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ABSTRACT
Decentralized Markov Decision Processes (DEC-MDPs) are a pop-
ular model of agent-coordination problems in domains with uncer-
tainty and time constraints but very difficult to solve. In this paper,
we improve a state-of-the-art heuristic solution method for DEC-
MDPs, called OC-DEC-MDP, that has recently been shown to scale
up to larger DEC-MDPs. Our heuristic solution method, called
Value Function Propagation (VFP), combines two orthogonal im-
provements of OC-DEC-MDP. First, it speeds up OC-DEC-MDP
by an order of magnitude by maintaining and manipulating a value
function for each state (as a function of time) rather than a sepa-
rate value for each pair of state and time interval. Furthermore, it
achieves better solution qualities than OC-DEC-MDP because, as
our analytical results show, it does not overestimate the expected
total reward like OC-DEC- MDP. We test both improvements in-
dependently in a crisis-management domain as well as for other
types of domains. Our experimental results demonstrate a signifi-
cant speedup of VFP over OC-DEC-MDP as well as higher solution
qualities in a variety of situations.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence -
Multi-agent Systems

General Terms
Algorithms, Theory

Keywords
Multi-agent systems, Decentralized Markov Decision Process, Tem-
poral Constraints, Locally Optimal Solution

1. INTRODUCTION
The development of algorithms for effective coordination of multi-
ple agents acting as a team in uncertain and time critical domains
has recently become a very active research field with potential ap-
plications ranging from coordination of agents during a hostage res-
cue mission [12] to the coordination of Autonomous Mars Explo-
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ration Rovers [2]. Because of the uncertain and dynamic charac-
teristics of such domains, decision-theoretic models have received
a lot of attention in recent years, mainly thanks to their expres-
siveness and the ability to reason about the utility of actions over
time.
Key decision-theoretic models that have become popular in the lit-
erature include Decentralized Markov Decision Processes (DEC-
MDPs) and Decentralized, Partially Observable Markov Decision
Processes (DEC-POMDPs). Unfortunately, solving these models
optimally has been proven to be NEXP-complete [3], hence more
tractable subclasses of these models have been the subject of in-
tensive research. In particular, Network Distributed POMDP [14]
which assume that not all the agents interact with each other, Tran-
sition Independent DEC-MDP [2] which assume that transition func-
tion is decomposable into local transition functions or DEC-MDP
with Event Driven Interactions [1] which assume that interactions
between agents happen at fixed time points constitute good exam-
ples of such subclasses. Although globally optimal algorithms for
these subclasses have demonstrated promising results, domains on
which these algorithms run are still small and time horizons are
limited to only a few time ticks.
To remedy that, locally optimal algorithms have been proposed
[13] [4] [5]. In particular, Opportunity Cost DEC-MDP [4] [5],
referred to as OC-DEC-MDP, is particularly notable, as it has been
shown to scale up to domains with hundreds of tasks and double
digit time horizons. Additionally, OC-DEC-MDP is unique in its
ability to address both temporal constraints and uncertain method
execution durations, which is an important factor for real-world do-
mains. OC-DEC-MDP is able to scale up to such domains mainly
because instead of searching for the globally optimal solution, it
carries out a series of policy iterations; in each iteration it performs
a value iteration that reuses the data computed during the previous
policy iteration. However, OC-DEC-MDP is still slow, especially
as the time horizon and the number of methods approach large val-
ues. The reason for high runtimes of OC-DEC-MDP for such do-
mains is a consequence of its huge state space, i.e., OC-DEC-MDP
introduces a separate state for each possible pair of method and
method execution interval. Furthermore, OC-DEC-MDP overes-
timates the reward that a method expects to receive for enabling
the execution of future methods. This reward, also referred to as
the opportunity cost, plays a crucial role in agent decision making,
and as we show later, its overestimation leads to highly suboptimal
policies.
In this context, we present VFP (= Value Function P ropagation),
an efficient solution technique for the DEC-MDP model with tem-
poral constraints and uncertain method execution durations, that
builds on the success of OC-DEC-MDP. VFP introduces our two
orthogonal ideas: First, similarly to [7] [9] and [10], we maintain



and manipulate a value function over time for each method rather
than a separate value for each pair of method and time interval.
Such representation allows us to group the time points for which
the value function changes at the same rate (= its slope is con-
stant), which results in fast, functional propagation of value func-
tions. Second, we prove (both theoretically and empirically) that
OC-DEC- MDP overestimates the opportunity cost, and to remedy
that, we introduce a set of heuristics, that correct the opportunity
cost overestimation problem.
This paper is organized as follows: In section 2 we motivate this
research by introducing a civilian rescue domain where a team of
fire- brigades must coordinate in order to rescue civilians trapped in
a burning building. In section 3 we provide a detailed description of
our DEC-MDP model with Temporal Constraints and in section 4
we discuss how one could solve the problems encoded in our model
using globally optimal and locally optimal solvers. Sections 5 and
6 discuss the two orthogonal improvements to the state-of-the-art
OC-DEC-MDP algorithm that our VFP algorithm implements. Fi-
nally, in section 7 we demonstrate empirically the impact of our two
orthogonal improvements, i.e., we show that: (i) The new heuris-
tics correct the opportunity cost overestimation problem leading to
higher quality policies, and (ii) By allowing for a systematic trade-
off of solution quality for time, the VFP algorithm runs much faster
than the OC-DEC-MDP algorithm

