
Coordinating Randomized Policies for Increasing
Security in Multiagent Systems

Praveen Paruchuri1, Milind Tambe2, Fernando Ordóñez3, and Sarit Kraus4

1 University of Southern California
Los Angeles, CA 90089
paruchur@usc.edu

2 University of Southern California
Los Angeles, CA 90089

tambe@usc.edu
3 University of Southern California

Los Angeles, CA 90089
fordon@usc.edu

4 Bar-Ilan University
Ramat-Gan 52900, Israel
sarit@cs.biu.ac.il

Abstract. Despite significant recent advances in decision theoretic frame-
works for reasoning about multiagent teams, little attention has been
paid to applying such frameworks in adversarial domains, where the
agent team may face security threats from other agents. This paper fo-
cuses on domains where such threats are caused by unseen adversaries
whose actions or payoffs are unknown. In such domains, action random-
ization is recognized as a key technique to deteriorate an adversarys capa-
bility to predict and exploit an agent/agent teams actions. Unfortunately,
there are two key challenges in such randomization. First, randomization
can reduce the expected reward (quality) of the agent team’s plans, and
thus we must provide some guarantees on such rewards. Second, ran-
domization results in miscoordination in teams. While communication
within an agent team can help in alleviating the miscoordination prob-
lem, communication is unavailable in many real domains or sometimes
scarcely available. To address these challenges, this paper provides the
following contributions. First, we recall the Multiagent Constrained MDP
(MCMDP) framework that enables policy generation for a team of agents
where each agent may have a limited or no(communication) resource.
Second, since randomized policies generated directly for MCMDPs lead
to miscoordination, we introduce a transformation algorithm that con-
verts the MCMDP into a transformed MCMDP incorporating explicit
communication and no communication actions. Third, we show that in-
corporating randomization results in a non-linear program and the un-
availability/limited availability of communication results in addition of
non-convex constraints to the non-linear program. Finally, we experi-
mentally illustrate the benefits of our work.

Key words: Multiagent Systems, Decision Theory, Security, Random-
ized Policies

1 Introduction

Decision-theoretic models like the Multiagent Markov Decision Problem’s (MMDPs)
[2], Decentralized Markov Decision Problem’s (Dec-MDPs) [3] and the Decen-
tralized Partially Observable MDP’s (Dec-POMDPs) [4] have been successfully
applied to build agent-teams acting in uncertain environments. These teams
must often work in an adversarial environment. For example, when patrolling,
UAV (Unmanned Air Vehicles) teams might often be watched by adversaries
such as unobserved terrorists [5] or robotic patrol units trying to detect intrud-
ers in physical security sites [6, 7]. Security, commonly defined as the ability of
the system to deal with intentional threats from other agents [8], becomes a crit-
ical issue for these agent teams acting in such adversarial environments. Often,
the agents cannot even explicitly model the adversary’s actions and capabilities
or its payoffs. However, the adversary can observe the agents’ actions and exploit
any action predictability in some unknown fashion. For example, consider the
team of UAVs [9] monitoring a region undergoing a humanitarian crisis. Adver-
saries may be humans intent on causing some significant unanticipated harm,
e.g. disrupting food convoys, harming refugees or shooting down the UAVs. Fur-
ther, the adversary’s capabilities, actions or payoffs are unknown or difficult to
model explicitly. However, the adversaries can observe the UAVs and exploit any
predictability in UAV surveillance, e.g. engage in unknown harmful actions by
avoiding the UAVs’ route.

Given our assumption that the agent team acts in an adversarial domain
where the adversary cannot be explicitly modeled, policy randomization becomes
crucial for the teams to avoid the action predictability [5]. We also assume that
the agent team is acting in accessible environments and hence can be modeled
using MMDPs. We further make the following three assumptions about the ad-
versary in our work. First, we assume that the adversary can also observe the
agents’ state exactly. The second assumption is that the adversary knows the
agents policy, which it may do by learning over repeated observations. Policy
randomization would then ensure that even if the adversary knows the agents’
state exactly at each instant and also the agents’ policy from that state, the
adversary would still be unable to predict the agent’s action correctly and hence
significantly cut down the chances of unanticipated harm. The third assumption
is that agent teams cannot communicate in general or limited communication
bandwidth is available. If available, we assume that communication is encrypted
and also being a private resource for the team, is unobservable for the adversary
i.e. communication is safe. However, if communication is observable it can be eas-
ily masked by using simple deception techniques like sending some meaningless
data for non-communication acts, thus making it safe [10].

While policy randomization avoids action predictability, simply randomiz-
ing an MDP policy as mentioned above can degrade the expected team reward
significantly and hence we face a randomization-reward tradeoff. The difficulty
in generating randomized policies that provide the appropriate randomization-
reward tradeoff is further exacerbated by the fact that randomization creates
miscoordination in team settings. We wish to enable our agents to perform ran-

domized actions without any type of coordination whatsoever, or any type of
synchronization. 5

For real world teams, communication resources are usually unavailable or
severely limited, e.g., members of a UAV team might not be able to communi-
cate due to bandwidth/environmental restriction or have limited communication
bandwidth [11] allocated. Hence, the agent teams face resource (bandwidth here)
constraints. Constraints involving averaging a quantity, in general, are soft con-
straints because as long as the average is maintained, there is no hard bound
on the resource amount to be used at each timestep [12, 13]. In our example,
we model bandwidth as a soft constraint [11] because exceeding bandwidth in
any single run is not a disaster; but if the team consumes more than its band-
width limit on an average, it jeopardizes the communications of other agents on
the same network. The importance of such soft constraints is seen by contin-
ued work in operations research literature on constrained MDPs (CMDPs) that
reason about expected resource consumption [14].

