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Abstract

Distributed Partially Observable Markov Decision Problems (Distributed POMDPs)
are a popular approach for modeling multi-agent systems acting in uncertain do-
mains. Given the significant computational complexity of solving distributed POMDPs,
one popular approach has focused on approximate solutions. Though this approach
provides for efficient computation of solutions, the algorithms within this approach
do not provide any guarantees on the quality of the solutions. A second less pop-
ular approach has focused on a global optimal result, but at considerable com-
putational cost. This paper overcomes the limitations of both these approaches
by providing SPIDER (Search for Policies In Distributed EnviRonments), which
provides quality-guaranteed approximations for distributed POMDPs. SPIDER al-
lows us to vary this quality guarantee, thus allowing us to vary solution quality
systematically. SPIDER and its enhancements employ heuristic search techniques
for finding a joint policy that satisfies the required bound on the quality of the
solution.

1 Introduction

Distributed Partially Observable Markov Decision Problems (Distributed POMDPs)
are emerging as a popular approach for modeling multiagent teamwork. This approach
is used for modeling the sequential decision making in multiagent systems under un-
certainty [10, 4, 1, 2, 14]. The uncertainty arises on account of non-determinism in the
outcomes of actions and because the world state may only be partially (or incorrectly)
observable. Unfortunately, as shown by Bernsteinet al. [3], the problem of finding the
optimal joint policy for general distributed POMDPs is NEXP-Complete.

Researchers have attempted two different types of approaches towards solving
these models. The first category consists of highly efficient approximate techniques,
that may not reach globally optimal solutions [2, 10, 12]. The key problem with these
techniques has been their inability to provide any guarantee on the quality of the so-
lution. In contrast, the second less popular category of approaches has focused on a
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global optimal result [14, 6, 11]. Though these approaches obtain optimal solutions,
they do so at a significant computational cost.

To address these problems with the existing approaches, we propose approximate
techniques that provide an error bound on the quality of the solution. We initially
propose a technique called SPIDER (Search for Policies In Distributed EnviRonments)
that employs heuristic techniques in searching the joint policy space. The key idea in
SPIDER is the use of a branch and bound search (based on a MDP heuristic function)
in exploring the space of joint policies. We then provide further enhancements (one
exact and one approximate) to improve the efficiency of the basic SPIDER algorithm,
while providing error bounds on the quality of the solutions. The first enhancement is
based on the idea of initially performing branch and bound search on abstract policies
(representing a group of policies), and then extending to the individual policies. Second
enhancement is based on bounding the search approximately given a parameter that
determines the difference from the optimal solution.

We experimented with the sensor network domain presented in Nairet al. [11]. In
our experiments, we illustrate that SPIDER dominates an existing global optimal ap-
proach called GOA and also that by utilizing the approximation enhancement, SPIDER
provides significant improvements in run-time performance while not losing signifi-
cantly on quality.

We illustrate an example distributed sensor net domain in Section 2, and provide the
ND-POMDP formalism in Section 3.1, that is motivated by the need to model planning
under uncertainty in such domains. We provide description of a relevant algorithm,
GOA in Section 3.2. The key contributions of this paper, the SPIDER algorithm and its
enhancements are presented in Section 4. The run-time and value comparisons between
these techniques and the GOA algorithm are presented in Section 5.

2 Domain: Distributed Sensor Nets

We describe an illustrative problem provided in [11] within the distributed sensor net
domain, motivated by the real-world challenge in [7]. Here, each sensor node can scan
in one of four directions — North, South, East or West (see Figure 1). To track a
target and obtain associated reward, two sensors with overlapping scanning areas must
coordinate by scanning the same area simultaneously. For instance, to track a target
in Loc1-1, sensor1 would need to scan ‘East’ and sensor2 would need to scan ‘West’
simultaneously. Thus, sensor agents have to act in a coordinated fashion.