2. MOTIVATING EXAMPLE
We are interested in domains where multiple agents must coordi-
nate their plans over time, despite uncertainty in plan execution
duration and outcome. One example domain is large-scale disaster,
like a fire in a skyscraper. Because there can be hundreds of civil-
ians scattered across numerous floors, multiple rescue teams have
to be dispatched, and radio communication channels can quickly
get saturated and useless. In particular, small teams of fire-brigades
must be sent on separate missions to rescue the civilians trapped in
dozens of different locations.
Picture a small mission plan from Figure (1), where three fire-
brigades have been assigned a task to rescue the civilians trapped
at site B, accessed from site A (e.g. an office accessed from the
floor)1. General fire fighting procedures involve both: (i) putting
out the flames, and (ii) ventilating the site to let the toxic, high tem-
perature gases escape, with the restriction that ventilation should
not be performed too fast in order to prevent the fire from spreading.
The team estimates that the civilians have 20 minutes before the fire
at site B becomes unbearable, and that the fire at site A has to be
put out in order to open the access to site B. As has happened in
the past in large scale disasters, communication often breaks down;
and hence we assume in this domain that there is no communica-
tion between the fire-brigades 1,2 and 3 (denoted as FB1, FB2 and
FB3). Consequently, FB2 does not know if it is already safe to ven-
tilate site A, FB1 does not know if it is already safe to enter site A
and start fighting fire at site B, etc. We assign the reward 50 for
evacuating the civilians from site B, and a smaller reward 20 for
the successful ventilation of site A, since the civilians themselves
might succeed in breaking out from site B.
One can clearly see the dilemma, that FB2 faces: It can only esti-
mate the durations of the “Fight fire at site A” methods to be exe-
cuted by FB1 and FB3, and at the same time FB2 knows that time
is running out for civilians. If FB2 ventilates site A too early, the
fire will spread out of control, whereas if FB2 waits with the venti-
lation method for too long, fire at site B will become unbearable for
the civilians. In general, agents have to perform a sequence of such

1We explain the EST and LET notation in section 3
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Figure 1: Civilian rescue domain and a mission plan. Dotted ar-
rows represent implicit precedence constraints within an agent.

difficult decisions; in particular, decision process of FB2 involves
first choosing when to start ventilating site A, and then (depend-
ing on the time it took to ventilate site A), choosing when to start
evacuating the civilians from site B. Such sequence of decisions
constitutes the policy of an agent, and it must be found fast because
time is running out.

3. MODEL DESCRIPTION
We encode our decision problems in a model which we refer to as
Decentralized MDP with Temporal Constraints 2. Each instance of
our decision problems can be described as a tuple 〈M, A, C, P, R〉
where M = {mi}|M|

i=1 is the set of methods, and A = {Ak}|A|
k=1

is the set of agents. Agents cannot communicate during mission
execution. Each agent Ak is assigned to a set Mk of methods,
such that

S|A|
k=1 Mk = M and ∀i,j;i6=jMi ∩ Mj = ø. Also, each

method of agent Ak can be executed only once, and agent Ak can
execute only one method at a time. Method execution times are
uncertain and P = {pi}|M|

i=1 is the set of distributions of method
execution durations. In particular, pi(t) is the probability that the
execution of method mi consumes time t. C is a set of tempo-
ral constraints in the system. Methods are partially ordered and
each method has fixed time windows inside which it can be exe-
cuted, i.e., C = C≺ ∪ C[ ] where C≺ is the set of predecessor
constraints and C[ ] is the set of time window constraints. For
c ∈ C≺, c = 〈mi, mj〉 means that method mi precedes method
mj i.e., execution of mj cannot start before mi terminates. In
particular, apart from multi-agent predecessor constraints, for an
agent Ak, all its methods form a chain linked by predecessor con-
straints. We assume, that the graph G = 〈M, C≺〉 is acyclic, does
not have disconnected nodes (the problem cannot be decomposed
into independent subproblems), and its source and sink vertices
identify the source and sink methods of the system. For c ∈ C[ ],
c = 〈mi, EST, LET 〉 means that execution of mi can only start
after the Earliest Starting Time EST and must finish before the
Latest End Time LET ; we allow methods to have multiple disjoint
time window constraints. Although distributions pi can extend to
infinite time horizons, given the time window constraints, the plan-
ning horizon ∆ = max〈m,τ,τ ′〉∈C[ ] τ ′ is considered as the mission

deadline. Finally, R = {ri}|M|
i=1 is the set of non-negative rewards,

i.e., ri is obtained upon successful execution of mi.
Since there is no communication allowed, an agent can only esti-
mate the probabilities that its methods have already been enabled

2One could also use the OC-DEC-MDP framework, which models
both time and resource constraints



by other agents. Consequently, if mj ∈ Mk is the next method
to be executed by the agent Ak (we also say, that agent Ak is at
method mj) and the current time is t ∈ [0, ∆], the agent has to
make a decision whether to Execute the method mj (denoted as
E), or to Wait (denoted as W). In case agent Ak decides to wait, it
remains idle for an arbitrary small time ε, and resumes operation at
the same place (= about to execute method mj) at time t + ε. In
case agent Ak decides to Execute the next method, two outcomes
are possible:
Success: The agent Ak receives reward rj so long as the follow-
ing conditions hold: (i) All the methods {mi|〈mi, mj〉 ∈ C≺}
that directly enable method mj have already been completed, (ii)
Execution of method mj started in some time window of method
mj , i.e., ∃〈mj ,τ,τ ′〉∈C[ ]

such that t ∈ [τ, τ ′], and (iii) Execution
of method mj finished inside the same time window, i.e., agent Ak

completed method mj in time less than or equal to τ ′−t. The agent
executes method mj until it detects that that the method is com-
pleted. The agent then moves to its next method (if such method
exists).
Failure: Agent Ak can detect if any of the above-mentioned condi-
tions does not hold, in which case it stops its execution. Although
methods mk ∈ {m|〈mj , m〉 ∈ C≺} will never become enabled,
other agents may still continue their execution.
The policy πk of an agent Ak is a function πk : Mk × [0, ∆] →
{W, E}, and πk(〈m, t〉) = a means, that if Ak is at method m at
time t, it will choose to perform the action a. Because of multiple
time windows of method execution, πk cannot simply be stored as
a set of pairs (Mk, tk), where tk is a point in time when the agent
switches from action W to action E (Figure 2) .
A joint team policy π = [πk]

|A|
k=1 is considered to be optimal (de-

noted as π∗), if it maximizes the sum of expected rewards for all
the agents.