Our work focuses on increasing security using policy randomization for agent
teams with no/limited bandwidth while ensuring fixed reward thresholds. Al-
though, such randomized policies have occurred as side effect [14] and turn out
to be optimal in some stochastic games [15], work on intentional policy random-
ization has received focus only recently. For example, [5] intentionally randomizes
MDP/POMDP policies for increasing security but their work provides heuris-
tic solution assuming that the agents cannot communicate. Work that has been
done on developing agent teams with resource constraints [14, 11, 16] has not
paid attention to the issue of security in such teams. To address these concerns,
we therefore solve a multicriterion problem that maximizes the team policy ran-
domization while ensuring that the average bandwidth consumption is below a
threshold and the team reward is above a threshold. The problem we solve is
general enough and other soft resource constraints can be considered without
any modifications to the structure of the problem.

This paper provides three key contributions to solve the problem described.
First, we recall MCMDP as multiagent MDP framework where agents reason not
only about their rewards but also about resource constraints. We then introduce
the entropy metric to quantify policy randomization for MCMDP and formu-

5 One particular method to avoid miscoordination, is to assume that the agents(say
the UAV’s) use a pseudo-random number generation process with an initial shared
seed, but it suffers from many drawbacks. First, this technique doesn’t work when the
agents cannot communicate because the agents need to communicate their random
seeds. Second, different UAV’s need not use the same random number generation
algorithms which is quite likely due to the various manufacturers involved, making
seed sharing an impractical approach. Third, the random seed sharing method as-
sumes that the hardware clocks of all the agents involved are synchronized which
can be unrealistic in some domains. Fourth, the agents need to establish protocols
beforehand for the seed sharing method to work which gets complicated as the num-
ber of agents increase. On the other hand, our technique works even if we assume
that the agents cannot communicate, thus making it a general-purpose algorithm
without any of these hardware assumptions.

late a nonlinear program that maximizes policy randomization while ensuring
threshold rewards. We then identify a novel coordination challenge that occurs
due to randomized policies in multiagent settings, i.e agents miscoordinate if
there are randomized policies in team settings. Second, we provide a novel poly-
nomial time transformation algorithm that converts the MCMDP into a trans-
formed MCMDP incorporating explicit communication and no communication
actions to alleviate such miscoordination. Third, we developed a non-linear pro-
gram with non-convex constraints for the transformed MCMDP that randomizes
team policy while attaining a threshold reward without violating the communi-
cation constraints. We further show that the value of entropy for MCMDP and
the transformed MCMDP remains the same for the same policy, thus showing
that our transformation is correct. In our experimental section, we show results
after evaluating the new non-linear program we developed for the transformed
MCMDP. The rest of the paper begins with MCMDP and a non-linear program
for it that captures policy randomization. An automated method of transfor-
mation is provided that converts this MCMDP to a transformed MCMDP. We
then provide our solution approach to solve this new model. We then briefly
describe the various transformations possible. Lastly, we provide experimental
results that clearly show the interdependence between the important factors of
our domain namely policy randomization, reward and bandwidth.

2 Randomization: MCMDP

MCMDP is a useful tool for users, providing a layer of abstraction to model
agent-teams with resource constraints in uncertain domains. For purposes of this
paper, the only resource being modeled is the bandwidth. We first recall a 2-
agent MCMDP for expository purposes. A 2-agent MCMDP is defined as a tuple,
〈S, A, P,R, C1, C2, T1, T2, N, Q〉 where: S is a finite set of states. Given two
individual actions al and am of the two agents in our team, the team’s joint action
â = (al, am) ∈ A i.e A represents the set of all possible joint actions. P = [pâ

ij](≡
p(i, â, j)) is the transition matrix, providing the probability of transitioning from
a source state i to a destination state j, given the team’s joint action â, R = [riâ]
is the vector of joint rewards obtained when an action â is taken in state i.
C1 = [c1iâk] is the vector to account for cost of resource k when action â is
taken in state i by agent 1 i.e it models cost for individual resource of agent 1.
(C2 is similarly defined.) T1 = [t1k] and T2 = [t2k] are vectors of thresholds
on the availability of the individual resources k for agents 1 and 2 respectively.
N = [niâ] is the vector of joint communication costs incurred by the agents when
an action â is taken in state i. Q is a threshold on communication costs that can
be used by the team of agents. A MCMDP is thus similar to a CMDP [14] with
multiple agents.

2.1 Randomization due to resource constraints

The goal in a MCMDP is to maximize the total expected reward, while ensuring
that the expected resource (bandwidth here) consumption is maintained below

threshold. Formally, this requirement can be stated as a linear program, extend-
ing the linear program for CMDPs [13] to a two agent case, as shown below. xiâ

is the expected number of times an action â is executed in state i and αj is the
initial probability distribution over the state space.

max
∑

i

∑
â

xiâriâ

s.t.
∑

â

xjâ −
∑

i

∑
â

xiâpâ
ij = αj ∀j ∈ S∑

i

∑
â

xiâc1iâk ≤ t1k,
∑

i

∑
â

xiâc2iâk ≤ t2k∑
i

∑
â

xiâniâ ≤ Q, xiâ ≥ 0 ∀i ∈ S, â ∈ A

(1)

If x∗ is the optimal solution to (1), optimal policy π∗ is given by (2) below,
where π∗(s, â) is the probability of taking action â in state s.

