K-optimal Algorithms for Distributed Constraint Optimization:
Extending to Domains with Hard Constraints

Jonathan Pearce, Emma Bowring, Christopher Portway, Milind Tambe
Computer Science Dept.
University of Southern California
Los Angeles, CA 90089
{jppearce,bowring,tambe,portway } Qusc.edu

Abstract

Distributed constraint optimization (DCOP) has
proven to be a promising approach to address co-
ordination, scheduling and task allocation in large-
scale multiagent networks, in domains involving sensor
networks, teams of unmanned air vehicles, or teams
of software personal assistants and others. Locally
optimal approaches to DCOP suggest themselves as
appropriate for such large-scale multiagent networks,
particularly when such networks are accompanied by
lack of high-bandwidth communications among agents.
K-optimal algorithms provide an important class of
these locally optimal algorithms, given analytical re-
sults proving quality guarantees. Previous work on k-
optimality, including its theoretical guarantees, focused
exclusively on soft constraints. This paper extends the
results to DCOPs with hard constraints. It focuses
in particular on DCOPs where such hard constraints
are resource constraints which individual agents must
not violate. We provide two key results in the context
of such DCOPs. First we provide reward-independent
lower bounds on the quality of k-optima in the presence
of hard (resource) constraints. Second, we present algo-
rithms for k-optimality given hard resource constraints,
and present detailed experimental results over DCOP
graphs of 1000 agents with varying constraint density.

Introduction

In a large class of multi-agent scenarios, teams of agents
must take joint actions, generated as a combination
of individual actions, to achieve joint goals. Often,
the locality of agents’ interactions means that the util-
ity generated by each agent’s action depends only on
the actions of a subset of the other agents. In this
case, the outcomes of possible joint actions can be
compactly represented by graphical models, in partic-
ular, as a distributed constraint optimization problem
(DCOP)(Modi et al. 2005a; Mailler and Lesser 2004;
Zhang et al. 2003). A DCOP can be represented in
the form of a graph in which each node is an agent
and each edge denotes a subset of agents whose actions,
when taken together, incur costs or rewards, either to
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the agent team. Applications of DCOP include multi-
agent plan coordination (Cox et al. 2005), sensor net-
works (Modi et al. 2005a), meeting scheduling (Petcu
and Faltings 2005a) and RoboCup soccer (Vlassis et al.
2004).

Traditionally, researchers have focused on obtaining a
single, globally optimal solution to DCOPs, introducing
complete algorithms such as Adopt (Modi et al. 2005a),
OptAPO (Mailler and Lesser 2004), and DPOP (Petcu
and Faltings 2005b). However, because DCOP has been
shown to be NP-hard(Modi et al. 2005a), as the scale
of these domains become large, current complete algo-
rithms can incur large computation or communication
costs. For example, a large-scale network of personal
assistant agents might require global optimization over
hundreds of agents and thousands of variables. How-
ever, incomplete algorithms in which agents form small
groups and optimize within these groups can lead to
a system that scales up easily and is more robust to
dynamic environments.

In previous work, k-optimal algorithms have emerged
as a promising approach in building such incomplete al-
gorithms(Pearce and Tambe 2007; Pearce et al. 2006;
Pearce 2007). In k-optimal algorithms, agents optimize
by forming groups of one or more agents until no group
of k or fewer agents can possibly improve the solution;
this type of local optimum is defined as a k-optimum. A
major advantage of k-optimal algorithms are the theo-
retical guarantees available. For example, we are able to
provide worst-case guarantees on the solution quality of
k-optima in a DCOP. These guarantees can help deter-
mine an appropriate k-optimal algorithm, or possibly
an appropriate constraint graph structure, for agents
to use in situations where the cost of coordination be-
tween agents must be weighed against the quality of the
solution reached. If increasing the value of k will pro-
vide a large increase in guaranteed solution quality, it
may be worth the extra computation or communication
required to reach a higher k-optimal solution. Another
example of theoretical guarantees on k-optimality are
the upper bounds on the number of k-optima that can
exist in a DCOP. Finally, k-optimal algorithms have
been defined, and promising experimental results have
been provided.



Previous work on k-optimality, including its theoret-
ical guarantees, focused exclusively on soft constraints.
This paper extends the results to DCOPs with hard
constraints. Hard constraints are constraints with infi-
nite negative cost, and they are important and unavoid-
able in many domains. For example, a DCOP repre-
senting the location of unmanned air-vehicles (UAVs)
must be able to represent the hard constraint that two
UAVs must not occupy the same space (or they will
crash). We focus in particular on an important subcase,
where such hard constraints are resource constraints
which individual agents must not violate. These re-
source constraints include for example the amount of
fuel that a UAV may carry. Unfortunately, previous
research k-optimality is unable to provide guarantees
on solution quality in the presence of such hard con-
straints. Furthermore, algorithms for k-optimality have
not been focused on such hard constraints, in particu-
lar the resource constraints mentioned earlier. We pro-
vide two key results in the context of such DCOPs with
hard constraints. First we provide reward-independent
lower bounds on the quality of k-optima in the presence
of hard (resource) constraints. Second, we present algo-
rithms for k-optimality given hard resource constraints,
and present detailed experimental results over DCOP
graphs of 1000 agents with varying constraint density.

Background

This section formally introduces our notation for
DCOPs and discusses the concept of k-optimality.