Expected
total

reward

TimeTime window 1 Time window 2
EST1 EST2 LET1 LET2 

W E W E W E
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Figure 2: Agent policy for a method

4. SOLUTION TECHNIQUES

4.1 Optimal Algorithms
Optimal joint policy π∗ is usually found by using the Bellman up-
date principle, i.e., in order to determine the optimal policy for
method mj , optimal policies for methods mk ∈ {m|〈mj , m〉 ∈
C≺} are used. Unfortunately, for our model, the optimal pol-
icy for method mj also depends on policies for methods mi ∈
{m|〈m, mj〉 ∈ C≺}. This double dependency results from the
fact, that the expected reward for starting the execution of method
mj at time t also depends on the probability that method mj will
be enabled by time t. Consequently, if time is discretized and
method execution order is not given, the problem complexity is in
the NEXP-complete class [3]. This complexity could be reduced if

the Coverage Set Algorithm (CSA) [1] was used. However, CSA
complexity is double exponential in number of method enabling
time points, which ranges from 0 to ∆ for our domains.

4.2 Locally Optimal Algorithms
Following the limited applicability of globally optimal algorithms
for DEC-MDPs with Temporal Constraints, locally optimal algo-
rithms appear more promising. Specially, the OC-DEC-MDP algo-
rithm [4] is particularly significant, as it has shown to easily scale
up to domains with hundreds of methods. The idea of the OC-DEC-
MDP algorithm is to start with the earliest starting time policy π0

(according to which an agent will start executing the method m as
soon as m has a non-zero chance of being already enabled), and
then improve it iteratively, until no further improvement is possi-
ble. At each iteration, the algorithm starts with some policy π,
which uniquely determines the probabilities Pi,[τ,τ ′] EST ≤ τ <
τ ′ ≤ LET that method mi will be performed in the time interval
[τ, τ ′]. It then performs two steps:
Step 1: It propagates from sink methods to source methods the
values Vi,[τ,τ ′], that represent the expected utility for executing
method mi in the time interval [τ, τ ′]. This propagation uses the
probabilities Pi,[τ,τ ′] from previous algorithm iteration. We call
this step a value propagation phase.
Step 2: Given the values Vi,[τ,τ ′] from Step 1, the algorithm chooses
the most profitable method execution intervals which are stored in
a new policy π′. It then propagates the new probabilities Pi,[τ,τ ′]

from source methods to sink methods. We call this step a prob-
ability propagation phase. If policy π′ does not improve π, the
algorithm terminates.
There are two shortcomings of the OC-DEC-MDP algorithm that
we address in this paper. First, each of OC-DEC-MDP states is a
pair 〈mj , [τ, τ ′]〉, where [τ, τ ′] is a time interval in which method
mj can be executed. While such state representation is beneficial,
in that the problem can be solved with a standard value iteration al-
gorithm, it blurs the intuitive mapping from time t to the expected
total reward for starting the execution of mj at time t. Conse-
quently, if some method mi enables method mj , and the values
Vj,[τ,τ ′]∀τ,τ ′∈[0,∆] are known, the operation that calculates the val-
ues Vi,[τ,τ ′]∀τ, τ ′ ∈ [0, ∆] (during the value propagation phase),
runs in time O(I2), where I is the number of time intervals 3. Since
the runtime of the whole algorithm is proportional to the runtime of
this operation, especially for big time horizons ∆, the OC- DEC-
MDP algorithm runs slow.
Second, while OC-DEC-MDP emphasizes on precise calculation
of values Vj,[τ,τ ′], it fails to address a critical issue that determines
how the values Vj,[τ,τ ′] are split given that the method mj has mul-
tiple enabling methods. As we show later, OC-DEC-MDP splits
Vj,[τ,τ ′] into parts that may overestimate Vj,[τ,τ ′] when summed up
again. As a result, methods that precede the method mj overesti-
mate the value for enabling mj which, as we show later, can have
disastrous consequences. In the next two sections, we address both
of these shortcomings.

5. VALUE FUNCTION PROPAGATION (VFP)
The general scheme of the VFP algorithm is identical to the OC-
DEC-MDP algorithm, in that it performs a series of policy im-
provement iterations, each one involving a Value and Probability
Propagation Phase. However, instead of propagating separate val-
ues, VFP maintains and propagates the whole functions, we there-
fore refer to these phases as the value function propagation phase
and the probability function propagation phase. To this end, for
3Similarly for the probability propagation phase



each method mi ∈ M , we define three new functions (related to
each other in Equation 3):

• Value Function, denoted as vi(t), that maps time t ∈ [0, ∆]
to the expected total reward for starting the execution of method
mi at time t.

• Opportunity Cost Function, denoted as Vi(t), that maps
time t ∈ [0, ∆] to the expected total reward for starting the
execution of method mi at time t assuming that mi is en-
abled.

• Probability Function, denoted as Pi(t), that maps time t ∈
[0, ∆] to the probability that method mi will be completed
before time t.

Such functional representation allows us to easily read the current
policy, i.e., if an agent Ak is at method mi at time t, then it will
wait as long as value function vi(t) will be greater in the future (see
Figure 2). Formally:

πk(〈mi, t〉) =


W if ∃t′>t such that vi(t) < vi(t

′)
E otherwise.

