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Abstract

Software personal assistants continue to be a topic of signif-
icant research interest. This paper outlines some of the im-
portant lessons learned from a successfully-deployed team of
personal assistant agents (Electric Elves) in an office envi-
ronment. In the Electric Elves project, a team of almost a
dozen personal assistant agents were continually active for
seven months. Each elf (agent) represented one person and
assisted in daily activities in an actual office environment.
This project led to several important observations about pri-
vacy, adjustable autonomy, and social norms in office envi-
ronments. This paper outlines some of the key lessons learned
and, more importantly, outlines our continued research to ad-
dress some of the concerns raised.1

Introduction
The topic of software personal assistants, particularly for
office environments, is of continued and growing research
interest (Scerriet al. 2002; Maheswaranet al. 2004;
Modi and Veloso 2005; CALO 2003; Pynadath and Tambe
2003). The goal is to provide software agent assistants for
individuals in an office as well as software agents that rep-
resent shared office resources. The resulting set of agents
coordinate as a team to facilitate routine office activities.

This paper outlines some key lessons learned during the
successful deployment of a team of a dozen agents, called
Electric Elves (E-Elves), which ran continually from June
2000 to December 2000 at the Information Sciences Institute
(ISI) at the University of Southern California (USC)(Scerri
et al. 2002; Chalupskyet al. 2001; Pynadath and Tambe
2003; 2001; Pynadathet al. 2000). Each elf (agent) acted as
an assistant to one person and aided in the daily activities of
an actual office environment. Originally, the E-Elves project
was designed to focus on team coordination among software
agents. However, while team coordination remained an in-
teresting challenge, several other unanticipated research is-
sues came to the fore. Among these new issues were ad-
justable autonomy (agents dynamically adjusting their own
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level of autonomy), as well as privacy and social norms in
office environments.

Several earlier publications outline the primary technical
contributions of E-Elves and research inspired by E-Elves in
detail. However, the goal of this paper is to highlight some
of what went wrong in the E-Elves project and provide a
broad overview of technical advances in the areas of concern
without providing specific technical details.

Description of Electric Elves
The Electric Elves (E-Elves) project deployed an agent or-
ganization at USC/ISI to support daily activities in a hu-
man organization(Pynadath and Tambe 2003; Chalupskyet
al. 2001). Dozens of routine tasks are required to ensure
coherence in a human organization’s activities, e.g., moni-
toring the status of activities, gathering information relevant
to the organization and keeping everyone in the organiza-
tion informed. Teams of software agents can aid humans
in accomplishing these tasks, facilitating the organization’s
coherent functioning, while reducing the burden on humans.

The overall design of the E-Elves is shown in Figure 1(a).
Each proxy is called Friday (after Robinson Crusoe’s man-
servant Friday) and acts on behalf of its user in the agent
team. The basic design of the Friday proxies is discussed
in detail in (Pynadath and Tambe 2003; Tambeet al. 2000)
(where they are referred to as TEAMCORE proxies). Fri-
day can perform a variety of tasks for its user. If a user is
delayed to a meeting, Friday can reschedule the meeting, in-
forming other Fridays, who in turn inform their users. If
there is a research presentation slot open, Friday may re-
spond to the invitation to present on behalf of its user. Friday
can also order its user’s meals (see Figure 2(a)) and facili-
tate informal meetings by posting the user’s location on a
Web page. Friday communicates with users via user work-
stations and using wireless devices, such as personal digital
assistants (PALM VIIs) and WAP-enabled mobile phones.
Figure 1(b) shows a PALM VII connected to a Global Po-
sitioning Service (GPS) device, for tracking users’ locations
and enabling wireless communication between Friday and a
user. Each Friday’s team behavior is based on a teamwork
model called STEAM(Tambe 1997). STEAM encodes and
enforces the constraints among roles that are required for the
success of the joint activity, e.g., meeting attendees should
arrive at a meeting simultaneously. When an important role
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Figure 1: (a) Overall E-Elves architecture, showing Friday
agents interacting with users. (b) Palm VII for communicat-
ing with users and GPS device for detecting their location.

within the team (e.g. role of a presenter for a research meet-
ing) opens up, the team needs to find the best person to fill
that role. To achieve this, the team auctions off the role, tak-
ing into consideration complex combinations of factors and
assigning the best-suited agent or user. Friday can bid on be-
half of its user, indicating whether its user is capable and/or
willing to fill a particular role.

