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ABSTRACT agents face in such security domains is uncertainty about the ad-
versaries they may be facing. For example, a security robot may
need to make a choice about which areas to patrol, and how often
416]. However, it will not know in advance exactly where a robber
ill choose to strike. A team of unmanned aerial vehicles (UAVS)
1] monitoring a region undergoing a humanitarian crisis may also

In adversarial multiagent domains, security, commonly defined as
the ability to deal with intentional threats from other agents, is a
critical issue. This paper focuses on domains where these threat
come from unknown adversaries. These domains can be modele

as Bayesian games; much work has been done on finding equilibria q h l icv. Th ke this decisi
for such games. However, it is often the case in multiagent security need to choose a patrolling policy. ey must make this decision

domains that one agent can commit to a mixed strategy which its without knowing in advance whether terrorists or other adversaries
adversaries observe before choosing their own strategies. In this"'ay be waltlng_to disrupt the mission a_t a given location. It may
case, the agent can maximize reward by finding an optimal strat- indeed be possible to model the motivations of types of adversaries

egy, without requiring equilibrium. Previous work has shown this the agent or agent team Is likely to face in order to target th_ese ad-
problem of optimal strategy selection to be NP-hard. Therefore, versaries more closely. However, in both cases, the security robot

we present a heuristic called ASAP, with three key advantages to ©F YAV team will not know exactly which kinds of adversaries may
address the problem. First, ASAP searches for the highest-rewardP® active on any given day.

strategy, rather than a Bayes-Nash equilibrium, allowing it to find A common app(rjozilcr? for choqsing a policy for agents in Such
feasible strategies that exploit the natural first-mover advantage of SC€narios is to model the scenarios as Bayesian games. A Bayesian

the game. Second, it provides strategies which are simple to under-ghame Isa ?ame In Wh('jCh agents may belO_E? to one or m(cj)re typ;afs;
stand, represent, and implement. Third, it operates directly on the (N€ yPe Of an agent determines its possible actions and payofts.

compact, Bayesian game representation, without requiring conver--tl;hekdis'["ibUtiQnf of %d;/ersarr]y typesl t(f;at an agelr;t W;]” face may
sion to normal form. We provide an efficient Mixed Integer Linear € Known or interred rom |st0r|ca. ata. Usually, these games
Program (MILP) implementation for ASAP, along with experimen- are analyzed according to the solution concept of a Bayes-Nash

tal results illustrating significant speedups and higher rewards Overequilibrium, an extfansion of th? Nash equilibrium for Bayesian'
other approaches. games. However, in many settings, a Nash or Bayes-Nash equi-

librium is not an appropriate solution concept, since it assumes that

Categories and Subject Descriptors the agents’ strategies are chosen simultaneously [5].
1.2.11 [Computing Methodologies]: Artificial Intelligence: Dis- In some settings, one player can commit to a strategy before

tributed Artificial Intelligence - Intelligent Agents the.other players chqose their strgtegies, and by dging S0, attain
a higher reward than if the strategies were chosen simultaneously.

General Terms These scenarios are known as Stackelberg games [6]. In a Stackel-
Security, Design, Theory berg game, a leader commits to a strategy first, and then a follower

(or group of followers) selfishly optimize their own rewardsn-
Keyv_vords ] sidering the action chosen by the leadear example, the security
Security of Agent Systems, Game Theory, Bayesian and Stackel-agent (leader) may first commit to a mixed strategy for patrolling
berg Games various areas in order to be unpredictable to the robbers (follow-

ers). The robbers, after observing the pattern of patrols over time,
1. INTRODUCTION can then choose their own strategy of choosing a location to rob.

To see the advantage of being the leader in a Stackelberg game,
In many multiagent domains, agents must act in order to pro- consider a simple game with the payoff table as shown in Table 1.
vide security against attacks by adversaries. A common issue thatThe leader is the row player and the follower is the column player.
Here, the leader’s payoff is listed first.
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However, if the leader commits to a uniform mixed strategy of this policy to be nondeterministic so that robbers cannot safely rob
playing 1 and 2 with equal (0.5) probability, the follower’s best certain locations, knowing that they will be safe from the security
response is to play 3 to get an expected payoff of 5 (10 and 0 with agents [14]. To demonstrate the utility of our algorithm, we use a
equal probability). The leader’'s payoff would then be 4 (3 and 5 simplified version of such a domain, expressed as a game.

with equal probability). In this case, the leader now has an incen-  The most basic version of our game consists of two players: the
tive to deviate and choose a pure strategy of 2 (to get a payoff of security agent (the leader) and the robber (the follower) in a world
5). However, this would cause the follower to deviate to strategy consisting ofm houses,l ... m. The security agent’s set of pure

