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Abstract. A distributed constraint optimization problem (DCOP) is a formalism 
that captures the rewards and costs of local interactions within a team of agents. 
Because complete algorithms to solve DCOPs are unsuitable for some dynamic 
or anytime domains, researchers have explored incomplete DCOP algorithms 
that result in locally optimal solutions. One type of categorization of such 
algorithms, and the solutions they produce, is k-optimality; a k-optimal solution 
is one that cannot be improved by any deviation by k or fewer agents. There are 
no k-optimal algorithms (k>3) so far. In addition, the quality of solution 
existing algorithm can produce is fixed. We need different algorithms for 
different optimality. This paper introduces the first DCOP algorithm which can 
produce arbitrary k-optimal solutions.  

1   Introduction 

Distributed Constraint Optimization Problems (DCOP) has been an important 
research area for a long time since many real world problems can be modeled by 
them. Traditionally, researchers have focused on figuring out a globally optimal 
solution to DCOPs by using complete algorithms, such as ADOPT[Modi et al., 2005], 
OptAPO[Mailler and Lesser, 2004] or DPOP[Petcu and Falings, 2005]. However, as 
the size of problems becomes larger, we cannot underestimate the significant 
computation and communication cost. Thus, incomplete algorithms, which can 
generate sub-optimal solutions, are the center of attention. Those algorithms include 
DSA[Fitzpatrick and Meertens, 2003], DBA[Yokoo and Hirayama, 1998], MGM-
1[Maheswaran et al., 2004](a simplified version of DBA), MGM-2[Maheswaran et 
al., 2004], SCA-2[Maheswaran et al., 2004].  

Recently, new measure of optimality in DCOP, k-optimality [Pearce et al., 2007] 
was introduced. A k-optimal solution is one that cannot be improved by any deviation 
by k or fewer agents. Existing DCOP algorithms can be classified by this measure. 
DSA, DBA and MGM-1 produce 1-optimal solutions. SCA-2 and MGM-2 produce 2-
optimal solutions. Complete algorithms produce n-optimal solutions.  

However, there are no k-optimal(3<k<n) algorithms so far. And also, the 
optimality of solutions each algorithm can generate is fixed. We need to use different 
algorithms for different levels of optimality.  



Now, we can calculate lower bounds on solution quality for arbitrary k-
optima[Pearce et al., 2007]. If we have an incomplete algorithm which can generate 
arbitrary k-optimal solution and combine those algorithms with quality guarantee 
calculation, it must be a very strong tool for finding reasonable DCOP solutions. 
Thus, finding tunable k-optimal algorithms is a critical issue. 

In this paper, we propose the first incomplete algorithm for arbitrary k-optima, 
called KOPT. This is a partially distributed and synchronous communication 
algorithm. The global utility is strictly increasing by using KOPT. In the rest of this 
paper, we present a formalization of the DCOP problem and an explanation of k-
optimality. Then, we explain the algorithm with a 3-optimal example. Next, we 
present the result of experiments and lastly we discuss the conclusion.  

2   DCOP and k-optima 

We consider a DCOP in which each agent controls a variable to which it must 
assign a value. Constraints exist on subsets of these variables; each constraint 
generates a cost or reward to the team based on the values assigned to each variable in 
the corresponding subset. We assume in this paper that each agent controls a single 
variable.  

Formally, a DCOP is a set of variables (one per agent) },...,1{: nN = and a set of 
domains , where the variable takes value},...,{: 1 nAAA = thi ii Aa ∈ . We denote the 
assignment of the multi-agent team by ][ 1 naaa L= . Valued constraints exist on 
various subsets of these variables. A constraint on S is expressed as a reward 
function . This function represents the reward generated by the constraint on S 
when the agents take assignment a ; costs are expressed as negative rewards. 
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θ is the 
set of all such subsets S on which a constraint exists, and no θ∈S is a subset of any 
other θ∈S . For convenience, we will refer to these subsets S as “constraints” and the 
functions ( )⋅SR  as “constraint reward functions.” The solution quality for a particular 
complete assignment is the sum of the rewards for that assignment from all 
constraints in the DCOP:
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In [Pearce et al., 2006], the deviating group between two assignments, anda a~ , 
was defined as }~:{:)~,( ii aaNiaaD ≠∈= , i.e. the set of variables whose values in 

a~  differ from their values in . The distance between two assignments was 
defined as

a
)~,(:)~,( aaDaad = where | · | denotes the size of the set. An assignment  

is classified as a k-optimum if 

a
aaRaR ~0)~()( ∀≥−  such that kaad ≤)~,( . 

Equivalently, at a k-optimum, no subset of k or fewer agents can improve the overall 
reward by choosing different values; every such subset is acting optimally given the 
values of the others.  

