that cannot be improved by any deviation
by k or fewer agents. Existing DCOP algorithms can be classified by this measure.
DSA, DBA and MGM-1 produce 1-optimal solutions. SCA-2 and MGM-2 produce 2-
optimal solutions. Complete algorithms produce n-optimal solutions.

However, there are no k-optimal(3<k<n) algorithms so far. And also, the
optimality of solutions each algorithm can generate is fixed. We need to use different
algorithms for different levels of optimality.

Now, we can calculate lower bounds on solution quality for arbitrary k-
optima[Pearce et al., 2007]. If we have an incomplete algorithm which can generate
arbitrary k-optimal solution and combine those algorithms with quality guarantee
calculation, it must be a very strong tool for finding reasonable DCOP solutions.
Thus, finding tunable k-optimal algorithms is a critical issue.

In this paper, we propose the first incomplete algorithm for arbitrary k-optima,
called KOPT. This is a partially distributed and synchronous communication
algorithm. The global utility is strictly increasing by using KOPT. In the rest of this
paper, we present a formalization of the DCOP problem and an explanation of k-
optimality. Then, we explain the algorithm with a 3-optimal example. Next, we
present the result of experiments and lastly we discuss the conclusion.

2 DCOP and k-optima

We consider a DCOP in which each agent controls a variable to which it must
assign a value. Constraints exist on subsets of these variables; each constraint
generates a cost or reward to the team based on the values assigned to each variable in
the corresponding subset. We assume in this paper that each agent controls a single
variable.

Formally, a DCOP is a set of variables (one per agent) },...,1{: nN = and a set of
domains , where the variable takes value},...,{: 1 nAAA = thi ii Aa ∈ . We denote the
assignment of the multi-agent team by][1 naaa L= . Valued constraints exist on
various subsets of these variables. A constraint on S is expressed as a reward
function . This function represents the reward generated by the constraint on S
when the agents take assignment a ; costs are expressed as negative rewards.

NS ⊂
)(aRS

θ is the
set of all such subsets S on which a constraint exists, and no θ∈S is a subset of any
other θ∈S . For convenience, we will refer to these subsets S as “constraints” and the
functions ()⋅SR as “constraint reward functions.” The solution quality for a particular
complete assignment is the sum of the rewards for that assignment from all
constraints in the DCOP:

a
∑ ∈

=
θS S aRaR)()(.

In [Pearce et al., 2006], the deviating group between two assignments, anda a~ ,
was defined as }~:{:)~,(ii aaNiaaD ≠∈= , i.e. the set of variables whose values in

a~ differ from their values in . The distance between two assignments was
defined as

a
)~,(:)~,(aaDaad = where | · | denotes the size of the set. An assignment

is classified as a k-optimum if

a
aaRaR ~0)~()(∀≥− such that kaad ≤)~,(.

Equivalently, at a k-optimum, no subset of k or fewer agents can improve the overall
reward by choosing different values; every such subset is acting optimally given the
values of the others.

Example Fig.1 is a binary DCOP in which agents choose values from {0, 1}, with
constraints S 1 = {1, 2} and S 2 = {2, 3} with rewards shown. The assignment a = [1 1

1] is 1-optimal because any single agent that deviates reduces the team reward.
However, [1 1 1] is not 2-optimal because if the group {2, 3} deviated, making the
assignment a~ = [1 0 0], team reward would increase from 16 to 20. The globally
optimal solution, = [0 0 0] is k-optimal for all k*a ∈{1, 2, 3}.

Fig. 1. DCOP Example

3 KOPT

3.1 KOPT Overview

KOPT is the first DCOP incomplete algorithm for arbitrary k-optima. This is
partially distributed algorithm and requires synchronous communication. KOPT
yields monotonically increasing global utility. This feature is important because in the
domain where communication may be halted arbitrarily and each agent cannot change
its value any more, randomized algorithms whose utility are not monotonically
increasing may end up with highly undesirable solutions.

This algorithm consists of 3 phases. In phase 1, every agent gathers information
from nearby agents. In phase 2, every agent calculates the best value assignment to
the nearby agents by using the information acquired in phase 1. Then every agent
broadcasts it to the agents which belong to the assignment. In phase 3, every agent
selects the best value assignment which has the highest utility among the assignments
sent by its nearby agents. If all the agents in the assignment X know that all the agents
in X have chosen X, they will change their variables according to X. At this point,
those agents are called “committed”. Otherwise, none of agents in X will move.

These three phase make up one iteration. Before proceeding to the detail
explanation of each phase, we introduce several important notions in KOPT.