We assume that there are two independent targets and that each target’s movement
is uncertain and unaffected by the sensor agents. Based on the area it is scanning,
each sensor receives observations that can have false positives and false negatives. The
sensors’ observations and transitions are independent of each other’s actions e.g.the
observations that sensor1 receives are independent of sensor2’s actions. Each agent
incurs a cost for scanning whether the target is present or not, but no cost if it turns off.
Given the sensors’ observational uncertainty, the targets’ uncertain transitions and the
distributed nature of the sensor nodes, these sensor nets provide a useful domains for
applying distributed POMDP models.
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Figure 1:There are three sensors numbered 1, 2 and 3, each of which can scan in one of four
directions. To track a target two sensors must scan an overlapping area, e.g. to track a target in
location loc-1-1, sensor1 must scan east and sensor2 must scan west

3 Background

3.1 Model: Network Distributed POMDP

The ND-POMDP model was first introduced in [11]. It is defined as the tuple〈S, A, P,Ω, O,R, b〉,
whereS = ×1≤i≤nSi ×Su is the set of world states.Si refers to the set of local states
of agenti andSu is the set of unaffectable states. Unaffectable state refers to that part
of the world state that cannot be affected by the agents’ actions, e.g. environmental
factors like target locations that no agent can control.A = ×1≤i≤nAi is the set of joint
actions, whereAi is the set of action for agenti.

ND-POMDP assumestransition independence, where the transition function is de-
fined asP (s, a, s′) = Pu(su, s′u) ·

∏
1≤i≤n Pi(si, su, ai, s

′
i), wherea = 〈a1, . . . , an〉

is the joint action performed in states = 〈s1, . . . , sn, su〉 ands′ = 〈s′1, . . . , s′n, s′u〉
is the resulting state. Agenti’s transition function is defined asPi(si, su, ai, s

′
i) =

Pr(s′i|si, su, ai) and the unaffectable transition function is defined asPu(su, s′u) =
Pr(s′u|su).

Ω = ×1≤i≤nΩi is the set of joint observations whereΩi is the set of observa-
tions for agentsi. Observational independenceis assumed in ND-POMDPs i.e., the
joint observation function is defined asO(s, a, ω) =

∏
1≤i≤n Oi(si, su, ai, ωi), where

s = 〈s1, . . . , sn, su〉 is the world state that results from the agents performinga =
〈a1, . . . , an〉 in the previous state, andω = 〈ω1, . . . , ωn〉 ∈ Ω is the observation re-
ceived in states. The observation function for agenti is defined asOi(si, su, ai, ωi) =
Pr(ωi|si, su, ai). This implies that each agent’s observation depends only on the unaf-
fectable state, its local action and on its resulting local state.

The reward function,R, is defined asR(s, a) =
∑

l Rl(sl1, . . . , slk, su, 〈al1, . . . , alk〉),
where eachl could refer to any sub-group of agents andk = |l|. Based on the re-
ward function, we construct aninteraction hypergraphwhere a hyper-link,l, exists
between a subset of agents for allRl that compriseR. The interaction hypergraph
is defined asG = (Ag,E), where the agents,Ag, are the vertices andE = {l|l ⊆
Ag ∧Rl is a component ofR} are the edges.

The initial belief state (distribution over the initial state),b, is defined asb(s) =
bu(su)·

∏
1≤i≤n bi(si), wherebu andbi refer to the distribution over initial unaffectable

state and agenti’s initial belief state, respectively. We define agenti’s neighbors’
initial belief state asbNi

=
∏

j∈Ni
bj(sj). We assume thatb is available to all agents

(although it is possible to refine our model to make available to agenti only bu, bi and
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bNi). The goal in ND-POMDP is to compute the joint policyπ = 〈π1, . . . , πn〉 that
maximizes the team’s expected reward over a finite horizonT starting from the belief
stateb.

An ND-POMDP is similar to ann-ary DCOP where the variable at each node rep-
resents the policy selected by an individual agent,πi with the domain of the variable
being the set of all local policies,Πi. The reward componentRl where|l| = 1 can
be thought of as a local constraint while the reward componentRl wherel > 1 corre-
sponds to a non-local constraint in the constraint graph.

3.2 Algorithm: Global Optimal Algorithm (GOA)

In previous work, GOA has been defined as a global optimal algorithm for ND-POMDPs.
GOA is the only algorithm where we have actual experimental results for ND-POMDPs
of more than two agents. GOA borrows from a global optimal DCOP algorithm called
DPOP[13]. GOA’s message passing follows that of DPOP. The first phase is the UTIL
propagation, where the utility messages, in this case values of policies, are passed up
from the leaves to the root. Value for a policy at an agent is defined as the sum of best
response values from its children and the joint policy reward associated with the parent
policy. Thus, given a policy for a parent node, GOA requires an agent to iterate through
all its policies, finding the best response policy and returning the value to the parent —
while at the parent node, to find the best policy, an agent requires its children to return
their best responses to each of its policies.