 
Example Fig.1 is a binary DCOP in which agents choose values from {0, 1}, with 
constraints S 1 = {1, 2} and S 2 = {2, 3} with rewards shown. The assignment a = [1 1 



1] is 1-optimal because any single agent that deviates reduces the team reward. 
However, [1 1 1] is not 2-optimal because if the group {2, 3} deviated, making the 
assignment a~  = [1 0 0], team reward would increase from 16 to 20. The globally 
optimal solution, = [0 0 0] is k-optimal for all k*a ∈{1, 2, 3}. 

 
Fig. 1. DCOP Example 

3 KOPT 

3.1 KOPT Overview 

KOPT is the first DCOP incomplete algorithm for arbitrary k-optima. This is 
partially distributed algorithm and requires synchronous communication. KOPT 
yields monotonically increasing global utility. This feature is important because in the 
domain where communication may be halted arbitrarily and each agent cannot change 
its value any more, randomized algorithms whose utility are not monotonically 
increasing may end up with highly undesirable solutions. 

This algorithm consists of 3 phases. In phase 1, every agent gathers information 
from nearby agents. In phase 2, every agent calculates the best value assignment to 
the nearby agents by using the information acquired in phase 1. Then every agent 
broadcasts it to the agents which belong to the assignment. In phase 3, every agent 
selects the best value assignment which has the highest utility among the assignments 
sent by its nearby agents. If all the agents in the assignment X know that all the agents 
in X have chosen X, they will change their variables according to X. At this point, 
those agents are called “committed”. Otherwise, none of agents in X will move. 

These three phase make up one iteration. Before proceeding to the detail 
explanation of each phase, we introduce several important notions in KOPT. 

3.2 Group and Mediator 

First, let us introduce the notion of group and its mediator. (Figure 2) 
At every iteration, every agent forms groups. The groups are not exclusive but 

overlapping each other, that is, most agents can belong to more than one group. There 
is one mediator per group, and it gathers the information from its group members 
(phase1), calculates the best value assignment inside the group (phase2) and 
broadcasts it to all group members (phase2). It is important to mention that every 
agent is a mediator of its own group, that is, every agent has its own group. 



 
Every mediator suggests the optimal assignment inside its group and if the group 

achieves the highest utility among overlapping groups, all the group members can 
change their value at the end of phase3. Thus, how to choose the group member at 
each iteration is very important to produce k-optimal solution. If all possible 
combinations of k agents are covered by groups, KOPT can generate k optimal 
solutions. (See section 3.4) 

   

Fig. 2. Group and its Mediator  Fig. 3. Active and Static agents 

3.3 Active agents and Static agents 

In each group, there are two kinds of agents, active agents and static agents. 
(Figure 3) 

Active agents are the agents which can change their value to achieve the highest 
utility in the group. Static agents surround the active agents and are located at the 
outer layer of the group.  

In order to ensure that the global utility is always strictly increasing in KOPT, they 
cannot change their values. Before changing its value, every agent in group X 
confirms that all X’s group members have chosen X’s best assignment. (phase3) 
However, they do not care about the outside of the group to make decisions about the 
next movement. Thus, if active agents are not surrounded by static agents in the group 
and neighboring groups move at the same time, there can be unexpected combination 
movements which can cause negative rewards.       
 

3.4 Group formation 

How to choose group members is important to guarantee the k-optimality of the 
solution. If all possible combinations of k agents are covered by groups, KOPT can 



generate k optimal solutions. It is obvious that the number of active agents in the 
group should be k.  

For every possible group, there are central points (graph theory). Only the agent at 
the graph center can be the mediator of that group. Thus, there is a clear division of 
roles. Each mediator has the set of potential groups it is responsible for. It also 
minimizes the number of communications steps between the mediator and its group 
members. At each iteration, each mediator chooses the group randomly from its 
potential groups. After enough iterations, any combination of k active agents has been 
covered and tried to optimize by the group. 

3.5 Detail explanation of each phase 

Here, we will explain the detail of each phase by using the 3-optimal example 
below.(figure 4) The top of the figure is the actual DCOP, the bottom is an illustration 
of the constraint rewards. The agents take 2 values, black and white. We measure the 
number of steps by the number of communication. It is common in the DCOP 
literature since it is assumed that communication is the speed bottleneck. One 
communication adds the number of steps by one.  

  
Fig. 4. 3-optimal example 

Phase1 

Step1-1 
Each agent broadcasts it own <value> to all its neighbors (Figure 5). 



    
Fig. 5. Step1-1     Fig. 6. Step1-2 ~  

Step 1-2 ~ Step 1-
⎥⎦
⎥

⎢⎣
⎢ +

2
2k  

Receive <value, constraint, domain> information (<value> in step1-2) from its 
neighbors and store it into its own storage. Then, broadcast its own <value, constraint, 
domain> information and the received <value, constraint, domain> information 
(<value> in step1-2) to all the neighbors (Figure 6). 

