
Letting loose a SPIDER on a network of POMDPs:
Generating quality guaranteed policies

Pradeep Varakantham, Janusz Marecki, Yuichi Yabu∗, Milind Tambe, Makoto Yokoo∗

University of Southern California, Los Angeles, CA 90089,{varakant, marecki, tambe}@usc.edu
∗ Dept. of Intelligent Systems, Kyushu University, Fukuoka, 812-8581 Japan, yokoo@is.kyushu-u.ac.jp

ABSTRACT
Distributed Partially Observable Markov Decision Problems (Dis-
tributed POMDPs) are a popular approach for modeling multi-agent
systems acting in uncertain domains. Given the significant com-
plexity of solving distributed POMDPs, particularly as we scale
up the numbers of agents, one popular approach has focused on
approximate solutions. Though this approach is efficient, the algo-
rithms within this approach do not provide any guarantees on so-
lution quality. A second less popular approach focuses on global
optimality, but typical results are available only for two agents,
and also at considerable computational cost. This paper overcomes
the limitations of both these approaches by providing SPIDER, a
novel combination of three key features for policy generation in dis-
tributed POMDPs: (i) it exploits agent interaction structure given
a network of agents (i.e. allowing easier scale-up to larger number
of agents); (ii) it uses a combination of heuristics to speedup policy
search; and (iii) it allows quality guaranteed approximations, allow-
ing a systematic tradeoff of solution quality for time. Experimen-
tal results show orders of magnitude improvement in performance
when compared with previous global optimal algorithms.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence -
Multi-agent Systems

General Terms
Algorithms, Theory

Keywords
Multi-agent systems, Partially Observable Markov Decision Pro-
cess (POMDP), Distributed POMDP, Globally optimal solution

1. INTRODUCTION
Distributed Partially Observable Markov Decision Problems (Dis-

tributed POMDPs) are emerging as a popular approach for mod-
eling sequential decision making in teams operating under uncer-
tainty [9, 4, 1, 2, 13]. The uncertainty arises on account of non-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

determinism in the outcomes of actions and because the world state
may only be partially (or incorrectly) observable. Unfortunately, as
shown by Bernsteinet al. [3], the problem of finding the optimal
joint policy for general distributed POMDPs is NEXP-Complete.

Researchers have attempted two different types of approaches
towards solving these models. The first category consists of highly
efficient approximate techniques, that may not reach globally op-
timal solutions [2, 9, 11]. The key problem with these techniques
has been their inability to provide any guarantees on the quality
of the solution. In contrast, the second less popular category of ap-
proaches has focused on a global optimal result [13, 5, 10]. Though
these approaches obtain optimal solutions, they typically consider
only two agents. Furthermore, they fail to exploit structure in the
interactions of the agents and hence are severely hampered with
respect to scalability when considering more than two agents.

To address these problems with the existing approaches, we pro-
pose approximate techniques that provide guarantees on the qual-
ity of the solution while focussing on a network of more than two
agents. We first propose the basic SPIDER (Search for Policies
In Distributed EnviRonments) algorithm. There are two key novel
features in SPIDER: (i) it is a branch and bound heuristic search
technique that uses a MDP-based heuristic function to search for an
optimal joint policy; (ii) it exploits network structure of agents by
organizing agents into a Depth First Search (DFS) pseudo tree and
takes advantage of the independence in the different branches of the
DFS tree. We then provide three enhancements to improve the effi-
ciency of the basic SPIDER algorithm while providing guarantees
on the quality of the solution. The first enhancement uses abstrac-
tions for speedup, but does not sacrifice solution quality. In partic-
ular, it initially performs branch and bound search on abstract poli-
cies and then extends to complete policies. The second enhance-
ment obtains speedups by sacrificing solution quality, but within
an input parameter that provides the tolerable expected value dif-
ference from the optimal solution. The third enhancement is again
based on bounding the search for efficiency, however with a toler-
ance parameter that is provided as a percentage of optimal.

We experimented with the sensor network domain presented in
Nair et al. [10], a domain representative of an important class of
problems with networks of agents working in uncertain environ-
ments. In our experiments, we illustrate that SPIDER dominates
an existing global optimal approach called GOA [10], the only
known global optimal algorithm with demonstrated experimental
results for more than two agents. Furthermore, we demonstrate
that abstraction improves the performance of SPIDER significantly
(while providing optimal solutions). We finally demonstrate a key
feature of SPIDER: by utilizing the approximation enhancements
it enablesprincipledtradeoffs in run-time versus solution quality.

2. DOMAIN: DISTRIBUTED SENSOR NETS
Distributed sensor networks are a large, important class of do-

mains that motivate our work. This paper focuses on a set of target
tracking problems that arise in certain types of sensor networks [6]
first introduced in [10]. Figure 1 shows a specific problem instance
within this type consisting of three sensors. Here, each sensor node
can scan in one of four directions: North, South, East or West (see
Figure 1). To track a target and obtain associated reward, two sen-
sors with overlapping scanning areas must coordinate by scanning
the same area simultaneously. In Figure 1, to track a target in Loc1-
1, sensor1 needs to scan ‘East’ and sensor2 needs to scan ‘West’
simultaneously. Thus, sensors have to act in a coordinated fashion.

We assume that there are two independent targets and that each
target’s movement is uncertain and unaffected by the sensor agents.
Based on the area it is scanning, each sensor receives observations
that can have false positives and false negatives. The sensors’ ob-
servations and transitions are independent of each other’s actions
e.g.the observations that sensor1 receives are independent of sen-
sor2’s actions. Each agent incurs a cost for scanning whether the
target is present or not, but no cost if it turns off. Given the sensors’
observational uncertainty, the targets’ uncertain transitions and the
distributed nature of the sensor nodes, these sensor nets provide a
useful domains for applying distributed POMDP models.