Unfortunately, for different policies of the parent, each child nodeCi is required
to re-compute best response values corresponding to the same policies withinCi. To
avoid this recalculation, eachCi stores the sum of best response values from its children
for each of its policies. This UTIL propagation process is repeated at each level in the
tree, until the root exhausts all its policies. In the second phase of VALUE propagation,
where the optimal policies are passed down from the root till the leaves.

GOA takes advantage of the local interactions in the interaction graph, by pruning
out unnecessary joint policy evaluations (associated with nodes not connected directly
in the tree). Since the interaction graph captures all the reward interactions among
agents and as this algorithm iterates through all the relevant joint policy evaluations,
this algorithm yields a globally optimal solution.

4 Search for Policies In Distributed EnviRonments (SPI-
DER)

As mentioned in Section 3.1, an ND-POMDP can be treated as a DCOP, where the goal
is to compute a joint policy that maximizes the overall joint reward. The bruteforce
technique for computing an optimal policy would be to scan through the entire space
of joint policies. The key idea in SPIDER is to avoid computation of expected values
for the entire space of joint policies, by utilizing upperbounds on the expected values
of policies and the interaction structure of the agents.

Akin to some of the algorithms for DCOP [9, 13], SPIDER has a pre-processing
step that constructs a DFS tree corresponding to the given interaction structure. We
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employ the Maximum Constrained Node (MCN) heuristic used in ADOPT [9], how-
ever other heuristics (such as MLSP heuristic from [8]) can also be employed. MCN
heuristic tries to place agents with more number of constraints at the top of the tree.
This tree governs how the search for the optimal joint policy proceeds in SPIDER.

In this paper, we employ the following notation to denote policies and expected
values of joint policies:
πroot denotes the joint policy of all agents involved.
πi denotes the joint policy of all agents in the sub-tree for whichi is the root.
π−i denotes the joint policy of agents that are ancestors to agents in the sub-tree for
which i is the root.
πi denotes a policy of theith agent.
v̂[πi, π

−i] denotes the upper bound on the expected value forπi givenπi and policies
of parent agents i.e.π−i.
v[πi, π−i] denotes the expected value forπi given policies of parent agentsπ−i.
vmax[πi, π

−i] denotes the threshold used for policy computation.

Figure 2:Execution of SPIDER, an example

SPIDER algorithm is based on the idea of branch and bound search, where the
nodes in the search tree represent the joint policies,πroot. Figure 2 shows an example
search tree for the SPIDER algorithm, using an example of the three agent chain. We
create a tree from this chain, with the middle agent as the root of the tree. Note that in
our example figure each agent is assigned a policy with T=2. Each rounded rectange
(search tree node) indicates a partial/complete joint policy and a rectangle indicates
an agent. Heuristic or actual expected value for a joint policy is indicated in the top
right corner of the rounded rectangle. If the number is italicized and underlined, it
implies that the actual expected value of the joint policy is provided. SPIDER begins
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with no policy assigned to any of the agents (shown in the level 1 of the search tree).
Level 2 of the search tree indicates that the joint policies are sorted based on upper
bounds computed for root agent’s policies. Level 3 contains a node with a complete
joint policy (a policy assigned to each of the agents). The expected value for this joint
policy is used to prune out the nodes in level 2 (the ones with upper bounds ¡ 234)

In SPIDER, each non-leaf agenti potentially performs two steps:

1. Obtaining upper bounds and sorting: In this step, agenti computes upper bounds
on the expected values,v̂[πi, π

−i] of the joint policiesπi corresponding to each
of its policyπi and fixed parent policies. A MDP based heuristic is used to com-
pute these upper bounds on the expected values. Detailed description about this
MDP heuristic and other possible heuristics is provided in Section 4.1. All poli-
cies of agenti, Πi are then sorted based on these upper bounds (also referred to
as heuristic values henceforth) in descending order. Exploration of these policies
(in step 2 below) are performed in this descending order. As indicated in the
level 2 of the search tree of Figure 2, all the joint policies are sorted based on
the heuristic values, indicated in the top right corner of each joint policy. This
step is performed to provide a certain order to exploration (explained below).
The intuition behind exploring policies in descending order of upper bounds, is
that the policies with higher upper bounds could yield joint policies with higher
expected values.