Repeat this step ⎥⎦
⎥

⎢⎣
⎢

2
k times. Mediators have to know the information about all the 

potential groups they are responsible for. We have to think of the worst case, which is 

a chain graph (Figure 7). Thus, it needs ⎥⎦
⎥

⎢⎣
⎢ +

2
2k communications steps including 

step1-1 for the mediator to receive the information from all the potential group 
members. (Remember that the mediator has to be the graph center of the group.) 

 
Fig. 7. Worst Case 

 



Example 
• By the end of Phase1, agent ‘a’ knows the value of ‘b’, ‘c’, ‘d’, ‘e’, ‘g’ and the 

constraint and domain of ‘b’, ‘d’.  

Phase2 

Step 2-1  
At the beginning of Phase2, in addition to itself, each agent chooses  active 
agents randomly among the agents it has <value, constraint, domain> information and 
calculates the best value assignment to them using received information. The group is 
actually formed here. Non-active neighbor of active agents become static agents for 
this group. 

1−k

The central calculation method includes the enumeration of all possible value 
assignments, branch-and-bounds, ADOPT[Modi et al., 2005] etc.. We can apply any 
DCOP complete algorithm to this central calculation.  

Example 
• ‘a’ can calculate best value assignments by changing the values of ‘a’, ‘b’, ‘d’. 

(Figure 8) 
•  ‘b’ can calculates the best value assignments by changing the values of ‘a’, ‘b’, 

‘c’.(Figure 9) 

   
Fig. 8.     Fig. 9.  

 

Step 2-1(continued) 
Broadcast <best value assignment, reward>, the result of central calculation, to all its 
neighbors.(Figure 10) 

 



 
Fig. 10. Step2 

Step 2-2 ~ Step 2-
⎥⎦
⎥

⎢⎣
⎢ +

2
2k   

Receive <best value assignment, reward> and forward them to all its neighbors. 
Repeat Step2-2 

⎥⎦
⎥

⎢⎣
⎢
2
k times. This means “Repeat this step until the best assignment 

information reaches to all group members”. A chain graph is the worst case where the 

most communications are needed. Thus, it takes ⎥⎦
⎥

⎢⎣
⎢ +

2
2k communications for all 

group members to receive the information from its mediator. 

Example 
• ‘a’, ‘c’, ‘d’, ‘e’, ‘f’ have to know Group B’s best value assignment. (Figure 9) 
• At the end of Phase2, each agent knows the value assignments of all the groups it 

belongs to. (Figure 11) 
 



 
Fig. 11. At the end of Phase2 

Phase3 

Step 3-1  
At the beginning of phase3, each agent chooses the best group whose assignment has 
the highest utility among the groups it belongs to. Each agent will choose the group 
which has the smallest group ID if those utility are the same.  

Example 
B, F, H’s assignments have the same reward in agent ‘e’. So, ‘e’ will choose B. 
(Figure 12) 



 
Fig. 12. At the beginning of Phase3 

Step 3-1(Continued) 
Each agent broadcast its <next value> in the best assignment it has chosen. (Figure 
13) 

Step 3-2 ~ Step 3-  1−k
Receive <next value> information and forward them to all its neighbors.  
Repeat Step 3.2 times. This means “Repeat until every active member in group 
X is informed whether or not every X’s active member have selected X’s 
assignment.” (Figure 14) If so, group X is called committed and every X’s active 
member changes its value. Otherwise, none of the members will move.  

2−k

 



   
Fig. 13. Step3   Fig. 14. Worst Case (Chain graph) 

Static members do not have to know anything because they will not change their 
values anyway. However, do the group X’s active members need to know whether or 
not X’s static members have selected X’s assignment? The answer is no. They have 
to know only about active agents. We will explain the reason later.  
The phase3 ensures only the best group which has the highest reward among the 
overlapping groups can change its value. This mechanism help KOPT converge 
efficiently. 

Example 
• ‘a’ has to know whether ‘b’, ‘c’ will follow B’s best assignment. If so, ‘a’ can 

change its value for sure. Otherwise, A cannot change its value. (Figure 15) 
• ‘g’ has to know whether ‘h’, ‘i’ will follow H’s best assignment. But, ‘h’ does not 

follow H’s best assignment. So, ‘g’ cannot change its value. (Figure 15) 
 

   
Fig. 15. At the end of Phase3  Fig. 16. 3-optimal solution 

Repeat 
Repeat these three phases until global utility converges. (Figure 16) After 1st 
Iteration, each agent need not to broadcast constraint and domain information. Those 



information are invariant over the iterations. Total communication steps in each 

iteration is 1
2

2 ++⎥⎦
⎥

⎢⎣
⎢ kk

 

  
k=1  2 steps 
k=2  5 steps 
k=3  6 steps 
k=4  9steps 
… 
 
KOPT becomes identical to MGM-1 when parameter k is 1. Thus, KOPT is the 
generalization of MGM-1. 