DCOP and k-optimality

Formally, a DCOP is a set of variables (one per
agent) N := {1,...,n} and a set of domains A :=
{A4,..., A,}, where the i*" variable takes value a; €
A;. We denote the assignment of a subgroup of agents
S C Z by ag := Xjega; € Ag where Ag 1= X;ecsA;
and the assignment of the multi-agent team by a =
[a1 - --ay]. Valued constraints exist on various mini-
mal subsets S C N of these variables. By minimal-
ity, we mean that the reward component Rg cannot
be decomposed further through addition. If we de-
note by 6 the set of all such subsets S on which a
constraint exists, then we can express the minimal-
ity condition mathematically as follows: Mathemati-
cally: VS € 0, Rs(as) # Rs,(as,) + Rs,(as,) for any
Rs,(+) : As, — R, Rs,(+) : As, — R, 51,52 C N such
that Sl U SQ = S, Sl,SQ 7é Q]

A constraint on S is expressed as a reward function
Rs(ag). This function represents the reward to the
team generated by the constraint on S when the agents
take assignment a; costs are expressed as negative re-
wards. For convenience, we will refer to these subsets S
as “constraints” and the functions Rg(-) as “constraint
reward functions.” The solution quality for a particu-
lar complete assignment a is the sum of the rewards
for that assignment from all constraints in the DCOP:

R(a) =) gcg Rs(a) = D g Rs(as).
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Figure 1: DCOP example

For example, Figure 1 shows a binary DCOP in which
agents choose actions from the domain {0,1}, with
rewards shown for the two constraints (minimal sub-
groups) S12 = {1,2} and Sy 3 = {2,3}.

Before formally introducing the concept of k-
optimality, we must define the following terms. For two
assignments, a and a, the deviating group is D(a,a) :=
{i €T :a; #a;},ie., the set of agents whose actions in
assignment @ differ from their actions in a. For exam-
ple, in Figure 1, given an assignment [1 1 1] (agents 1,
2 and 3 all choose action 1) and an assignment [0 1 0],
the deviating group D([1 1 1], [0 1 0]) = {1,3}. We
can now define distance as d(a, a) := |D(a, a)| where |- |
denotes the cardinality of the set. The relative reward
of an assignment a with respect to another assignment
ais

A(a,a) := R(a) — R(a) =
Z [Rs(as) — Rs(as)]-

S€0:SND(a,a)#0

In this summation, only the rewards on constraints inci-
dent on deviating agents are considered, since the other
rewards remain the same.

We classify an assignment a as a k-
optimal assignment or k-optimum if A(a,a) >
0 Va such that d(a,a) < k. That is, a has a higher or
equal reward to any assignment a distance of k or less
from a. Equivalently, if the set of agents have reached
a k-optimum, then no subgroup of cardinality < k
can improve the overall reward by choosing different
actions; every such subgroup is acting optimally with
respect to its context.

For illustration, let us go back to Figure 1. The as-
signment a = [1 1 1] (with a total reward of 16) is 1-
optimal because any single agent that deviates reduces
the team reward. For example, if agent 1 changes its
value from 1 to 0, the reward on S 2 decreases from 5 to
0. If agent 2 changes its value from 1 to 0, the rewards
on 51,2 and Sy 3 decrease from 5 to 0 and from 11 to 0,
respectively. If agent 3 changes its value from 1 to 0, the
reward on Sp 3 decreases from 11 to 0. However, [1 1 1]
is not 2-optimal because if the group {2,3} deviated,
making the assignment a = [1 0 0], team reward would
increase from 16 to 20. The globally optimal solution,
a* =10 0 0], with a total reward of 30, is k-optimal for
all k € {1,2,3}.

Algorithms for k-optimality

We discuss two algorithms, MGM-1 and MGM-2, which
attain k-optimal results for k& = 1,2 respectively, i.e.



they are l-optimal and 2-optimal algorithms. Other
variations of l-optimal and 2-optimal algorithms are
also discussed in previous work (Maheswaran and Bagar
1998), and the key techniques we discuss would apply
to these other algorithms as well.

MGM-1: A l-optimal algorithm only considers uni-
lateral actions by agents in a given context. The 1-
optimal algorithm being built upon in this paper is the
MGM-1 (Maximum Gain Message-1) Algorithm (Mah-
eswaran et al. 2004a; Pearce 2007) which is a modifica-
tion of DBA (Distributed Breakout Algorithm) (Yokoo
and Hirayama 1996).

Variables begin in MGM-1 by taking on an initial ran-
domly selected assignment. Then execution continues
in rounds. A round is defined as the duration to move
from one value assignment to the next. A round could
involve multiple messaging phases. Every time a mes-
saging phase occurs, it is counted as one cycle. During
a round of MGM-1, each agent broadcasts a gain mes-
sage to all its neighbors that represents the maximum
change in its local utility if it is allowed to act under
the current context. An agent is then allowed to act if
its gain message is larger than all the gain messages it
receives from its neighbors (ties can be broken through
variable ordering or another method). For example, if
the variables in the example in Figure 1 had initially se-
lected the assignment {0,1,0} then 1 would send a gain
message to xo indicating it could switch values from 0
to 1 and achieve a gain of 5. z3 would also send a gain
message to xo indicating it could change its value and
achieve a gain of 11. x5 would send a proposal message
to both z; and z3 indicating it could switch values and
achieve a gain of 30. Since zo has the highest gain, it
will switch its value to 0 and the other two variables will
remain at their current assignment. Execution contin-
ues until no further proposals are made. MGM-1 re-
quires two cycles per round (Maheswaran et al. 2004a;
Pearce 2007).

MGM-2: When applying a l-optimal algorithm,
the evolution of the assignments will terminate at a 1-
optimum. One method to improve the solution quality
is for agents to coordinate actions with their neighbors.
This allows the algorithm to break out of some of the
local optima. This section introduces the 2-optimal al-
gorithm MGM-2 (Maximum Gain Message-2) (Pearce
2007).

As with MGM-1, agents initially take on a random as-
signment and then begin executing rounds of the MGM-
2 algorithm. The first step is to decide which subset of
agents are allowed to make offers. This is resolved by
randomization, as each agent is randomly assigned to
be an offerer or a receiver. Each offerer will choose a
neighbor at random and send it an offer message which
consists of all coordinated moves between the offerer
and receiver that will yield a gain in local utility to
the offerer under the current context. The offer mes-
sage will contain both the suggested values for each
player and the offerer’s local utility gain for each value
pair. For example, suppose the agents in the exam-

ple in Figure 1 had currently taken on the assignment
{zr1 — 1,29 — 1,23 < 0} and 27 had been assigned to
be an offerer, while x5 and x3 had been made receivers.
Agent x1 could send a proposal to xo that they change
values from {z1 « 1,29 < 1} to {z1 < 0,22 « 0} for
a gain of 5 from x,’s perspective. Given that x3 is not
a neighbor of any receivers, it will not receive an offer
in this round.