2 as well, resulting in the Nash equilibrium. Thus, by committing strategies consists of possible routesidiouses to patrol (in an

to a strategy that is observed by the follower, and by avoiding the order). The security agent can choose a mixed strategy so that the
temptation to deviate, the leader manages to obtain a reward higherobber will be unsure of exactly where the security agent may pa-
than that of the best Nash equilibrium. trol, but the robber will know the mixed strategy the security agent

The problem of choosing an optimal strategy for the leader to has chosen. For example, the robber can observe over time how
commit to in a Stackelberg game is analyzed in [5] and found to often the security agent patrols each area. With this knowledge, the
be NP-hard in the case of a Bayesian game with multiple types of robber must choose a single house to rob. We assume that the rob-
followers. Thus, efficient heuristic techniques for choosing high- ber generally takes a long time to rob a house. If the house chosen
reward strategies in these games is an important open issue. Methby the robber is not on the security agent’s route, then the rob-
ods for finding optimal leader strategies for non-Bayesian games ber successfully robs the house. Otherwise, if it is on the security
[5] can be applied to this problem by converting the Bayesian game agent’s route, then the earlier the house is on the route, the easier
into a normal-form game by the Harsanyi transformation [8]. If, on it is for the security agent to catch the robber before he finishes
the other hand, we wish to compute the highest-reward Nash equi-robbing it.
librium, new methods using mixed-integer linear programs (MILPs)  We model the payoffs for this game with the following variables:
[17] may be used, since the highest-reward Bayes-Nash equilib-
rium is equivalent to the corresponding Nash equilibrium in the
transformed game. However, by transforming the game, the com- 4 , - value of the goods in hougdo the robber.
pact structure of the Bayesian game is lost. In addition, since the
Nash equilibrium assumes a simultaneous choice of strategies, the e c,: reward to the security agent of catching the robber.
advantages of being the leader are not considered.

In this paper we introduce an efficient heuristic method for ap-
proximating the optimal leader strategy for security domains, known o ;- probability that the security agent can catch the robber at
as ASAP (Agent Security via Approximate Policies). This method thelth house in the patrop{ < p; < I’ < 1).
has three key advantages. First, it directly searches for an optimal
strategy, rather than a Nash (or Bayes-Nash) equilibrium, thus al-  The security agent's set of possible pure strategies (patrol routes)
lowing it to find high-reward non-equilibrium strategies like the one  is denoted byX and includes al-tuplesi =< w1, wa, ..., wq >
in the above example. Second, it generates policies with a supportwith w1 ... wg = 1...m. where no two elements are equal (the
which can be expressed as a uniform distribution over a multiset of agent is not allowed to return to the same house). The robber’s
fixed size as proposed in [12]. This allows for policies that are sim- Set of possible pure strategies (houses to rob) is denot€g dnyd
ple to understand and represent [12], as well as a parameter (the sizécludes all integerg = 1...m. The payoffs (security agent,
of the multiset) that controls the simplicity of the policy and can be robber) for pure strategies; are:
tuned. Third, the method allows for a Bayes-Nash game to be ex-
pressed compactly without requiring conversion to a normal-form
game, allowing for large speedups over existing Nash methods such e pc, +(1—p;)(—v1,2), —prcg+(1—pi)(vi,q), forj =1 € s.
as [17] and [11]. i ) o ) ]

The rest of the paper is organized as follows. In Section 2 we With this structure ".[ is possmlg to‘ model many different types
fully describe the patrolling domain and its properties. Section 3 of robbers who have differing motivations; for example, one robber
introduces the Bayesian game, the Harsanyi transformation, andMay have a lower cost of getting caught than another, or may value
existing methods for finding an optimal leader’s strategy in a Stack- the goods in the various houses differently. If the distribution of
elberg game. Then, in Section 4 the ASAP algorithm is presented different robber types is known or mferreql from historical data,
for normal-form games, and in Section 5 we show how it can be then the game can be modeled as a Bayesian game [6].
adapted to the structure of Bayesian games with uncertain adver-
saries. Experimental results showing a higher reward and faster3. BAYESIAN GAMES
policy computation in comparison to existing Nash methods are
shown in Section 6. We then conclude with a discussion of related
work in Section 7.

e v ;. value of the goods in hougeo the security agent.

e ¢, cost to the robber of getting caught.

® —Ulx,Vl,q fij =1 ¢ 7.

