Demonstration of Teamwork in Uncertain Domains using
Hybrid BDI-POMDP Systems

Tapana Gupta*, Pradeep Varakantham+, Timothy W. Rauenbusch* , Milind Tambe*

* University of Southern California, Los Angeles, CA 90089, {tapanagu, varakant, tambe } @usc.edu
+ SRI International, Menlo Park, CA 94025, rauenbusch@ai.sri.com

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence -
Multi-agent Systems

General Terms

Experimentation, Human Factors

Keywords

Multi-agent systems, Personal Assistants, Teamwork, Hybrids

1. OVERVIEW

Personal Assistant agents are becoming increasingly important
in a variety of application domains in offices, at home, for medical
care and many others [5, 1]. These agents are required to constantly
monitor their environment (including the state of their users), and
make periodic decisions based on their monitoring. For example,
in an office environment, agents may need to monitor the location
of their user in order to ascertain whether the user would be able
to make it on time to a meeting [5]. Or, they may be required to
monitor the progress of a user on a particular assignment and de-
cide whether or not the user would be able to meet the deadline for
completing the assignment. Teamwork between such agents is im-
portant in Personal Assistant applications to enable agents working
together to achieve a common goal (such as finishing a project on
time). This working demonstration shows a hybrid(BDI-POMDP)
approach to accomplish such teamwork.

Agents must be able to make decisions despite observational un-
certainty in the environment. For example, if the user is busy and
does not respond to a request from its personal assistant agent, the
agent loses track of the user’s progress and hence, cannot deter-
mine it with certainty. Also, an incorrect action on the agent’s part
can have undesirable consequences. For example, an agent might
reallocate a task again and again even if there is sufficient progress
on the task. In the past, teamwork among Personal Assistant agents
typically has not addressed such observational uncertainty. Markov
Decision Processes [5] have been used to model the agent’s envi-
ronment, with simplifying assumptions regarding either observa-
tional uncertainty in the environment or the agent’s observational
abilities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS’07 May 14-18 2007, Honolulu, Hawai’i, USA.

Copyright 2007 IFAAMAS .

Partially Observable Markov Decision Processes (POMDPs) are
equipped to deal with the inherent uncertainty in Personal Assis-
tant domains. Computational complexity has been a major hurdle
in deploying POMDPs in real-world application domains, but the
emergence of new exact and approximate techniques [8] recently
shows much promise in being able to compute a POMDP policy
for an agent in real time. In this demonstration, we actually deploy
POMDPs to compute the Adjustable Autonomy policy for an agent
based on which the agent makes decisions.

Integrating such POMDPs with architectures that enble team-
work among personal assistants is then the next key part of our
demonstration. Several teamwork models have been developed
over the past few years to handle communication and coordina-
tion between agents [7]. Machinetta [6] is a proxy-based inte-
gration architecture for coordinating teams of heterogeneous en-
tities (e.g. robots, agents, persons), which builds on the STEAM
teamwork model. Machinetta is designed to meet key challenges
such as effective utilization of diverse capabilities of group mem-
bers, improving coordination between agents by overcoming chal-
lenges posed by the environment and reacting to changes in the
environment in a flexible manner. We use Machinetta proxies to
co-ordinate the agents in our demonstration.

Machinetta enables integrating POMDPs and also enables inter-
facing with BDI architectures that may provide us team plans. In
particular, we interface with the SPARK agent framework [2] being
developed at the Artificial Intelligence Center of SRI international.
SPARK is a Belief-Desire-Intention (BDI) style agent framework
grounded in a model of procedural reasoning. This architecture
allows the development of active systems that interact with a con-
stantly changing and unpredictable world.

By using BDI-based approaches for generating team plans for
agents as well as communication and coordination, and POMDPs
for adjustable autonomy decision making, we arrive at a hybrid
model for multiagent teamwork [3] in Personal Assistant applica-
tions. The following sections describe the application domain in
which we deploy this hybrid system as well as the interaction be-
tween various components of the system, and its working.

2. MOTIVATING DOMAIN: HIRING SCE-
NARIO

The application domain is a stylized hiring scenario. The team
is made up of three users: Karen, Ray and Ken, and their respec-
tive agents. Figure 1 shows the structure of this team. The team
is responsible for performing the high-level task of hiring a new
employee. This task decomposes into subtasks which themselves
decompose into further subtasks as shown in Figure 2.

We call the highest-level task a level 0 task. A level O task de-
composes into level 1 tasks which decompose into level 2 tasks and

Figure 1: Three personal assistants, A1, A2 and A3 are seen to
help teamwork among users U1, U2 and U3

so on. We assume a unique decomposition for each task, and that
level 2 tasks are not decomposable. In our hiring scenario, there
are three level 1 tasks, and 9 level two tasks.