2. Exploration and Pruning: Exploration here implies computing the best response
joint policy πi,∗ corresponding to fixed parent policies of agenti, π−i. This is
performed by iterating through all policies of agenti i.e. Πi and computing best
response policies ofi’s children (obtained by performing steps 1 and 2 at each of
the child nodes) for each of agenti’s policy,πi. Exploration of a policyπi yields
actual expected value of a joint policy,πi represented asv[πi, π−i].

Pruning refers to the process of avoiding exploring policies (or computing ex-
pected values) at agenti by using the maximum expected value,vmax[πi, π−i]
encountered until this juncture. Henceforth, thisvmax[πi, π−i] will be referred
to asthreshold. A policy, πi need not be explored if the upper bound for that
policy, v̂[πi, π

−i] is less than thethreshold. This is because the best joint policy
that can be obtained from that policy will have an expected value that is less than
the expected value of the current best joint policy.

On the other hand, each leaf agent in SPIDER computes the best response policy
(and consequently its expected value) corresponding to fixed policies of its ancestors,
π−i. This is accomplished by computing expected values for each of the policies (cor-
responding to fixed policies of ancestors) and selecting the policy with the highest
expected value.

Algorithm 1 provides the pseudo code for SPIDER. This algorithm outputs the best
joint policy, πi,∗ (with an expected value greater thanthreshold) for the agents in the
sub-tree with agenti as the root. Lines 3-8 compute the best response policy of a leaf
agenti by iterating through all the policies (line 4) and finding the policy with the
highest expected value (lines 5-8). Lines 9-23 computes the best response joint policy
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Algorithm 1 SPIDER(i, π−i, threshold)
1: πi,∗ ← null
2: Πi ← GET-ALL-POLICIES(horizon, Ai, Ωi)
3: if IS-LEAF(i) then
4: for all πi ∈ Πi do
5: v[πi, π

−i]← JOINT-REWARD (πi, π
−i)

6: if v[πi, π
−i] > threshold then

7: πi,∗ ← πi

8: threshold← v[πi, π
−i]

9: else
10: children← CHILDREN (i)
11: Π̂i ← SORTED-POLICIES(i, Πi, π

−i)
12: for all πi ∈ Π̂i do
13: π̃i ← πi

14: if v̂[πi, π
−i] < threshold then

15: Go to line 12
16: for all j ∈ children do
17: jThres← threshold− Σk∈children,k!=j v̂k[πi, π

−i]
18: πj,∗ ← SPIDER(j, πi ‖ π−i, jThres)
19: π̃i ← π̃i ‖ πj,∗

20: v̂j [πi, π
−i]← v[πj,∗, πi ‖ π−i]

21: if v[π̃i, π−i] > threshold then
22: threshold← v[π̃i, π−i]
23: πi,∗ ← π̃i

24: return πi,∗

Algorithm 2 SORTED-POLICIES(i, Πi, π
−i)

1: children← CHILDREN (i)
2: Π̂i ← null /* Stores the sorted list */
3: for all πi ∈ Πi do
4: v̂[πi, π

−i]← JOINT-REWARD (πi, π
−i)

5: for all j ∈ children do
6: v̂j [πi, π

−i]← GET-HEURISTIC(πi ‖ π−i, j)

7: v̂[πi, π
−i]

+← v̂j [πi, π
−i]

8: v̂[πi, π
−i]

+← Σk∈childrenv̂[πk, πi ‖ π−i]
9: Π̂i ← INSERT-INTO-SORTED(πi, Π̂i)

10: return Π̂i

for agents in the sub-tree withi as the root. Sorting of policies (in descending order)
based on heuristic policies is done on line 11.