3.6 Committed group in Phase3 

In phase 3, do the group X’s active members need to know whether or not X’s 
static members have chosen X’s assignment? The answer is no. However, you may 
think the static agents in group X might have chosen the other group’s active 
assignment and they might change their value. It might cause negative rewards. Thus, 
we will show that the proposition, “Once the active agents in the group X are 
committed, none of the overlapping groups will not interfere with group X”, is 
true. 

Proof 
For simplicity, we can look at the relationship between two overlapping groups at 

first. There are two ways of overlapping. 
One is that two groups are overlapping only by static agents. (Figure 17) In this 

case, two groups will never interfere with each other because static agents exist 
between active agents. Since the static members do not change their values, there is 
no need to identify the group chosen by the static agents. 

The other is that two group are overlapping by both active and static agents. 
(Figure 18)  

  
Fig. 17.      Fig. 18.  

 



In the latter case, suppose all I’s active agents are committed, we can think about 
two possible situations.  

Case1: all active agents of I recognize ‘i’ as a mediator.(figure 19) 
 
In this case, Group I has higher utility than Group M. Since all agents in overlap 

area (‘j’ and ‘k’) have the same information, I’s static(‘k’) agents will also choose 
Group I. So, I’s static agents will not change their value. This means Group I will 
never interfere with Group M. 

Case2: Some of active agents(‘j’) in group I recognize ‘m’ as a mediator, however the 
overlap area of Group I’s active assignment(‘j’) happens to be the same as Group 
M’s. So, active agents in Group I are committed. (Figure 20) 

 
In this case, Group M has higher utility than Group I and the overlap area of Group 

I’s active assignment are the same as Group M’s assignment. M’s assignment should 
be surrounded by static agents(‘j’). (‘j’ has chosen a static assignment of Group M at 
Phase2. This means ‘j’ will not change its value whether or not Group M are 
committed at Phase3. ) So, these two assignments will never interfere with each other. 
So, Group I will never interfere with Group M. In both cases, once all of I’s active 
agents are committed, Group I will never interfere with Group M.  

  
Fig. 19. Case1    Fig. 20. Case2 

We can apply this theory to any two relation between I and I’s neighbor group. So 
we can say, once all of I’s active agents are committed, I’s movement will never 
interfere with any overlapping group. 

4 Experiment 

This is a work in progress report. We considered a randomized DCOP domain used 
in [Maheswaran et al., 2004]. In this domain, every combination of values on a 
constraint between two neighboring agents was assigned a random reward chosen 
uniformly from the set {1, …., 10}. We considered ten randomly generated graphs 
with forty variables, three values per variables, and 120 constraints. For each graph, 
we ran 100 runs of each algorithm, with a randomized start state. The algorithms used 
in this experiment are MGM, DSA(p = 0.9), MGM-2(q=0.9), SCA-2(p=0.9, q=0.5) 
and KOPT(k=1,2,3,4,5). The central calculation method used in KOPT in this 
experiment is a simple enumeration of all possible assignments. Please notice that the 



choice of central calculation method doesn’t affect this experiment’s result as long as 
it is a DCOP complete algorithm. The parameter p, q in DSA, MGM-2, SCA-2 were 
chosen such that these algorithms achieved the best performance based on the 
experiment in [Maheswaran et al., 2004]. 

Randomized DCOP
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As the parameter k of KOPT increased, KOPT achieved higher utility as we 

expected. KOPT(k>1) achieved higher utility than any other incomplete DCOP 
algorithm. 

MGM1 and KOPT(k=1) produced almost same result because these two algorithms 
are identical.  

Compared to MGM2, KOPT(k=2) achieved higher utility. That is because in 
MGM2, every agent is either an offerer or a receiver at each iteration. Only the 
receiver can choose the best offer from offerers. However, in KOPT(k=2), every 
agent is an offerer(mediator) and receiver at the same time. And every agent can 
choose the best assignment among the offers including its own offer. Thus, 
KOPT(k=2) can form a pair of committed agents more efficiently than MGM2.  

 

5 Conclusion 

We have found new DCOP algorithm for arbitrary k-optimal, KOPT. Since the 
quality guarantee for arbitrary k-optima is already found [Pearce et al., 2007], we can 
analyze the trade-off between the solution quality and the computational cost (in this 



case, total communication steps), then we can figure out an appropriate parameter k 
for given situation.  

As the parameter k is increasing, the computation cost at each agent is increasing. 
If k = n, KOPT is equivalent to applying the central calculation method to the entire 
problem. Thus, if communication is speed bottleneck and the number of k is small 
enough, KOPT is fast and finds out a reasonable solution compared to other DCOP 
algorithms.  
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