There are five discrete levels to indicate task progress on level
2 tasks: 0%, 20%, 40%, 60%, 80% and 100%, with 100% indi-
cating that a level 2 task is complete. Level 1 tasks are complete
when each of its constituent level 2 tasks are complete. Time is dis-
cretized into time steps, with task progress computed at each time
step.

We assume that each team member is capable of performing
any and all of the level 2 tasks, but one agent may be able to
complete a task more efficiently than another. A transition func-
tion encodes the efficiency of task completion for each agent and
each task. For instance, Ray’s performance on a particular level
2 task on which no progress has been made may be encoded as
[0% — 20%(0.5),0% — 100%(0.5)]. This means that if at time
step t Ray’s progress on the task is 0%, then at time step ¢ + 1, his
progress will be 20% with probability 0.5, and 100% with proba-
bility 0.5.

Hire Top Notch
Level 0 Candidate

Level 1 | Advertise | | Review CVs | | Interview |

Figure 2: Team plan executed by the personal assistants

The goal of our system is to facilitate the assignment of tasks to
agents in order to complete the level O task as quickly as possible.
The main function of the system is to allocate and reallocate tasks
based on an agent’s task transition function and the current progress
on a task. It is assumed that task progress is monotonically increas-
ing and remains with a task. That is, if at time step ¢ progress level
of p for a task has been achieved by Ray, the progress level for that
task at time steps greater than ¢ will be equal to or greater than p,
regardless of whether that task has been allocated to Karen or Ken.

3. SYSTEM DESCRIPTION

Each agent contains a Machinetta proxy that is responsible for
reasoning about and communicating allocation decisions. SPARK
sends a team plan to Machinetta with Agent names, their work-
loads, progress and the tasks that need to be allocated to these
agents. Machinetta assigns tasks to each agent using its role alloca-
tion algorithm which uses a DCOP, also used for role reallocation
[6, 4].

Figure 2 shows the interactions between the various components

K) USER

SPARK

|Active team plans, i
|Roles, Key beliefs,
|Parameters Results
Task
(re)allocation c "
ommunication
Adjustable (DCOP) with other
Autonomy o Spark/Machinetta
(POMDP) | Communication pairs
(Joint Intentions
+ selectivity)

MACHINETTA

Figure 3: Architecture and Interface of a single Personal Assis-
tant

of the hybrid system. When a task is assigned to an agent, the Ad-
justable Autonomy (AA) component of Machinetta computes the
AA policy for that particular task using a POMDP. The policy tells
Machinetta what action to take in response to certain observations
about the agent’s progress. These actions include doing nothing
(wait), ask the user or reallocate the task. SPARK sends beliefs to
Machinetta at certain time intervals, which contain the percentage
of progress accomplished for a particular task. The AA reason-
ing uses these beliefs as its observations for making AA related
decisions. Machinetta can query the user (via SPARK) for a re-
sponse or a decision regarding reallocation of a task, in response to
which SPARK sends an appropriate response based on its beliefs
(updated by user input). If the decision is made to reallocate a task,
Machinetta reallocates the task.

The SPARK BDI team plan, which contains information about
an agent’s workload and progress serve as input for the POMDP
to compute the AA policy for a task executed by that agent. The
beliefs of the agent serve as observations for the POMDP policy
on the basis of which AA decisions are made by Machinetta. The
POMDP policy, in turn alters the beliefs of the agents, for example,
by reallocation. Thus, by integration of SPARK and Machinetta,
we have achieved a hybrid of BDI and POMDP frameworks work-
ing synergistically in a multi-agent system.

4. REFERENCES

[1] http://www.ai.sri.com/project/calo, http://calo.sri.com, 2003.

[2] D. Morley and K. Myers. The spark agent framework. In
AAMAS, 2004.

[3] R. Nair and M. Tambe. Hybrid bdi-pomdp framework for
multiagent teaming. JAIR, 23:367-420, 2004.

[4] P. Scerri, J. A. Giampapa, and K. P. Sycara. Techniques and
directions for building very large agent teams. In KIMAS,
2005.

[5] P. Scerri, D. Pynadath, and M. Tambe. Towards adjustable
autonomy for the real world. JAIR, 17:171-228, 2002.

[6] N. Schurr, S. Okamoto, R. T. Maheswaran, P. Scerri, and
M. Tambe. Cognition and Multi-Agent Interaction: From
Cognitive Modeling to Social Simulation. Cambridge
University Press, 2004.

[7] M. Tambe. Towards flexible teamwork. JAIR, 7:83-124, 1997.

[8] P. Varakantham, R. T. Maheswaran, T. Gupta, and M. Tambe.
Towards efficient computation of error bounded solutions in
pomdps: Expected value approximation and dynamic
disjunctive beliefs. In IJCAL, 2007.