π∗(s, â) =
x∗(s, â)∑

â∈A x∗(s, â)
. (2)

It turns out that π∗ is a randomized policy in the above case due to the re-
source constraints. Since, bandwidth is the only resource under consideration and
is modeled as a team resource we set the individual resources and their thresh-
olds i.e., C1, C2, T1, T2 to zero. Such randomization leads to miscoordination
in team settings as shown in section 2.2. Further, the randomization occurred
as sideeffect due to the communication constraint and hence not optimized for
policy randomness as needed by our domain.

2.2 Miscoordination: Effect of Randomization in Team Settings

For illustrative purposes, Figure 1 shows a 2 state MCMDP with two agents
A and B with actions a1, a2 and b1, b2 respectively, leading to joint actions
â1 = (a1, b1), â2 = (a1, b2), â3 = (a2, b1), â4 = (a2, b2). We also show the tran-
sition probabilities, rewards and communication costs for each of the actions.
The optimal policy for this MCMDP is to take joint actions â1 and â4 with 0.5
probability. Suppose, agent A chooses its own actions such that p(a1) = .5 and
p(a2) = .5, based on the joint actions. However, when A selects a1, there is not
guarantee that agent B would choose b1. In fact, B can choose b2 due to its own
randomization. Thus, the team may jointly execute â2 = (a1, b2), even though
the policy specifies p(â2) = 0. Therefore, a MCMDP, a straightforward general-
ization of a CMDP to a multiagent case, results in randomized policies, which
a team cannot execute without additional coordination. One simple solution
is to add a communication action before each joint action. However, forcing a
communication action before every single action can violate communication con-
straints, since communication itself consumes resources. Thus, a solution that
limits communication costs is essential. Further, equation 1 maximizes the ex-
pected reward obtained for the MCMDP while we are interested in maximizing
the randomness of our policy. Below, we first introduce an entropy measure to

quantify randomness and then develop an algorithm that maximizes the measure
while we threshold on reward and constrain the communication. However, the
problem of miscoordination still remains which we solve in section 3.

Fig. 1. Simple MCMDP [(a1b1:100:2)- Action a1b1 gives reward 100 with communi-
cation cost 2]

2.3 Randomness of a policy

For a discrete probability distribution p1, p2,, pn the only function, upto a
multiplicative constant, that captures the randomness is the entropy, given by
the formula H = −

∑n
i=1 pi log pi [17]. For quantifying the randomness of a single

agent MDP policy, we borrow the weighted entropy concept developed in [5]. For
purposes of clarity we reproduce the formula here (π is the CMDP policy which
defines a probability distribution over actions for each state s)-

HW (x) = −
∑
s∈S

∑
â∈A

x(s, â)∑
j∈S

αj

∑
a∈A

π(s, a) log π(s, a) = − 1∑
j∈S

αj

∑
s∈S

∑
a∈A

x(s, a) log

(
x(s, a)∑

â∈A
x(s, â)

)
.

Extending this formula for a 2-agent MCMDP is quite straightforward in the
sense that instead of calculating the weighted entropy over a single agent policy
we calculate it over the joint policy of both the agents for the 2-agent MCMDP.
Hence, in the weighted entropy formula above, π refers to the joint policy of the
agents.

2.4 Intentional Randomization: Maximal entropy solution

We can now obtain maximal entropy policies with a threshold expected reward
meeting the communication requirements by replacing the objective of Problem
(1) with the definition of the weighted entropy HW (x). (Note that the problem
of miscoordination still remains which we will tackle in section 3). The reduction
in expected reward can be controlled by enforcing that feasible solutions achieve
at least a certain expected reward Emin and the communication constraint re-
mains unchanged. The following problem maximizes the weighted entropy while

maintaining the expected reward above Emin and a communication consumption
below Q:

max HW (x)
s.t.

∑
a∈A

x(j, a)−
∑
s∈S

∑
a∈A

p(s, a, j)x(s, a) = αj ∀j ∈ S∑
s∈S

∑
a∈A

r(s, a)x(s, a) ≥ Emin,
∑
s∈S

∑
a∈A

x(s, a)n(s, a) ≤ Q

x(s, a) ≥ 0 ∀s ∈ S, a ∈ A

(3)

where Emin is an input domain parameter (Emin can vary between 0 and E∗

where E∗ is the maximum expected reward obtained by solving (1)). Solving
Problem (3) is our first algorithm to obtain a randomized policy that achieves
at least Emin expected reward while meeting the communication constraints
(Algorithm 1).

Algorithm 1 Max-entropy(Emin, Q)
1: Solve Problem (3) with Emin and Q, let xEmin be optimal solution
2: return xEmin (maximal entropy, expected reward ≥ Emin, communication required
≤ Q)

Unfortunately, the problem of miscoordination introduced in section 2.2 still
remains.