We now develop an analytical technique for performing the value
function and probability function propagation phases.

5.1 Value Function Propagation Phase
Suppose, that we are performing a value function propagation phase
during which the value functions are propagated from the sink meth-
ods to the source methods. At any time during this phase we en-
counter a situation shown in Figure 3, where opportunity cost func-
tions [Vjn ]Nn=0 of methods [mjn ]Nn=0 are known, and the opportu-
nity cost Vi0 of method mi0 is to be derived. Suppose the current
time is t and agent A is at method mi0 . If 〈mi0 , τ, τ ′〉 ∈ C[ ] and
t ∈ [τ, τ ′] then the agent can start executing the method mi0 . With
probability pi0(t

′) the agent will need t′ time units to complete the
method and as long as t′ < τ ′ − t, the method mi0 will become
enabled, and the agent will obtain the reward ri0 . At this point, the
agent can also expect to obtain Vjn,i0(t + t′) n = 1, ..., N from
the methods that mi0 enables. Formally, the function Vi0 is derived
by: 4

Vi0(t) =

8>><>>:
R τ ′−t

0
pi0(t

′)(ri0 +
PN

n=0 Vjn,i0(t + t′))dt′

if ∃〈mi0τ,τ ′〉∈C[ ]
such that t ∈ [τ, τ ′]

0 otherwise

(1)

Assume for now, that Vjn,i0 represents a full opportunity cost that
the agent receives, postponing the discussion on different tech-
niques for splitting the opportunity cost Vj0 into [Vj0,ik ]Kk=0 until
section 6. We now show how to derive Vj0,i0 (derivation of Vjn,i0

for n 6= 0 follows the same scheme).
Let V j0,i0(t) be the opportunity cost of starting the execution of
method mj0 at time t assuming that method mi0 has been com-
pleted. It can be derived by multiplying Vj0 by the probability
functions of all methods other than mi0 that enable mj0 . For-
mally:

V j0,i0(t) = Vj0(t) ·
KY

k=1

Pik (t).

Note, that this derivation is only approximate because in general
the probability functions [Pik ]Kk=1 do not have to represent inde-
4Note, that for t ∈ [τ, τ ′], if h(t) := ri0 +

PN
n=0 Vjn,i0(τ

′ − t)
then Vi0 is a convolution of p and h: Vi0(t) = (pi0 ∗ h)(τ ′ − t).
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Figure 3: Fragment of an MDP of agent Ak. Probability func-
tions propagate forward (left to right) whereas value functions
propagate backward (right to left).

pendent random variables (similar approximation was used in [4],
[5]). Observe now, that V j0,i0 does not have to be monotoni-
cally decreasing, i.e., delaying the execution of the method mi0

can sometimes be profitable. Consequently the opportunity cost
Vj0,i0(t) of enabling method mi0 at time t must be greater than
or equal to V j0,i0 . Furthermore, Vj0,i0 should be non-increasing.
Formally:

Vj0,i0 = min
f∈F

f (2)

Where F = {f | f ≥ V j0,i0 and f(t) ≥ f(t′) ∀t<t′}.

Knowing the opportunity cost Vi0 , we can then easily derive the
value function vi0 . If agent A is about to start the execution of
mi0 it means, that A must have completed its part of the mission
plan up to the method mi0 . Since A does not know if other agents
have completed methods [mlk ]k=K

k=1 , in order to derive vi0 , it has
to multiply Vi0 by the probability functions of all methods of other
agents that enable mi0 . Formally:

vi0(t) = Vi0(t) ·
KY

k=1

Plk (t) (3)

Where the dependency of [Plk ]Kk=1 is also ignored.
We have consequently shown a general scheme how to propagate
the value functions: Knowing [vjn ]Nn=0 and [Vjn ]Nn=0 of methods
[mjn ]Nn=0 we can derive vi0 and Vi0 of method mi0 . In general, the
value function propagation scheme starts with sink nodes. It then
visits at each time a method m, such that all the methods that m
enables have already been marked as visited. The value function
propagation phase terminates when all the source methods have
been marked as visited.

5.2 Reading the Policy
In order to determine the policy of agent Ak for the method mj0

we must identify the set Zj0 of intervals of inactivity [z, z′] ⊂
[0, ..., ∆], such that:

∀t∈[z,z′] πk(〈mj0 , t〉) = W.

One can easily identify the intervals of Zj0 by looking at the time
intervals in which the value function vj0 does not decrease mono-
tonically (Figure 2).



5.3 Probability Function Propagation Phase
Assume now, that value functions and opportunity cost values have
all been propagated from sink methods to source nodes and the sets
Zj for all methods mj ∈ M have been identified. Since value
function propagation phase was using probabilities Pi(t) for meth-
ods mi ∈ M and times t ∈ [0, ∆] found at previous algorithm
iteration, we now have to find new values Pi(t), in order to prepare
the algorithm for its next iteration. We now show how in the general
case (Figure 3) propagate the probability functions forward through
one method, i.e., we assume that the probability functions [Pik ]Kk=0

of methods [mik ]Kk=0 are known, and the probability function Pj0

of method mj0 must be derived. Let pj0 be the probability distri-
bution function of method mj0 execution duration, and Zj0 be the
set of intervals of inactivity for method mj0 , found during the last
value function propagation phase. If we ignore the dependency of
[Pik ]Kk=0 then the probability P j0(t) that the execution of method
mj0 starts before time t is given by:

P j0(t) =

(QK
k=0 Pik (τ) if ∃(τ, τ ′) ∈ Zj0 s.t. t ∈ (τ, τ ′)QK
k=0 Pik (t) otherwise.