Figure 2: Friday asking the user for input.

Adjustable Autonomy
Adjustable autonomy (AA) is clearly important to the E-
Elves because, despite the range of sensing devices, Friday
has considerable uncertainty about the user’s intentions and
even location, hence Friday will not always be capable of
making good decisions. On the other hand, while the user
can make good decisions, Friday cannot continually ask the
user for input, because it wastes the user’s valuable time.

We illustrate the AA problem by focusing on the key ex-
ample of meeting rescheduling in E-Elves: A central task
for the E-Elves is ensuring the simultaneous arrival of atten-
dees at a meeting. If any attendee arrives late, or not at all,
the time of all the attendees is wasted. On the other hand,
delaying a meeting is disruptive to users’ schedules. Friday

acts as proxy for its user so its responsibility is to ensure
that its user arrives at the meeting at the same time as other
users. Clearly, the user will often be better able to determine
whether he/she needs the meeting to be delayed. However, if
the agent transfers control to the user for the decision, it must
guard against miscoordination while waiting for the user’s
response, especially if the response is not forthcoming, e.g.,
if the user is in another meeting. Some decisions are poten-
tially costly, e.g., rescheduling a meeting to the following
day, so an agent should avoid taking them autonomously. To
buy more time for the user to make a decision, an agent has
the option of delaying the meeting, i.e., changing coordina-
tion constraints. Overall the agent has three options: make
an autonomous decision; transfer control; or change coor-
dination constraints. The autonomy reasoning must select
from these actions while balancing the various competing
influences.

Lessons from Electric Elves
Our first attempt to address AA in E-Elves was to learn
from user input; in particular by using decision-tree learn-
ing based on C4.5. In training mode, Friday recorded values
of a dozen carefully selected attributes and the user’s pre-
ferred action (identified by asking the user) whenever it had
to make a decision. Friday used the data to learn a decision
tree that encoded various rules. For example, it learned a
rule: IF two person meeting with important personAND
user not at department at meeting timeTHEN delay the
meeting 15 minutes. During training Friday also asked if
the user wanted such decisions taken autonomously in the
future. From these responses, Friday used C4.5 to learn a
second decision tree which encoded its AA reasoning.

Initial tests with the C4.5 approach were promising (Py-
nadath and Tambe 2003), but a key problem soon became
apparent. When Friday encountered a decision for which it
had learned to transfer control to the user, it would wait in-
definitely for the user to make the decision, even though this
inaction could lead to miscoordination with teammates if the
user did not respond or attend the meeting. To address this
problem a fixed time limit (five minutes) was added and if
the user did not respond within the time limit, Friday took
an autonomous action (the one it had learned to be the user’s
preferred action). This led to improved performance and the
problem uncovered in initial tests appeared to have been ad-
dressed.

Unfortunately, when the E-Elves were first deployed 24/7,
there were some dramatic failures, including:
• Example 1: Tambe’s (a user) Friday autonomously cancelled

a meeting with the division director because Friday over-
generalized from training examples.

• Example 2: Pynadath’s (another user) Friday incorrectly can-
celled the group’s weekly research meeting when a time-out
forced the choice of an autonomous action when Pynadath did
not respond.

• Example 3: A Friday delayed a meeting almost 50 times, each
time by 5 minutes. It was correctly applying a learned rule but
ignoring the nuisance to the rest of the meeting participants.

• Example 4: Tambe’s Friday automatically volunteered him for
a presentation, but he was actually unwilling. Again Friday had



over-generalized from a few examples and when a timeout oc-
curred had taken an undesirable autonomous action.

From the growing list of failures, it became clear that the
C4.5 approach faced some significant problems. Indeed, AA
in a team context requires more careful reasoning about the
costs and benefits of acting autonomously and transferring
control and needs to better deal with contingencies. In par-
ticular, an agent needs to: avoid taking risky decisions (like
example 1) by taking a lower risk delaying action to buy
the user more time to respond; deal with failures of the user
to quickly respond (examples 2 and 4); and plan ahead to
avoid taking costly sequences of actions that could be re-
placed by a single less costly action (example 3). In theory,
using C4.5, Friday might have eventually been able to learn
rules that would successfully balance costs, deal with un-
certainty and handle all the special cases but a very large
amount of training data would be required, even for this rel-
atively simple decision. Given our experience, we decided
to pursue an alternative approach that explicitly considered
costs and uncertainties.