Figure 1: A 3-chain sensor configuration

3. BACKGROUND

3.1 Model: Network Distributed POMDP
The ND-POMDP model was introduced in [10], motivated by

domains such as the sensor networks introduced in Section 2. It is
defined as the tuple〈S, A, P, Ω, O, R, b〉, whereS = ×1≤i≤nSi×
Su is the set of world states.Si refers to the set of local states of
agenti andSu is the set of unaffectable states. Unaffectable state
refers to that part of the world state that cannot be affected by the
agents’ actions, e.g. environmental factors like target locations that
no agent can control.A = ×1≤i≤nAi is the set of joint actions,
whereAi is the set of action for agenti.

ND-POMDP assumestransition independence, where the tran-
sition function is defined asP (s, a, s′) = Pu(su, s′u) ·

∏
1≤i≤n

Pi(si, su, ai, s
′
i), wherea = 〈a1, . . . , an〉 is the joint action per-

formed in states = 〈s1, . . . , sn, su〉 ands′ = 〈s′1, . . . , s′n, s′u〉 is
the resulting state.

Ω = ×1≤i≤nΩi is the set of joint observations whereΩi is
the set of observations for agentsi. Observational independence
is assumed in ND-POMDPs i.e., the joint observation function is
defined asO(s, a, ω) =

∏
1≤i≤n Oi(si, su, ai, ωi), wheres =

〈s1, . . . , sn, su〉 is the world state that results from the agents per-
forminga = 〈a1, . . . , an〉 in the previous state, and
ω =〈ω1, . . . , ωn〉∈ Ω is the observation received in states. This
implies that each agent’s observation depends only on the unaf-
fectable state, its local action and on its resulting local state.

The reward function,R, is defined as
R(s, a) =

∑
l Rl(sl1, . . . , slr, su, 〈al1, . . . , alr〉), where eachl

could refer to any sub-group of agents andr = |l|. Based on
the reward function, aninteraction hypergraphis constructed. A

hyper-link,l, exists between a subset of agents for allRl that com-
priseR. The interaction hypergraphis defined asG = (Ag, E),
where the agents,Ag, are the vertices andE = {l|l ⊆ Ag ∧
Rl is a component ofR} are the edges.

The initial belief state (distribution over the initial state),b, is
defined asb(s) = bu(su) ·

∏
1≤i≤n bi(si), wherebu andbi refer

to the distribution over initial unaffectable state and agenti’s initial
belief state, respectively. The goal in ND-POMDP is to compute
the joint policyπ = 〈π1, . . . , πn〉 that maximizes team’s expected
reward over a finite horizonT starting from the belief stateb.

An ND-POMDP is similar to ann-ary Distributed Constraint
Optimization Problem (DCOP)[8, 12] where the variable at each
node represents the policy selected by an individual agent,πi with
the domain of the variable being the set of all local policies,Πi.
The reward componentRl where|l| = 1 can be thought of as a
local constraint while the reward componentRl wherel > 1 cor-
responds to a non-local constraint in the constraint graph.

3.2 Algorithm: Global Optimal Algorithm (GOA)
In previous work, GOA has been defined as a global optimal

algorithm for ND-POMDPs [10]. We will use GOA in our experi-
mental comparisons, since GOA is a state-of-the-art global optimal
algorithm, and in fact the only one with experimental results avail-
able for networks of more than two agents. GOA borrows from a
global optimal DCOP algorithm called DPOP[12]. GOA’s message
passing follows that of DPOP. The first phase is the UTIL propa-
gation, where the utility messages, in this case values of policies,
are passed up from the leaves to the root. Value for a policy at an
agent is defined as the sum of best response values from its chil-
dren and the joint policy reward associated with the parent policy.
Thus, given a policy for a parent node, GOA requires an agent to
iterate through all its policies, finding the best response policy and
returning the value to the parent — while at the parent node, to find
the best policy, an agent requires its children to return their best
responses to each of its policies. This UTIL propagation process
is repeated at each level in the tree, until the root exhausts all its
policies. In the second phase of VALUE propagation, where the
optimal policies are passed down from the root till the leaves.

GOA takes advantage of the local interactions in the interaction
graph, by pruning out unnecessary joint policy evaluations (asso-
ciated with nodes not connected directly in the tree). Since the
interaction graph captures all the reward interactions among agents
and as this algorithm iterates through all the relevant joint policy
evaluations, this algorithm yields a globally optimal solution.

4. SPIDER
As mentioned in Section 3.1, an ND-POMDP can be treated as a

DCOP, where the goal is to compute a joint policy that maximizes
the overall joint reward. The brute-force technique for computing
an optimal policy would be to examine the expected values for all
possible joint policies. The key idea in SPIDER is to avoid com-
putation of expected values for the entire space of joint policies, by
utilizing upper bounds on the expected values of policies and the
interaction structure of the agents.

Akin to some of the algorithms for DCOP [8, 12], SPIDER has a
pre-processing step that constructs a DFS tree corresponding to the
given interaction structure. Note that these DFS trees are pseudo
trees [12] that allow links between ancestors and children. We em-
ploy the Maximum Constrained Node (MCN) heuristic used in the
DCOP algorithm, ADOPT [8], however other heuristics (such as
MLSP heuristic from [7]) can also be employed. MCN heuristic
tries to place agents with more number of constraints at the top of
the tree. This tree governs how the search for the optimal joint pol-

icy proceeds in SPIDER. The algorithms presented in this paper are
easily extendable to hyper-trees, however for expository purposes,
we assume binary trees.