Explorationof a policy i.e. computing best response joint policy corresponding to
fixed parent policies is done in lines 12-23. This includes computation of best joint
policies for each of the child sub-trees (lines 16-23). This computation in turn involves
distributing thethresholdamong each of the children (line 17), recursively calling the
SPIDER algorithm for each of the children (line 18) and maintaining the best expected
value and the best joint policy (lines 21-23).Pruning of policies is performed in lines
20-21 by comparing the upper bound on the expected value against thethreshold.
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4.1 Heuristic Functions

The job of the heuristic function is to provide a quick estimate of the upper bound for
the second component in Eqn 2 i.e. the expected value obtainable from the sub-tree for
which i is the root. To achieve quick computation of this upper bound, we assume full
observability for the agents in theTree(i) (does not includei)and compute the joint
value,v̂[πi, π−i] for fixed policies of the agents in the set{Parents(i) ∪ i}.

We use the following notation for presenting the equations for computing upper
bounds/heuristic values:

pt
r
4
=Pr(s

t
r, s

t
u, πr(~ω

t
r), s

t+1
r ) ·Or(s

t+1
r , st+1

u , πr(~ω
t
r), ω

t+1
r )

p̂t
r
4
=pt

r, if r ∈ {Parents(i) ∪ i} (1)
4
=Pr(s

t
r, s

t
u, πr(~ω

t
r), s

t+1
r ), if r ∈ Tree(i)

pt
u
4
=P (st

u, st+1
u )

st =
〈
st

l1, . . . , s
t
lk, st

u

〉
rt

l
4
=Rl(s

t, πl1(~ω
t
l1), . . . , πlk(~ωt

lk))

r̂t
l
4
= max
{alj

}|lj∈Tree(i)
Rl(s

t, . . . , πlr (~ωt
lr ), . . . , alj , . . .)

vt
l
4
=V t

πl
(st

l1, . . . , s
t
lk, st

u, ~ωt
l1, . . . ~ω

t
lk)

The value function for an agenti is provided by the equation:

V η−1

πi (sη−1, ~ωη−1) =
∑

l∈E−i

vη−1
l +

∑
l∈Ei

vη−1
l , where (2)

vη−1
l =rη−1

l +
∑

ω
η
l

,sη

pη−1
l1

. . . pη−1
lk

pη−1
u vη

l

Upper bound on the expected value for a link is computed using the following equa-
tion:

v̂η−1
l =r̂η−1

l + max
{aj}|j∈Tree(i)

∑
ω

η
lr
|lr∈Parents(i),sη

p̂η−1
l1

. . . p̂η−1
lk

pη−1
u v̂η

l

4.2 Abstraction

In SPIDER, the exploration/pruning phase can only begin after the heuristic (or up-
per bound) computation and sorting for the policies has finished. With this technique of
abstraction, SPIDER-ABS, we provide an approach of interleaving exploration/pruning
phase with the heuristic computation and sorting phase, thus possibly circumventing
the exploration of a group of policies based on heuristic computation of one represen-
tative policy. The key steps in this technique are defining the representative/abstract
policy and howpruningcan be performed based on heuristic computations of this ab-
stract policy.

Firstly, in addressing the issue of abstract policy, there could be multiple ways of
defining this abstraction/grouping of policies. In this paper, we present one type of
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abstraction that utilizes a lower horizon policy to represent a group of higher horizon
policies. An example of this kind of abstraction is illustrated in Figure 3. In the fig-
ure, a T=2 (Time horizon of 2) policy (of scanning east and then scanning west for
either observation) represents all T=3 policies that have the same actions at the first
two decision points (as the T=2 policy).

Secondly, with respect topruning in the abstract policy space for agenti, we com-
pute athresholdfor the abstract policies based on the currentthreshold. With the kind
of abstraction mentioned in the above para, we propose a heuristic that computes the
maximum possible reward that can be accumulated in one time step and multiply it by
the number of time steps to time horizon. Towards computing the maximum possi-
ble reward, we iterate through all the actions of all the agents involved (agents in the
sub-tree withi as the root) and compute the maximum joint reward for any joint action.

For computing optimal joint policy for T=3 with SPIDER-ABS, a non-leaf agenti
initially scans through all T=1 policies and sorts them based on heuristic computations.
These T=1 policies are thenexploredin descending order of heuristic values and ones
that have heuristic values less than thethresholdfor T=1 policies (computed using
the heuristic presented in above para) are pruned.Exploration in SPIDER-ABS has
the same definition as in SPIDER if the policy beingexploredhas a horizon of policy
computation which is equal to the actual time horizon (in the example it is 3). However,
if a policy has a horizon less than the time horizon, then it is substituted by a group of
policies that it represents (referred to asextensionhenceforth). Before substituting the
abstract policy, this group of policies are sorted based on the heuristic values. At this
juncture, if all the substituted policies have horizon of policy computation equal to the
time horizon, then theexploration/pruningphase akin to the one in SPIDER ensues. In
case of partial policies (horizon of policy less than time horizon), furtherextensionof
policies occurs. Similarly, a horizon based extension of policies or computation of best
response is adopted at leaf agents in SPIDER-ABS.