Each receiver will then calculate the overall utility
gain for each value pair in the offer message by adding
the offerer’s local utility gain to it’s own utility change
under the new context and subtracting the difference
in the link between the two so it is not counted twice:
ZyENeighbors(wi) Ga?'nly + ZZENeighbors(wj) Gainjz -
Gainij. In the example in Figure 1, Agent x5 would
receive the offer and calculate that their combined gain
from this move would be 25. If the maximum overall
gain over all offered value pairs is positive, the receiver
will send an accept message to the offerer with the ap-
propriate value pair and both the offerer and receiver
are considered to be committed. Otherwise, it sends a
reject message to the offerer, and neither agent is com-
mitted.

Uncommitted agents choose their best local utility
gain for a unilateral move and send a proposal mes-
sage. Uncommitted agents follow the same procedure
as in MGM-1, where they modify their value if their
gain message was larger than all the gain messages they
received. Committed agents send the global gain for
their coordinated move. Committed agents send their
partners a confirm message if all the gain messages they
received were less than the calculated global gain for the
coordinated move and send a deconfirm message, oth-
erwise. A committed agent will only modify its value
if it receives a go message from its partner. MGM-
2 requires five cycles (value, offer, accept/reject, gain,
confirm/deconfirm) per round in contrast to MGM-1’s
2 cycles per round.

DCOP with Hard constraints: Multiply
Constrained DCOPs

In many domains, hard constraints exist, and solutions
that violate a hard constraint are not useful. For ex-
ample, a schedule where two people disagree on the
time of their meeting with each other may be consid-
ered useless, no matter how good the schedule is for
other people. We define a hard constraint as a con-
straint in which at least one combination of values pro-
duces a sufficiently large cost (a negative reward many
times larger than the sum of all positive rewards in the
DCOP).

One major source of such hard constraints, presented
in (Bowring et al. 2006), is the presence of resource con-
straints at individual agents, e.g. travel budgets, bat-
tery power. Multiply-constrained DCOP (MC-DCOP)
helps address such resource constraints. In MC-DCOP,
we have a reward function as before (referred to below
as “f”) and a resource cost (referred to below as “g”).
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Figure 2: Multiply Constrained DCOP example

In other words, MC-DCOP adds a new cost function
gij on a subset of x;’s links and a g-budget G; which
the accumulated g-cost must not exceed. Together this
g-function and g-budget constitute a g-constraint. Fig-
ure 2 shows an example g-constraint on x;. Each link
has both a f-reward and a g-cost. In the example, if
x1 = 0,29 = 0,3 = 1, this leads to an optimal “f” re-
ward 4, but the g-cost is 4, which violates x1’s g-budget
of 3. Violation of g-budgets leads to a hard-constraint
violation.

Quality Guarantees for DCOPs with
Hard Constraints

Previous work(Pearce and Tambe 2007) presented qual-
ity guarantees for DCOPs in which all rewards were re-
stricted to being non-negative. A DCOP with both
costs and rewards could be normalized to one that
met this restriction as long as it contained no hard
constraints (constraints with an infinitely large cost).
Given the importance of hard constraints it is impor-
tant to address such hard constraints however.

This section shows how, in some cases, we can guar-
antee the solution quality of k-optimal DCOP solutions
even when the DCOP contains hard constraints. To
obtain these guarantees we will assume that, in the
DCOPs with hard constraints that we are considering,
there always exists a solution that does not violate any
hard constraints (i.e. that the globally optimal solution
is a feasible solution). Given this assumption, we will
show how the methods for obtaining guarantees given
in the previous sections can be modified to allow for
the existence of hard constraints. Finally, we will as-
sume that we know a priori which constraints in the
DCOP graph are hard constraints (but not which com-
binations of values on these constraints cause them to
be violated).

One complicating issue is that in some DCOPs with
hard constraints, a k-optimal solution may be infeasi-
ble; that is, the k-optimal solution violates at least one
hard constraint, and any deviation of k or fewer agents
also results in an infeasible solution. If a k-optimum

is infeasible, then it is impossible to guarantee its solu-
tion quality with respect to the global optimum. There-
fore, to avoid these cases we will restrict our analysis to
the following kind of DCOP: Consider a subgraph H of
the DCOP constraint graph that consists all the hard
constraints in the DCOP only. We will only consider
DCOPs where the largest connected subgraph of H con-
tains k or fewer agents (nodes). That is to say, we will
not consider any DCOP for which a connected subgraph
of H exists that contains more than k agents. In the
DCOPs we are considering, no k-optimum could be in-
feasible. To see this, suppose an infeasible k-optimum
did exist in such a DCOP. This means that at least
one hard constraint in one of these such subgraphs is
being violated. Since the number of agents in the sub-
graph is k or less, all these agents could change their
values to the values that they take in the optimal solu-
tion. This change would ensure that no constraints in
the subgraph were being violated, improving the overall
reward. However, if k or fewer agents can improve the
reward of a given assignment, it cannot be a k-optimum
in the first place.

Given our k-optimal assignment a and the global op-
timal a*, the key to proving this proposition is to de-
fine a set A%* that contains all assignments a where
exactly k variables have deviated from their values in
a, and these variables are taking the same values that
they take in a*. Note that R(a) > a,Va € A%* This
set A% allows us to express the relationship between
R(a) and R(a*).

For any assignment a € A, the constraints 6 in the
DCOP can be divided into three discrete sets, given a
and a:

° 91 (au
o 92(&,

° 93(@,
92(&,

01 (a, @) contains the constraints that include only the
variables in & which have deviated from their values in
a; 02(a, @) contains the constraints that include only the
variables in @ which have not deviated from their values
in a; and f3(a, a) contains the constraints that include
at least one of each.