SPIDER is an algorithm for centralized planning and distributed
execution in distributed POMDPs. In this paper, we employ the
following notation to denote policies and expected values:
Ancestors(i) ⇒ agents fromi to theroot (not includingi).
Tree(i) ⇒ agents in the sub-tree (not includingi) for which i is
the root.
πroot+ ⇒ joint policy of all agents.
πi+ ⇒ joint policy of all agents inTree(i) ∪ i.
πi− ⇒ joint policy of agents that are inAncestors(i).
πi ⇒ policy of theith agent.
v̂[πi, π

i−] ⇒ upper bound on the expected value forπi+ givenπi

and policies of ancestor agents i.e.πi−.
v̂j [πi, π

i−] ⇒ upper bound on the expected value forπi+ from the
jth child.
v[πi, π

i−] ⇒ expected value forπi given policies of ancestor agents,
πi−.
v[πi+, πi−] ⇒ expected value forπi+ given policies of ancestor
agents,πi−.
vj [π

i+, πi−] ⇒ expected value forπi+ from thejth child.

Figure 2: Execution of SPIDER, an example

4.1 Outline of SPIDER
SPIDER is based on the idea of branch and bound search, where

the nodes in the search tree represent partial/complete joint poli-
cies. Figure 2 shows an example search tree for the SPIDER algo-
rithm, using an example of the three agent chain. Before SPIDER
begins its search we create a DFS tree (i.e. pseudo tree) from the
three agent chain, with the middle agent as the root of this tree.
SPIDER exploits the structure of this DFS tree while engaging in
its search. Note that in our example figure, each agent is assigned
a policy with T=2. Thus, each rounded rectange (search tree node)
indicates a partial/complete joint policy, a rectangle indicates an
agent and the ovals internal to an agent show its policy. Heuristic
or actual expected value for a joint policy is indicated in the top
right corner of the rounded rectangle. If the number is italicized

and underlined, it implies that the actual expected value of the joint
policy is provided.

SPIDER begins with no policy assigned to any of the agents
(shown in the level 1 of the search tree). Level 2 of the search tree
indicates that the joint policies are sorted based on upper bounds
computed for root agent’s policies. Level 3 shows one SPIDER
search node with a complete joint policy (a policy assigned to each
of the agents). The expected value for this joint policy is used to
prune out the nodes in level 2 (the ones with upper bounds< 234)

When creating policies for each non-leaf agenti, SPIDER po-
tentially performs two steps:

1. Obtaining upper bounds and sorting: In this step, agenti
computes upper bounds on the expected values,v̂[πi, π

i−] of the
joint policiesπi+ corresponding to each of its policyπi and fixed
ancestor policies. An MDP based heuristic is used to compute these
upper bounds on the expected values. Detailed description about
this MDP heuristic is provided in Section 4.2. All policies of agent
i, Πi are then sorted based on these upper bounds (also referred to
as heuristic values henceforth) in descending order. Exploration of
these policies (in step 2 below) are performed in this descending
order. As indicated in the level 2 of the search tree (of Figure 2), all
the joint policies are sorted based on the heuristic values, indicated
in the top right corner of each joint policy. The intuition behind
sorting and then exploring policies in descending order of upper
bounds, is that the policies with higher upper bounds could yield
joint policies with higher expected values.

2. Exploration and Pruning : Exploration implies computing
the best response joint policyπi+,∗ corresponding to fixed ances-
tor policies of agenti, πi−. This is performed by iterating through
all policies of agenti i.e. Πi and summing two quantities for each
policy: (i) the best response for all ofi’s children (obtained by per-
forming steps 1 and 2 at each of the child nodes); (ii) the expected
value obtained byi for fixed policies of ancestors. Thus, explo-
ration of a policyπi yields actual expected value of a joint policy,
πi+ represented asv[πi+, πi−]. The policy with the highest ex-
pected value is the best response policy.

Pruning refers to avoiding exploring all policies (or computing
expected values) at agenti by using the current best expected value,
vmax[πi+, πi−]. Henceforth, thisvmax[πi+, πi−] will be referred
to as threshold. A policy, πi need not be explored if the upper
bound for that policy,̂v[πi, π

i−] is less than thethreshold. This is
because the expected value for the best joint policy attainable for
that policy will be less than the threshold.

On the other hand, when considering a leaf agent, SPIDER com-
putes the best response policy (and consequently its expected value)
corresponding to fixed policies of its ancestors,πi−. This is accom-
plished by computing expected values for each of the policies (cor-
responding to fixed policies of ancestors) and selecting the highest
expected value policy. In Figure 2, SPIDER assigns best response
policies to leaf agents at level 3. The policy for the left leaf agent is
to perform action “East” at each time step in the policy, while the
policy for the right leaf agent is to perform “Off” at each time step.
These best response policies from the leaf agents yield an actual
expected value of 234 for the complete joint policy.

Algorithm 1 provides the pseudo code for SPIDER. This algo-
rithm outputs the best joint policy,πi+,∗ (with an expected value
greater thanthreshold) for the agents inTree(i). Lines 3-8 com-
pute the best response policy of a leaf agenti, while lines 9-23
computes the best response joint policy for agents inTree(i). This
best response computation for a non-leaf agenti includes: (a) Sort-
ing of policies (in descending order) based on heuristic values on
line 11; (b) Computing best response policies at each of the chil-
dren for fixed policies of agenti in lines 16-20; and (c) Maintaining

Algorithm 1 SPIDER(i, πi−, threshold)

1: πi+,∗ ← null
2: Πi ← GET-ALL-POLICIES(horizon, Ai, Ωi)
3: if IS-LEAF(i) then
4: for all πi ∈ Πi do
5: v[πi, π

i−]← JOINT-REWARD (πi, π
i−)

6: if v[πi, π
i−] > threshold then

7: πi+,∗ ← πi

8: threshold← v[πi, π
i−]

9: else
10: children← CHILDREN (i)

11: Π̂i ← UPPER-BOUND-SORT(i, Πi, π
i−)

12: for all πi ∈ Π̂i do
13: π̃i+ ← πi

14: if v̂[πi, π
i−] < threshold then

15: Go to line 12
16: for all j ∈ children do
17: jThres← threshold− v[πi, π

i−]−
Σk∈children,k 6=j v̂k[πi, π

i−]