Figure 3:Example of abstraction
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Algorithm 3 SPIDER-ABS(i, π−i, threshold)
1: πi,∗ ← null
2: Πi ← GET-ALL-POLICIES(1, Ai, Ωi)
3: if IS-LEAF(i) then
4: for all πi ∈ Πi do
5: absHeuristic← GET-ABS-HEURISTIC(πi, π

−i)

6: absHeuristic
∗← (timeHorizon− πi.horizon)

7: if πi.horizon = timeHorizon then
8: v[πi, π

−i]← JOINT-REWARD (πi, π
−i)

9: if v[πi, π
−i] > threshold then

10: πi,∗ ← πi; threshold← v[πi, π
−i]

11: else ifv[πi, π
−i] + absHeuristic > threshold then

12: Π̂i ← GET-POLICIES(πi.horizon + 1, Ai, Ωi, πi)
13: /* Insert policies in the beginning ofΠi in sorted order*/

14: Πi
+← INSERT-SORTED-POLICIES (̂Πi)

15: REMOVE(πi)
16: else
17: children← CHILDREN (i)
18: Πi ← SORTED-POLICIES(i, Πi, π

−i)
19: for all πi ∈ Πi do
20: π̃i ← πi

21: absHeuristic← GET-ABS-HEURISTIC(πi, π
−i)

22: absHeuristic
∗← (timeHorizon− πi.horizon)

23: if πi.horizon == timeHorizon then
24: if v̂[πi, π

−i] < threshold then
25: Go to line 19
26: for all j ∈ children do
27: jThres← threshold− Σk∈children,k!=j v̂k[πi, π

−i]
28: πj,∗ ← SPIDER(j, πi ‖ π−i, jThres)
29: π̃i ← π̃i ‖ πj,∗; v̂j [πi, π

−i]← v[πj,∗, πi ‖ π−i]
30: if v[π̃i, π−i] > threshold then
31: threshold← v[π̃i, π−i]; πi,∗ ← π̃i

32: else if v̂[πi, π−i] + absHeuristic > threshold then
33: Π̂i ← GET-POLICIES(πi.horizon + 1, Ai, Ωi, πi)
34: /* Insert policies in the beginning ofΠi in sorted order*/

35: Πi
+← INSERT-SORTED-POLICIES (̂Πi)

36: REMOVE(πi)
37: return πi,∗

4.3 Value ApproXimation (VAX)

In this section, we present an approximate enhancement to SPIDER called VAX. The
input to this technique is an approximation parameterε, which determines the differ-
ence between the optimal solution and the approximate solution. This approximation
parameter is used at each agent for pruning out joint policies. The pruning mechanism
in SPIDER and SPIDER-Abs dictates that a joint policy be pruned only if the thresh-
old is exactly greater than the heuristic value. However, the idea in this technique is to
prune out joint policies even ifthresholdplus the approximation parameter,ε is greater
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than the heuristic value.
Going back to the example of Figure 2, if the heuristic value for the second joint

policy in step 2 were 238 instead of 232, then that policy could not be be pruned using
SPIDER or SPIDER-Abs. However, in VAX with an approximation parameter of 5,
the joint policy in consideration would also be pruned. This is because thethreshold
(234) at that juncture plus the approximation parameter (5) would have been greater
than the heuristic value for that joint policy. As presented in the example, this kind of
pruningcan lead to fewerexplorationsand hence lead to an improvement in the overall
run-time performance. However, this can entail a sacrifice in the quality of the solution
because this technique can prune out a candidate optimal solution. A bound on the
error made by this approximate algorithm is provided by Proposition 3.

4.4 Theoretical Results

Proposition 1 Heuristic provided using the centralized MDP heuristic is admissible.