Thus, we can express the sum of the global rewards

of all assignments a € A%k ag:

oY Bs@+ Y, > Rs(a)+

acAa.k S€bi(a,a) acAa.k S€bz(a,a)

> > Rs(a).

acAak S€03(a,a)

) C 6 such that VS € 61(a,a),S C D(a,a).

) C 6 such that VS € 6(a,a), SN D(a,a) = 0.
) C 6 such that VS € 03(a,a), S ¢ 61(a,a) U
).
)

a
a

>

We know from our assumptions that

> Y Rs@>0

acAak S€01(a,a)



and

> > Rs(a)>0

acAak S€b2(a,a)

because otherwise the globally optimal solution or the
k-optimal solution would contain a violated hard con-
straint, and that is not possible in the DCOPs we are
considering. Finally we also exclude all assignments
o € A%* where Shara € 03(a,a) for any hard con-
straint Spqrq- Excluding all assignments a € A%k where
Shard € 03(a,a) means including only the assignments
i € A% where Syarq € 01(a,d)Ubs(a, @), meaning only
the assignments where all variables involved in all hard
constraints are taking the same values as in the optimal
solution, or where all variables involved in all hard con-
straints are taking the same values as in the k-optimal
solution.

To see this, first consider a DCOP of six variables
with domains of {0,1} on a star-shaped graph with
agent 1 at the center (ie. § = {S :1 € S,|S| = 2}).
Suppose that a = [0 00 0 0 0] is a 4-optimum, and that

=[111111]is the global optimum. In the case

of no hard constraints, d(a,a*) = 6, and A%k contains

(d(a]’c‘ljl)_l) = 10 assignments, listed below:
[111100},[111010],[111001],[11
[110101,110011],[101110],[10

101011,[100111].

0110],
110 1],

Now suppose that Sparq = {1,2} is a hard constraint.
As mentioned above, we modify A%F 10 exclude all as-
signments a € A%k where Spard € 03(a,a). This means
removing all assignments where a; = 0 and ay = 1 and
all assignments where a; = 1 and as = 0. Now, we are
left with 6 assignments in Avk —

111100],[111010],[11

[110110],[110101],[11 .
Since R(a) > a,Va € A%, then 6- R(a) > " .. R(a).
Now, VS # Shera € 0,¥i € S,a} = d; for exactly
(Z:g) — 3 assignments in A**. For example, for S =
{1,3},af =d; =landal =dy=1fora=[111100],
[111010], and [I1 110 0 1]. Therefore, VS €
0,Rs(a*) = Rs(a) for these (}~7) = 3 assignments.
Since this is a star graph, V.S € 6,Vi € S, a; = a; for zero
assignments in A%F. Thus, 6 - R(a) > Y g R(G) >
3-R(a*)+0-R(a), and so R(a) > 25 R(a*) = $R(a*).0

The following proposition gives a more general proof
for the case of more than one hard constraint in a star-
shaped graph.

Proposition 1 For any binary DCOP of n agents with
a star graph structure, where all constraint rewards are
non-negative except for h hard constraints, and a* is
the globally optimal solution, then, for any k-optimal
assignment, a, where k <n and 0 < h <n — 1.

R(@) > T2 ) 1)

Proof:
In a star graph, there are ( o i) connected subgraphs

of k variables, and so for the case of no hard constraints,
|A®k| = (= ) because each assignment & € A%* corre-
sponds to one of those connected subgraphs. However,
with hard constraints, we only include assignments in
A%k where Spard € 01(a,a) U bOz(a,a) for all hard con-
straints Sparq. In a star graph, there are (Z:Z:i) con-
nected subgraphs of k variables that include all vari-
ables involved in a hard constraint (corresponding to
the assignments a@ where Sharq € 01(a,a) for all hard
constraints Sperq). Additionally, because all hard con-
straints must involve the central variable, there are (in
the worst case, where d(a,a*) = n) zero connected sub-
graphs of k variables that include all variables in the
k-optimal solution(Sharq € 62(a,a) for all hard con-

straints Spqrq). Therefore, |A“k| = (Z:Zj) For every
non-hard constraint S, there are (Z:Z:g) connected

subgraphs of k variables that contain .S, and therefore,

S Y Re(@) = (k";:g)mm.

acAa.k S€bi(a,a)

Finally, just as in the case without hard constraints,
there are no ways to choose a constraint S so that it
does not include any variable in a given connected sub-
graph of k variables. Therefore,

> Y Rs(a)=0-R(a).

acAak S€02(a,a)

and therefore Equation 1 holds. W

When h = n—1 (all constraints are hard constraints),
it is easy to see that only £ = n will guarantee optimal-
ity; otherwise, no guarantee is possible.

For other graph types, we can apply an modifica-
tion to the linear fractional program (LFP) method
in (Pearce and Tambe 2007). That LFP was a mini-

((a*)) such that Va € A, R(a) — R(a) > 0,

given A, where A contains any assignment a such that
d(a,a) < k (note that reward R(a) < R(a)). With
the existence of hard constraints in the DCOP that
can have an infinitely large negative reward, this con-
straint in the LFP no longer holds for all a. In-
stead this constraint holds only for those a € A where
Shard € 61(a,a)Ubs(a,a) for all hard constraints Spepq-
This occurs because any assignment a that does not
meet this condition could violate a hard constraint, re-
sulting in a large negative value for R(a). Not includ-
ing these assignments produces a smaller a and thus a
smaller set of constraints in the LFP, resulting in a lower
guarantee in the presence of hard constraints. This can
be implemented by, when constructing the LFP, omit-
ting any constraint in the LFP which corresponds to
Finally, we note that, these guarantees for k-optima
in standard DCOPs with hard constraints also apply to
multiply-constrained DCOPs (MC-DCOP) introduced
earlier. In MC-DCOP g-constraint on an agent with m

mization of
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Figure 3: Quality guarantees for k-optima in DCOPs
containing hard constraints.

neighbors is a shorthand expression for the more general
notion of a hard m+ 1-ary constraint between the agent
and all its neighbors (where any assignment where the
g-budget is exceeded is considered infeasible). Thus,
the methods of this section can be applied to obtain
guarantees on k-optima in multiply-constrained DCOPs
as well; this is shown in the experimental results later
in this paper.