3.2 Group and Mediator

First, let us introduce the notion of group and its mediator. (Figure 2)
At every iteration, every agent forms groups. The groups are not exclusive but

overlapping each other, that is, most agents can belong to more than one group. There
is one mediator per group, and it gathers the information from its group members
(phase1), calculates the best value assignment inside the group (phase2) and
broadcasts it to all group members (phase2). It is important to mention that every
agent is a mediator of its own group, that is, every agent has its own group.

Every mediator suggests the optimal assignment inside its group and if the group

achieves the highest utility among overlapping groups, all the group members can
change their value at the end of phase3. Thus, how to choose the group member at
each iteration is very important to produce k-optimal solution. If all possible
combinations of k agents are covered by groups, KOPT can generate k optimal
solutions. (See section 3.4)

Fig. 2. Group and its Mediator Fig. 3. Active and Static agents

3.3 Active agents and Static agents

In each group, there are two kinds of agents, active agents and static agents.
(Figure 3)

Active agents are the agents which can change their value to achieve the highest
utility in the group. Static agents surround the active agents and are located at the
outer layer of the group.

In order to ensure that the global utility is always strictly increasing in KOPT, they
cannot change their values. Before changing its value, every agent in group X
confirms that all X’s group members have chosen X’s best assignment. (phase3)
However, they do not care about the outside of the group to make decisions about the
next movement. Thus, if active agents are not surrounded by static agents in the group
and neighboring groups move at the same time, there can be unexpected combination
movements which can cause negative rewards.

3.4 Group formation

How to choose group members is important to guarantee the k-optimality of the
solution. If all possible combinations of k agents are covered by groups, KOPT can

generate k optimal solutions. It is obvious that the number of active agents in the
group should be k.

For every possible group, there are central points (graph theory). Only the agent at
the graph center can be the mediator of that group. Thus, there is a clear division of
roles. Each mediator has the set of potential groups it is responsible for. It also
minimizes the number of communications steps between the mediator and its group
members. At each iteration, each mediator chooses the group randomly from its
potential groups. After enough iterations, any combination of k active agents has been
covered and tried to optimize by the group.

3.5 Detail explanation of each phase

Here, we will explain the detail of each phase by using the 3-optimal example
below.(figure 4) The top of the figure is the actual DCOP, the bottom is an illustration
of the constraint rewards. The agents take 2 values, black and white. We measure the
number of steps by the number of communication. It is common in the DCOP
literature since it is assumed that communication is the speed bottleneck. One
communication adds the number of steps by one.

Fig. 4. 3-optimal example

Phase1

Step1-1
Each agent broadcasts it own <value> to all its neighbors (Figure 5).

Fig. 5. Step1-1 Fig. 6. Step1-2 ~

Step 1-2 ~ Step 1-
⎥⎦
⎥

⎢⎣
⎢ +

2
2k

Receive <value, constraint, domain> information (<value> in step1-2) from its
neighbors and store it into its own storage. Then, broadcast its own <value, constraint,
domain> information and the received <value, constraint, domain> information
(<value> in step1-2) to all the neighbors (Figure 6).

Repeat this step ⎥⎦
⎥

⎢⎣
⎢

2
k times. Mediators have to know the information about all the

potential groups they are responsible for. We have to think of the worst case, which is

a chain graph (Figure 7). Thus, it needs ⎥⎦
⎥

⎢⎣
⎢ +

2
2k communications steps including

step1-1 for the mediator to receive the information from all the potential group
members. (Remember that the mediator has to be the graph center of the group.)

Fig. 7. Worst Case

Example
• By the end of Phase1, agent ‘a’ knows the value of ‘b’, ‘c’, ‘d’, ‘e’, ‘g’ and the

constraint and domain of ‘b’, ‘d’.

Phase2

Step 2-1
At the beginning of Phase2, in addition to itself, each agent chooses active
agents randomly among the agents it has <value, constraint, domain> information and
calculates the best value assignment to them using received information. The group is
actually formed here. Non-active neighbor of active agents become static agents for
this group.

1−k

The central calculation method includes the enumeration of all possible value
assignments, branch-and-bounds, ADOPT[Modi et al., 2005] etc.. We can apply any
DCOP complete algorithm to this central calculation.

Example
• ‘a’ can calculate best value assignments by changing the values of ‘a’, ‘b’, ‘d’.

(Figure 8)
• ‘b’ can calculates the best value assignments by changing the values of ‘a’, ‘b’,

‘c’.(Figure 9)

Fig. 8. Fig. 9.