A Bayesian game contains a set/@fagents, and each agent
must be one of a given set of typés. For our patrolling domain,
we have two agents, the security agent and the roldhas. the set
of security agent types artd is the set of robber types. Since there
2. THE PATROLLING DOMAIN is o_nly one type of security agert; c_ontains only one element.
During the game, the robber knows its type but the security agent
In most security patrolling domains, the security agents (like does not know the robber’s type. For each agent (the security agent
UAVs [1] or security robots [16]) cannot feasibly patrol all areas all or the robber):, there is a set of strategies and a utility function
the time. Instead, they must choose a policy by which they patrol w,, : 61 X 62 X o1 X 02 — R.
various routes at different times, taking into account factors such as A Bayesian game can be transformed into a normal-form game
the likelihood of crime in different areas, possible targets for crime, using the Harsanyi transformation [8]. Once this is done, new,
and the security agents’ own resources (number of security agentsJinear-program (LP)-based methods for finding high-reward strate-
amount of available time, fuel, etc.). It is usually beneficial for gies for normal-form games [5] can be used to find a strategy in the



transformed game; this strategy can then be used for the Bayesian3.2 ~Finding an Optimal Strategy
game. While methods exist for finding Bayes-Nash equilibria di-
rectly, without the Harsanyi transformation [10], they find only a
single equilibrium in the general case, which may not be of high
reward. Recent work [17] has led to efficient mixed-integer linear
program techniques to find the best Nash equilibrium for a given
agent. However, these techniques do require a normal-form game
and so to compare the policies given by ASAP against the optimal
policy, as well as against the highest-reward Nash equilibrium, we
must apply these techniques to the Harsanyi-transformed matrix.
The next two subsections elaborate on how this is done.

Although a Nash equilibrium is the standard solution concept for
games in which agents choose strategies simultaneously, in our se-
curity domain, the security agent (the leader) can gain an advantage
by committing to a mixed strategy in advance. Since the followers
(the robbers) will know the leader’s strategy, the optimal response
for the followers will be a pure strategy. Given the common as-
sumption, taken in [5], in the case where followers are indifferent,
they will choose the strategy that benefits the leader, there must
exist a guaranteed optimal strategy for the leader [5].

From the Bayesian game in Table 2, we constructed the Harsanyi
3.1 Harsanyi Transformation transformed bimatrix in Table 3. We denat = ¢°2 = ¢, and
Q= 0292 as the index sets of the security agent and robbers’ pure
strategies, respectively, witR and C' as the corresponding pay-
off matrices. R;; is the reward of the security agent a6; is
the reward of the robbers when the security agent takes pure strat-
egy: and the robbers take pure strateggyA mixed strategy for the

The first step in solving Bayesian games is to apply the Harsanyi
transformation [8] that converts the incomplete information game
into a normal form game. Given that the Harsanyi transformation
is a standard concept in game theory, we explain it briefly through

a simple example without introducing the mathematical formula-  gecyyrity agent is a probability distribution over its set of pure strate-
tions. Let us assume there are two robber typemdb in the gies and will be represented by a vector (pa1, pes; - - - Pl x|),
Bayesian game. Robberwill be active with probabilitya, and wherep,; > 0andY" p.: = 1. Here,p.; is the probability that
robberb will be active with probabilityl — «.. The rules described 4 secﬁritgagent will choose iith pur’e”strategy.

in Section 2 allow us to construct simple payoff tables. The optimal mixed strategy for the security agent can be found
Assume that there are two houses in the world (1 and 2) and i, ime polynomial in the number of rows in the normal form game

hence there are two patrol routes (pure strategies) for the agent:using the following linear program formulation from [5].

{1,2} and {2,1}. The robber can rob either house 1 or house 2 £ every possible pure strategyy the follower (the set of all
and hence he has two strategies (denotet} @ for robber type

robber types),
). Since there are two types assumed (denoted ardb), we ypes)
construct two payoff tables (shown in Table 2) corresponding to max Yo PriRij
the security agent playing a separate game with each of the two st. V' €Q, Y. puiCii > paiCijr
robber types with probabilities and1 — «. First, consider robber S pas jel‘” T e ! (1)
eX Fre —

typea. Borrowing the notation from the domain section, we assign
the following values to the variablesi . = v1,q = 3/4,v2,0 = Viex,Pzi >=0

v2,q = 1/4,¢2 = 1/2,¢4 = 1,p1 = 1,p> = 1/2. Using these Then, for all feasible follower strategi¢schoose the one that max-
valu_es we construct a base payoff tgble as the_payoff for the gameimizesziex paiRi;, the reward for the security agent (leader).
against robber type. For example, if the security agent chooses The,, “variables give the optimal strategy for the security agent.
route{1,2} when robber: is active, and robber chooses house 1, Note that while this method is polynomial in the number of rows
the r_obber receives a reward of 1 (for being caught) and the agent;, ihe transformed, normal-form game, the number of rows in-
receives a reward of 0.5 for catching the robber. The payoffs for the ¢reases exponentially with the number of robber types. Using this
game against robber typeare constructed using different values.  athod for a Bayesian game thus requires runq‘&ad”' separate
linear programs. This is not a surprise, since finding the optimal