18: πj+,∗ ← SPIDER(j, πi ‖ πi−, jThres)
19: π̃i+ ← π̃i+ ‖ πj+,∗

20: v̂j [πi, π
i−]← v[πj+,∗, πi ‖ πi−]

21: if v[π̃i+, πi−] > threshold then
22: threshold← v[π̃i+, πi−]
23: πi+,∗ ← π̃i+

24: return πi+,∗

Algorithm 2 UPPER-BOUND-SORT(i, Πi, π
i−)

1: children← CHILDREN (i)

2: Π̂i ← null /* Stores the sorted list */
3: for all πi ∈ Πi do
4: v̂[πi, π

i−]← JOINT-REWARD (πi, π
i−)

5: for all j ∈ children do
6: v̂j [πi, π

i−]← UPPER-BOUND(i, j, πi ‖ πi−)

7: v̂[πi, π
i−]

+← v̂j [πi, π
i−]

8: Π̂i ← INSERT-INTO-SORTED(πi, Π̂i)

9: return Π̂i

best expected value, joint policy in lines 21-23.
Algorithm 2 provides the pseudo code for sorting policies based

on the upper bounds on the expected values of joint policies. Ex-
pected value for an agenti consists of two parts: value obtained
from ancestors and value obtained from its children. Line 4 com-
putes the expected value obtained from ancestors of the agent (us-
ing JOINT-REWARD function), while lines 5-7 compute the heuris-
tic value from the children. The sum of these two parts yields an
upper bound on the expected value for agenti, and line 8 of the
algorithm sorts the policies based on these upper bounds.

4.2 MDP based heuristic function
The heuristic function quickly provides an upper bound on the

expected value obtainable from the agents inTree(i). The sub-
tree of agents is a distributed POMDP in itself and the idea here
is to construct a centralized MDP corresponding to the (sub-tree)
distributed POMDP and obtain the expected value of the optimal
policy for this centralized MDP. To reiterate this in terms of the
agents in DFS tree interaction structure, we assume full observabil-
ity for the agents inTree(i) and for fixed policies of the agents in
{Ancestors(i) ∪ i}, we compute the joint valuêv[πi+, πi−] .

We use the following notation for presenting the equations for
computing upper bounds/heuristic values (for agentsi andk):
LetEi− denote the set of links between agents in{Ancestors(i)∪
i} and Tree(i), Ei+ denote the set of links between agents in
Tree(i). Also, if l ∈ Ei−, thenl1 is the agent in{Ancestors(i)∪
i} andl2 is the agent inTree(i), thatl connects together. We first

compact the standard notation:

ot
k
4
=Ok(st+1

k , st+1
u , πk(~ωt

k), ωt+1
k) (1)

pt
k
4
=Pk(st

k, st
u, πk(~ωt

k), st+1
k) · ot

k

pt
u
4
=P (st

u, st+1
u)

st
l =

〈
st
l1

, st
l2

, st
u

〉
; ωt

l =
〈
ωt

l1
, ωt

l2

〉
rt
l
4
=Rl(s

t
l , πl1 (~ωt

l1
), πl2 (~ωt

l2
))

vt
l
4
=V t

πl
(st

l , s
t
u, ~ωt

l1
, ~ωt

l2
)

Depending on the location of agentk in the agent tree we have the following
cases:

IF k ∈ {Ancestors(i) ∪ i}, p̂t
k
4
= pt

k, (2)

IF k ∈ Tree(i), p̂t
k
4
= Pk(st

k, st
u, πk(~ωt

k), st+1
k)

IF l ∈ Ei−, r̂t
l
4
= max
{al2}

Rl(s
t
l , πl1 (~ωt

l1
), al2)

IF l ∈ Ei+, r̂t
l
4
= max
{al1 ,al2}

Rl(s
t
l , al1 , al2)

The value function for an agenti executing the joint policyπi+ at
timeη − 1 is provided by the equation:

V η−1

πi+ (sη−1, ~ωη−1) =
∑

l∈Ei− vη−1
l +

∑
l∈Ei+ vη−1

l (3)

where vη−1
l = rη−1

l +
∑

ω
η
l

,sη pη−1
l1

pη−1
l2

pη−1
u vη

l

Algorithm 3 UPPER-BOUND(i, j, πj−)

1: val← 0
2: for all l ∈ Ej− ∪ Ej+ do
3: if l ∈ Ej− then πl1 ← φ

4: for all s0
l do

5: val
+← startBel[s0

l]· UPPER-BOUND-TIME
(i, s0

l , j, πl1 , 〈〉)
6: return val

Algorithm 4 UPPER-BOUND-TIME(i, st
l , j, πl1 , ~ωt

l1)

1: maxV al← −∞
2: for all al1 , al2 do
3: if l ∈ Ei− andl ∈ Ej− then al1 ← πl1 (~ωt

l1
)

4: val← GET-REWARD(st
l , al1 , al2)

5: if t < πi.horizon− 1 then
6: for all st+1

l , ωt+1
l1

do
7: futV al←pt

up̂t
l1

p̂t
l2

8: futV al
∗← UPPER-BOUND-TIME(st+1

l , j, πl1 , ~ωt
l1
‖

ωt+1
l1

)

9: val
+← futV al

10: if val > maxV al then maxV al← val
11: return maxV al

Upper bound on the expected value for a link is computed by
modifying the equation 3 to reflect the full observability assump-
tion. This involves removing the observational probability term
for agents inTree(i) and maximizing the future valuêvη

l over the
actions of those agents (inTree(i)). Thus, the equation for the

computation of the upper bound on a linkl, is as follows:

IF l ∈ Ei−, v̂η−1
l =r̂η−1

l + max
al2

∑
ω

η
l1

,s
η
l

p̂η−1
l1

p̂η−1
l2

pη−1
u v̂η

l

IF l ∈ Ei+, v̂η−1
l =r̂η−1

l + max
al1 ,al2

∑
s

η
l

p̂η−1
l1

p̂η−1
l2

pη−1
u v̂η

l

Algorithm 3 and Algorithm 4 provide the algorithm for computing
upper bound for childj of agenti, using the equations descirbed
above. While Algorithm 4 computes the upper bound on a link
given the starting state, Algorithm 3 sums the upper bound values
computed over each of the links inEi− ∪ Ei+.