Proof. For the value provided by the heuristic to be admissible, it should be an over
estimate of the expected value for a joint policy. Thus, we need to show that:

For l ∈ Ei: v̂t
l ≥ vt

l .
We use mathematical induction ont to prove this.
Base case: t = T − 1. Since,maxz xz ≥

∑
z prz · xz, for 0 ≤ prz ≤ 1 and a set

of real numbers{xz}, we havêrt
l > rt

l . Thusv̂t
l ≥ vt

l .
Assumption: Proposition holds fort = η, where1 ≤ η < T − 1. Thus,v̂η

l ≥ vη
l

We now have to prove that the proposition holds fort = η − 1 i.e. v̂η−1
l ≥ vη−1

l .
The heuristic value function is provided by the following equation:

v̂η−1
l =r̂η−1

l + max
{aj}|j∈Tree(i)

∑
ω

η
lr
|lr∈Parents(i),sη

p̂η−1
l1

. . . p̂η−1
lk

pη−1
u v̂η

l

Rewriting the RHS and using Eqn 1

=r̂η−1
l + max

{aj}|j∈Tree(i)

∑
ω

η
lr
|lr∈Parents(i),sη

pη−1
u

∏
m∈{Parents(i)∪i}

pη−1
lm

∏
n∈Tree(i)

p̂η−1
ln

v̂η
l

=r̂η−1
l +

∑
ω

η
lr
|lr∈Parents(i),sη

pη−1
u

∏
m∈{Parents(i)∪i}

pη−1
lm

∏
n∈Tree(i)

max
{aj}|j∈Tree(i)

p̂η−1
ln

v̂η
l
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Sincemaxz xz ≥
∑

z prz · xz, for 0 ≤ prz ≤ 1 andv̂η
l ≥ vη

l (from the assumption)

≥r̂η−1
l +

∑
ω

η
lr
|lr∈Parents(i),sη

pη−1
u

∏
m∈{Parents(i)∪i}

pη−1
lm

∏
n∈Tree(i)

∑
ωln |ln∈Tree(i)

pη−1
ln

vη
l

≥r̂η−1
l +

∑
(ω

η
lr
|lr∈Parents(i),sη)

∑
(ωln |ln∈Tree(i))

pη−1
u

∏
m∈{Parents(i)∪i}

pη−1
lm

∏
n∈Tree(i)

pη−1
ln

vη
l

≥rη−1
l +

∑
(ω

η
l

,sη)

pη−1
u pη−1

l1
. . . pη−1

lk
vη

l

Thus proved.�

Proposition 2 SPIDER provides an optimal solution.

Proof. SPIDER examines all possible joint policies given the interaction structure
of the agents. The only exception being when a joint policy isprunedbased on the
heuristic value. Thus, as long as a candidate optimal policy is not pruned, SPIDER
will return an optimal policy. As proved in Proposition 1, the expected value for a joint
policy is always an upper bound. Hence when a joint policy is pruned, it cannot be an
optimal solution.

Proposition 3 In a problem withn agents, error bound on the solution quality for VAX
with an approximation parameter ofε is given bynε.

Proof. VAX prunes a joint policy only if the heuristic value (upper bound) is greater
than the threshold by atleastε. Thus, at each agent an error of atmostε is introduced.
Hence, there is an overall error bound ofnε.

5 Experimental Results

All our experiments were conducted on the sensor network domain provided in Sec-
tion 2. Network configurations presented in Figure 4 were used in these experiments.
Algorithms that we experimented with as part of this paper include GOA, SPIDER,
SPIDER-ABS and VAX. We performed two sets of experiments: (i) firstly, we com-
pared the run-time performance of the algorithms mentioned above and (ii) secondly,
we experimented with VAX to study the tradeoff between run-time and solution quality.
Experiments were terminated if they exceeded the time limit of 10000 seconds1.