Because inside the interval of inactivity (τ, τ ′), the probability that
the execution of method mj0 has started does not increase.
Given P j0(t), the probability Pj0(t) that method mj0 will be com-
pleted by time t is derived by:

Pj0(t) =

Z t

0

Z t′

0

∂P j0

∂t
(t′′) · pj0(t

′ − t′′)dt′′ dt′ (4)

Also written compactly as
∂Pj0

∂t
= pj0 ∗

∂P j0
∂t

.
We have consequently shown how to propagate the probability func-
tions [Pik ]Kk=0 of methods [mik ]Kk=0 to obtain the probability func-
tion Pj0 of method mj0 . The general, the probability function
propagation phase starts with source methods msi for which we
know that Psi = 1 since they are enabled by default. We then
visit at each time a method m such that all the methods that enable
m have already been marked as visited. The probability function
propagation phase terminates when all the sink methods have been
marked as visited.

5.4 The Algorithm
Similarly to the OC-DEC-MDP algorithm, VFP starts the policy
improvement iterations with the earliest starting time policy π0.
Then at each iteration it: (i) Propagates the value functions [vi]

|M|
i=1

using the old probability functions [Pi]
|M|
i=1 from previous algo-

rithm iteration and establishes the new sets [Zi]
|M|
i=1 of method in-

activity intervals, and (ii) propagates the new probability functions
[P ′

i ]
|M|
i=1 using the newly established sets [Zi]

|M|
i=1 . These new func-

tions [P ′
i ]
|M|
i=1 are then used in the next iteration of the algorithm.

Similarly to OC-DEC-MDP, VFP terminates if a new policy does
not improve the policy from the previous algorithm iteration within
some parameter ε.

5.5 Implementation of Function Operations
So far, we have derived the functional operations for value function
and probability function propagation without choosing any func-
tion representation. In general, our functional operations can han-
dle continuous time, and one has freedom to choose a desired func-
tion approximation technique, such as piecewise linear [7], piece-
wise constant [9], or piecewise gamma [11] approximation. How-
ever, since one of our goals is to compare VFP with the exist-
ing OC-DEC- MDP algorithm, that works only for discrete time,

we also discretize time, and choose to approximate value func-
tions and probability functions with piecewise linear (PWL) func-
tions.
When the VFP algorithm propagates the value functions and prob-
ability functions, it constantly carries out operations represented by
equations (1) and (4) and we have already shown that these opera-
tions are equivalent to computing the convolution f(t) = (p∗h)(t).
If time is discretized, functions p(t) and h(t) are discrete; how-
ever, h(t) can be nicely approximated with a PWL function bh(t),
which is exactly what VFP does. As a result, instead of perform-
ing O(∆2) multiplications to compute f(t), VFP only needs to
perform O(k ·∆) multiplications to compute f(t), where k is the
number of linear segments of bh(t) (note, that since h(t) is mono-
tonic, bh(t) is usually close to h(t) with k � ∆). Since Pi values
are in range [0, 1] and Vi values are in range [0,

P
mi∈M ri], we

suggest to approximate Vi(t) with bVi(t) within error εV , and Pi(t)

with bPi(t) within error εP . We now prove that the overall approx-
imation error accumulated during the value function propagation
phase can be expressed in terms of εP and εV :

THEOREM 1. Let C≺ be a set of precedence constraints of a
DEC-MDP with Temporal Constraints, and εP and εV be the prob-
ability function and value function approximation errors respec-
tively. The overall error επ = maxV supt∈[0,∆]|V (t) − bV (t)| of
value function propagation phase is then bounded by:
|C≺|

“
εV + ((1 + εP )|C≺| − 1)

P
mi∈M ri

”
.

PROOF. In order to establish the bound for επ , we first prove
by induction on the size of C≺, that the overall error of probabil-
ity function propagation phase, επ(P ) = maxP supt∈[0,∆]|P (t)−bP (t)| is bounded by (1 + εP )|C≺| − 1.
Induction base: If n = 1 only two methods are present, and we
will perform the operation identified by Equation (4) only once,
introducing the error επ(P ) = εP = (1 + εP )|C≺| − 1.
Induction step: Suppose, that επ(P ) for |C≺| = n is bounded by
(1 + εP )n − 1, and we want to prove that this statement holds for
|C≺| = n. Let G = 〈M, C≺〉 be a graph with at most n + 1

edges, and G = 〈M, C≺〉 be a subgraph of G, such that C≺ =
C≺ − {〈mi, mj〉}, where mj ∈ M is a sink node in G. From the
induction assumption we have, that C≺ introduces the probability
propagation phase error bounded by (1 + εP )n − 1. We now add
back the link {〈mi, mj〉} to C≺, which affects the error of only
one probability function, namely Pj , by a factor of (1 + εP ). Since
probability propagation phase error in C≺ was bounded by (1 +

εP )n − 1, in C≺ = C≺ ∪ {〈mi, mj〉} it can be at most ((1 +
εP )n − 1)(1 + εP ) < (1 + εP )n+1 − 1. Thus, if opportunity cost
functions are not overestimated, they are bounded by

P
mi∈M ri

and the error of a single value function propagation operation will
be at mostZ ∆

0
p(t)(εV +((1+εP )

|C≺|−1)
X

mi∈M

ri) dt < εV +((1+εP )
|C≺|−1)

X
mi∈M

ri.

Since the number of value function propagation operations is |C≺|,
the total error επ of the value function propagation phase is bounded
by: |C≺|

“
εV + ((1 + εP )|C≺| − 1)

P
mi∈M ri

”
.