3 Solving Miscoordination: From MCMDP to
Transformed MCMDP

This section presents an automatic transformation of a MCMDP to a trans-
formed MCMDP, where the resulting optimal policies can be executed in multi-
agent settings, via appropriate communication (with communication costs within
resource limits). We illustrate the key concepts in MCMDP transformations by
focusing on one specific transformation namely the sequential transformation,
given in Figure 2-a. While the transformation introduced is similar to [11], there
are two key differences in that work and the present work: (i) The solution for
policy randomization we develop for the transformed MCMDP needs a non-
linear objective with non-linear constraints unlike earlier work where the reward
maximization needed linear objective with non-linear constraints. Hence, the
basic problem being solved is different. (ii) Maximizing entropy is the focus of
our present work. The transformation requires addition of new states and ac-
tions and hence entropy would get affected. Our transformation has to ensure
that maximizing entropy for the transformed MCMDP would be equivalent to
the problem of maximizing entropy for the original MCMDP. We provided a
mathematical proof later to show that indeed this property holds.

3.1 Transformation Methods: Sequential and Others

Figure 2-a shows a portion of a MCMDP, where agent A with actions a1 to
am and B with actions b1 to bn act jointly (aibj). Figure 2-b shows the trans-
formation of this MCMDP into transformed MCMDP. This transformation is
sequential in that one of the agents, in this case agent A, first chooses one of its
actions ai and also decides whether to communicate this choice to its teammate,
agent B. Thus, C(ai) in Figure 2-b refers to A’s selection and communication
of action ai to B, incurring the cost of communication, and going to Aic (with
probability 1-pf where pf is the probability with which communication may
fail); while NC(ai) results in state Aio, where agent A selected ai but decided
not to communicate this choice to B to avoid communication costs. Note, since
communication may fail with a probability pf , C(ai) may transition to Aio with
a probability pf . Once in state Aic or Aio, agent B chooses its action bj , and
the agents now jointly execute the action aibj . When choosing its action, B ob-
serves which of the different Aic state it is in, since any such state is reached
only after A’s communication. Unfortunately, agent B cannot distinguish be-
tween states Aio reached without A’s communication. Thus, B’s action bj in
such non-communication states must be taken without observing which of the
m states A1o to Amo B is in. Thus, B will be unable to execute any random-
ized policy which requires it (agent B) to select an action bj with a different
probability in a state say Aio vs a state Ako. To avoid this problem, we require
that for any two states reached after non-communication, the probability of B’s
action selection must be identical, i.e., for any action bj and states Aio and
Ako, P(bj |Aio) = P(bj |Ako). This restriction on probability of action execution
in the transformed MCMDP translates into the addition of the following non-
linear constraints into our Problem 3 applied for the transformed MCMDP, to
solve the original MCMDP. Specifically, in terms of the state action variables,
given any two states Aio and Ako, and any action bj , it is necessary that:

Xoij/(
n∑

u=1

Xoiu) = Xokj/(
n∑

u=1

Xoku) ⇒ Xoij ∗ (
n∑

u=1

Xoku) = Xokj ∗ (
n∑

u=1

Xoiu)

(4)
Thus, to obtain an optimal randomized policy in the MCMDP, we must

solve problem 3 for the transformed MCMDP with these non-convex constraints
included in the problem. The optimal policy for a transformed MCMDP thus
obtained will require a random selection at state S1 by agent A alone, and then
in the next state (either Aic or Aio) by agent B alone, thus avoiding the problem
faced in the MCMDP. The non-linear constraints in the transformed MCMDP
affect only the actions taken from states A1o, A2o,....,Amo(from figure 2-b) and
ensure that P(bj |A1o) = P(bj |A2o) = = P(bj |Amo) for j ∈ 1,2....n. This is
because for agent B, states A1o, A2o,....,Amo are indistinguishable, as they are
reached without A’s communication.

Apart from the addition of these non-linear constraints, the entropy function
also undergoes change as the transformed MCMDP has new states and actions

Fig. 2. Transformation

added to it. The entropy function for Figure 2-a would be the straightforward
HW (x) as developed in section 2.1. In the transformed MCMDP, it would still
be the HW (x) with a small change in the way entropy is calculated at each state.
The entropy function at each state as calculated over the probability distribution
of all actions at that state is H = −

∑n
i=1 pi log pi where pi is the probability of

taking action ai at that state. Therefore, for state S1 in figure 2-a the entropy
is -
H(S1) = −1∗(p(a1b1)∗log(p(a1b1))+...+P (a1bn)∗log(p(a1bn))+....+P (amb1)∗
log(p(ambn)) + + p(ambn) ∗ log(p(ambn))).
If we notice state S1 of Figure 2-b, the probability with which agent A would take
action say a1 would be the sum of the probabilities with which it takes C(a1)
and NC(a1). This is because whether agent 1 communicates that it would take
action a1 or does not communicate that it would take a1 is internal to the system
because of our assumption (as explained in introduction) that communication
is safe. Therefore, only the fact that agent A will take action a1 (independent
of whether it is known to agent B) with certain probability is important to our
entropy equation since the enemy gets to observe that as the policy of agent A.
Therefore the new entropy function for state S1 in figure 2-b would be
H(S1) = −1∗ (p(C(a1)+NC(a1))∗ log(p(C(a1)+NC(a1)))++p(C(am)+
NC(am)) ∗ log(p(C(am) + NC(am))))
instead of the entropy function
H(S1) = −1 ∗ (p(C(a1)) ∗ log(p(C(a1))) + p(NC(a1)) ∗
log(p(NC(a1)))+.....+p(C(am))∗log(p(C(am)))+P (NC(am)∗log(p(NC(am)))).