Step 2-1(continued)
Broadcast <best value assignment, reward>, the result of central calculation, to all its
neighbors.(Figure 10)

Fig. 10. Step2

Step 2-2 ~ Step 2-
⎥⎦
⎥

⎢⎣
⎢ +

2
2k

Receive <best value assignment, reward> and forward them to all its neighbors.
Repeat Step2-2

⎥⎦
⎥

⎢⎣
⎢
2
k times. This means “Repeat this step until the best assignment

information reaches to all group members”. A chain graph is the worst case where the

most communications are needed. Thus, it takes ⎥⎦
⎥

⎢⎣
⎢ +

2
2k communications for all

group members to receive the information from its mediator.

Example
• ‘a’, ‘c’, ‘d’, ‘e’, ‘f’ have to know Group B’s best value assignment. (Figure 9)
• At the end of Phase2, each agent knows the value assignments of all the groups it

belongs to. (Figure 11)

Fig. 11. At the end of Phase2

Phase3

Step 3-1
At the beginning of phase3, each agent chooses the best group whose assignment has
the highest utility among the groups it belongs to. Each agent will choose the group
which has the smallest group ID if those utility are the same.

Example
B, F, H’s assignments have the same reward in agent ‘e’. So, ‘e’ will choose B.
(Figure 12)

Fig. 12. At the beginning of Phase3

Step 3-1(Continued)
Each agent broadcast its <next value> in the best assignment it has chosen. (Figure
13)

Step 3-2 ~ Step 3- 1−k
Receive <next value> information and forward them to all its neighbors.
Repeat Step 3.2 times. This means “Repeat until every active member in group
X is informed whether or not every X’s active member have selected X’s
assignment.” (Figure 14) If so, group X is called committed and every X’s active
member changes its value. Otherwise, none of the members will move.

2−k

Fig. 13. Step3 Fig. 14. Worst Case (Chain graph)

Static members do not have to know anything because they will not change their
values anyway. However, do the group X’s active members need to know whether or
not X’s static members have selected X’s assignment? The answer is no. They have
to know only about active agents. We will explain the reason later.
The phase3 ensures only the best group which has the highest reward among the
overlapping groups can change its value. This mechanism help KOPT converge
efficiently.

Example
• ‘a’ has to know whether ‘b’, ‘c’ will follow B’s best assignment. If so, ‘a’ can

change its value for sure. Otherwise, A cannot change its value. (Figure 15)
• ‘g’ has to know whether ‘h’, ‘i’ will follow H’s best assignment. But, ‘h’ does not

follow H’s best assignment. So, ‘g’ cannot change its value. (Figure 15)

Fig. 15. At the end of Phase3 Fig. 16. 3-optimal solution

Repeat
Repeat these three phases until global utility converges. (Figure 16) After 1st
Iteration, each agent need not to broadcast constraint and domain information. Those

information are invariant over the iterations. Total communication steps in each

iteration is 1
2

2 ++⎥⎦
⎥

⎢⎣
⎢ kk

k=1 2 steps
k=2 5 steps
k=3 6 steps
k=4 9steps
…

KOPT becomes identical to MGM-1 when parameter k is 1. Thus, KOPT is the
generalization of MGM-1.

3.6 Committed group in Phase3

In phase 3, do the group X’s active members need to know whether or not X’s
static members have chosen X’s assignment? The answer is no. However, you may
think the static agents in group X might have chosen the other group’s active
assignment and they might change their value. It might cause negative rewards. Thus,
we will show that the proposition, “Once the active agents in the group X are
committed, none of the overlapping groups will not interfere with group X”, is
true.

Proof
For simplicity, we can look at the relationship between two overlapping groups at

first. There are two ways of overlapping.
One is that two groups are overlapping only by static agents. (Figure 17) In this

case, two groups will never interfere with each other because static agents exist
between active agents. Since the static members do not change their values, there is
no need to identify the group chosen by the static agents.

The other is that two group are overlapping by both active and static agents.
(Figure 18)

Fig. 17. Fig. 18.

In the latter case, suppose all I’s active agents are committed, we can think about
two possible situations.

Case1: all active agents of I recognize ‘i’ as a mediator.(figure 19)

In this case, Group I has higher utility than Group M. Since all agents in overlap

area (‘j’ and ‘k’) have the same information, I’s static(‘k’) agents will also choose
Group I. So, I’s static agents will not change their value. This means Group I will
never interfere with Group M.

Case2: Some of active agents(‘j’) in group I recognize ‘m’ as a mediator, however the
overlap area of Group I’s active assignment(‘j’) happens to be the same as Group
M’s. So, active agents in Group I are committed. (Figure 20)

In this case, Group M has higher utility than Group I and the overlap area of Group

I’s active assignment are the same as Group M’s assignment. M’s assignment should
be surrounded by static agents(‘j’). (‘j’ has chosen a static assignment of Group M at
Phase2. This means ‘j’ will not change its value whether or not Group M are
committed at Phase3.) So, these two assignments will never interfere with each other.
So, Group I will never interfere with Group M. In both cases, once all of I’s active
agents are committed, Group I will never interfere with Group M.