On-going research

To address the early failures in AA, we wanted a mechanism
that met three important requirements. First, it should allow
us to explicitly represent and reason about different types of
costs as well as uncertainty, e.g., costs of miscoordination
vs. costs of taking an erroneous action. Second, it should
allow lookahead to plan a systematic transfer of decision-
making control and provide a response that is better in the
longer term (for situations such as a non-responsive user).
Finally, it should allow us to encode significant quantities
of initial domain knowledge, particularly costs and uncer-
tainty, so that the agent does not have to learn everything
from scratch (as was required with C4.5).

Markov Decision Processes (MDPs) fit the above require-
ments and so, in a second incarnation of E-Elves, were
invoked for each decision that Friday made: rescheduling
meetings, delaying meetings, volunteering a user for pre-
sentation or ordering meals(Scerriet al. 2002). Although
MDPs were able to support sequential decision making in
the presence of transitional uncertainty (uncertainty in the
outcomes of actions), they were hampered by not being able
to handle observational uncertainty (uncertainty in sensing).
Specifically, Friday’s “sensing” was very coarse and while
Friday might follow an appropriate course of action when
its observations were correct, when they were incorrect its
actions were very poor.

In a project inspired by E-Elves, we took the natural
next step to address this issue by using partially observ-
able MDPs (or POMDPs) to model observational uncer-
tainty and find appropriate courses of action with respect
to this observational uncertainty. However, existing tech-
niques for solving POMDPs either provide loose quality
guarantees on solutions (approximate algorithms) or are
computationally very expensive (exact algorithms). Our re-
cent research has developed efficient exact algorithms for
POMDPs, deployed in service of adjustable autonomy, by
exploiting the notions of progress or physical limitations
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Figure 3: Speedup over RBIP and GIP.

in the environment. The key insight was that given an
initial (possibly uncertain) set of starting states, the agent
needs to be prepared to act only in a limited range of be-
lief states; most other belief states are simply unreachable
given the dynamics of the monitored process so no action
needs to be generated for such belief states. These bounds
on the belief probabilities are obtained using Lagrangian
techniques in polynomial time (Varakanthamet al. 2005;
2007).

We tested this enhanced algorithm against two of the
fastest exact algorithms: GIP (Generalized Incremental
Pruning) and RBIP (Region Based Incremental Pruning).
Our enhancements in fact provide orders of magnitude
speedup over RBIP and GIP in problems taken from the
meeting re-scheduling of Electric Elves, as illustrated in Fig-
ure 3. In the Figure, the x-axis shows four separate prob-
lem instances, and y-axis shows the run-time in seconds (the
problem runs were cutoff at 20000 seconds.) DSGIP is our
enhanced algorithm and it is seen to be at least an order of
magnitude faster than the other algorithms.

Another issue that arose during the MDP implementation
of E-Elves is possibly of special relevance to personaliza-
tion in software assistants, above and beyond E-Elves. In
particular, both MDPs and POMDPs rely on knowing the
probability of events occurring in the environment. Clearly,
these probabilities varied from user to user and hence it was
natural to apply learning to adjust these parameters. While
the learning itself was effective, the fact that Friday did not
necessarily behave the same way each day could be discon-
certing to the users – even if the new behavior might actually
be “better”. The problem was that Friday would change its
behavior without warning, after users had adjusted to its (im-
perfect) behavior. Later work (Pynadath and Tambe 2001)
addressed this by allowing users to add hand-constructed in-
violable constraints.

Privacy
Just as with adjustable autonomy, privacy was another area
of research which was not initially considered important in
Electric Elves. Unfortunately, while several privacy related
problems became apparent, no systematic solutions were de-



veloped during the course of the project. We will describe
some of the problematic instances of privacy loss and then
some recent steps to quantitatively measure privacy loss that
have been inspired by the E-Elves insights.