Figure 3 shows quality guarantees in the presence
of hard constraints for fully connected graphs, ring
graphs, and star graphs. These experiments began with
a DCOP containing all soft constraints and no hard con-
straints, and gradually more and more soft constraints
were made into hard constraints. The left column shows
the effect of one and two hard constraints in a DCOP
of five agents, and the right column shows the effect of
two and four hard constraints in a DCOP of 10 agents.
The constraints that were set as hard constraints were,
in order, {0,1}, {2,3}, {4,5}, and {6,7}. This method-
ology was chosen so that no agent would be subject to
more than one hard constraint, and so that k-optimal
solutions would always be feasible. For star graphs, the
guarantee from Proposition 1 was used; while for the
others, the LFP method was used.

Figure 4 shows quality guarantees for a multiply-
constrained DCOP with 30 agents, arranged in a ring
structure. These experiments begin with a DCOP con-
taining no agents with g-constraints. The number of
agents with g-constraints was gradually increased by as-
signing a g-constraint to every third agent, starting with
agent 0, until there were 10 agents with g-constraints.

100
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Figure 4: Quality guarantees for k-optima in a

multiply-constrained ring DCOP.

Similar to the previous experiments, this methodology
was chosen so that k-optimal solutions would always
be feasible. The LFP method was used to calculate
the guarantees. Figure 4 shows guarantees for up to 4
agents with g-constraints as k increases. For the cases
of 5 to 10 agents with g-constraints the guarantee was
the same as for 4 agents with g-constraints.

K-optimal Algorithms with Hard
Constraints
Multiply Constrained MGM

While the MGM algorithms described earlier could be
applied with standard DCOP formulations, they can-
not be directly applied in the context of MC-DCOPs.
In particular, there are four main challenges that must
be addressed in designing locally optimal MC-DCOP al-
gorithms. First, agents’ additional resource constraints
add to DCOP search complexity. Hence, agents must
quickly prune unproductive search paths. Second, har-
nessing state-of-the-art DCOP algorithms is useful since
a lot of research has already been done to maximize
their efficiency (Modi et al. 2005b; Yokoo et al. 1998;
Yokoo 2001; Ali et al. 2005; Petcu and Faltings 2005a;
Maheswaran et al. 2004b; Pearce 2007). However, ex-
isting algorithms are not designed to handle resource
constraints that are local and defined over n-ary do-
mains. Third, algorithms must exploit constraint reve-
lation to gain efficiency. The fourth challenge is that of
detecting when the bounded optimization constraints
have rendered the problem unsatisfiable. This chal-
lenge is more relevant to incomplete than complete al-
gorithms because complete algorithms systematically
consider all possible assignments and thus can easily
detect unsatisfiability. However, locally optimal algo-
rithms, particularly hill-climbing algorithms like MGM,
explore only part of the search space and therefore have
two options: a) require a valid initial starting point and



maintain a satisfaction invariant or b) detect when the
search has covered all assignments without any being
found that are satisfying. This paper uses approach a),
but this still leaves the challenge of detecting when it
will be impossible to find a valid start point. The in-
complete Multiply-Constrained DCOP algorithms pre-
sented in this paper make use of constraint-graph trans-
formation and dynamically-constraining search to meet
the first three challenges above. To address the unsatis-
fiability detection challenge a carefully defined dummy
value is added to variables’ domains so that they can
easily find a valid start point and also flag a local con-
straint violation that remains even at termination.

MC-MGM-1

The Multiply Constrained - Maximum Gain Message
- 1 (MC-MGM-1) algorithm maintains the invariant
that at no point during execution does the current as-
signment violate any agent’s g-constraint. All moves
are calculated to go from one assignment where this
invariant holds to another assignment where it holds.
However, the tricky part is finding the first assignment
where this holds. In order to address this issue as well
as to provide a mechanism for determining when a prob-
lem is unsatisfiable, MC-MGM-1 performs an initializa-
tion step when it first begins where it adds a dummy
value to each variable’s domain. This dummy value
is used as the starting value for each variable. The
dummy value, d’, is defined to have the following con-
straint function on all links:

o f(d,d)=c
e g(d,d)=0
o fd',di) = f(di,d') =k
e g(d,d;) = g(d;;d’) =0

e ¢ and k are constants such that ¢ < k <0
e d; is a regular domain value

This means that all variables can start at an assign-
ment that spends 0 g, which is a satisfying solution.
However, since the quality in terms of f is by definition
lower than any real assignment, MC-MGM-1 will at-
tempt to find a solution that does not involve dummy
values. The reason that ¢ must be smaller than k is that
since MC-MGM-1 only allows one variable to move at
a time, it must be profitable for nodes to move from a
dummy value to a real value even if their neighbors are
all still set to their dummy values. Otherwise the initial
assignment becomes an mec-1-optimum and termination
occurs immediately. If MC-MGM-1 fails to find a valid
assignment containing no dummy values then the prob-
lem is 1-optimally unsatisfiable, since MC-MGM-1 will
always favor real domain values over the dummy one.
So the dummy values also allow for easy detection of
1-optimal unsatisfiability.

After initialization, each variable repeatedly runs
rounds of the pseudo-code shown in Algorithm 1. Note
that each round involves multiple cycles of communica-
tion and execution. The first thing the variables do is

Algorithm 1 MC-MGM-1 (allNeighbors, current-
Value)

1: SendValueMessages(allNeighbors,
available-g-budget)

2: currentContext = GetValueMessages(allNeighbors)

3: for newValue in EffectiveDomain(currentContext)
do

4:  [gain,newValue] =

Gain(currentContext)

5: if gain > 0 then

6: SendGalnMessage(allNelghbor&galn newValue)

7: neighborGains ReceiveGainMes-
sages(allNeighbors, NelghborValues)

8: if GConstraintViolated(newContext) then

9:  n = SelectNeighborsToBlock()

10:  SendBlockMessages(n)

11: if gain > max(neighborGains) and !Received-
BlockMessage() then

12:  currentValue = newValue

current Value,

BestUnilateral-

send value messages to their neighbors informing them
of their current value as well as how much g-budget is
currently available for use by that particular neighbor.
The available-g sent to node z; equals total g minus
the g currently consumed by all of x;’s other neighbors
(line 2 in Algorithm 1).