4.3 Abstraction

Algorithm 5 SPIDER-ABS(i, πi−, threshold)

1: πi+,∗ ← null
2: Πi ← GET-POLICIES(<>, 1)
3: if IS-LEAF(i) then
4: for all πi ∈ Πi do
5: absHeuristic← GET-ABS-HEURISTIC(πi, π

i−)

6: absHeuristic
∗← (timeHorizon− πi.horizon)

7: if πi.horizon = timeHorizon andπi.absNodes = 0 then
8: v[πi, π

i−]← JOINT-REWARD (πi, π
i−)

9: if v[πi, π
i−] > threshold then

10: πi+,∗ ← πi; threshold← v[πi, π
i−]

11: else ifv[πi, π
i−] + absHeuristic > threshold then

12: Π̂i ← EXTEND-POLICY (πi, πi.absNodes + 1)

13: Πi
+← INSERT-SORTED-POLICIES (̂Πi)

14: REMOVE(πi)
15: else
16: children← CHILDREN (i)
17: Πi ← UPPER-BOUND-SORT(i, Πi, π

i−)
18: for all πi ∈ Πi do
19: π̃i+ ← πi

20: absHeuristic← GET-ABS-HEURISTIC(πi, π
i−)

21: absHeuristic
∗← (timeHorizon− πi.horizon)

22: if πi.horizon = timeHorizon andπi.absNodes = 0 then
23: if v̂[πi, π

i−] < threshold andπi.absNodes = 0 then
24: Go to line 19
25: for all j ∈ children do
26: jThres← threshold− v[πi, π

i−]−
Σk∈children,k 6=j v̂k[πi, π

i−]

27: πj+,∗ ← SPIDER(j, πi ‖ πi−, jThres)
28: π̃i+ ← π̃i+ ‖ πj+,∗; v̂j [πi, π

i−]← v[πj+,∗, πi ‖ πi−]

29: if v[π̃i+, πi−] > threshold then
30: threshold← v[π̃i+, πi−]; πi+,∗ ← π̃i+

31: else if v̂[πi+, πi−] + absHeuristic > threshold then
32: Π̂i ← EXTEND-POLICY (πi, πi.absNodes + 1)

33: Πi
+← INSERT-SORTED-POLICIES (̂Πi)

34: REMOVE(πi)
35: return πi+,∗

In SPIDER, the exploration/pruning phase can only begin after
the heuristic (or upper bound) computation and sorting for the poli-
cies has ended. We provide an approach to possibly circumvent the
exploration of a group of policies based on heuristic computation
for one abstract policy, thus leading to an improvement in runtime
performance (without loss in solution quality). The important steps
in this technique are defining the abstract policy and how heuristic
values are computated for the abstract policies. In this paper, we
propose two types of abstraction:
1. Horizon Based Abstraction (HBA): Here, the abstract policy is
defined as a shorter horizon policy. It represents a group of longer
horizon policies that have the same actions as the abstract policy
for times less than or equal to the horizon of the abstract policy.

In Figure 3(a), a T=1 abstract policy that performs “East” action,
represents a group of T=2 policies, that perform “East” in the first
time step.

For HBA, there are two parts to heuristic computation:
(a) Computing the upper bound for the horizon of the abstract pol-
icy. This is same as the heuristic computation defined by the GET-
HEURISTIC() algorithm for SPIDER, however with a shorter time
horizon (horizon of the abstract policy).
(b) Computing the maximum possible reward that can be accumu-
lated in one time step (using GET-ABS-HEURISTIC()) and mul-
tiplying it by the number of time steps to time horizon. This max-
imum possible reward (for one time step) is obtained by iterating
through all the actions of all the agents inTree(i) and computing
the maximum joint reward for any joint action.
Sum of (a) and (b) is the heuristic value for a HBA abstract policy.
2. Node Based Abstraction (NBA): Here an abstract policy is ob-
tained by not associating actions to certain nodes of the policy tree.
Unlike in HBA, this implies multiple levels of abstraction. This is
illustrated in Figure 3(b), where there are T=2 policies that do not
have an action for observation ‘TP’. These incomplete T=2 poli-
cies are abstractions for T=2 complete policies. Increased levels of
abstraction leads to faster computation of a complete joint policy,
πroot+ and also to shorter heuristic computation and exploration,
pruning phases. For NBA, the heuristic computation is similar to
that of a normal policy, except in cases where there is no action
associated with policy nodes. In such cases, the immediate reward
is taken asRmax (maximum reward for any action).

We combine both the abstraction techniques mentioned above
into one technique, SPIDER-ABS. Algorithm 5 provides the algo-
rithm for this abstraction technique. For computing optimal joint
policy with SPIDER-ABS, a non-leaf agenti initially examines all
abstract T=1 policies (line 2) and sorts them based on abstract pol-
icy heuristic computations (line 17). The abstraction horizon is
gradually increased and these abstract policies are then explored
in descending order of heuristic values and ones that have heuristic
values less than thethresholdare pruned (lines 23-24).Exploration
in SPIDER-ABS has the same definition as in SPIDER if the policy
being explored has a horizon of policy computation which is equal
to the actual time horizon and if all the nodes of the policy have an
action associated with them (lines 25-30). However, if those condi-
tions are not met, then it is substituted by a group of policies that it
represents (using EXTEND-POLICY () function) (lines 31-32).