Security agent]  {1,2} 12,1} strategy to commit to for the leader in a Bayesian game is NP-hard
Robber a [5].
1a -1,.5 -.375, .125
24 -.125, -.125 -1,.5
Robber b 4. HEURISTIC APPROACHES
1y -.9,.6 -.275, .225 Given that finding the optimal strategy for the leader is NP-hard,
2 -.025,-.025| -.9,.6 we provide a heuristic approach. In this heuristic we limit the pos-
sible mixed strategies of the leader to select actions with probabil-
Table 2: Payoff tables: Security Agent vs Robbers and b ities that are integer multiples af/k for a predetermined integer

k. Previous work [14] has shown that strategies with high entropy

Using the Harsanyi technique involves introducing a chance node are beneficial for security applications when opponents’ utilities
that determines the robber’s type, thus transforming the security are completely unknown. In our domain, if utilities are not con-
agent’s incomplete information regarding the robber into imperfect sidered, this method will result in uniform-distribution strategies.
information [3]. The Bayesian equilibrium of the game is then pre- One advantage of such strategies is that they are compact to rep-
cisely the Nash equilibrium of the imperfect information game. The resent (as fractions) and simple to understand; therefore they can
transformed, normal-form game is shown in Table 3. In the trans- be efficiently implemented by real organizations. We aim to main-
formed game, the security agent is the column player, and the settain the advantage provided by simple strategies for our security
of all robber types together is the row player. Suppose that robber application problem, incorporating the effect of the robbers’ re-
type a robs house 1 and robber typeobs house 2, while the se-  wards on the security agent’s rewards. Thus, the ASAP heuristic
curity agent chooses patrfl,2}. Then, the security agent and the  will produce strategies which ateuniform A mixed strategy is
robber receive an expected payoff corresponding to their payoffs denotedk-uniform if it is a uniform distribution on a multisef of
from the agent encountering robleat house 1 with probability pure strategies withS| = k. A multiset is a set whose elements
and robbeb at house 2 with probability — «. may be repeated multiple times; thus, for example, the mixed strat-



1.2 2.1}
{1a, 1o} —Ta— 9(1 — ), .ba+ .6(1 —a) —375a — .275(1 — a), .125a + .225(1 — a)
{Ta, 2} —1a — .025(1 — a), .ba — .025(1 — a) — 3750 — 9(1 — a), 1250 + .6(1 — )
{24, 1} — 1250 — .9(1 — ), —.125a + .6(1 — ) “To— 275(1 — @), o+ .225(1 — «)
24,2y} | —125a — .025(1 — ), —.1250 — .025(1 — ) —Ta— 9(1 — ), ba+ .6(1 — a)

Table 3: Harsanyi Transformed Payoff Table

egy corresponding to the multisét, 1, 2} would take strategy 1 e primal feasibility: Ax = b, + >0
with probability 2/3 and strategy 2 with probability 1/3. ASAP al- e -
lows the size of the multiset to be chosen in order to balance the ¢ dualfeasibility: A"y > ¢
complexity of the strategy reached with the goal that the identified
strategy will yield a high reward.

Another advantage of the ASAP heuristic is that it operates di- Note that this last condition implies that
rectly on the compact Bayesian representation, without requiring T - T
the Harsanyi transformation. This is because the different follower cr=xz Ay=>by,

(robber) types are independent of each other. Hence, evaluating, hich proves optimality for primal dual feasible solutionandy.
the leader strategy against a Harsanyi-transformed game matrix |, yhe following subsections, we first define the problem in its

is equivalent to evaluating against each of the game matrices for o<t intuititive form as a mixed-integer quadratic program, and

the individual follower types. This independence property iS eX- hen show how this problem can be converted into a mixed-integer
ploited in ASAP to yield a decomposition scheme. Note thatthe LP |inear program.

method introduced by [5] to compute optimal Stackelberg policies
is unlikely to be decomposable into a small number of games as it 4.1 Mixed-lnteger Quadratic Program
was shown to be NP-hard for Bayes-Nash problems. Finally, note

that ASAP requires the solution of only one optimization problem, = & begin with the case of a single type of follower. Let the
rather than solving a series of problems as in the LP method of [5]. /62der be the row player and the follower the column player. We