After receiving the value messages, each node cal-
culates its effective domain (line 2). This means re-
moving from consideration any values that given the
current context would violate either the variable’s own
g-constraint or any of its neighbors’ available-g’s. The
node then considers all of the values in the effective
domain and picks the one that would allow it to gain
the largest increase in local f, if selected (lines 3-4). It
then sends a gain message to all of its neighbors propos-
ing the move and listing the gain that it would achieve
(lines 5-7).

Upon receipt of gain messages, two things occur.
First the variable looks to see if any of its neighbors
can achieve a better gain and if so rescinds its inten-
tion to move (line 11). Second, each variable checks
to see whether the combined expenditure from all of
its neighbors’ proposed moves violates its g-constraint
(line 8). An example of this situation can be seen in
Figure 2, suppose z; has taken on the value 0 and re-
ceives two move proposals from its neighbors x and
x3. The neighbors are assumed to currently have taken
on the dummy value, thus each sees an available-g of
3. They make the following move proposals, neither of
which individually violate the available-g: x5 proposes
taking on 0 and x3 proposes taking on 1. However,
if both moves are made, x1’s g-constraint will be vio-
lated. If a node detects this situation, then it will send
a blocking message to a subset of the offending neigh-
bors (lines 9-10). For example, 21 may choose to send
a blocking message to x3. (The heuristics for selecting
neighbors will be discussed in the next section.) If a



variable receives a block message, then it will not move
in the current round. The blocks are temporary and
thus an agent is free to consider moving in the next
round. Those agents with the highest local gain in the
current round who don’t receive blocking messages will
move. In the example from Figure 2, x5 will not change
from the dummy value, but x5 will go ahead and take
on the value 0. The available-g will then be updated
and z3 will be informed in the next round that it can
only propose moves that spend no more than 1 unit of
g. These rounds repeat until all agents have ceased to
propose moves.

Heuristics in MC-MGM

The number of blocking messages sent is the minimum
number that will prevent z;’s g-constraint from being
violated, which will be at worst one fewer than the num-
ber of z;’s neighbors proposing moves (since each indi-
vidual move is legal). There are various possible heuris-
tics for selecting which neighbor(s) to block. Heuris-
tics can be deterministic or stochastic. Deterministic
heuristics have the advantage of not ignoring local in-
formation in deciding who to block. However, local in-
formation may not indicate the globally optimal choice
and so when run multiple times, stochastic heuristics
have the advantage of being able to eventually find the
optimal set of neighbors to block. Additionally, there
are two ways to handle a blocking message: 1) z; main-
tains its old value and chooses not to make its proposed
move (monotonic) 2) z; resets itself to a value that con-
sumes less g (non-monotonic). Monotonic heuristics
are guaranteed to terminate, however non-monotonic
heuristics provide more options for breaking out of a
local optimum. The following three different heuris-
tics were selected as representative examples of possible
heuristics.

e Monotonic: z; selects one or more random neighbors
and sends blocking messages. The blocking messages
are interpreted by each neighbor z; to mean that
x; should refrain from changing its value in the cur-
rent round. The advantage of this heuristic is that it
maintains the property of monotonicity which was a
property of the original MGM algorithms. The global
utility never decreases during execution which allows
proof of termination to be guaranteed. However, the
disadvantage is that, experimentally, it is the worst
performing of the heuristics on random examples.

e Random Reset: x; selects one or more random neigh-
bors and sends blocking messages which are inter-
preted by each neighbor z; to mean that it should
reset its value to the dummy value. This heuristic,
when run multiple times, allows MC-MGM to even-
tually send its blocking message(s) to the optimal
neighbor(s). The disadvantage is that monotonicity
can not be guaranteed and that random reset will
not consider changing its own value to prevent the
violation.

e Self: x; sends no blocking messages but instead re-
sets itself to the dummy value. In this case, one
fewer cycle of communication is required. However,
monotonicity is also not guaranteed and this is a de-
terministic heuristic.

MC-MGM-2

Multiply-Constrained MGM-2 operates much like MC-
MGM-1 with the exception that in addition to making
individual moves, it can propose joint moves between
pairs of agents. The pseudo-code has been omitted due
to a lack of space, but some of the basic structure is
described below.

At the beginning of the round agents are stochasti-
cally designated to be either offerers or receivers, this
designation helps reduce redundant computation where
multiple agents propose the same move. If a node, z;,
is an offerer, it will randomly select a neighbor, z; and
search for the best joint move that does not violate
x;’s g-constraint or the available-g of any of x;’s neigh-
bors including z;. Variable x; will then send a pro-
posal message to z;. As with regular MGM-2, z; will
not accept a proposal if it is itself an offerer. However,
those receivers that receive a proposal for a joint move
will check to see if it violates their g-constraint of the
available-g of any of their neighbors. If the proposed
move is legal and has the highest local gain, then the
node will send an acceptance message.

Proofs

This section will present proofs that when using the
monotonic heuristic MC-MGM-1 is monotonic and ter-
minates. Additionally, when MC-MGM-1 terminates it
has found an mc-1-optimal solution. Similarly this sec-
tion will show proofs that when using the monotonic
heuristic MC-MGM-2 is monotonic and terminates at
an mc-2-optimal solution. While many heuristics are
available for use within MC-MGM, the proofs in this
section will assume use of the monotonic heuristic from
Section . While the other three heuristics discussed
were experimentally found to always terminate, they
cannot be proven to always terminate.