EXTEND-POLICY() function is also responsible for initial-
izing the horizon and absNodes of a policy. absNodes rep-
resents the number of nodes at the last level in the policy tree,
that do not have an action assigned to them. Ifπi.absNodes =
|Ωi|πi.horizon−1 (i.e. total number of policy nodes possible at
πi.horizon) , thenπi.absNodes is set to zero andπi.horizon is
increased by 1. Otherwise,πi.absNodes is increased by 1. Thus,
this function combines both HBA and NBA by using the policy
variables,horizon andabsNodes. Before substituting the abstract
policy with a group of policies, those policies are sorted based on
heuristic values (line 33). Similar type of abstraction based best
response computation is adopted at leaf agents (lines 3-14).

4.4 Value ApproXimation (VAX)
In this section, we present an approximate enhancement to SPI-

DER called VAX. The input to this technique is an approximation
parameterε, which determines the difference from the optimal so-
lution quality. This approximation parameter is used at each agent
for pruning out joint policies. The pruning mechanism in SPIDER
and SPIDER-Abs dictates that a joint policy be pruned only if the
threshold is exactly greater than the heuristic value. However, the

Figure 3: Example of abstraction for (a) HBA (Horizon Based Abstraction) and (b) NBA (Node Based Abstraction)

idea in this technique is to prune out joint a policy if the following
condition is satisfied:threshold+ ε > v̂[πi, πi−]. Apart from the
pruning condition, VAX is the same as SPIDER/SPIDER-ABS.

In the example of Figure 2, if the heuristic value for the second
joint policy (or second search tree node) in level 2 were 238 instead
of 232, then that policy could not be be pruned using SPIDER or
SPIDER-Abs. However, in VAX with an approximation parameter
of 5, the joint policy in consideration would also be pruned. This is
because thethreshold(234) at that juncture plus the approximation
parameter (5), i.e. 239 would have been greater than the heuristic
value for that joint policy (238). It can be noted from the example
(just discussed) that this kind ofpruning can lead to fewerexplo-
rations and hence lead to an improvement in the overall run-time
performance. However, this can entail a sacrifice in the quality of
the solution because this technique can prune out a candidate opti-
mal solution. A bound on the error introduced by this approximate
algorithm as a function ofε, is provided by Proposition 3.

4.5 Percentage ApproXimation (PAX)
In this section, we present the second approximation enhance-

ment over SPIDER called PAX. Input to this technique is a pa-
rameter,δ that represents the minimum percentage of the optimal
solution quality that is desired. Output of this technique is a policy
with an expected value that is at leastδ% of the optimal solution
quality. A policy is pruned if the following condition is satisfied:
threshold > δ

100
v̂[πi, πi−]. Like in VAX, the only difference be-

tween PAX and SPIDER/SPIDER-ABS is this pruning condition.
Again in Figure 2, if the heuristic value for the second search

tree node in level 2 were 238 instead of 232, then PAX with an in-
put parameter of 98% would be able to prune that search tree node
(since 98

100
∗238 < 234). This type of pruning leads to fewer explo-

rations and hence an improvement in run-time performance, while
potentially leading to a loss in quality of the solution. Proposition 4
provides the bound on quality loss.

4.6 Theoretical Results

PROPOSITION 1. Heuristic provided using the centralized MDP
heuristic is admissible.

Proof. For the value provided by the heuristic to be admissible,
it should be an over estimate of the expected value for a joint policy.
Thus, we need to show that: Forl ∈ Ei+ ∪Ei−: v̂t

l ≥ vt
l (refer to

notation in Section 4.2)
We use mathematical induction ont to prove this.

Base case: t = T − 1. Irrespective of whetherl ∈ Ei− or l ∈
Ei+, r̂t

l is computed by maximizing over all actions of the agents
in Tree(i), while rt

l is computed for fixed policies of the same
agents. Hence,̂rt

l ≥ rt
l and alsôvt

l ≥ vt
l .

Assumption: Proposition holds fort = η, where1 ≤ η < T − 1.

We now have to prove that the proposition holds fort = η − 1.
We show the proof forl ∈ Ei− and similar reasoning can be

adopted to prove forl ∈ Ei+. The heuristic value function for
l ∈ Ei− is provided by the following equation:

v̂η−1
l =r̂η−1

l + max
al2

∑
ω

η
l1

,s
η
l

p̂η−1
l1

p̂η−1
l2

pη−1
u v̂η

l

Rewriting the RHS and using Eqn 2 (in Section 4.2)

=r̂η−1
l + max

al2

∑
ω

η
l1

,s
η
l

pη−1
u pη−1

l1
p̂η−1

l2
v̂η

l

=r̂η−1
l +

∑
ω

η
l1

,s
η
l

pη−1
u pη−1

l1
max
al2

p̂η−1
l2

v̂η
l

Sincemaxal2
p̂η−1

l2
v̂η

l ≥
∑

ωl2
oη−1

l2
p̂η−1

l2
v̂η

l andpη−1
l2

= oη−1
l2

p̂η−1
l2

≥r̂η−1
l +

∑
ω

η
l1

,s
η
l

pη−1
u pη−1

l1

∑
ωl2

pη−1
l2

v̂η
l

Sincev̂η
l ≥ vη

l (from the assumption)

≥r̂η−1
l +

∑
ω

η
l1

,s
η
l

pη−1
u pη−1

l1

∑
ωl2

pη−1
l2

vη
l

Sincer̂η−1
l ≥ rη−1

l (by definition)

≥rη−1
l +

∑
ω

η
l1

,s
η
l

pη−1
u pη−1

l1

∑
ωl2

pη−1
l2

vη
l

=rη−1
l +

∑
(ω

η
l

,s
η
l
)

pη−1
u pη−1

l1
pη−1

l2
vη

l = vη−1
l

Thus proved.�

PROPOSITION 2. SPIDER provides an optimal solution.
Proof. SPIDER examines all possible joint policies given the

interaction structure of the agents. The only exception being when
a joint policy isprunedbased on the heuristic value. Thus, as long
as a candidate optimal policy is not pruned, SPIDER will return an
optimal policy. As proved in Proposition 1, the expected value for
a joint policy is always an upper bound. Hence when a joint policy
is pruned, it cannot be an optimal solution.