For a single follower type, the algorithm works the following denote by the vector of strategies of the leader anthe vector
way. Given a particulak, for each possible mixed strategyor the of strategies of the follower. We also dendteand@ the index
leader that corresponds to a multiset of sizevaluate the leader’s sets of the I_eader and follower’s pure stratt_egles, respectively. The
payoff fromz when the follower plays a reward-maximizing pure ~Payoff matricesk andC' correspond to:Rz;; is the reward of the
strategy. We then take the mixed strategy with the highest payoff. leader andﬁiz‘ is the reward of the follower whenb the leader takes

We need only to consider the reward-maximizing pure strate- PUre strategy and the follower takes pure strategyLet k be the
gies of the followers (robbers), since for a given fixed strategy ~ Si2€ Of the multiset. . .
of the security agent, each robber type faces a problem with fixed Ve first fix the policy of the leader to somieuniform policy
linear rewards. If a mixed strategy is optimal for the robber, then % The valuez; is the number of times pure strategjs used in
so are all the pure strategies in the support of that mixed strategy. 1€ k-uniform policy, which is selected with probability; /. We
Note also that because we limit the leader’s strategies to take onformulate the optimization problem the follower solves to find its
discrete values, the assumption from Section 3.2 that the followers ©Ptimal response to as the following linear program:

e complementary slackness;(A”y — ¢); = 0 for all 4.

will break ties in the leader’s favor is not significant, since ties will 1

be unlikely to arise. This is because, in domains where rewards are max ) 7 CuTi O

drawn from any random distribution, the probability of a follower JeQieX 2
having more than one pure optimal response to a given leader strat- st ZJ'EQ %=1

egy approaches zero, and the leader will have only a finite number 7=0.

of possible mixed strategies. The objective function maximizes the follower’s expected reward

Our approach to characterize the optimal strategy for the security given z, while the constraints make feasible any mixed stratggy

agent makes use of properties of linear programming. We briefly for the follower. The dual to this linear programming problem is
outline these results here for completeness, for detailed discussionthe following:

and proofs see one of many references on the topic, such as [2].

Every linear programming problem, such as: min  a 1
D PR @3)
machx\Ax:b,xzo, 5.0 a_;(k013wz jeq
has an associated dual linear program, in this case: From strong duality and complementary slackness we obtain that

the maximum reward value for the followeris the value of ev-
ery pure strategy witly; > 0, that is in the support of the optimal
These primal/dual pairs of problems satisfy weak duality: Forany =~ Mmixed strategy. Therefore each of these pure strategies is optimal.
andy primal and dual feasible solutions respectivelyz < v7y. Optimal solutions to the follower’'s problem are characterized by
Thus a pair of feasible solutions is optimaldfz = b7y, and linear programming optimality conditions: primal feasibility con-
the problems are said to satisfy strong duality. In fact if a linear straints in (2), dual feasibility constraints in (3), and complemen-
program is feasible and has a bounded optimal solution, then thetary slackness
dual is also feasible and there is a pait y* that satisfies? z* =

qj <

minb”y | ATy > ¢

bTy*. These optimal solutions are characterized with the following
optimality conditions (as defined in [2]):

1 .
a—ZkC’ija:i> =0 ]EQ.

i€ X



These conditions must be included in the problem solved by the Proof: Considerz, ¢q a feasible solution of (5). We will show
leader in order to consider only best responses by the follower to thatg, z;; = x:q; is a feasible solution of (6) of same objective

the k-uniform policy . function value. The equivalence of the objective functions, and
The leader seeks thie-uniform solutionz that maximizes its constraints 4, 6 and 7 of (6) are satisfied by construction. The fact
own payoff, given that the follower uses an optimal respar{se. thatd ", zi; = ziasy_ ., ¢; = 1 explains constraints 1, 2, and
Therefore the leader solves the following integer problem: 5 of (6). Constraint 3 of (6) is satisfied beca@‘?ex zij = kq;.
1 Let us now considet, z feasible for (6). We will show that and
max » Y T Rija(@); @i z; =Y o % are feasible for (5) with the same objective value.
i€X jEQ (4) In fact aﬁ constraints of (5) are readily satisfied by construction. To
st. DexTi=k see that the objectives match, notice thaj;if= 1 then the third
z; € {0,1,...,k}. constraint in (6) implies thap .., z:» = k, which means that

o . ,; = 0foralli € X and allj # h. Therefore,
Problem (4) maximizes the leader’s reward with the follower’s best zy = Oforalli € X andallj # eretore

responseq; for fixed leader’s policyr and hence denotegx);)
by selecting a uniform policy from a multiset of constant diz&Ve
complete this problem by including the characterizatiory(@f)
through linear programming optimality conditions. To simplify  This last equality is because both are 0 wheg k. This shows
writing the complementary slackness conditions, we will constrain that the transformation preserves the objective function value, com-
q(z) to be only optimal pure strategies by just considering integer pleting the proof.