6. SPLITTING THE OPPORTUNITY COST
FUNCTIONS

In section 5 we left out the discussion about how the opportu-
nity cost function Vj0 of method mj0 is split into opportunity cost
functions [Vj0,ik ]Kk=0 sent back to methods [mik ]Kk=0 , that di-
rectly enable method mj0 . So far, we have taken the same ap-



proach as in [4] and [5] in that the opportunity cost function Vj0,ik

that the method mik sends back to the method mj0 is a mini-
mal, non-increasing function that dominates function V j0,ik (t) =
(Vj0 ·

Q
k′∈{0,...,K}

k′ 6=k

Pik′ )(t). We refer to this approach, as heuris-

tic H〈1,1〉. Before we prove that this heuristic overestimates the
opportunity cost, we discuss three problems that might occur when
splitting the opportunity cost functions: (i) overestimation, (ii) un-
derestimation and (iii) starvation. Consider the situation in Figure
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Figure 4: Splitting the value function of method mj0 among
methods [mik ]Kk=0.

(4) when value function propagation for methods [mik ]Kk=0 is per-
formed. For each k = 0, ..., K, Equation (1) derives the oppor-
tunity cost function Vik from immediate reward rk and opportu-
nity cost function Vj0,ik . If m0 is the only methods that precedes
method mk, then V ik,0 = Vik is propagated to method m0, and
consequently the opportunity cost for completing the method m0 at
time t is equal to

PK
k=0 Vik,0(t). If this cost is overestimated, then

an agent A0 at method m0 will have too much incentive to finish the
execution of m0 at time t (e.g. instead of postponing the execution
to the start time of the next time window). Consequently, although
the probability P (t) that m0 will be enabled by other agents by
time t is low, agent A0 might still find the expected utility of start-
ing the execution of m0 at time t higher than the expected utility of
doing it later. As a result, it will choose at time t to start executing
method m0 instead of waiting, which can have disastrous conse-
quences. Similarly, if

PK
k=0 Vik,0(t) is underestimated, agent A0

might loose interest in enabling the future methods [mik ]Kk=0 and
just focus on maximizing the chance of obtaining its immediate
reward r0. Since this chance is increased when agent A0 waits5,
it will consider at time t to be more profitable to wait, instead of
starting the execution of m0, which can have similarly disastrous
consequences. Finally, if Vj0 is split in a way, that for some k,
Vj0,ik = 0, it is the method mik that underestimates the oppor-
tunity cost of enabling method mj0 , and the similar reasoning ap-
plies. We call such problem a starvation of method mk. That short
discussion shows the importance of splitting the opportunity cost
function Vj0 in such a way, that overestimation, underestimation,
and starvation problem is avoided. We now prove that:

THEOREM 2. Heuristic H〈1,1〉 can overestimate the opportu-
nity cost.

PROOF. We prove the theorem by showing a case where the
overestimation occurs. For the mission plan from Figure (4), let
H〈1,1〉 split Vj0 into [V j0,ik = Vj0 ·

Q
k′∈{0,...,K}

k′ 6=k

Pik′ ]
K
k=0 sent to

methods [mik ]Kk=0 respectively. Also, assume that methods [mik ]Kk=0
provide no local reward and have the same time windows, i.e.,
rik = 0; ESTik = 0, LETik = ∆ for k = 0, ..., K. To prove the
overestimation of opportunity cost, we must identify t0 ∈ [0, ..., ∆]

5Assuming LET0 � t

such that the opportunity cost
PK

k=0 Vik (t) for methods [mik ]Kk=0

at time t ∈ [0, .., ∆] is greater than the opportunity cost Vj0(t).
From Equation (1) we have:

Vik
(t) =

Z ∆−t

0
pik

(t′)Vj0,ik
(t + t′)dt′

Summing over all methods [mik ]Kk=0 we obtain:

KX
k=0

Vik
(t) =

KX
k=0

Z ∆−t

0
pik

(t′)Vj0,ik
(t + t′)dt′ (5)

≥
KX

k=0

Z ∆−t

0
pik

(t′)V j0,ik
(t + t′)dt′

=

KX
k=0

Z ∆−t

0
pik

(t′)Vj0 (t + t′)
Y

k′∈{0,...,K}
k′ 6=k

Pik′ (t + t′)dt′

Let c ∈ (0, 1] be a constant and t0 ∈ [0, ∆] be such that ∀t>t0

and ∀k=0,..,K we have
Q

k′∈{0,...,K}
k′ 6=k

Pik′ (t) > c. Then:

KX
k=0

Vik
(t0) >

KX
k=0

Z ∆−t0

0
pik

(t′)Vj0 (t0 + t′) · c dt′

Because Pjk′ is non-decreasing. Now, suppose there exists t1 ∈
(t0, ∆], such that

PK
k=0

R t1−t0
0

pik (t′)dt′ >
Vj0 (t0)

c·Vj0 (t1)
. Since de-

creasing the upper limit of the integral over positive function also
decreases the integral, we have:

KX
k=0

Vik
(t0) > c

KX
k=0

Z t1

t0

pik
(t′ − t0)Vj0 (t′)dt′

And since Vj0(t
′) is non-increasing we have:

KX
k=0

Vik
(t0) > c · Vj0 (t1)

KX
k=0

Z t1

t0

pik
(t′ − t0)dt′ (6)

= c · Vj0 (t1)

KX
k=0

Z t1−t0

0
pik

(t′)dt′

> c · Vj0 (t1)
Vj(t0)

c · Vj(t1)
= Vj(t0)

Consequently, the opportunity cost
PK

k=0 Vik (t0) of starting the
execution of methods [mik ]Kk=0 at time t ∈ [0, .., ∆] is greater
than the opportunity cost Vj0(t0) which proves the theorem. We
demonstrate in the experimental section that the overestimation of
the opportunity cost is easily observable in practice.
To remedy the problem of opportunity cost overestimation, we pro-
pose three alternative heuristics that split the opportunity cost func-
tions:

• Heuristic H〈1,0〉: Only one method, mik gets the full ex-
pected reward for enabling method mj0 , i.e., V j0,ik′ (t) = 0

for k′ ∈ {0, ..., K}\{k} and V j0,ik (t) = (Vj0 ·
Q

k′∈{0,...,K}
k′ 6=k

Pik′ )(t).