Lessons from Electric Elves
We begin with a few arenas where privacy issues were im-
mediately brought to the forefront. First, a key part of E-
Elves was to assist users in locating other users to facilitate
collaborative activities, e.g. knowing that a user is in his/her
office would help determine if it is worth walking down to
that user’s office to engage in discussions. This was espe-
cially relevant in our domain since ISI and main USC cam-
pus are across town from each other. Unfortunately, making
a user’s GPS location available to other project members at
all times, even if GPS capabilities were switched off out-
side work hours, was a very significant invasion of privacy.
This led to a too transparent tracking of people’s locations.
For instance, when user Tambe had an early morning 8:30
AM meeting, and he was delayed, he blamed it on the LA
freeway traffic. However, one of the meeting attendees had
access to Tambe’s GPS data. So he could remark that the
delay in this meeting was not because of traffic as was sug-
gested but rather because Tambe was eating breakfast at a
small cafe next to ISI.

Second, even when such obviously intrusive location
monitoring was switched off and the E-Elves only indicated
whether or not a user was in his/her office, privacy loss still
occurred. For instance, one standard technique for Tambe to
avoid getting interrupted was to hide in the office and and
simulate being away. For finishing up a particularly impor-
tant proposal, he simulated being away by switching off of-
fice lights, locking the door and not responding to knocks
on the door or phone calls from colleagues. However, to his
surprise, a colleague sent him an email, saying that the col-
league knew Tambe was in the office because his elf was still
transmitting the fact that he was in his office to others.

Third, E-Elves monitored users’ patterns of daily activi-
ties. This included statistics on users actions related to var-
ious meetings, i.e. whether a user was delayed to a meet-
ing, whether he/she attended a meeting and whether the user
cancelled the meetings. These detailed statistics were an-
other source of privacy loss when they were made available
to other users – in this case, to a student who was interested
in running machine learning on the data. The student noticed
and pointed out to a senior researcher that, when his meet-
ings were with students, he was always late by 5 minutes,
while, on the other hand, he was punctual for his meetings
with other senior researchers.

Fourth, one of the parameters used in determining meet-
ing importance was the importance attached to each of the
people in the meeting. An agent used this information to
determine the actions to take with respect to a meeting, e.g.
canceling a meeting with someone very important in the or-
ganization was to be avoided. Such information about user
importance was supposed to be private, but not considered
particularly controversial. Unfortunately, when information
about meeting importance from someone else’s elf was acci-
dentally leaked to PhD students, this caused a minor contro-

Figure 4: Privacy loss for the SynchBB algorithm using six
different VPS metrics

versy — were PhD students’ importance quite low compared
to that of other researchers at ISI? Part of the complicated
explanation provided was not that meetings with PhD stu-
dents were any less important, but rather the fact that meet-
ing importance rolled into one two factors: not only the im-
portance of the meeting but also the difficulty of scheduling
a meeting and the urgency of the meeting.

On-going research
Our subsequent research on privacy has focused primarily
on the last issue, that of private information being leaked
during negotiations between team members. These negotia-
tions often took the form of distributed constraint optimiza-
tion problems (DCOP)(Modiet al. 2005; Mailler and Lesser
2004), in which cooperative agents exchanged messages in
order to optimize a global objective function to which each
agent contributes. For example, agents may try to optimize
a global schedule of meetings by setting their individual
schedules.

Many algorithms exist for solving such problems. How-
ever, it was not clear which algorithms preserved more
privacy than others, or more fundamentally, what metrics
should be used for measuring the privacy loss of each al-
gorithm. While researchers had begun to propose met-
rics for analysis of privacy loss in multiagent algorithms
for distributed optimization problems, a general quantita-
tive framework to compare these existing metrics for pri-
vacy loss or to identify dimensions along which to construct
new metrics was lacking. To address this question, we in-
troduced VPS (Valuations of Possible States)(Maheswaran
et al. 2006), a general quantitative framework to express,
analyze and compare existing metrics of privacy loss. With
VPS, we quantify an agent’s privacy loss to others in a mul-
tiagent system using as a basis the possible states the agent
can be in. In particular, this quantification is based on an
agent’s valuation on the other agents estimates about (i.e. a
probability distribution over) its own possible states. For ex-
ample, the agent may value poorly the fact that other agents
are almost certain about the agent’s possible state.

VPS was shown to capture various existing measures of
privacy created for specific domains of distributed constraint
satisfaction and optimization problems. Using VPS, we
were able to analyze the privacy loss of several algorithms in
a simulated meeting scheduling domain according to many
different metrics.