Fig. 19. Case1 Fig. 20. Case2

We can apply this theory to any two relation between I and I’s neighbor group. So
we can say, once all of I’s active agents are committed, I’s movement will never
interfere with any overlapping group.

4 Experiment

This is a work in progress report. We considered a randomized DCOP domain used
in [Maheswaran et al., 2004]. In this domain, every combination of values on a
constraint between two neighboring agents was assigned a random reward chosen
uniformly from the set {1, …., 10}. We considered ten randomly generated graphs
with forty variables, three values per variables, and 120 constraints. For each graph,
we ran 100 runs of each algorithm, with a randomized start state. The algorithms used
in this experiment are MGM, DSA(p = 0.9), MGM-2(q=0.9), SCA-2(p=0.9, q=0.5)
and KOPT(k=1,2,3,4,5). The central calculation method used in KOPT in this
experiment is a simple enumeration of all possible assignments. Please notice that the

choice of central calculation method doesn’t affect this experiment’s result as long as
it is a DCOP complete algorithm. The parameter p, q in DSA, MGM-2, SCA-2 were
chosen such that these algorithms achieved the best performance based on the
experiment in [Maheswaran et al., 2004].

Randomized DCOP

736

741

746

751

756

1 30 59 88 117 146 175 204 233 262 291

communication steps

gl
o
ba

l
u
ti
lit

y

DSA(p=.9)

SCA2(p=.9,q=.5)

MGM1

MGM2(q=.9)

KOPT(k=1)

KOPT(k=2)

KOPT(k=3)

KOPT(k=4)

KOPT(k=5)

As the parameter k of KOPT increased, KOPT achieved higher utility as we

expected. KOPT(k>1) achieved higher utility than any other incomplete DCOP
algorithm.

MGM1 and KOPT(k=1) produced almost same result because these two algorithms
are identical.

Compared to MGM2, KOPT(k=2) achieved higher utility. That is because in
MGM2, every agent is either an offerer or a receiver at each iteration. Only the
receiver can choose the best offer from offerers. However, in KOPT(k=2), every
agent is an offerer(mediator) and receiver at the same time. And every agent can
choose the best assignment among the offers including its own offer. Thus,
KOPT(k=2) can form a pair of committed agents more efficiently than MGM2.

5 Conclusion

We have found new DCOP algorithm for arbitrary k-optimal, KOPT. Since the
quality guarantee for arbitrary k-optima is already found [Pearce et al., 2007], we can
analyze the trade-off between the solution quality and the computational cost (in this

case, total communication steps), then we can figure out an appropriate parameter k
for given situation.

As the parameter k is increasing, the computation cost at each agent is increasing.
If k = n, KOPT is equivalent to applying the central calculation method to the entire
problem. Thus, if communication is speed bottleneck and the number of k is small
enough, KOPT is fast and finds out a reasonable solution compared to other DCOP
algorithms.

References

[Yokoo and Hirayama, 1996] M. Yokoo and K. Hirayama, Distributed breakout algorithm for
solving distributed constraint satisfaction and optimization problems, Proceedings of
ICMAS, 1996.

[Pearce et al., 2007] J. P. Pearce and M. Tambe, "Quality Guarantees on k-Optimal Solutions
for Distributed Constraint Optimization Problems," in Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, January 6-12, 2007.

[Pearce et al., 2006] J. P. Pearce, R. T. Maheswaran, and M. Tambe. Solution sets for DCOPs
and graphical games. In AAMAS, 2006.

[Fitzpatrick and Meertens, 2003] S. Fitzpatrick and L. Meertens. Distributed coordination
through anarchic optimization. In V. Lesser, C. L. Ortiz, and M. Tambe, editors, Distributed
Sensor Networks: A Multiagent Perspective, pages 257–295. Kluwer, 2003.

[Maheswaran et al., 2004] R. T. Maheswaran, J. P. Pearce and M. Tambe, "Distributed
Algorithms for DCOP: A Graphical-Game-Based Approach," in Proceedings of the 17th
International Conference on Parallel and Distributed Computing Systems (PDCS), San
Francisco, CA, September 15-17, 2004, pp. 432-439.

[Mailler and Lesser, 2004] R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In AAMAS, 2004.

[Modi et al., 2005] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence, 161(1-
2):149–180, 2005.

[Petcu and Faltings, 2005] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. In IJCAI, 2005.