Tiq; = E Zilqj = ZihQj = Zij-.
leQ

solutions ofg(x). The leader’s problem becomes: Given this transformation to a mixed-integer linear program (MILP),
1 we now show how we can apply our decomposition technique on
maxg, g Z Z ERijml-qj the MILP to obtain significant speedups for Bayesian games with
iEX jeQ multiple follower types.
s.t. dYuxi=k
2jeti =1 ®)
02 (@Y, LCya) < (1—g)M 5. DECOMPOSITION FOR MULTIPLE AD-
2 € {0,1, .. k} VERSARIES
gj € {07 1}.

The MILP developed in the previous section handles only one
Here, the constamt/ is some large number. The first and fourth follower. Since our security scenario contains multiple follower
constraints enforce &-uniform policy for the leader, and the sec- (robber) types, we change the response function for the follower
ond and fifth constraints enforce a feasible pure strategy for the from a pure strategy into a weighted combination over various pure
follower. The third constraint enforces dual feasibility of the fol- follower strategies where the weights are probabilities of occur-
lower’s problem (leftmost inequality) and the complementary slack- rence of each of the follower types.
ness constraint for an optimal pure stratedgr the follower (right-
most inequality). In fact, since only one pure strategy can be se-5.1 Decomposed MIQP
lected by the follower, say, = 1, this last constraint enforces that
a=3Y,cx 7Cinz: imposing no additional constraint for all other
pure strategies which havge = 0.

We conclude this subsection noting that Problem (5) is an in-

teger program with a non-convex quadratic objective in general, dex set of follower types. We also denote KyandQ the index

as the matrixRk need not be positive-semi-definite. Efficient solu- ) A

. ) . . sets of leader and followéis pure strategies, respectively. We also

tion methods for non-linear, non-convex integer problems remains - . S
. - . index the payoff matrices on each followigrconsidering the ma-

a challenging research question. In the next section we show a re-

. . . - ; tricesR! andC".
formulation of this problem as a linear integer programming prob- . . o . . .
- = : - Using this modified notation, we characterize the optimal solu-
lem, for which a number of efficient commercial solvers exist.

tion of follower I's problem given the leaders k-uniform poliey

To admit multiple adversaries in our framework, we modify the
notation defined in the previous section to reason about multiple
follower types. We denote bythe vector of strategies of the leader
andq’ the vector of strategies of followérwith L denoting the in-

4.2 Mixed-lnteger Linear Program with the following optimality conditions:
We can linearize the quadratic program of Problem 5 through the Z qé, = 1
change of variables;; = x;¢;, obtaining the following problem jeQ
1
maXgq,z Ziex Z]EQ %Rijzij a — Z chjﬂii > 0
s.t. ZiEX ZjEQ zij =k ieXl
2jeqii Sk g’ =) zCua) = 0
kqj' < ZieX Zij < k i€ X
ZjeQ g =1 q;- > 0
<(a=>. ++1Ci in)) < (1—gqj . S ) .
0<(a—2ex 5Cii(Xheqzin)) < (1 —q;)M Again, considering only optimal pure strategies for followesr
zij €{0,1,.....,k} problem we can linearize the complementarity constraint above.
q; €{0,1} We incorporate these constraints on the leader’s problem that se-
(6) lects the optimak-uniform policy. Therefore, given priori prob-

abilitiesp', with [ € L of facing each follower, the leader solves
PrROPOSITION 1. Problems (5) and (6) are equivalent. the following problem:



maxXg,q Z Z Z %Rijxiqé

i€X leL jEQ

iz =k

Z]‘gQ CI§ =1

0<(a' = Yiex 1Chm) < (1= )M
z; €40,1, ...k}

q; € {0,1}.

Problem (7) for a Bayesian game with multiple follower types

is indeed equivalent to Problem (5) on the payoff matrix obtained
from the Harsanyi transformation of the game. In fact, every pure

s.t.

@)

strategyj in Problem (5) corresponds to a sequence of pure strate-

giesj;, one for each followet € L. This means thag; = 1 if
and only ifqél = 1foralll € L. In addition, given the pri-

ori probabilitiesp’ of facing playerl, the reward in the Harsanyi
transformation payoff table iR;; = >,_, p'R};,. The same re-

lation holds betweer’ and C'. These relations between a pure

tively, constraint 6 ensures that all the adversaries are calculating
their best responses against a particular fixed policy of the agent.
This shows that the transformation preserves the objective function
value, completing the proof.

We can therefore solve this equivalent linear integer program
with efficient integer programming packages which can handle prob-
lems with thousands of integer variables. We implemented the de-
composed MILP and the results are shown in the following section.