Figure 4 from (Maheswaranet al. 2006) shows an analy-



sis of privacy loss for the SynchBB algorithm across six dif-
ferent VPS metrics (ProportionalS, ProportionalTS, GuessS,
GuessTS, EntropyS and EntropyTS) for a particular meeting
scheduling scenario of three agents, averaged over 25 exper-
imental runs in which agents’ personal timeslot preference
were randomly generated. Also shown on the graph is the
privacy loss for the OptAPO algorithm (Mailler and Lesser
2004) and for a centralized solver; both of these were shown
to have the same privacy loss regardless of the VPS met-
ric used. Thex-axis shows the number of timeslots when
meetings could be scheduled in the overall problem, and
they-axis shows the systemwide privacy loss, expressed as
the mean of the privacy losses of each agent in the system,
where 0 means an agent has lost no privacy to any other
agent and 1 means an agent has lost all privacy to all other
agents. The graph shows that, according to four of the six
metrics, SynchBB’s privacy loss lies in between that of cen-
tralized and OptAPO, and, interestingly, the effect of in-
creasing the number of timeslots in the system causes pri-
vacy loss to increase according to one metric, but decrease
according to another.

The key result illustrated in Figure 4 is that distribution in
DCOPs does not automatically guarantee improved privacy
when compared to a centralized approach, at least as seen
from the algorithms tested here — an important result given
that privacy is a key motivation for deploying DCOP algo-
rithms in software personal assistants. Later work (Green-
stadtet al. 2006) showed that several other DCOP algo-
rithms (e.g. Adopt (Modiet al. 2005)) did perform better
than the centralized approach with respect to privacy. How-
ever, it is clear that algorithms for DCOP must address pri-
vacy concerns carefully, and cannot assume that distribution
alone provides privacy.

Social norms
Another area which provided unexpected research issues
was social norms. Day-to-day operation with E-Elves ex-
posed several important research issues that we have not
yet specifically pursued. In particular, agents in office en-
vironments must follow the social norms of the human so-
ciety within which the agents function. For example, agents
may need to politely lie on behalf of their users in order
to protect their privacy. If the user is available but does
not wish to meet with a colleague, the agent should not
transmit the user’s location and thus indirectly indicate that
the user is unwilling to meet with his/her colleague. Even
more crucially, the agent should not indicate to the colleague
that meeting with that colleague is considered unimportant.
Rather, indicating that the user is unavailable for other rea-
sons is preferable.

Another interesting phenomenon was that users would
manipulate the E-Elves to allow themselves to violate so-
cial norms without risking being seen to violate norms. The
most illustrative example of this was the auction for presen-
ter at regular group meetings. This was a role that users typ-
ically did not want to perform, because it required prepar-
ing a presentation, but also did not want to appear torefuse.
Several users manipulated the E-Elves role allocation auc-
tion to allow themselves to meet both of these conflicting

goals. One method that was actually used was to let Friday
respond to the auction autonomously, knowing that the con-
trolling MDP was conservative and assigned a very high cost
to incorrectly accepting the role on the user’s behalf. A more
subtle technique that was used was to fill up one’s calander
with many meetings because Friday would take into account
how busy the person was. Unfortunately, Friday was not
sophisticated enough to distinguish between “Project Meet-
ing” and “Lunch” or “Basketball”. In both of these cases,
the refusal would be attributed to the agent, rather than di-
rectly to the user. Another source of manipulation came in
when a user had recently presented, since the auction would
not assign them the role again immediately. Thus shortly af-
ter presenting users could manually submit affirmative bids
safe in the knowledge their bid would not be accepted while
still getting credit from the rest of the team for their enthusi-
asm. (These techniques came to light only after the project
ended!)

One important lesson here is that personal assistants must
not violate norms. However, another is that personal assis-
tants in this case were designed for group efficiency, and as
such, face an incentive compatibility problem: users may
have their own personal aims as a result of which they were
working around the personal assistants. Rather than insist-
ing on group efficiency, it may be more useful to allow users
to manage this incompatibility in a more socially acceptable
manner.

Summary
This paper outlines some of the important lessons learned
from a successfully-deployed team of personal assistant
agents (Electric Elves) in an office environment. This
project led to several important observations about privacy,
adjustable autonomy, and social norms for agents deployed
in office environments. This paper outlines some of the key
lessons learned and, more importantly, outlines our contin-
ued research to address some of the concerns raised. These
lessons have important implications for similar on-going re-
search projects.
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