Hence to solve our original MCMDP we solve Problem 3 for the transformed
MCMDP using the modified entropy function with the addition of non-linear
constraints we described earlier. One interesting fact in Figure 2-a is that the
entropy calculation would undergo such a change only for actions of agent A
while no such addition of probabilities of C and NC actions is needed for agent
B. Given that we now have a new entropy function (calculated using probability
of an action of an agent as sum of communication and non-communication prob-
abilities of that action), and also new states and transitions, it might not be nec-

essary that optimizing the entropy function for the transformed MCMDP would
automatically mean that we are increasing security for the original problem we
were solving. We therefore prove the following lemma below for two cases of
communication namely no communication and full communication. The lemma
basically states that the under conditions of no communication or full commu-
nication the entropy obtained for the MCMDP and the transformed MCMDP
would be the same if there are no changes in the reward thresholds to be met
and the bandwidth constraints. Under conditions of limited communication, we
experimentally verified over a large set of points and found the lemma still holds
true although we do not provide a formal proof.

Lemma 1. If in a state say S1 of MCMDP (Figure 3-a), the entropy is defined
over the probability distribution of the actions over the state, then the entropy
would remain the same in sequential transformation over the whole system of
states generated.
proof: For simplicity of proof, lets assume a two agent case where the bandwidth
present is zero (no communication case) in the domain. In 3-a, we show the MCMDP
where there are four joint actions obtained from the two individual actions a,b of
agents 1 and 2. We now transform the MCMDP using our sequential transformation
into a transformed MCMDP. We assume agent 1 decides on the communication/non-
communication issue. Figure 3-b shows the transformed MCMDP. If the policy of the
MCMDP and the transformed MCMDP is the same, then the flows and hence the path
probabilities for the four corresponding paths in both figures are equal.

Fig. 3. Illustrative Example

Entropy from 3-a: Entropy1 = P1logP1 + P2logP2 + P3logP3 + P4logP4

Entropy from 3-b: Entropy2 = PalogPa +PblogPb +Pa ∗(Pa1logPa1 +Pa2logPa2)+
Pb ∗ (Pb1logPb1 + Pb2 ∗ logPb2)

Lets consider the terms PalogPa + Pa ∗ (Pa1logPa1 + Pa2logPa2)
= Pa ∗ (logPa + Pa1logPa1 + Pa2logPa2)
Since Pa1 + Pa2 = 1,
= Pa ∗ ((Pa1 + Pa2)logPa + Pa1logPa1 + Pa2logPa2) = Pa ∗ (Pa1 ∗ (logPa + logPa1) +
Pa2 ∗ (logPa + logPa2)
= PaPa1 ∗ log(PaPa1) + PaPa2 ∗ log(PaPa2)
Since the path probabilities are equal, PaPa1 = P1 and PaPa2 = P2. Hence proved

equal to P1logP1 +P2logP2. Similar math applies to the other terms making it equal to
P3logP3 + P4logP4. Therefore the entropies of both transformations is the same. The
same reasoning as above follows if there is full communication also.

While we showed one particular method of transformation called the se-
quential transformation with one particular order of communication actions, as
shown in Figure 4, there are other methods of transforming a MCMDP into a
transformed MCMDP. First, as shown in Figure 4-a, the order of communication
actions in the sequential transformation can be changed. If one agent has fewer
actions than another (e.g., if n < m), such a change in the order of communica-
tion may improve the optimality of the resulting policy or reduce communication
costs. Second, as shown in Figure 4-b, in a hierarchical transformation, an agent
first decides which action to select, and only later whether to communicate this
choice (C) or not (NC). By choosing an action first, an agent’s communication
decision may be improved, potentially improving policy optimality. Our third
extra-communication transformation is similar to the sequential transformation,
except that agent A chooses actions for itself and for agent B and communicates
the choice of both to agent B. As discussed earlier, this would lead to extra over-
heads in communication. Finally, our simultaneous transformation, is shown in
Figure 4-d. Here, while the choice of communication is done sequentially, no
communication by A results in state S2; and in S2, agent A and B simulta-
neously and randomly select their actions. Additionally, combinations of these
transformations are also feasible. Typically, we must select from these multiple
transformations the one that provides the most optimal policies. However, in
this paper, we just introduce the sequential transformation and its properties
and leave such an analysis of various transformations for future work.

Fig. 4. Other methods of transformation

In all the above transformations, one of the agents selects an action without
observation of its actual state, leading to non-linear constraints, e.g., in simulta-
neous transformation at state S2, agents A and B act simultaneously. Once again,
non-linear constraints arise and hence non-linear constraints must be added in
the simultaneous case also. Indeed, irrespective of the style of transformation,
non-linear constraints must be added. This is because expressing probabilities

of events in MCMDPs requires divisions via Xia variables. And regardless of the
transformation that we choose for the MCMDP, we need to express constraints
using probabilities. Indeed, all transformations either involve sequential action
selection or simultaneous, and we showed non-convex constraints in each case
[11]. Thus:

o Proposition 1: It is necessary to add non-convex constraints to solve the
actual MCMDP.