The following definitions are used in the proofs that
follow:

e Variables are denoted as x; € X, where X denotes the
set of all variables, and values of variables as d; € D;
where D; is the finite domain of the variable x;.

o Let d™ refer to the assignment of values to variables
in the DCOP due to MC-MGM at the beginning of
the n-th cycle of the algorithm. Let the global utility
of this assignment be U (d™).

e Let L(d;;d_;) refer to the local utility of agent i,
given the current context denoted as d_;. Then,

L(d“ d_i) = Zacj €Neighbors(x;) fU (d” dJ)

e Gain; is the change in local utility of x; due to a
unilateral change in its value from d; to d;, given fixed
context d_;, i.e. the difference between L(d;;d_;),



and L(d};d_;). Gain;; is the change in local utility
of z; and x; due to the 2-coordinated change in values
from d; to d; and d; to dj. This equals L(dj;d—;) +
L(d};d—j) + f(di, dj) — f(d;, d})

() J
e In computing Gain;, x; only considers its Effective-
Domain, i.e. values that do not violate its own g-
constraint, or the available-g sent by it’s g-constraint
neighbors. Thus, references to Gain below, refer to
gain over x;’s EffectiveDomain.

e Once an agent in MC-MGM takes on a value from
its real domain, it will never go back to its dummy
starting value, because the gain will be negative.

e MC-MGM maintains as an invariant that no agents’
g-constraint is violated at the end of any round of
execution.

Proposition 2 When running MC-MGM-1, the global
utility U(d"™) never decreases.

Proof:

There are two separate cases to handle: non-blocking
and blocking. In the non-blocking case, no block mes-
sages are issued. In the blocking case at least one block-
ing message is issued.

In the non-blocking case, if z; is intending to modify
its value in round r, then:

e Gain; > Gainj, Vx; € Neighbors(z;)
o Gain; >0

Since z;’s neighbors would have received z;’s message
proposing Gain;, they will not modify their values in
round r. Thus, no two neighboring variables will change
values simultaneously. So, when x; changes its value,
Gain; will be realized. Since z;’s gain is amassed from
the sum of utilities on each link connected to x;, x;’s
gain implies that the global utility U(d(")) increases. If
multiple variables change values simultaneously, they
are guaranteed to be non-neighbors, and thus, each of
their gains will add to U(d™)).

In the blocking case, a blocking message within a
round r will cause a variable x; which had intended
to change its value to not make the change. Such a
block would cause x; to realize a gain of 0, which does
not cause a decrease in U(d"). The message does not
affect any other variables.

|

Proposition 3 When running MC-MGM-2, the global
utility U(d™) never decreases.

Proof:

The proof is similar to Proposition 2, and has been
omitted due to length.

|

Given that MC-MGM sends out blocking messages,
there is a possibility of entering deadlock. A cycle of
blocking messages could block all variables from chang-
ing values, even though they had not yet reached an
mec-k-optimum. An example of deadlock in MC-MGM-
1 is shown in Figure 5. There are four agents, with

g<=2 g<=10
{R} {P.Y}
dl d4(f(d1,d4) g(dl,d4)|| || d2 d3[f(d2,d3) g(d2,d3)
R P 1 0 " P R 1 0
R Y 10 2 Y R 10 2
| IP,Y} {R} |
g<=10 g<=2

Figure 5: A Deadlock example for MC-MGM-1

domains as shown. The f reward and g cost are as
shown in the table. The DCOP is initialized with all
agents taking on a dummy value of 0. z; and 3 switch
from 0 to value R. At this point, x5 and x4 propose
switching to Y, which gives them each a gain of 20, and
Y is under the available-g of 2 (for both z; and x3).
Since x; and x3’s budgets would be violated if both x4
and x4 switched to the value Y, they must send block-
ing messages. If z; randomly selected x5 to block and
x3 randomly selected x4 neither x5 or x4 could change
values, and this would create a deadlock situation.

Fortunately, since the agents being blocked are ran-
domly selected (in the monotonic heuristic), remaining
in deadlock indefinitely is impossible. Suppose agents
can enter deadlock with probability p, where p € [0,1).
Since agents randomly select who to block each round,
there is a probability of 1 — p of escaping deadlock in
every round. After N rounds of execution, the proba-
bility of remaining in deadlock is p”. Since execution
continues until there are no longer any proposal mes-
sages being sent, N approaches oo and p approaches 0.
Furthermore, once one variable is allowed to change its
value, the budgets available at the remaining variables
change and the old deadlock is resolved. For example
in Figure 5, if x5 is allowed to change its value to Y,
then the available-g at 1 and x3 changes to 0, and x4
will propose taking the value P in the next round.

Proposition 4 Given that deadlocks are resolved using
randomization, MC-MGM-1 will terminate at an mc-1-
optimal solution.

Proof:

In Proposition 2, it was shown that MC-MGM-1
will lead to a monotonically increasing global utility
U(d™). Since U(d™) cannot be higher than the finite
globally optimal solution, MC-MGM-1 cannot keep in-
creasing U (d(™) forever. Thus, assuming it eventually
resolves any deadlocks it enters, MC-MGM-1 will ter-
minate.

Termination in MC-MGM-1 occurs when no variable
x; is able to propose a move from d; to d} given d_;
where Gain; > 0 and no g-constraints are violated after
the move. This situation is the definition of an mc-1-
optimal, so when MC-MGM-1 terminates, the agents
have reached an mec-1-optimal.

|



Proposition 5 Given that deadlocks are resolved using
randomization, MC-MGM-2 will terminate at an mc-2-
optimal solution.

Proof: The proof is similar to Proposition 4, and
has been omitted due to length.
[ |

Experimental Results

Experiments were conducted on randomly generated
graph coloring graphs of 1000 nodes. It is worth not-
ing that similar work in complete algorithms for a
DCOP (Modi et al. 2005a; Mailler and Lesser 2004;
Petcu and Faltings 2005b) are focused on problems of
20 to 100 nodes. We generated separate graphs for f-
constraint link densities of 3 and 6. For each of these we
formed graphs with randomly generated g-constraints
along the existing f-constraints. We generated graphs
with a total of 160 g-constraints.