6. EXPERIMENTAL RESULTS

The patrolling domain and the payoffs for the associated game
are detailed in Sections 2 and 3. We performed experiments for this
game in worlds of three and four houses with patrols consisting of
two houses. The description given in Section 2 is used to generate
a base case for both the security agent and robber payoff functions.
The payoff tables for additional robber types are constructed and
added to the game by adding a random distribution of varying size
to the payoffs in the base case. All games are normalized so that,

strategy in the equivalent normal form game and pure strategies infor each robber type, the minimum and maximum payoffs to the

the individual games with each followers are key in showing these
problems are equivalent.

5.2 Decomposed MILP

We can linearize the quadratic programming problem 7 through
the change of variableg; = z;¢}, obtaining the following prob-
lem

l
maXq,: Y cx dier Zje@ %Ri‘jzéj

s.t. ZiEX ZjEQ zij =k
ZjeQ Zﬁj <k
qu < ZieX Zﬁj <k
Yiedi=1

0< (@' =Y ex 105 (X heq #n) < (1 —gj)M
ZjEQ Zﬁj = ZjeQ Zzly
zl; €40,1,....,k}

q;v e {0,1}
(8)

PROPOSITION 2. Problems (7) and (8) are equivalent.

Proof: Considerz, ¢!, o' with [ € L a feasible solution of (7).
We will show thatg', o', 2}, = z:¢} is a feasible solution of (8)

of same objective function value. The equivalence of the objective
functions, and constraints 4, 7 and 8 of (8) are satisfied by con-
struction. The fact tha}_, ?zﬁj = @;88) . d; = 1 explains
constraints 1, 2, 5 and 6 of (8). Constraint 3 of (8) is satisfied be-
causey_,  zi; = k.

Lets now considet’, 2!, a! feasible for (8). We will show that
q',a' andz; = 3., z}; are feasible for (7) with the same ob-
jective value. In fact all constraints of (7) are readily satisfied by
construction. To see that the objectives match, notice for éach
oneq§ must equal 1 and the rest equal 0. Let us sathat: 1,
then the third constraint in (8) implies thaf ;. zﬁjl = k, which
means thakﬁj = 0forall € X and allj # 7. In particular this
implies that

o 11 1
Ti = Zij = Ziji = Zigps
JEQ

the last equality from constraint 6 of (8). Therefarg} = 2i;, ¢} =
zﬁj. This last equality is because both are 0 wheg# j;. Effec-

security agent and robber are 0 and 1, respectively.
Using the data generated, we performed the experiments using
four methods for generating the security agent’s strategy:

e uniform randomization
o ASAP

o the multiple linear programs method from [5] (to find the true
optimal strategy)

o the highest reward Bayes-Nash equilibrium, found using the
MIP-Nash algorithm [17]

The last three methods were applied using CPLEX 8.1. Because
the last two methods are designed for normal-form games rather
than Bayesian games, the games were first converted using the
Harsanyi transformation [8]. The uniform randomization method is
simply choosing a uniform random policy over all possible patrol
routes. We use this method as a simple baseline to measure the per-
formance of our heuristics. We anticipated that the uniform policy
would perform reasonably well since maximum-entropy policies
have been shown to be effective in multiagent security domains
[14]. The highest-reward Bayes-Nash equilibria were used in order
to demonstrate the higher reward gained by looking for an optimal
policy rather than an equilibria in Stackelberg games such as our
security domain.

Based on our experiments we present three sets of graphs to
demonstrate (1) the runtime of ASAP compared to other common
methods for finding a strategy, (2) the reward guaranteed by ASAP
compared to other methods, and (3) the effect of varying the pa-
rameterk, the size of the multiset, on the performance of ASAP.
In the first two sets of graphs, ASAP is run using a multiset of
80 elements; in the third set this number is varied. The first set of
graphs, shown in Figure 1 shows the runtime graphs for three-house
(left column) and four-house (right column) domains. Each of the
three rows of graphs corresponds to a different randomly-generated
scenario. Thes-axis shows the number of robber types the secu-
rity agent faces and thg-axis of the graph shows the runtime in
seconds. All experiments that were not concluded in 30 minutes
(1800 seconds) were cut off. The runtime for the uniform policy
is always negligible irrespective of the number of adversaries and
hence is not shown.