PROPOSITION 3. Error bound on the solution quality for VAX
(implemented over SPIDER-ABS) with an approximation parame-
ter of ε is ρε, whereρ is the number of leaf nodes in the DFS tree.

Proof. We prove this proposition using mathematical induction
on thedepth of the DFS tree.
Base case: depth= 1 (i.e. one node). Best response is com-
puted by iterating through all policies,Πk. A policy,πk is pruned
if v̂[πk, πk−] < threshold + ε. Thus the best response policy
computed by VAX would be at mostε away from the optimal best
response. Hence the proposition holds for the base case.
Assumption: Proposition holds ford, where1 ≤ depth≤ d.
We now have to prove that the proposition holds ford + 1.

Without loss of generality, lets assume that the root node of this
tree hask children. Each of this children is of depth≤ d, and hence
from the assumption, the error introduced inkth child isρkε, where
ρk is the number of leaf nodes inkth child of the root. Therefore,
ρ =

∑
k ρk, whereρ is the number of leaf nodes in the tree.

In SPIDER-ABS,threshold at the root agent,thresspider =∑
k v[πk+, πk−]. However, with VAX thethreshold at the root

agent will be (in the worst case),threshvax =
∑

k v[πk+, πk−]−∑
k ρkε. Hence, with VAX a joint policy is pruned at the root

agent ifv̂[πroot, π
root−] < threshvax + ε ⇒ v̂[πroot, π

root−] <
threshspider − ((

∑
k ρk) − 1)ε ≤ threshspider − (

∑
k ρk)ε ≤

threshspider − ρε. Hence proved.�

PROPOSITION 4. For PAX (implemented over SPIDER-ABS) with
an input parameter ofδ, the solution quality is at leastδ

100
v[πroot+,∗],

wherev[πroot+,∗] denotes the optimal solution quality.
Proof. We prove this proposition using mathematical induction

on thedepth of the DFS tree.
Base case: depth= 1 (i.e. one node). Best response is com-
puted by iterating through all policies,Πk. A policy,πk is pruned
if δ

100
v̂[πk, πk−] < threshold. Thus the best response policy

computed by PAX would be at leastδ
100

times the optimal best
response. Hence the proposition holds for the base case.
Assumption: Proposition holds ford, where1 ≤ depth≤ d.
We now have to prove that the proposition holds ford + 1.

Without loss of generality, lets assume that the root node of
this tree hask children. Each of this children is of depth≤ d,
and hence from the assumption, the solution quality in thekth
child is at least δ

100
v[πk+,∗, πk−] for PAX. With SPIDER-ABS,

a joint policy is pruned at the root agent if̂v[πroot, π
root−] <∑

k v[πk+,∗, πk−]. However with PAX, a joint policy is pruned if
δ

100
v̂[πroot, π

root−] <
∑

k
δ

100
v[πk+,∗, πk−] ⇒ v̂[πroot, π

root−] <∑
k v[πk+,∗, πk−]. Since the pruning condition at the root agent in

PAX is the same as the one in SPIDER-ABS, there is no error in-
troduced at the root agent and all the error is introduced in the chil-
dren. Thus, overall solution quality is at leastδ

100
of the optimal

solution. Hence proved.�

5. EXPERIMENTAL RESULTS
All our experiments were conducted on the sensor network do-

main from Section 2. The five network configurations employed
are shown in Figure 4. Algorithms that we experimented with
are GOA, SPIDER, SPIDER-ABS, PAX and VAX. We compare
against GOA because it is the only global optimal algorithm that
considers more than two agents. We performed two sets of ex-
periments: (i) firstly, we compared the run-time performance of the
above algorithms and (ii) secondly, we experimented with PAX and
VAX to study the tradeoff between run-time and solution quality.
Experiments were terminated after 10000 seconds1.

Figure 5(a) provides run-time comparisons between the optimal
algorithms GOA, SPIDER, SPIDER-Abs and the approximate al-
gorithms, PAX (ε of 30) and VAX(δ of 80). X-axis denotes the
1Machine specs for all experiments: Intel Xeon 3.6 GHZ processor,
2GB RAM

sensor network configuration used, while Y-axis indicates the run-
time (on alog-scale). The time horizon of policy computation was
3. For each configuration (3-chain, 4-chain, 4-star and 5-star), there
are five bars indicating the time taken by GOA, SPIDER, SPIDER-
Abs, PAX and VAX. GOA did not terminate within the time limit
for 4-star and 5-star configurations. SPIDER-Abs dominated the
SPIDER and GOA for all the configurations. For instance, in the 3-
chain configuration, SPIDER-ABS provides 230-fold speedup over
GOA and 2-fold speedup over SPIDER and for the 4-chain config-
uration it provides 58-fold speedup over GOA and 2-fold speedup
over SPIDER. The two approximation approaches, VAX and PAX
provided further improvement in performance over SPIDER-Abs.
For instance, in the 5-star configuration VAX provides a 15-fold
speedup and PAX provides a 8-fold speedup over SPIDER-Abs.

Figures 5(b) provides a comparison of the solution quality ob-
tained using the different algorithms for the problems tested in Fig-
ure 5(a). X-axis denotes the sensor network configuration while
Y-axis indicates the solution quality. Since GOA, SPIDER, and
SPIDER-Abs are all global optimal algorithms, the solution qual-
ity is the same for all those algorithms. For 5-P configuration,
the global optimal algorithms did not terminate within the limit of
10000 seconds, so the bar for optimal quality indicates an upper
bound on the optimal solution quality. With both the approxima-
tions, we obtained a solution quality that was close to the optimal
solution quality. In 3-chain and 4-star configurations, it is remark-
able that both PAX and VAX obtained almost the same actual qual-
ity as the global optimal algorithms, despite the approximation pa-
rameterε andδ. For other configurations as well, the loss in quality
was less than 20% of the optimal solution quality.