3.2 The Sequential Transformation Algorithm

Since sequential transformation is the basis of our work in this paper, we describe
the transformation algorithm for it. We now present Algorithm 2 that achieves
this sequential transformation of MCMDP into a transformed MCMDP auto-
matically. (In fact our implementation creates problem 3 with the non-linear
constraints as an output). The algorithm works by first adding intermediate
states with (and without) communication in SrcToComm and then adding tran-
sitions from the intermediate states to the destination states in CommToDest.
We assume that joint actions are processed in increasing order of the index i
(1 <= i <= m) for ai, and j for bj (1 <= j <= n). In SrcToComm, com-
munication actions ai c leads to state sai c with probability 1-Pfn (and state
sai nc with probability Pfn); and non-communication action ai nc determin-
istically transitions to state sai nc, where the first agent has decided not to
communicate its choice to its teammate. Line 13 in the Conversion algorithm
adds the constraints on probabilities of outgoing actions from sai nc — because
of transitivity of equality, it is sufficient to add probability constraints with re-
spect to just the first non-communication state sa1 nc. From line 4 and line
7 of the algorithm, the number of probability constraints can be seen as (m-
1)*n to be later translated into non-linear constraints using equation 4. Thus,
this is a polynomial time algorithm, with a complexity of O(|S|2 ∗ |A|), where
|A| = n ∗m gives us the number of joint actions. In the worst case, the resulting
MCMDP has 2 ∗ |S| ∗m additional states inserted. Given that the output of the
transformation algorithm is a nonlinear program with nonlinear constraints our
polynomial transformation algorithm does not add anything to the complexity
of the problem.

4 Experimental Results

Based on the UAV example we described earlier, we first constructed a MCMDP
with joint states, actions, transitions and rewards. We then transformed the
MCMDP into a transformed MCMDP with the appropriate communication
and non-communication actions. We then present results using the transformed
MCMDP (Figure 5) to provide key observations about the impact of reward and
communication thresholds on policy randomization. Figure 5-a shows the results
of varying reward threshold (x-axis) and communication thresholds (y-axis) on
the weighted entropy of the joint policies (z-axis). Based on the figure, we make

two key observations. First, with extreme (very low or very high) reward thresh-
olds, communication threshold makes no difference on the value of the optimal
policy. In particular, in extreme cases, the actions are either completely deter-
ministic or randomized. On one extreme (maximum reward threshold), agents
choose the best deterministic policy and hence communication makes no differ-
ence and entropy hits zero. At the other extreme, with low reward threshold
(reward threshold 0) agents gain an expected weighted entropy of almost 2 (the
maximum possible in our domain), since the agents can choose highest entropy
actions and thus communication does not help. Second, in the middle range
of reward thresholds, where policies are randomized, communication makes the
most difference; indeed, the optimal entropy is seen to increase as communica-
tion threshold increases. For instance, when reward threshold is 7, the weighted
entropy of the optimal policy obtained without communication is 1.36, but with
high communication threshold of 6, the optimal policy provides a weighted en-
tropy of 1.81.

Figure 5-b zooms in on one slice in Figure 5-a (reward threshold fixed at 7).
It shows the changes in probability of communication and non-communication
actions in the optimal policy (y-axis), with changes in communication threshold
(x-axis). P(comm ai) denotes the probability of executing the action to commu-
nicate ai (similarly for non-communication actions). The graph illustrates the
following: when there is no communication in the system, action a1 gets pre-
ferred over a2 because of reward constraints. Action a1 would have been chosen
with probability 1 but for the fact that entropy needs to be maximized. As com-
munication is increased, most communication is allocated to a1 as opposed to a2

because of the high reward to cost ratio for a1. The interesting issue that arises
here is, at the highest communication point even though after all the communi-
cation was used up but action a1 accounted to only .4 of the total probability (i.e
1), the no communication action a2 was chosen for the rest of the probability even
though a1 would have provided higher reward. This is due to our assumption that
communication is safe, i.e both communication and non-communication actions
appear the same to our adversary. If this assumption was not there, most possi-
bly non communication of a1 should have been chosen with higher probability.
In the highest communication threshold case, increasing probability of NC(a1) is
actually detrimental to entropy since P(C(a1)) + P(NC(a1)) might then add up
to near 1 making it more deterministic which seems counterintuitive. The other
interesting issue is that, as communication threshold increases, the probability
of communicative actions increase say P(a1) increases from 0 to 0.4. At the same
time, the probability of the non-communication actions decreases.

Table 1 compares the weighted entropies of different joint policies with changes
in communication threshold for the same example we showed our results on ear-
lier (using a fixed reward threshold of 5). In the first row we show the three
settings of the communication thresholds (0,3 and 6 respectively) we use for
deriving the entropy values for the various cases in the table. Row 2 shows the
entropies obtained by an optimal MCMDP policy. The entropy (1.9) is an ideal
upper-bound for benchmarking and the entropy is unaffected by the communica-

Fig. 5. Effect of thresholds

Table 1: Comparing Weighted Entropies.