Results for four experiments are given below as an
average of 30 runs of the algorithms on graphs of the
described type. On all graphs g-budgets were uniformly
assigned to each agent from 0 to 50 along the x axis.
There are three key aspects of solution quality which
are shown along the y axis in Figures 6 - 15:

e Cycles required to reach termination of the algorithm
e Global utility of the final solution reached

e Number of agents which never left the dummy value
d’ due to blocking messages

Our first experiment focused on running MC-MGM-1
and MC-MGM-2 on 1000 node graphs, with graph link
density of 3 and 6, where subgraphs of g-constraints
had only two agents (see our section on quality results
for the definition and importance of these subgraphs).
Figure 7 shows run-time in message cycles on a log-scale
along the y-axis. For example, we see that for graphs
of density 6, when g-budget is 10, the MC-MGM-2 al-
gorithm ”peaks” at about 500 cycles. Key observations
from these results are as follows. By comparing MC-
MGM-1 and MC-MGM-2 results for graphs of density 3,
we see that MC-MGM-1 runs between 2.3 and 9.5 times
faster than MC-MGM-2. The difference in run-time for
density 6 was 11.6 to 17.1 fold. Global utility varied by
less than 2% between the algorithms for both densities,
as shown in Figure 6. The number of agents reamining
at d’ was identical across the g-bugdet range, resulting
in only 2 visible lines in Figure 8. At g-budgets of 0, all
agents could not satify their budgets, resulting in 320
agents remaining at d’ regardless of density.

The second experiment focused on subgraphs of no
greater than 3 agents. The differences between MC-
MGM-1 and 2 are more pronounced than with sub-
graphs of only 2 agents. We again found MC-MGM-1
is significantly faster than MC-MGM-2, as seen in Fig-
ure 10. For example, the difference in run-time peaks at
a g-budget of 10, where MC-MGM-2 takes 132.7 times
as long to terminate as MC-MGM-1. Figure 9 and Fig-
ure 11 show the global utility and number of agents

= density 6, MC-MGM-2
=—density 6, MC-MGM-1
3000

density 3, MC-MGM-2
density 3, MC-MGM-1

2500

2000

1500

Global Utility

1000

500

0+ /
-500

0 10 20 30 40 50
G-Budget / Agent

Figure 6: Global utility of MC-MGM-1 and 2 for sub-
graphs of g-resource constraints of 2 agents
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Figure 7: Cycles to termination for MC-MGM-1 and 2
for subgraphs of g-resource constraints of 2 agents
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Figure 8: Number of Agents which never escaped d’
using MC-MGM-1 and 2 for subgraphs of g-resource
constraints of 2 agents
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Figure 9: Global utility of MC-MGM-1 and 2 for sub-
graphs of g-resource constraints of 3 agents or less

Figure 10: Cycles to termination for MC-MGM-1 and
2 for subgraphs of g-resource constraints of 3 agents or
less

reamining at d’, respectively. MC-MGM-2 resulted in
solutions on average 49% and 6% higher in global utility
for densities 3 and 6, respectively. At it’s peak, MC-
MGM-2’s solution had 3 times the global utility, when
the link density was 6.

We continued to increase the subgraph size in our
third experiment to cover both subgraphs of 4 and 5
agents or less. Results in Figure 12 show a continued
trend of MC-MGM-2 solutions dominating MC-MGM-
2 in terms of utility. Results in this set resembled those
for subgraphs of 3 or less agents.

For our fourth experiment, we examined two ad-
ditional blocking techniques in comparison with the
monotonic technique used in all previous experiments.
Changes in the blocking heuristic showed random reset
neighbor performed poorly, as seen in Figure 14. For
both densities, it reached the arbitrary cut-off point
in our experiment of 6000 cycles. The monotonic and
self reset heuristics were within similar cycle ranges to
each other, peaking for density 6 at 3184 and 3021,
respectively. Monotonic worked faster at the higher
g-budgets, and random reset was faster when the g-
budget was lower. In addition, the quality of the so-
lution as shown in Figure 13 corresponds favorably:
higher global utility for monotonic at higher, looser g-
budgets and higher utility for self reset at lower, tighter
g-budgets. The measure of solution quality with regard
to unsatisfied g-budgets shown in Figure 13 suggests
self reset dominates both other algorithms, resulting in
consistantly less agents who are never able to leave the
invalid start state, d’. While this is promising, this is
a deterministic heuristic, and not guaranteed to termi-
nate.
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Figure 11: Number of Agents which never escaped d’
using MC-MGM-1 and 2 for subgraphs of g-resource
constraints of 3 agents or less
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Figure 12: Global utility of MC-MGM-1 and 2 for sub-
graphs of g-resource constraint of no more than 4 or 5
agents, density of 6
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Figure 13: Global utility of the 3 heuristics, using MC-
MGM-2 on subgraphs of 3 agents or less
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Figure 14: Cycles to termination of the 3 heuristics,
using MC-MGM-2 on subgraphs of 3 agents or less
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Figure 15: Number of Agents which never escaped d’
for the 3 heuristics on subgraphs of 3 agents or less

Conclusion

Distributed constraint optimization (DCOP) has
proven to be a promising approach to address coor-
dination, scheduling and task allocation in large-scale
multiagent networks, in domains involving sensor net-
works, teams of unmanned air vehicles, or teams of
software personal assistants and others. K-optimal al-
gorithms provide an important class of locally optimal
algorithms for such DCOP domains, given analytical
results proving quality guarantees. Previous work on k-
optimality, including its theoretical guarantees, focused
exclusively on soft constraints. This paper extends the
results to DCOPs with hard constraints. It focuses in
particular on DCOPs where such hard constraints are
resource constraints which individual agents must not
violate. Such hard constraints are important in many
domains, and thus extending k-optimal algorithms to
address such domains is a critical open research issue.
We provide two key results in the context of such
DCOPs. First we provide reward-independent lower
bounds on the quality of k-optima in the presence of
hard (resource) constraints. Second, we present algo-
rithms for k-optimality given hard resource constraints,
and present detailed experimental results over DCOP
graphs of 1000 agents with varying constraint density.
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