Figure 5(c) provides the time to solution with PAX (for vary-
ing epsilons). X-axis denotes the approximation parameter,δ (per-
centage to optimal) used, while Y-axis denotes the time taken to
compute the solution (on alog-scale). The time horizon for all
the configurations was 4. Asδ was decreased from 70 to 30, the
time to solution decreased drastically. For instance, in the 3-chain
case there was a total speedup of 170-fold when theδ was changed
from 70 to 30. Interestingly, even with a lowδ of 30%, the actual
solution quality remained equal to the one obtained at 70%.

Figure 5(d) provides the time to solution for all the configura-
tions with VAX (for varying epsilons). X-axis denotes the approx-
imation parameter,ε used, while Y-axis denotes the time taken to
compute the solution (on alog-scale). The time horizon for all the
configurations was 4. Asε was increased, the time to solution de-
creased drastically. For instance, in the 4-star case there was a total
speedup of 73-fold when theε was changed from 60 to 140. Again,
the actual solution quality did not change with varying epsilon.

Figure 4: Sensor network configurations

Figure 5: Comparison of GOA, SPIDER, SPIDER-Abs and VAX for T = 3 on (a) Runtime and (b) Solution quality; (c) Time to solution for PAX
with varying percentage to optimal for T=4 (d) Time to solution for VAX with varying epsilon for T=4

6. SUMMARY AND RELATED WORK
This paper presents four algorithms SPIDER, SPIDER-ABS, PAX

and VAX that provide a novel combination of features for pol-
icy search in distributed POMDPs: (i) exploiting agent interaction
structure given a network of agents (i.e. easier scale-up to larger
number of agents); (ii) using branch and bound search with an MDP
based heuristic function; (iii) utilizing abstraction to improve run-
time performance without sacrificing solution quality; (iv) provid-
ing a priori percentage bounds on quality of solutions using PAX;
and (v) providing expected value bounds on the quality of solutions
using VAX. These features allow for systematic tradeoff of solution
quality for run-time in networks of agents operating under uncer-
tainty. Experimental results show orders of magnitude improve-
ment in performance over previous global optimal algorithms.

Researchers have typically employed two types of techniques
for solving distributed POMDPs. The first set of techniques com-
pute global optimal solutions. Hansenet al. [5] present an algo-
rithm based on dynamic programming and iterated elimination of
dominant policies, that provides optimal solutions for distributed
POMDPs. Szeret al. [13] provide an optimal heuristic search
method for solving Decentralized POMDPs. This algorithm is based
on the combination of a classical heuristic search algorithm, A∗ and
decentralized control theory. The key differences between SPIDER
and MAA* are: (a) Enhancements to SPIDER (VAX and PAX)
provide for quality guaranteed approximations, while MAA* is a
global optimal algorithm and hence involves significant computa-
tional complexity; (b) Due to MAA*’s inability to exploit interac-
tion structure, it was illustrated only with two agents. However,
SPIDER has been illustrated for networks of agents; and (c) SPI-
DER explores the joint policy one agent at a time, while MAA* ex-
pands it one time step at a time (simultaneously for all the agents).

The second set of techniques seek approximate policies. Emery-
Montemerloet al. [4] approximate POSGs as a series of one-step
Bayesian games using heuristics to approximate future value, trad-
ing off limited lookahead for computational efficiency, resulting in
locally optimal policies (with respect to the selected heuristic). Nair
et al. [9]’s JESP algorithm uses dynamic programming to reach a
local optimum solution for finite horizon decentralized POMDPs.
Peshkinet al. [11] and Bernsteinet al. [2] are examples of policy
search techniques that search for locally optimal policies. Though
all the above techniques improve the efficiency of policy compu-
tation considerably, they are unable to provide error bounds on the
quality of the solution. This aspect of quality bounds differentiates
SPIDER from all the above techniques.

Acknowledgements. This material is based upon work sup-
ported by the Defense Advanced Research Projects Agency (DARPA),
through the Department of the Interior, NBC, Acquisition Services
Division under Contract No. NBCHD030010. The views and con-

clusions contained in this document are those of the authors, and
should not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

7. REFERENCES
[1] R. Becker, S. Zilberstein, V. Lesser, and C.V. Goldman.

Solving transition independent decentralized Markov
decision processes.JAIR, 22:423–455, 2004.

[2] D. S. Bernstein, E.A. Hansen, and S. Zilberstein. Bounded
policy iteration for decentralized POMDPs. InIJCAI, 2005.

[3] D. S. Bernstein, S. Zilberstein, and N. Immerman. The
complexity of decentralized control of MDPs. InUAI, 2000.

[4] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially observable
stochastic games with common payoffs. InAAMAS, 2004.

[5] E. Hansen, D. Bernstein, and S. Zilberstein. Dynamic
programming for partially observable stochastic games. In
AAAI, 2004.

[6] V. Lesser, C. Ortiz, and M. Tambe.Distributed sensor nets:
A multiagent perspective. Kluwer, 2003.

[7] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce, and
P. Varakantham. Taking dcop to the real world : Efficient
complete solutions for distributed event scheduling. In
AAMAS, 2004.

[8] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed constraint
optimization. InAAMAS, 2003.

[9] R. Nair, D. Pynadath, M. Yokoo, M. Tambe, and S. Marsella.
Taming decentralized POMDPs: Towards efficient policy
computation for multiagent settings. InIJCAI, 2003.

[10] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo.
Networked distributed POMDPs: A synthesis of distributed
constraint optimization and POMDPs. InAAAI, 2005.

[11] L. Peshkin, N. Meuleau, K.-E. Kim, and L. Kaelbling.
Learning to cooperate via policy search. InUAI, 2000.

[12] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. InIJCAI, 2005.

[13] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic
search algorithm for solving decentralized POMDPs. In
IJCAI, 2005.