Comm Threshold → 0 3 6

MCMDP 1.9 1.9 1.9

Deterministic 0 0 0

Miscoordination Yes Yes No

Transformed MCMDP 1.6 1.83 1.9

tion threshold. Row 3 illustrates that deterministic policies exist in our domain
but their entropy be 0 and hence there would be no security. Row 4 shows the
results, where agents take the optimal policy of the MCMDP and attempt to
execute it without coordination. Unfortunately, communication constraints are
violated in columns 1 and 2. Only when communication resource of 6 units is
available the MCMDP policy becomes executable without any miscoordination.
Finally, row 5 shows the entropy of the transformed MCMDP for comparison.
It is able to avoid the problems faced by policies in row 3 and 4. However,
with communication threshold of 0, the transformed MCMDP must settle for
an entropy of 1.6; as the communication threshold increases, it finally settles
at an entropy of 1.9 which also shows why the MCMDP policy(row 1) becomes
executable when communication threshold is 6.

5 Summary and Related Work

This paper focuses on coordinating randomized policies for increasing security
of multiagent teams acting in observable domains. The issue of security arises
here because of intentional threats that are caused by unseen adversaries, whose
actions and capabilities are unknown, but the adversaries can exploit any pre-
dictability in our agent’s policies. Policy randomization with guaranteed rewards

meeting communication constraints becomes critical in such domains. To this
end, this paper provides three key contributions. First we recall the MCMDP
framework where agents not only maximize their expected team rewards but
also bound the expected team consumption of the communication resource. We
then developed a non-linear program for this MCMDP that maximizes policy
randomization while bounding communication consumption at the same time
providing guarantee on the expected team reward obtained. We then show how
randomized policies in team settings lead to miscoordination and hence the poli-
cies obtained from our non-linear program can be inexecutable. Our second
contribution is the introduction of a novel transformation algorithm called the
sequential transformation where we can explicitly incorporate communication
and non-communication actions. Thus problems may be formulated using our
abstract transformed MCMDP and our transformation ensures that the result-
ing randomized policies avoid miscoordination. We also show the existence of
many other such transformations. Third, we showed that despite the fully ob-
servable domains, transformed MCMDPs necessitate programs using our non-
convex constraints. We then solved our non-linear program with the non-convex
constraints on our UAV domain, initially modeled as a MCMDP on which we
applied our transformation algorithm to obtain the transformed MCMDP. From
these experiments, we showed the various tradeoffs involved between the three
key factors namely entropy, reward and communication resources. Finally, while
our techniques are applied for analyzing randomization-reward-communication
tradeoffs, they could potentially be applied more generally to analyze different
tradeoffs between competing objectives in MCMDPs.

Decision-theoretic literature has focused on maximizing total expected re-
ward [18, 3, 19] but maximizing policy randomization as a goal has received little
attention in the literature. Randomization is mostly seen as a means or side-
effect in attaining other objectives, e.g., in resource-constrained MDPs [14] or
limited memory POMDP policy generators [20–24]. In [11] coordination of mul-
tiple agents executing randomized policies in a MDP team setting is discussed,
but there randomization occurs as a side-effect of resource constraints. The work
in [5] explicitly emphasizes on maximizing policy entropy but no resource con-
straints are considered. In contrast, our work focuses on policy randomization
while explicitly ensuring that the communication constraints of the team are
met. The effect of communication in multiagent teams has been analyzed exten-
sively [25–28]. However, none of this work focuses on using communication to
counter the miscoordination arising due to randomized policies in team settings.
Further we model communication as a resource with a cost which is independent
of the reward i.e communication costs and rewards cannot be compared and the
focus is to make optimal usage of the limited communication unlike heuristic
techniques developed earlier for adding communication actions. Significant at-
tention has been paid to learning in stochastic games, where agents must learn
dominant strategies against explicitly modeled adversaries [15, 29]. Such domi-
nant strategies may lead to randomization, but randomization itself is not the
goal. Our work in contrast does not require any model of the adversary and un-

der this worst case assumption hinders any adversary’s actions by increasing the
policy’s weighted entropy. Thus, we focus on agent teams using Decentralized
MDPs with communication constraints doing intentional policy randomization.

Acknowledgments : This research is supported by NSF grants #0208580, #0222914
& ISF #8008. It is also supported by the United States Department of Homeland Secu-
rity through Center for Risk and Economic Analysis of Terrorism Events (CREATE).
Sarit Kraus is also affiliated with UMIACS.

References

1. M. H. Burstein, A. M. Mulvehill, and S. Deutsch. An approach to mixed-initiative
management of heterogeneous software agent teams. In HICSS, page 8055. IEEE
Computer Society, 1999.

2. C. Boutilier. Sequential Optimality and Coordination in Multiagent Systems. In
IJCAI, 1999.

3. R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Transition-Independent
Decentralized Markov Decision Processes. In AAMAS, 2003.

4. R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella. Taming Decentral-
ized POMDPs: Towards Efficient Policy Computation for Multiagent Settings. In
IJCAI, 2003.

5. P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Security in Multiagent Systems
by Policy Randomization. In AAMAS, 2006.

6. D. Carroll, K. Mikell, and T. Denewiler. Unmanned Ground Vehicles for Integrated
Force Protection. In SPIE Proc. 5422, 2004.