Figure 5(a) provides the run-time comparisons between the optimal algorithms
GOA, SPIDER, SPIDER-Abs and the approximate algorithm, VAX with varying ep-
silons. X-axis denotes the type of sensor network configuration used, while Y-axis in-
dicates the amount of time taken (on a log scale) to compute the optimal solution. The

1Machine specs for all experiments: Intel Xeon 3.6 GHZ processor, 2GB RAM

12



time horizon of policy computation for all the configurations was 3. For each configu-
ration (3-chain, 4-chain, 4-star and 5-star), there are five bars indicating the time taken
by GOA, SPIDER, SPIDER-Abs and VAX with 2 different epsilons. GOA did not
terminate within the time limit for 4-star and 5-star configurations. SPIDER-Abs dom-
inated the other two optimal algorithms for all the configurations. For instance, for the
3-chain configuration, SPIDER-ABS provides 230-fold speedup over GOA and 2-fold
speedup over SPIDER and for the 4-chain configuration it provides 22-fold speedup
over GOA and 4-fold speedup over SPIDER. VAX with two different approximation
parameters (ε was 40 and 80 respectively for VAX-1 and VAX-2) provided a further
improvement in performance over SPIDER-Abs. For instance, for the 5-star configu-
ration VAX-2 provided a 41-fold speedup over SPIDER-Abs.

Figures 5(b) provides a comparison of the solution quality obtained using the dif-
ferent algorithms for the problems tested in Figure 5(a). X-axis denotes the solution
quality while Y-axis indicates the approximation parameter,ε. Since GOA, SPIDER,
and SPIDER-Abs are all global optimal algorithms, the solution quality is the same for
all those algorithms. VAX-1 and VAX-2 indicate the VAX algorithm for two different
approximation parameters. Even though set a highε we obtained an actual solution
quality that was close to the optimal solution quality. In 3-chain and 4-star configu-
rations both VAX-1 and VAX-2 have almost the same quality as the global optimal
algorithms. For other configurations as well, the loss in quality is less than 15% of the
optimal solution quality.

Figure 4:Sensor network configurations

Figure 5: Comparison of GOA, SPIDER, SPIDER-Abs and VAX for two different epsilons on
(a) Runtime and (b) Solution quality; (c) Time to solution for VAX with varying epsilon for T=4
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Figure 5(c) provides the time to solution for 3-chain and 4-chain configurations
with VAX (for varying epsilons). X-axis denotes the approximation parameter,ε used,
while Y-axis denotes the time taken to compute the solution (on a log-scale). The time
horizon for both configurations was 4. As epsilon is increased, the time to solution
decreases drastically. For instance, in the 3-chain case there was a total speedup of
50-fold when the epsilon was changed from 1 to 5. One interesting aspect with this
result is that this speedup is achieved without any loss in solution quality (remains at
261 for all the five epsilons). This was the case with both the configurations, the quality
remained the same irrespective of the approximation parameter.

6 Related Work

Researchers have typically employed two types of techniques for solving distributed
POMDPs. The first set of techniques compute global optimal solutions. Hansenet
al. [6] and Szeret al. [14] provide techniques that compute globally optimal solutions
without restricting the domain. Hansenet al. present an algorithm for solving partially
observable stochastic games (POSGs) based on dynamic programming and iterated
elimination of dominant policies. Szeret al. [14] provide an optimal heuristic search
method for solving Decentralized POMDPs with finite horizon (given a starting belief
point). This algorithm is based on the combination of a classical heuristic search algo-
rithm, A∗ and decentralized control theory. The key difference between SPIDER and
MAA* is that while SPIDER improves the joint policy one agent at a time, MAA* im-
proves it one time step at a time (simultaneously for all agents involved). Furthermore,
MAA* was illustrated only with two agents, while in our case we show results with
more than 2 agents.

The second set of techniques seek approximate policies. Emery-Montemerloet
al. [4] approximate POSGs as a series of one-step Bayesian games using heuristics to
find the future discounted value for actions. This algorithm trades off limited lookahead
for computational efficiency, resulting in policies that are locally optimal with respect
to the selected heuristic. We have earlier discussed Nairet al. [10]’s JESP algorithm
that uses dynamic programming to reach a local optimal for finite horizon decentralized
POMDPs. Researchers have also concentrated on policy search techniques for obtain-
ing locally optimal solutions. Peshkinet al.[12] and Bernsteinet al.[2] are examples of
such techniques that search for local optimal policies. Interactive POMDP (I-POMDP)
model by [5] is presented as an alternative to the distributed POMDP model and par-
ticle filters have been proposed to solve them. Though all the above techniques have
improved the efficiency of policy computation considerably, they are unable to provide
error bounds on the quality of the solution. This aspect of quality bounds differentiates
SPIDER from all the above techniques.
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