• Heuristic H〈1/2,1/2〉: Each method [mik ]Kk=0 gets the full
opportunity cost for enabling method mj0 divided by the
number K of methods enabling the method mj0 , i.e., V j0,ik (t) =
1
K

(Vj0 ·
Q

k′∈{0,...,K}
k′ 6=k

Pik′ )(t) for k ∈ {0, ..., K}.

• Heuristic bH〈1,1〉: This is a normalized version of the H〈1,1〉

heuristic in that each method [mik ]Kk=0 initially gets the full



opportunity cost for enabling the method mj0 . To avoid op-
portunity cost overestimation, we normalize the split func-
tions when their sum exceeds the opportunity cost function
to be split. Formally:

V j0,ik (t) =

8><>:
V

H〈1,1〉
j0,ik

(t) if
PK

k=0 V
H〈1,1〉

j0,ik
(t) < Vj0(t)

Vj0(t)
V

H〈1,1〉
j0,ik

(t)PK
k=0 V

H〈1,1〉
j0,ik

(t)
otherwise

Where V
H〈1,1〉

j0,ik
(t) = (Vj0 ·

Q
k′∈{0,...,K}

k′ 6=k

Pjk′ )(t).

For the new heuristics, we now prove, that:
THEOREM 3. Heuristics H〈1,0〉, H〈1/2,1/2〉 and bH〈1,1〉 do not

overestimate the opportunity cost.
PROOF. When heuristic H〈1,0〉 is used to split the opportunity

cost function Vj0 , only one method (e.g. mik ) gets the opportunity
cost for enabling method mj0 . Thus:

KX
k′=0

Vi′
k
(t) =

Z ∆−t

0
pik

(t′)Vj0,ik
(t + t′)dt′ (7)

And since Vj0 is non-increasing

≤
Z ∆−t

0
pik

(t′)Vj0 (t + t′) ·
Y

k′∈{0,...,K}
k′ 6=k

Pjk′ (t + t′)dt′

≤
Z ∆−t

0
pik

(t′)Vj0 (t + t′)dt′ ≤ Vj0 (t)

The last inequality is also a consequence of the fact that Vj0 is
non-increasing.
For heuristic H〈1/2,1/2〉 we similarly have:

KX
k=0

Vik
(t) ≤

KX
k=0

Z ∆−t

0
pik

(t′)
1

K
Vj0 (t + t′)

Y
k′∈{0,...,K}

k′ 6=k

Pjk′ (t + t′)dt′

≤
1

K

KX
k=0

Z ∆−t

0
pik

(t′)Vj0 (t + t′)dt′

≤
1

K
·K · Vj0 (t) = Vj0 (t).

For heuristic bH〈1,1〉, the opportunity cost function Vj0 is by def-
inition split in such manner, that

PK
k=0 Vik (t) ≤ Vj0(t). Conse-

quently, we have proved, that our new heuristics H〈1,0〉, H〈1/2,1/2〉

and bH〈1,1〉 avoid the overestimation of the opportunity cost.
The reason why we have introduced all three new heuristics is the
following: Since H〈1,1〉 overestimates the opportunity cost, one
has to choose which method mik will receive the reward from en-
abling the method mj0 , which is exactly what the heuristic H〈1,0〉
does. However, heuristic H〈1,0〉 leaves K − 1 methods that pre-
cede the method mj0 without any reward which leads to starvation.
Starvation can be avoided if opportunity cost functions are split us-
ing heuristic H〈1/2,1/2〉, that provides reward to all enabling meth-
ods. However, the sum of split opportunity cost functions for the
H〈1/2,1/2〉 heuristic can be smaller than the non-zero opportunity
cost function for the H〈1,0〉 heuristic, which is clearly undesirable.
This is why we have proposed the bH〈1,1〉 heuristic, which by def-
inition avoids the overestimation, underestimation and starvation
problems.

7. EXPERIMENTAL EVALUATION
Since the VFP algorithm that we introduced provides two orthog-
onal improvements over the OC-DEC-MDP algorithm, the experi-
mental evaluation we performed consisted of two parts: In part 1,

we tested empirically the quality of solutions that an locally optimal
solver (either OC-DEC-MDP or VFP) finds, given it uses different
opportunity cost function splitting heuristic, and in part 2, we com-
pared the runtimes of the VFP and OC-DEC- MDP algorithms for
a variety of mission plan configurations.
Part 1: We first ran the VFP algorithm on a generic mission plan
configuration from Figure 4 where only methods mj0 , mi1 , mi2

and m0 were present. Time windows of all methods were set to
400, duration pj0 of method mj0 was uniform, i.e., pj0(t) = 1

400
and durations pi1 , pi2 of methods mi1 , mi2 were normal distribu-
tions, i.e., pi1 = N(µ = 250, σ = 20), and pi2 = N(µ =
200, σ = 100). We assumed that only method mj0 provided re-
ward, i.e. rj0 = 10 was the reward for finishing the execution of
method mj0 before time t = 400. We show our results in Figure
(5) where the x-axis of each of the graphs represents time whereas
the y-axis represents the opportunity cost. The first graph confirms,
that when the opportunity cost function Vj0 was split into opportu-
nity cost functions Vi1 and Vi2 using the H〈1,1〉 heuristic, the func-
tion Vi1 +Vi2 was not always below the Vj0 function. In particular,
Vi1(280) + Vi2(280) exceeded Vj0(280) by 69%. When heuris-
tics H〈1,0〉, H〈1/2,1/2〉 and bH〈1,1〉 were used (graphs 2,3 and 4),
the function Vi1 + Vi2 was always below Vj0 .
We then shifted our attention to the civilian rescue domain intro-
duced in Figure 1 for which we sampled all action execution du-
rations from the normal distribution N = (µ = 5, σ = 2)). To
obtain the baseline for the heuristic performance, we implemented
a globally optimal solver, that found a true expected total reward
for this domain (Figure (7a)). We then compared this reward with
a expected total reward found by a locally optimal solver guided
by each of the discussed heuristics. Figure (7a), which plots on
the y-axis the expected total reward of a policy complements our
previous results: H〈1,1〉 heuristic overestimated the expected total
reward by 280% whereas the other heuristics were able to guide the
locally optimal solver close to a true expected total reward.