The ASAP algorithm clearly outperforms the optimal, multiple-
LP method as well as the MIP-Nash algorithm for finding the highest-
reward Bayes-Nash equilibrium with respect to runtime. For a
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reward. Results here are for the three-house domain. The trend is

domain of three houses, the optimal method cannot reach a solu-that as as the multiset size is increased, the runtime and reward level
tion for more than seven robber types, and for four houses it can- both increase. Not surprisingly, the reward increases monotonically
not solve for more than six types within the cutoff time in any of as the multiset size increases, but what is interesting is that there is
the three scenarios. MIP-Nash solves for even fewer robber typesrelatively little benefit to using a large multiset in this domain. In
within the cutoff time. On the other hand, ASAP runs much faster, all cases, the reward given by a multiset of 10 elements was within
and is able to solve for at least 20 adversaries for the three-houseat least 96% of the reward given by an 80-element multiset. The
scenarios and for at least 12 adversaries in the four-house scenarruntime does not always increase strictly with the multiset size;
ios within the cutoff time. The runtime of ASAP does not increase indeed in one example (scenario 2 with 20 robber types), using a
strictly with the number of robber types for each scenario, but in multiset of 10 elements took 1228 seconds, while using 80 elements
general, the addition of more types increases the runtime required. only took 617 seconds. In general, runtime should increase since a

The second set of graphs, Figure 2, shows the reward to the patrollarger multiset means a larger domain for the variables in the MILP,
agent given by each method for three scenarios in the three-houseand thus a larger search space. However, an increase in the number
(left column) and four-house (right column) domains. This reward of variables can sometimes allow for a policy to be constructed
is the utility received by the security agent in the patrolling game, more quickly due to more flexibility in the problem.
and not as a percentage of the optimal reward, since it was not pos-
sible to obtain the optimal reward as the number of robber types 7. SUMMARY AND RELATED WORK
increased. The uniform policy consistently provides the lowest re- ~°
ward in both domains; while the optimal method of course pro-  This paper focuses on security for agents patrolling in hostile en-
duces the optimal reward. The ASAP method remains consistently vironments. In these environments, intentional threats are caused
close to the optimal, even as the number of robber types increasesby adversaries about whom the security patrolling agents have in-
The highest-reward Bayes-Nash equilibria, provided by the MIP- complete information. Specifically, we deal with situations where
Nash method, produced rewards higher than the uniform method,the adversaries’ actions and payoffs are known but the exact ad-
but lower than ASAP. This difference clearly illustrates the gainsin versary type is unknown to the security agent. Agents acting in the
the patrolling domain from committing to a strategy as the leader real world quite frequently have such incomplete information about
in a Stackelberg game, rather than playing a standard Bayes-Nastother agents. Bayesian games have been a popular choice to model
strategy. such incomplete information games [3]. The Gala toolkit is one

The third set of graphs, shown in Figure 3 shows the effect of the method for defining such games [9] without requiring the game to
multiset size on runtime in seconds (left column) and reward (right be represented in normal form via the Harsanyi transformation [8];
column), again expressed as the reward received by the securityGala’'s guarantees are focused on fully competitive games. Much
agent in the patrolling game, and not a percentage of the optimal work has been done on finding optimal Bayes-Nash equilbria for
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Figure 3: Reward for ASAP using multisets of 10, 30, and 80
elements

subclasses of Bayesian games, finding single Bayes-Nash equilib-

ria for general Bayesian games [10] or approximate Bayes-Nash
equilibria [18]. Less attention has been paid to finding the optimal

strategy to commit to in a Bayesian game (the Stackelberg scenario

[15]). However, the complexity of this problem was shown to be
NP-hard in the general case [5], which also provides algorithms for
this problem in the non-Bayesian case.

Therefore, we present a heuristic called ASAP, with three key
advantages towards addressing this problem. First, ASAP searche
for the highest reward strategy, rather than a Bayes-Nash equilib-
rium, allowing it to find feasible strategies that exploit the natu-
ral first-mover advantage of the game. Second, it provides strate-
gies which are simple to understand, represent, and implement.

Third, it operates directly on the compact, Bayesian game represen-

tation, without requiring conversion to normal form. We provide
an efficient Mixed Integer Linear Program (MILP) implementation
for ASAP, along with experimental results illustrating significant
speedups and higher rewards over other approaches.

As mentioned earlier, out-uniform strategies are similar to the
k-uniform strategies of [12]. While that work provides epsilon
error-bounds based on ttkeuniform strategies, their solution con-
cept is still that of a Nash equilibrium, and they do not provide
efficient algorithms for obtaining sudttuniform strategies. This
contrasts with ASAP, where our emphasis is on a highly efficient
heuristic approach that is not focused on equilibrium solutions.

Finally the patrolling problem which motivated our work has re-
cently received growing attention from the multiagent community
due to its wide range of applications [4, 13]. However most of this
work is focused on either limiting energy consumption involved in
patrolling [7] or optimizing on criteria like the length of the path

traveled [4, 13], without reasoning about any explicit model of an
adversary[14].
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