7. P. J. Lewis, M. R. Torrie, and P. M. Omilon. Applica-
tions suitable for unmanned and autonomous missions utiliz-
ing the Tactical Amphibious Ground Support (TAGS) platform.
http://www.autonomoussolutions.com/Press/SPIE%20TAGS.html, 2005.

8. Call for Papers: Safety and Security in Multiagent Systems.
http://www.multiagent.com/dailist/msg00129.html.

9. R. Beard, and T. McLain. Multiple UAV Cooperative Search under Collision
Avoidance and Limited Range Communication Constraints. In IEEE CDC, 2003.

10. A. Serjantov. On the Anonymity of Anonymity Systems. PhD Dissertation, Uni-
versity of Cambridge, 2004.

11. P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Towards a Formalization of
Teamwork With Resource Constraints. In AAMAS, 2004.

12. M. H. Rahimi, H. Shah, G. S. Sukhatme, J. Heidemann, and D. Estrin. Studying
the Feasibility of Energy Harvesting in a Mobile Sensor Network. In ICRA, 2003.

13. D. Dolgov, and E. Durfee. Approximating Optimal Policies for Agents with Limited
Execution Resources. In IJCAI, 2003.

14. E. Altman. Constrained Markov Decision Process. Chapman and Hall, 1999.
15. M. Littman. Markov Games as a Framework for Multi-Agent Reinforcement Learn-

ing. citeseer.ist.psu.edu/littman94markov.html, 1994.
16. D. Dolgov, and E. Durfee. Resource Allocation and Policy Formulation for Multiple

Resource-Limited Agents Under Uncertainty. In ICAPS, 2004.
17. C. Shannon. A Mathematical Theory of Communication. In The Bell Labs Tech-

nical Journal, 1948.
18. D. Pynadath, and M. Tambe. The communicative multiagent team decision prob-

lem: analyzing teamwork theories and models. JAIR, 2002.

19. C. V. Goldman, and S. Zilberstein. Optimizing Information Exchange in Cooper-
ative Multi-agent Systems. In AAMAS, 2003.

20. T. Jaakkola, S. Singh, and M. Jordan. Reinforcement learning algorithm for par-
tially observable markov decision problems. In Advances in NIPS, 1994.

21. R. Parr and S. Russel. Approximating Optimal Policies for partially observable
stochastic domains. In IJCAI, 1995.

22. L. Kaelbling, M. Littman, and A. Cassandra. Planning and Acting in Partially
Observable Stochastic Domains. In Technical Report, Brown University, 1995.

23. P. Poupart, and C. Boutilier. Bounded finite state controllers. In NIPS, 2003.
24. D. S. Bernstein, E. A. Hansen, and S. Zilberstein. Bounded Policy Iteration for

Decentralized POMDPs. In IJCAI, 2005.
25. P. Xuan, and V. Lesser. Multi-Agent Policies: From Centralized Ones to Decen-

tralized Ones. In AAMAS, 2002.
26. R. Becker, V. Lesser, and S. Zilberstein. Analyzing Myopic Approaches for Multi-

Agent Communication. In Proceedings of IAT, 2005.
27. M. Ghavamzadeh, and S. Mahadevan. Learning to Communicate and Act in Co-

operative Multiagent Systems using Hierarchical Reinforcement Learning. In AA-
MAS, 2004.

28. R. Nair, M. Roth, M. Yokoo, and Milind Tambe. Communication for Improving
Policy Computation in Distributed POMDPs. In AAMAS, 2004.

29. J. Hu, and P. Wellman. Multiagent reinforcement learning: theoretical framework
and an algorithm. In ICML, 1998.

Algorithm 2 Convert()
1: Input:< S, A, P, R, N, Q >
2: Output:< S′, A′, P ′, N ′, Q′ >
3: Conversion()
4: Create Problem 3 from Output.

1: Conversion(){
2: Initialize: S′ = S, A′ = A, P ′ = P, R′ = φ, N ′ = φ, Q′ = Q
3: for all s ∈ S do
4: for all (â = (ai, bj)) ∈ A do
5: if sai nc /∈ S′ then
6: SrcToComm(s, â, sai nc, ai nc)
7: p′(s, â, sai nc)← 1
8: if (|p(s, < ai, ∗ >, ∗) > 0| > 1) then
9: SrcToComm(s, â, sai c, ai c)

10: n′(s, ai c)← Communication Model
11: p′(s, ai c, sai c)← 1− Pf

12: p′(s, ai c, sai nc)← Pf

13: if i 6= 1 then
14: prob(bj |sai nc) = prob(bj |sa1 nc)
15: CommToDest(s, â, sai nc, ai nc)
16: if (|p(s, < ai, ∗ >, ∗) > 0| > 1) then
17: CommToDest(s, â, sai c, ai c)
18: for all s′ ∈ S′ do
19: p′(s, â, s′)← 0
20: }
1: SrcToComm(Sparent, Aparent, Scurrent, Acurrent){
2: S′ ← S′ ⋃Scurrent

3: A′ ← A′ ⋃Acurrent

4: r′(Sparent, Acurrent), n
′(Sparent, Acurrent)← 0

5: }
1: CommToDest(Sparent, Aparent, Scurrent, Acurrent){
2: for all s′ ∈ S′ do
3: p′(Scurrent, Aparent, s

′)← p(Sparent, Aparent, s
′)

4: r′(Scurrent, Aparent)← r(Sparent, Aparent)