............

...............

.................................................

(a) (b)

(c) (d)

Figure 6: Mission plan configurations: (a) civilian rescue do-
main, (b) chain of n methods, (c) tree of n methods with
branching factor = 3 and (d) square mesh of n methods.

Part 2: We then chose H〈1,1〉 to split the opportunity cost func-
tions and conducted a series of experiments aimed at testing the
scalability of VFP for various mission plan configurations, using
the performance of the OC-DEC-MDP algorithm as a benchmark.
We began the VFP scalability tests with a configuration from Figure
(6a) associated with the civilian rescue domain, for which method
execution durations were extended to normal distributions N(µ =
30, σ = 5), and the deadline was extended to ∆ = 200.
We decided to test the runtime of the VFP algorithm running with



Figure 5: Visualization of heuristics for opportunity costs splitting.

Figure 8: Scalability experiments for OC-DEC-MDP and VFP for different network configurations.

Figure 7: VFP performance in the civilian rescue domain.

three different levels of accuracy, i.e., different approximation pa-
rameters εP and εV were chosen, such that the cumulative error
of the solution found by VFP stayed within 1%, 5% and 10% of
the solution found by the OC- DEC-MDP algorithm. We then run
both algorithms for a total of 100 policy improvement iterations.
Figure (7b) shows the performance of the VFP algorithm in the
civilian rescue domain (y-axis shows the runtime in milliseconds).
As we see, for this small domain, VFP runs 15% faster than OC-
DEC-MDP when computing the policy with an error of less than
1%. For comparison, the globally optimal solved did not terminate
within the first three hours of its runtime which shows the strength
of the opportunistic solvers, like OC-DEC-MDP.
We next decided to test how VFP performs in a more difficult do-
main, i.e., with methods forming a long chain (Figure (6b)). We
tested chains of 10, 20 and 30 methods, increasing at the same
time method time windows to 350, 700 and 1050 to ensure that
later methods can be reached. We show the results in Figure (8a),

where we vary on the x-axis the number of methods and plot on
the y-axis the algorithm runtime (notice the logarithmic scale). As
we observe, scaling up the domain reveals the high performance of
VFP: Within 1% error, it runs up to 6 times faster than OC-DEC-
MDP.
We then tested how VFP scales up, given that the methods are ar-
ranged into a tree (Figure (6c)). In particular, we considered trees
with branching factor of 3, and depth of 2, 3 and 4, increasing at
the same time the time horizon from 200 to 300, and then to 400.
We show the results in Figure (8b). Although the speedups are
smaller than in case of a chain, the VFP algorithm still runs up to 4
times faster than OC-DEC-MDP when computing the policy with
an error of less than 1%.
We finally tested how VFP handles the domains with methods ar-
ranged into a n × n mesh, i.e., C≺ = {〈mi,j , mk,j+1〉} for i =
1, ..., n; k = 1, ..., n; j = 1, ..., n − 1. In particular, we consider
meshes of 3×3, 4×4, and 5×5 methods. For such configurations
we have to greatly increase the time horizon since the probabil-
ities of enabling the final methods by a particular time decrease
exponentially. We therefore vary the time horizons from 3000 to
4000, and then to 5000. We show the results in Figure (8c) where,
especially for larger meshes, the VFP algorithm runs up to one or-
der of magnitude faster than OC-DEC-MDP while finding a policy
that is within less than 1% from the policy found by OC- DEC-
MDP.

8. CONCLUSIONS
Decentralized Markov Decision Process (DEC-MDP) has been very
popular for modeling of agent-coordination problems, it is very dif-
ficult to solve, especially for the real-world domains. In this pa-
per, we improved a state-of-the-art heuristic solution method for
DEC-MDPs, called OC-DEC-MDP, that has recently been shown



to scale up to large DEC-MDPs. Our heuristic solution method,
called Value Function Propagation (VFP), provided two orthogo-
nal improvements of OC-DEC-MDP: (i) It speeded up OC-DEC-
MDP by an order of magnitude by maintaining and manipulating a
value function for each method rather than a separate value for each
pair of method and time interval, and (ii) it achieved better solution
qualities than OC-DEC-MDP because it corrected the overestima-
tion of the opportunity cost of OC-DEC-MDP.
In terms of related work, we have extensively discussed the OC-
DEC-MDP algorithm [4]. Furthermore, as discussed in Section 4,
there are globally optimal algorithms for solving DEC-MDPs with
temporal constraints [1] [12]. Unfortunately, they fail to scale up to
large-scale domains at present time. Beyond OC-DEC-MDP, there
are other locally optimal algorithms for DEC-MDPs and DEC-
POMDPs [8] [13], [14], yet, they have traditionally not dealt with
uncertain execution times and temporal constraints. Finally, value
function techniques have been studied in context of single agent
MDPs [7] [9]. However, similarly to [6], they fail to address the
lack of global state knowledge, which is a fundamental issue in
decentralized planning.
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